Sample records for galactic plane imaging

  1. WISEGAL. WISE for the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Noriega-Crespo, Alberto

    There is truly a community effort to study on a global scale the properties of the Milky Way, like its structure, its star formation and interstellar medium, and to use this knowledge to create accurate templates to understand the properties of extragalactic systems. A testimony of this effort are the multi-wavelength surveys of the Galactic Plane that have been recently carried out or are underway from both the ground (e.g. IPHAS, ATLASGAL, JCMT Galactic Plane Survey) or space (GLIMPSE, MIPSGAL, HiGAL). Adding to this wealth of data is the recent release of approximately 57 percent of the whole sky by the Wide-field Infrared Survey Explorer (WISE) team of their high angular resolution and sensitive mid-IR (3.4, 4.6, 12 and 22 micron) images and point source catalogs, encompassing nearly three quarters of the Galactic Plane, including the less studied regions of the Outer Galaxy. The WISE Atlas Images are spectacular, but to take full advantage of them, they need to be transformed from their default Data Number (DN) units into absolute surface brightness calibrated units. Furthermore, to mitigate the contamination effect of the point sources on the extended/diffuse emission, we will remove them and create residual images. This processing will enable a wide range of science projects using the Atlas Images, where measuring the spectral energy distribution of the extended emission is crucial. In this project we propose to transform the W3 (12 micron) and W4 (22 micron) images of the Galactic Plane, in particular of the Outer Galaxy where WISE provides an unique data set, into a background-calibrated, point-source subtracted images using IRIS (DIRBE IRAS Calibrated data). This transformation will allow us to carry out research projects on Massive star formation, the properties of dust in the diffuse ISM, the three dimensional distribution of the dust emission in the Galaxy and the mid/far infrared properties of Supernova Remnants, among others, and to perform a

  2. The DECam Plane Survey: Optical Photometry of Two Billion Objects in the Southern Galactic Plane

    NASA Astrophysics Data System (ADS)

    Schlafly, E. F.; Green, G. M.; Lang, D.; Daylan, T.; Finkbeiner, D. P.; Lee, A.; Meisner, A. M.; Schlegel, D.; Valdes, F.

    2018-02-01

    The DECam Plane Survey is a five-band optical and near-infrared survey of the southern Galactic plane with the Dark Energy Camera at Cerro Tololo. The survey is designed to reach past the main-sequence turn-off of old populations at the distance of the Galactic center through a reddening E(B-V) of 1.5 mag. Typical single-exposure depths are 23.7, 22.8, 22.3, 21.9, and 21.0 mag (AB) in the grizY bands, with seeing around 1\\prime\\prime . The footprint covers the Galactic plane with | b| ≲ 4^\\circ , 5^\\circ > l> -120^\\circ . The survey pipeline simultaneously solves for the positions and fluxes of tens of thousands of sources in each image, delivering positions and fluxes of roughly two billion stars with better than 10 mmag precision. Most of these objects are highly reddened and deep in the Galactic disk, probing the structure and properties of the Milky Way and its interstellar medium. The fully-processed images and derived catalogs are publicly available.

  3. Near Real-Time Imaging of the Galactic Plane with BATSE

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Zhang, S. N.; Robinson, C. R.; Paciesas, W. S.; Barret, D.; Grindlay, J.; Bloser, P.; Monnelly, C.

    1997-01-01

    The discovery of new transient or persistent sources in the hard X-ray regime with the BATSE Earth occultation Technique has been limited previously to bright sources of about 200 mCrab or more. While monitoring known source locations is not a problem to a daily limiting sensitivity of about 75 mCrab, the lack of a reliable background model forces us to use more intensive computer techniques to find weak, previously unknown emission from hard X-ray/gamma sources. The combination of Radon transform imaging of the galactic plane in 10 by 10 degree fields and the Harvard/CFA-developed Image Search (CBIS) allows us to straightforwardly search the sky for candidate sources in a +/- 20 degree latitude band along the plane. This procedure has been operating routinely on a weekly basis since spring 1997. We briefly describe the procedure, then concentrate on the performance aspects of the technique and candidate source results from the search.

  4. The DECam Plane Survey: Optical photometry of two billion objects in the southern Galactic plane

    NASA Astrophysics Data System (ADS)

    Schlafly, Edward; Green, Gregory M.; Lang, Dustin; Daylan, Tansu; Finkbeiner, Douglas; Lee, Albert; Meisner, Aaron; Schlegel, David; Valdes, Francisco

    2018-01-01

    The DECam Plane Survey is a five-band optical and near-infrared survey of the southern Galactic plane with the Dark Energy Camera at Cerro Tololo. The survey is designed to reach past the main-sequence turn-off at the distance of the Galactic center through a reddening E(B-V) of 1.5 mag. Typical single-exposure depths are 23.7, 22.8, 22.3, 21.9, and 21.0 mag in the grizY bands, with seeing around 1 arcsecond. The footprint covers the Galactic plane with |b| < 4°, 5° > l > -120°. The survey pipeline simultaneously solves for the positions and fluxes of tens of thousands of sources in each image, delivering positions and fluxes of roughly two billion stars with better than 10 mmag precision. Most of these objects are highly reddened and deep in the Galactic disk, probing the structure and properties of the Milky Way and its interstellar medium. The full survey is publicly available.

  5. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  6. A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. R.; Leahy, D. A.; Sunstrum, C.

    We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° <  ℓ  < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in themore » Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.« less

  7. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    NASA Technical Reports Server (NTRS)

    Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.

    2004-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which

  8. CO (3 - 2) High-resolution Survey of the Galactic Plane: R1

    NASA Astrophysics Data System (ADS)

    Dempsey, J. T.; Thomas, H. S.; Currie, M. J.

    2013-11-01

    We present the first release (R1) of data from the CO High-Resolution Survey (COHRS), which maps a strip of the inner Galactic plane in 12CO (J = 3 → 2). The data are taken using the Heterodyne Array Receiver Programme on the James Clerk Maxwell Telescope (JCMT) in Hawaii, which has a 14 arcsec angular resolution at this frequency. When complete, this survey will cover |b| <= 0.°5 between 10° < l < 65°. This first release covers |b| <= 0.°5 between 10.°25 < l < 17.°5 and 50.°25 < l < 55.°25, and |b| <= 0.°25 between 17.°5 < l < 50.°25. The data are smoothed to a velocity resolution of 1 km s-1, a spatial resolution of 16 arcsec and achieve a mean rms of ~1 K. COHRS data are available to the community online at http://dx.doi.org/10.11570/13.0002. In this paper we describe the data acquisition and reduction techniques used and present integrated intensity images and longitude-velocity maps. We also discuss the noise characteristics of the data. The high resolution is a powerful tool for morphological studies of bubbles and filaments while the velocity information shows the spiral arms and outflows. These data are intended to complement both existing and upcoming surveys, e.g., the Bolocam Galactic Plane Survey (BGPS), ATLASGAL, the Herschel Galactic Plane Survey (Hi-GAL) and the JCMT Galactic Plane Survey with SCUBA-2 (JPS).

  9. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; hide

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  10. Discovery of a GeV blazar shining through the galactic plane

    DOE PAGES

    Vandenbroucke, J.; Buehler, R.; Ajello, M.; ...

    2010-07-14

    The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = –1more » $$ο\\atop{.}$$2) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. Here, we report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck Low-Resolution Imaging Spectrometer observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray absorption, and multi-band variability indicate that this new GeV source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width >5 Å, this blazar belongs in the flat-spectrum radio quasar category.« less

  11. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  12. The H.E.S.S. Galactic plane survey

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  13. Producing an Infrared Multiwavelength Galactic Plane Atlas Using Montage, Pegasus, and Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Rynge, M.; Juve, G.; Kinney, J.; Good, J.; Berriman, B.; Merrihew, A.; Deelman, E.

    2014-05-01

    In this paper, we describe how to leverage cloud resources to generate large-scale mosaics of the galactic plane in multiple wavelengths. Our goal is to generate a 16-wavelength infrared Atlas of the Galactic Plane at a common spatial sampling of 1 arcsec, processed so that they appear to have been measured with a single instrument. This will be achieved by using the Montage image mosaic engine process observations from the 2MASS, GLIMPSE, MIPSGAL, MSX and WISE datasets, over a wavelength range of 1 μm to 24 μm, and by using the Pegasus Workflow Management System for managing the workload. When complete, the Atlas will be made available to the community as a data product. We are generating images that cover ±180° in Galactic longitude and ±20° in Galactic latitude, to the extent permitted by the spatial coverage of each dataset. Each image will be 5°x5° in size (including an overlap of 1° with neighboring tiles), resulting in an atlas of 1,001 images. The final size will be about 50 TBs. This paper will focus on the computational challenges, solutions, and lessons learned in producing the Atlas. To manage the computation we are using the Pegasus Workflow Management System, a mature, highly fault-tolerant system now in release 4.2.2 that has found wide applicability across many science disciplines. A scientific workflow describes the dependencies between the tasks and in most cases the workflow is described as a directed acyclic graph, where the nodes are tasks and the edges denote the task dependencies. A defining property for a scientific workflow is that it manages data flow between tasks. Applied to the galactic plane project, each 5 by 5 mosaic is a Pegasus workflow. Pegasus is used to fetch the source images, execute the image mosaicking steps of Montage, and store the final outputs in a storage system. As these workflows are very I/O intensive, care has to be taken when choosing what infrastructure to execute the workflow on. In our setup, we choose

  14. A High Resolution Survey of the Galactic Plane at 408 MHz

    NASA Astrophysics Data System (ADS)

    Tung, A. K.; Kothes, R.; Landecker, T. L.; Geisbüsch, J.; Del Rizzo, D.; Taylor, A. R.; Brunt, C. M.; Gray, A. D.; Dougherty, S. M.

    2017-10-01

    The interstellar medium is a complex “ecosystem” with gas constituents in the atomic, molecular and ionized states, dust, magnetic fields, and relativistic particles. The Canadian Galactic Plane Survey has imaged these constituents at multiple radio and infrared frequencies with angular resolution of the order of arcminutes. This paper presents radio continuum data at 408 MHz over the area of 52^\\circ ≤slant {\\ell }≤slant 193^\\circ , -6\\buildrel{\\circ}\\over{.} 5≤slant b≤slant 8\\buildrel{\\circ}\\over{.} 5, with an extension to b=21^\\circ in the range of 97^\\circ ≤slant {\\ell }≤slant 120^\\circ , with angular resolution 2\\buildrel{ \\prime}\\over{.} 8× 2\\buildrel{ \\prime}\\over{.} 8 cosecδ. Observations were made with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory as part of the Canadian Galactic Plane Survey. The calibration of the survey using existing radio source catalogs is described. The accuracy of 408 MHz flux densities from the data is 6%. Information on large structures has been incorporated into the data using the single-antenna survey of Haslam et al. The paper presents the data, describes how it can be accessed electronically, and gives examples of applications of the data to ISM research.

  15. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previouslymore » known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.« less

  16. The near-infrared counterpart of a variable galactic plane radio source

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Phillips, Andrew C.; Ciardullo, Robin; Jacoby, George H.

    1992-01-01

    A near-infrared counterpart to the highly variable, unresolved galactic plane radio source GT 0116 + 622 is identified. This source is of particular interest, as it has been previously suggested to be the counterpart of the gamma-ray source Cas gamma-l. The present NIR and red images detect a faint, spatially extended (3 arcsec FWHM), very red object coincident with the radio position. There is complex spatial structure which may be due in part to an unrelated superposed foreground object. Observations on multiple nights show no evidence for flux variability, despite the high amplitude variability on a time-scale of days reported for the radio source. The data are consistent with an interpretation of GT 0116 + 622 as an unusually variable, obscured active galaxy at a distance of several hundred megaparsecs, although more exotic, and in particular galactic, interpretations cannot yet be ruled out. If the object is extragalactic, the previously suggested identification with the gamma-ray source would seem unlikely.

  17. Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Palma, Tali; Pullen, Joyce

    Deep near-IR images from the VISTA Variables in the Vía Láctea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the fourth Galactic quadrant (295° < ℓ < 350°, −2.°24 < b < −1.°05). The sample’s distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyraemore » population does not extend beyond ℓ  ∼ 340°, and the sample’s spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.« less

  18. North Galactic Plane Structure with IPHAS Be Stars.

    NASA Astrophysics Data System (ADS)

    Gkouvelis, L.; Fabregat, J.; IPHAS Consortium

    2016-11-01

    Our goal is to investigate the spiral structure of the Northern Galactic plane using as tracers the classical Be stars detected by INT Photometric Hα Survey (IPHAS). IPHAS scans the 29oGalactic disk in the anticenter direction.

  19. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  20. FERMI BUBBLES AND BUBBLE-LIKE EMISSION FROM THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Boer, Wim; Weber, Markus, E-mail: wim.de.boer@kit.edu, E-mail: markus.weber2@kit.edu

    2014-10-10

    The diffuse gamma-ray sky revealed ''bubbles'' of emission above and below the Galactic plane, symmetric around the center of the Milky Way, with a height of 10 kpc in both directions. At present, there is no convincing explanation for the origin. To understand the role of the Galactic center, one has to study the bubble spectrum inside the disk, a region that has been excluded from previous analyses because of the large foreground. From a novel template fit, which allows a simultaneous determination of the signal and foreground in any direction, we find that bubble-like emission is not only found inmore » the halo, but in the Galactic plane as well, with a width in latitude coinciding with the molecular clouds. The longitude distribution has a width corresponding to the Galactic bar with an additional contribution from the Scutum-Centaurus arm. The energy spectrum of the bubbles coincides with the predicted contribution from CRs trapped in sources (SCRs). Also, the energetics fits well. Hence, we conclude that the bubble-like emission has a hadronic origin that arises from SCRs, and the bubbles in the halo arise from hadronic interactions in advected gas. Evidence for advection is provided by the ROSAT X-rays of hot gas in the bubble region.« less

  1. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  2. The galactic distribution of carbon monoxide: An out-of-plane survey. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cohen, R. S.

    1978-01-01

    Galactic CO line emission at 115 GHz has been surveyed. This survey confirms the finding that CO is concentrated in a ring. It provides a determination of the thickness of this molecular ring as a function of galactic radius and shows that CO is displaced from the conventional galactic plane. These results were arrived at by least-squares fitting the survey data to a circularly symmetric model of the Galaxy. A comparison of the CO and HI distributions shows that there are marked differences in the distributions of these species, both radially and out of the plane. A detailed discussion of the antenna characteristics, including the radiation pattern and pointing characteristics is presented.

  3. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA)more » for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of

  4. The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; Ginsburg, Adam G.; Dunham, Miranda K.; Drosback, Meredith M.; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Evans, Neal J., II; Glenn, Jason; Harvey, Paul; Rosolowsky, Erik; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan P.

    2011-01-01

    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33'' effective resolution of 170 deg2 of the Galactic Plane visible from the northern hemisphere. The BGPS is one of the first large area, systematic surveys of the Galactic Plane in the millimeter continuum without pre-selected targets. The survey is contiguous over the range -10.5 <= l <= 90.5, |b| <= 0.5. Toward the Cygnus X spiral arm, the coverage was flared to |b| <= 1.5 for 75.5 <= l <= 87.5. In addition, cross-cuts to |b| <= 1.5 were made at l= 3, 15, 30, and 31. The total area of this section is 133 deg2. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 deg2, 97.5 <= l <= 100.5, 2.25 <= b <= 5.25), a region toward the Perseus Arm (4 deg2 centered on l = 111, b = 0 near NGC 7538), W3/4/5 (18 deg2, 132.5 <= l <= 138.5), and Gem OB1 (6 deg2, 187.5 <= l <= 193.5). The survey has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1σ noise level in the range 11-53 mJy beam-1 in the inner Galaxy. The BGPS source catalog is presented in a previously published companion paper. This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data timestream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5farcm9 is nearly completely attenuated (>90%) and the linear scale at which the attenuation reaches 50

  5. The displacement of the sun from the galactic plane using IRAS and faust source counts

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I determine the displacement of the Sun from the Galactic plane by interpreting IRAS point-source counts at 12 and 25 microns in the Galactic polar caps using the latest version of the SKY model for the point-source sky (Cohen 1994). A value of solar zenith = 15.5 +/- 0.7 pc north of the plane provides the best match to the ensemble of useful IRAS data. Shallow K counts in the north Galactic pole are also best fitted by this offset, while limited FAUST far-ultraviolet counts at 1660 A near the same pole favor a value near 14 pc. Combining the many IRAS determinations with the few FAUST values suggests that a value of solar zenith = 15.0 +/- 0.5 pc (internal error only) would satisfy these high-latitude sets of data in both wavelength regimes, within the context of the SKY model.

  6. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merello, Manuel; Evans II, Neal J.; Shirley, Yancy L.

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3more » K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.« less

  7. The EVN Galactic Plane Survey - EGaPS

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid

    2011-01-01

    I present a catalogue of the positions and correlated flux densities of 109 compact extragalactic radio sources in the Galactic plane determined from an analysis of a 48-h Very Long Baseline Interferometry (VLBI) experiment at 22 GHz with the European VLBI Network. The median position uncertainty is 9 mas. The correlated flux densities of the detected sources are in the range of 2-300 mJy. In addition to the target sources, nine water masers have been detected, of which two are new. I derived the positions of the masers with an accuracy of 30-200 mas and determined the velocities of the maser components and their correlated flux densities. The catalogue and the supporting material are available at http://astrogeo.org/egaps.

  8. A Low-Frequency Survey of the Galactic Plane Near l = 11 degs: Discovery of Three New Supernova Remnants

    DTIC Science & Technology

    2004-01-01

    A LOW-FREQUENCY SURVEY OF THE GALACTIC PLANE NEAR l = 11: DISCOVERY OF THREE NEW SUPERNOVA REMNANTS C. L. Brogan,1,2 K. E. Devine,3,4 T. J. Lazio,5...230; Green 2002). This paucity is likely due in part to selection effects acting against the discovery of the more mature, faint, extended remnants...00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE A Low-Frequency Survey of the Galactic Plane Near l=11degrees: Discovery of Three New Supernova

  9. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  10. Maser hunting in the galactic plane

    NASA Astrophysics Data System (ADS)

    Quinn, Lyshia Jane

    The process of massive star formation greatly influences its surroundings through their outflows, vast UV output and shocks from their supernova death. They form at great distances from the Earth, enshrouded by dust and gas and have relatively short lifetimes. Astrophysical masers which form in these environments may act as locators of the star forming regions. The aim of this thesis is to study massive star formation using masers to probe these regions. The three main masers used in this thesis are the Class I and Class II methanol masers and the 6035 MHz ex-OH maser. The methanol masers are divided into two groups, Class I and Class II, based on their distance from a central source. The Class I masers are separated 1-2 pc from a central source, the central source is the star forming region. The Class II masers are associated close to a star forming source. They are often associated with a 6035 MHz ex-OH maser. The 6035 MHz ex-OH masers are less common than the 6668 MHz Class I methanol masers. They are often found at sites of the 6668 MHz Class I masers and 1665/7 MHz OH masers. This thesis presents two maser surveys, the Methanol Multibeam (MMB) survey and the Class I survey. The MMB survey is currently surveying the entire Galactic Plane for the 6668 MHz Class II methanol maser and the 6035 MHz ex-OH maser. Over 60% of the survey in the Southern hemisphere is now complete using the Parkes telescope. Over 900 6668 MHz Class I methanol masers and 110 6035 MHz ex-OH masers have been detected, with all of these masers pinpoint the location of newly forming high mass stars. Follow up observations to determine the precise locations of the 6668 MHz methanol and 6035 MHz ex-OH masers are currently underway. The first ever unbiased Class I survey has observed 1 sq degree of the Galactic Plane for the 44 GHz Class I methanol masers using the Mopra telescope in Australia. The 44 GHz Class II methanol masers are hypothesised to be associated with ! the outflows of high

  11. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  12. Identification of a Population of X-Ray-Emitting Massive Stars in the Galactic Plane

    DTIC Science & Technology

    2011-02-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) surveyed the inner region of the Galactic plane, detecting 163 X-ray sources with...exhibit this profile. Given the current data this is all very speculative. We defer any definitive conclusions about the weak spectral features or

  13. Herschel Galactic Plane Survey of [NII] Fine Structure Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  14. Submillimeter wave survey of the galactic plane. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Cheung, L. H.

    1980-01-01

    The survey measured, over virtually the entire galactic plane, the distribution and basic physical conditions of the coolest dust component of the interstellar medium. The instrument designed for observations of extended, low surface brightness continuum emission consisted of a balloon borne, gyro stablized, 1.2 m Cassegrain telescope and a liquid cooled photometer. The design, integration, tests, and flight operation of the survey are presented.

  15. Physical properties of high-mass star-forming clumps in different evolutionary stages from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam

    2013-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.

  16. Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues. First data release for the inner Milky Way: +68° ≥ l ≥ -70°

    NASA Astrophysics Data System (ADS)

    Molinari, S.; Schisano, E.; Elia, D.; Pestalozzi, M.; Traficante, A.; Pezzuto, S.; Swinyard, B. M.; Noriega-Crespo, A.; Bally, J.; Moore, T. J. T.; Plume, R.; Zavagno, A.; di Giorgio, A. M.; Liu, S. J.; Pilbratt, G. L.; Mottram, J. C.; Russeil, D.; Piazzo, L.; Veneziani, M.; Benedettini, M.; Calzoletti, L.; Faustini, F.; Natoli, P.; Piacentini, F.; Merello, M.; Palmese, A.; Del Grande, R.; Polychroni, D.; Rygl, K. L. J.; Polenta, G.; Barlow, M. J.; Bernard, J.-P.; Martin, P. G.; Testi, L.; Ali, B.; André, P.; Beltrán, M. T.; Billot, N.; Carey, S.; Cesaroni, R.; Compiègne, M.; Eden, D.; Fukui, Y.; Garcia-Lario, P.; Hoare, M. G.; Huang, M.; Joncas, G.; Lim, T. L.; Lord, S. D.; Martinavarro-Armengol, S.; Motte, F.; Paladini, R.; Paradis, D.; Peretto, N.; Robitaille, T.; Schilke, P.; Schneider, N.; Schulz, B.; Sibthorpe, B.; Strafella, F.; Thompson, M. A.; Umana, G.; Ward-Thompson, D.; Wyrowski, F.

    2016-07-01

    Aims: We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500 μm, encompassing the peak of the spectral energy distribution of cold dust for 8 ≲ T ≲ 50 K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68° ≳ ℓ ≳ -70° in a | b | ≤ 1° latitude strip. Methods: Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2°× 2° "tile" that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared. Results: Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel-mode observations at 60'' s-1 scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service. The DR1 Compact Source Catalogues are delivered as single-band photometric lists containing, in addition to source position, peak, and integrated flux and source sizes, a variety of parameters useful to assess the quality and reliability of the extracted sources. Caveats and hints to help in this assessment are provided. Flux completeness limits in all bands are

  17. FOREST unbiased Galactic plane imaging survey with the Nobeyama 45 m telescope (FUGIN). I. Project overview and initial results

    NASA Astrophysics Data System (ADS)

    Umemoto, Tomofumi; Minamidani, Tetsuhiro; Kuno, Nario; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Torii, Kazufumi; Tosaki, Tomoka; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Hirota, Akihiko; Ohashi, Satoshi; Yamagishi, Mitsuyoshi; Handa, Toshihiro; Nakanishi, Hiroyuki; Omodaka, Toshihiro; Koide, Nagito; Matsumoto, Naoko; Onishi, Toshikazu; Tokuda, Kazuki; Seta, Masumichi; Kobayashi, Yukinori; Tachihara, Kengo; Sano, Hidetoshi; Hattori, Yusuke; Onodera, Sachiko; Oasa, Yumiko; Kamegai, Kazuhisa; Tsuboi, Masato; Sofue, Yoshiaki; Higuchi, Aya E.; Chibueze, James O.; Mizuno, Norikazu; Honma, Mareki; Muller, Erik; Inoue, Tsuyoshi; Morokuma-Matsui, Kana; Shinnaga, Hiroko; Ozawa, Takeaki; Takahashi, Ryo; Yoshiike, Satoshi; Costes, Jean; Kuwahara, Sho

    2017-10-01

    The FUGIN project is one of legacy projects using a new multi-beam FOREST (four-beam receiver system on the 45 m telescope). This project aims to simultaneously investigate the distribution, kinematics, and physical properties of both diffuse and dense molecular gases in the Galaxy by observing 12CO, 13CO, and C18O J = 1-0 lines simultaneously. Mapping regions are parts of the first quadrant (10° ≤ l ≤ 50°, |b| ≤ 1°) and the third quadrant (198° ≤ l ≤ 236°, |b| ≤ 1°) of the Galaxy, where spiral arms, bar structure, and the molecular gas ring are included. This survey achieves the highest angular resolution to date (˜20″) for the Galactic plane survey in the CO J = 1-0 lines, which makes it possible to find dense clumps located farther away than the previous surveys. FUGIN will provide us an invaluable dataset for investigating the physics of the Galactic interstellar medium (ISM), particularly the evolution of interstellar gas covering galactic-scale structures to the internal structures of giant molecular clouds, such as small filaments/clumps/cores. We present an overview of the FUGIN project, the observation plan and initial results. These results reveal wide-field and detailed structures of molecular clouds, such as entangled filaments that have not been obvious in previous surveys, and large-scale kinematics of molecular gas, such as spiral arms.

  18. Spectral Modeling of the EGRET 3EG Gamma Ray Sources Near the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.; Lin, Y. C.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Reimer, O.; Sreekumar, P.

    1999-01-01

    The third EGRET catalog lists 84 sources within 10 deg of the Galactic Plane. Five of these are well-known spin-powered pulsars, 2 and possibly 3 others are blazars, and the remaining 74 are classified as unidentified, although 6 of these are likely to be artifacts of nearby strong sources. Several of the remaining 68 unidentified sources have been noted as having positional agreement with supernovae remnants and OB associations. Others may be radio-quiet pulsars like Geminga, and still others may belong to a totally new class of sources. The question of the energy spectral distributions of these sources is an important clue to their identification. In this paper, the spectra of the sources within 10 deg of Galactic Plane are fit with three different functional forms; a single power law, two power laws, and a power law with an exponential cutoff. Where possible, the best fit is selected with statistical tests. Twelve, and possibly an additional 5 sources, are found to have spectra that are fit by a breaking power law or by the power law with exponential cutoff function.

  19. A Panoramic View of Star Formation in Milky Way: Recent Results from Galactic Plane FIR/Sub-mm Surveys

    NASA Astrophysics Data System (ADS)

    Elia, Davide

    2017-11-01

    The star formation process involves a continuous gas flow from galactic (kpc) down to stellar (AU) scales. While targeted observations of single star forming sources are needed to understand the steps of this process with increasing detail, large unbiased Galactic plane surveys permit to reconstruct the map of star forming sites across the Milky Way, considered as an unique star formation engine. On the one hand, such surveys provide the community with a huge number of candidate targets for future follow-up observations with state-of-the-art telescope facilities, on the other hand they can provide reliable estimates of global parameters, such as Galactic star formation efficiency and rate, through which it is possible to establish comparisons with other galaxies. In this talk I will review the main results of recent FIR/sub-mm continuum emission Galactic surveys, with special attention to the Hi-GAL Herschel project, having the advantage (but also the complication) of being a multi-wavelength survey covering the spectral range in which the cold interstellar dust is expected to emit. The subsequent VIALACTEA project represents an articulate effort to combine Hi-GAL with other continuum and line surveys to refine the census of star forming clumps in the Galactic plane, and to use it to describe the Milky Way as a whole. Interpretation limitations imposed by the loss of detail with increasing distance are also discussed.

  20. Fourier plane imaging microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de; Nano Tech Center, Texas Tech University, Lubbock, Texas 79409

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonicmore » crystals.« less

  1. Variation of z-height of the molecular clouds on the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2002-12-01

    Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.

  2. BATSE imaging survey of the Galactic plane

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.

    1997-01-01

    The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.

  3. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointingmore » is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.« less

  4. Identifications of Four Integral Sources in the Galactic Plane via CHANDRA Localizations

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Chaty, Sylvain; Rodriquez, Jerome; Foschini, Luigi; Walter, Roland; Kaaret, Philip

    2006-01-01

    Hard X-ray imaging of the Galactic plane by the INTEGRAL satellite is uncovering large numbers of 20-100 keV "IGR" sources. We present results from Chandra, INTEGRAL, optical, and IR observations of four IGR sources: three sources in the Norma region of the Galaxy(1GR J16195-4945,IGR J16207-5129, and IGR J16167-4957) and one that is closer to the Galactic center (IGR 5171 95-4100). In all four cases, one relatively bright Chandra source is seen in the INTEGRAL error circle, and these are likely to be the soft X-ray counterparts of the IGR sources. They have hard 0.3-10 keV spectra with power-law photon indices of Gamma = 0.5-1.1. While many previously studied IGR sources show high column densities (NH approx. 10(exp 23)-10(exp 24)/sq cm), only IGR J16195-4945 has a column density that could be as high as 10(exp 23)/sq cm. Using optical and IR sky survey catalogs and our own photometry, we have obtained identifications for all four sources. The J-band magnitudes are in the range 14.9-10.4, and we have used the optical/IR spectral energy distributions (SEDs) to constrain the nature of the sources. Blackbody components with temperature lower limits of >9400 K for IGR J16195-4945 and >18,000 K for IGR J16207-5129 indicate that these are very likely high-mass X-ray binaries (HMXBs). However, for IGR 516167-4957 and IGR J17195-4100, low extinction and the SEDs indicate later spectral types for the putative companions, suggesting that these are not HMXBs.

  5. Spitzer Digs Up Galactic Fossil

    NASA Image and Video Library

    2004-10-12

    This false-color image taken by NASA Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic "fossils" as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA06928

  6. The role of environment in the observed Fundamental Plane of radio Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav S.

    2018-05-01

    The optical Fundamental Plane of black hole activity relates radio continuum luminosity of Active Galactic Nuclei to [O III] luminosity and black hole mass. We examine the environments of low redshift (z < 0.2) radio-selected AGN, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio - optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.

  7. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  8. Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.

    2014-05-01

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg2. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from l ≈ 60 to l ≈ 104 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  9. Herschel Galactic plane survey of ionized gas traced by [NII

    NASA Astrophysics Data System (ADS)

    Yildiz, Umut; Goldsmith, Paul; Pineda, Jorge; Langer, William

    2015-01-01

    Far infrared and sub-/millimeter atomic & ionic fine structure and molecular rotational lines are powerful tracers of star formation on both Galactic and extragalactic scales. Although CO lines trace cool to moderately warm molecular gas, ionized carbon [CII] produces the strongest lines, which arise from almost all reasonably warm (T>50 K) parts of the ISM. However, [CII] alone cannot distinguish highly ionized gas from weakly ionized gas. [NII] plays a significant role in star formation as it is produced only in ionized regions; in [HII] regions as well as diffuse ionized gas. The ionization potential of nitrogen (14.5 eV) is greater than that of hydrogen (13.6 eV), therefore the ionized nitrogen [NII] lines reflect the effects of massive stars, with possible enhancement from X-ray and shock heating from the surroundings. Two far-infrared 122 um and 205 um [NII] fine structure spectral lines are targeted via Photodetector Array Camera and Spectrometer (PACS) onboard Herschel Space Observatory. The sample consists of 149 line-of-sight (LOS) positions in the Galactic plane. These positions overlap with the [CII] 158 um observations obtained with the GOT C+ survey. With a reasonable assumption that the emission from both 122 um and 205 um lines originate in the same gas; [NII] 122/205 um line ratio indicates the a good measure of the electron density of each of the LOS positions. [NII] detections are mainly toward the Galactic center direction and the [NII] electron densities are found between 7-50 cm^-3, which is enhanced WIM (Warm Ionized Medium). WIM densities are expected to be much lower (~1 cm-3), therefore non-detections toward the opposite side of the Galactic Center shows abundant of this gas. The pixel to pixel variation of the emission within a single Herschel pointing is relatively small, which is interpreted as the [NII] emission comes from an extended gas. It is important to quantify what fraction of [CII] emission arises in the ionized gas. Thus, with

  10. Determination of the Sun's offset from the Galactic plane using pulsars

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Manchester, R. N.; Wang, N.

    2017-07-01

    We derive the Sun's offset from the local mean Galactic plane (z⊙) using the observed z-distribution of young pulsars. Pulsar distances are obtained from measurements of annual parallax, H I absorption spectra or associations where available and otherwise from the observed pulsar dispersion and a model for the distribution of free electrons in the Galaxy. We fit the cumulative distribution function for a sech2(z)-distribution function, representing an isothermal self-gravitating disc, with uncertainties being estimated using the bootstrap method. We take pulsars having characteristic age τc ≲ 106.5 yr and located within 4.5 kpc of the Sun, omitting those within the local spiral arm and those significantly affected by the Galactic warp, and solve for z⊙ and the scaleheight, H, for different cut-offs in τc. We compute these quantities using just the independently determined distances and these together with dispersion measure (DM)-based distances separately using the YMW16 and NE2001 Galactic electron density models. We find that an age cut-off at 105.75 yr with YMW16 DM distances gives the best results with a minimum uncertainty in z⊙ and an asymptotically stable value for H showing that, at this age and below, the observed pulsar z-distribution is dominated by the dispersion in their birth locations. From this sample of 115 pulsars, we obtain z⊙ = 13.4 ± 4.4 pc and H = 56.9 ± 6.5 pc, similar to estimated scaleheights for OB stars and open clusters. Consistent results are obtained using the independent-only distances and using the NE2001 model for the DM-based distances.

  11. 4U 1907+09: an HMXB running away from the Galactic plane

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Röser, S.; Scholz, R.-D.; Schilbach, E.

    2011-05-01

    We report the discovery of a bow shock around the high-mass X-ray binary (HMXB) 4U 1907+09 using the Spitzer Space Telescope 24 μm data (after Vela X-1 the second example of bow shocks associated with HMXBs). The detection of the bow shock implies that 4U 1907+09 is moving through space with a high (supersonic) peculiar velocity. To confirm the runaway nature of 4U 1907+09, we measured its proper motion, which for an adopted distance to the system of 4 kpc corresponds to a peculiar transverse velocity of ≃ 160 ± 115 km s-1, meaning that 4U 1907+09 is indeed a runaway system. This also supports the general belief that most HMXBs possess high space velocities. The direction of motion of 4U 1907+09 inferred from the proper motion measurement is consistent with the orientation of the symmetry axis of the bow shock, and shows that the HMXB is running away from the Galactic plane. We also present the Spitzer images of the bow shock around Vela X-1 (a system similar to 4U 1907+09) and compare it with the bow shock generated by 4U 1907+09.

  12. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    NASA Astrophysics Data System (ADS)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  13. A Census of Large-scale (≥10 PC), Velocity-coherent, Dense Filaments in the Northern Galactic Plane: Automated Identification Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Burkert, Andreas; Walmsley, C. Malcolm; Beuther, Henrik; Henning, Thomas

    2016-09-01

    Large-scale gaseous filaments with lengths up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium (ISM). Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both an observational and theoretical point of view. Previous “by-eye” searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results from being drawn. Here, we present (1) a new, automated method for identifying large-scale velocity-coherent dense filaments, and (2) the first statistics and the Galactic distribution of these filaments. We use a customized minimum spanning tree algorithm to identify filaments by connecting voxels in the position-position-velocity space, using the Bolocam Galactic Plane Survey spectroscopic catalog. In the range of 7\\buildrel{\\circ}\\over{.} 5≤slant l≤slant 194^\\circ , we have identified 54 large-scale filaments and derived mass (˜ {10}3{--}{10}5 {M}⊙ ), length (10-276 pc), linear mass density (54-8625 {M}⊙ pc-1), aspect ratio, linearity, velocity gradient, temperature, fragmentation, Galactic location, and orientation angle. The filaments concentrate along major spiral arms. They are widely distributed across the Galactic disk, with 50% located within ±20 pc from the Galactic mid-plane and 27% run in the center of spiral arms. An order of 1% of the molecular ISM is confined in large filaments. Massive star formation is more favorable in large filaments compared to elsewhere. This is the first comprehensive catalog of large filaments that can be useful for a quantitative comparison with spiral structures and numerical simulations.

  14. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi -Large Area Telescope Pass 8 Data above 10 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    The spatial extension of a γ -ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ -ray sources is greatly improved by the newly delivered Fermi -Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi -LAT data above 10 GeV. We find 46 extended sources and providemore » their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi -LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less

  15. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Castro, D.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Horan, D.; Hou, X.; Jóhannesson, G.; Kamae, T.; Kuss, M.; La Mura, G.; Larsson, S.; Lemoine-Goumard, M.; Li, J.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tak, D.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.

    2017-07-01

    The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.

  16. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  17. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; hide

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  18. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  19. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  20. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2017-07-10

    The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectralmore » characteristics. As a result, this constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less

  1. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Baldini, L.

    The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectralmore » characteristics. As a result, this constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less

  2. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  3. IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties

    NASA Technical Reports Server (NTRS)

    Bania, Thomas M.

    1992-01-01

    The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.

  4. VizieR Online Data Catalog: Galactic CHaMP. II. Dense gas clumps. (Ma+, 2013)

    NASA Astrophysics Data System (ADS)

    Ma, B.; Tan, J. C.; Barnes, P. J.

    2015-04-01

    A total of 303 dense gas clumps have been detected using the HCO+(1-0) line in the CHaMP survey (Paper I, Barnes et al. 2011, J/ApJS/196/12). In this article we have derived the SED for these clumps using Spitzer, MSX, and IRAS data. The Midcourse Space Experiment (MSX) was launched in 1996 April. It conducted a Galactic plane survey (0image resolution is ~18" in the 8.28um band, with positional accuracy of about 2". Calibrated images of the Galactic plane were obtained from the online MSX image server at the IPAC website. The IRAS performed an all-sky survey at 12, 25, 60, and 100um. The nominal resolution is about 4' at 60um. High Resolution Image Restoration (HIRES) uses the maximum correlation method to produce higher resolution images, better than 1' at 60um. Sources chosen for processing with HIRES were processed at all four IRAS bands with 20 iterations. The Spitzer InfraRed Array Camera (IRAC) is a four-channel camera that provides simultaneous 5.2"x5.2" images at 3.6, 4.5, 5.8, and 8um with an angular resolution of about 2" at 8um. We searched the Spitzer archive at IPAC. Most of these data are from two large survey programs: PID 189 (Churchwell, E., "The SIRTF Galactic Plane Survey") and PID 40791 (Majewski, S., "Galactic Structure and Star Formation in Vela-Carina"). Hill et al. (2005, J/MNRAS/363/405) carried out a 1.2mm continuum emission survey toward 131 star-forming complexes using the Swedish ESO Submillimetre Telescope (SEST) IMaging Bolometer Array (SIMBA). Hill et al. list the 1.2mm flux for 404 sources, 15 of which are in our sample. (2 data files).

  5. VizieR Online Data Catalog: VVV Survey RR Lyr stars in Southern Galactic plane (Minniti+, 2017)

    NASA Astrophysics Data System (ADS)

    Minniti, D.; Dekany, I.; Majaess, D.; Palma, T.; Pullen, J.; Rejkuba, M.; Alonso-Garcia, J.; Catelan, M.; Contreras Ramos, R.; Gonzalez, O. A.; Hempel, M.; Irwin, M.; Lucas, P. W.; Saito, R. K.; Tissera, P.; Valenti, E.; Zoccali, M.

    2017-08-01

    The NIR VISTA Variables in the Via Lactea (VVV) Survey observations were acquired with the VIRCAM camera at the VISTA 4.1m telescope at ESO Paranal Observatory. In the disk fields typically 70 epochs of observations were acquired in the Ks-band between the years 2010 and 2015, in addition to complementary single-epoch observations in the ZYJH bands. The 16 NIR detectors of VIRCAM produce an image of 11.6'*11.6' and a pixel scale of 0.34''/pixel. The deep multi-epoch Ks band photometry allows us to unveil faint variable sources deep in the disk regions of our Galaxy. A search for RRab stars was made throughout tiles d001 to d038 of the VVV survey's disk field, which is a thin slice through the Galactic plane spanning 295

  6. A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca

    2013-08-10

    We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less

  7. Simultaneous orthogonal plane imaging.

    PubMed

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  9. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  10. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  11. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  12. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  13. IDENTIFICATION OF A POPULATION OF X-RAY-EMITTING MASSIVE STARS IN THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Gemma E.; Gaensler, B. M.; Kaplan, David L.

    2011-02-01

    We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf{sup +} (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Femore » XXV emission lines in their X-ray spectra at {approx}6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way.« less

  14. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    PubMed

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  15. Characterizing the W40 Cluster Region with the UKIDSS Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Yu, Ka Chun; Shuping, Ralph

    2018-01-01

    W40 is a region of thermal radio continuum emission in the Aquila Rift, and is one of only a few high-mass star forming regions within 1 kpc of the Sun. We use the Galactic Plane Survey from the UKIDDS Data Release 10 in JHK to study the stellar population in a 30' x 30' field centered on the W40 star-forming region. With imaging deeper than previous surveys (down to a depth of K=18), we identify ~1500 stars with K-band excess that are likely young stars with protostellar disks (Class II-III), more than has been found in previous surveys of this region. We use the NIR photometry of ~50,000 stars to create a high resolution 0.5' optical extinction map, which is used in conjunction with nearby control fields to assess contamination by background sources. Like in previous studies, we find an embedded cluster of reddened sources centered on the handful of late-O/early-B type stars at the center of W40. We fit their spatial distribution using a 2D gaussian profile with $\\sigma$ ~ 1' (0.37 pc at a distance of 440 pc), and a central stellar density of 510 stars/pc^2. After removing foreground stars, we identify 217 total stars within $3\\sigma$ of the cluster center, of which ~100 have K-band excess indicative of Class II-III YSOs, consistent with previous work. We discuss possible background contamination as well as the spatial distribution of young stars throughout the region.

  16. The XMM-Newton SSC survey of the Galactic plane

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Barcons, X.; Carrera, F. J.; Ceballos, M. T.; Cropper, M.; Grosso, N.; Guillout, P.; Hérent, O.; Mateos, S.; Michel, L.; Osborne, J. P.; Pakull, M.; Pineau, F.-X.; Pye, J. P.; Roberts, T. P.; Rosen, S. R.; Schwope, A. D.; Watson, M. G.; Webb, N.

    2013-05-01

    Many different classes of X-ray sources contribute to the Galactic landscape at high energies. Although the nature of the most luminous X-ray emitters is now fairly well understood, the population of low-to-medium X-ray luminosity (LX = 1027-34 erg s-1) sources remains much less studied, our knowledge being mostly based on the observation of local members. The advent of wide field and high sensitivity X-ray telescopes such as XMM-Newton now offers the opportunity to observe this low-to-medium LX population at large distances. We report on the results of a Galactic plane survey conducted by the XMM-Newton Survey Science Centre (SSC). Beyond its astrophysical goals, this survey aims at gathering a representative sample of identified X-ray sources at low latitude that can be used later on to statistically identify the rest of the serendipitous sources discovered in the Milky Way. The survey is based on 26 XMM-Newton observations, obtained at | b | < 20 deg, distributed over a large range in Galactic longitudes and covering a summed area of 4 deg2. The flux limit of our survey is 2 × 10-15 erg cm-2 s-1 in the soft (0.5-2 keV) band and 1 × 10-14 erg cm-2 s-1 in the hard (2-12 keV) band. We detect a total of 1319 individual X-ray sources. Using optical follow-up observations supplemented by cross-correlation with a large range of multi-wavelength archival catalogues we identify 316 X-ray sources. This constitutes the largest group of spectroscopically identified low latitude X-ray sources at this flux level. The majority of the identified X-ray sources are active coronae with spectral types in the range A-M at maximum distances of ~1 kpc. The number of identified active starsincreases towards late spectral types, reaching a maximum at K. Using infrared colours we classify 18% of the stars as giants. The observed distributions of FX/FV, X-ray and infrared colours indicates that our sample is dominated by a young (100 Myr) to intermediate (600 Myr) age population with a

  17. Noise Equalization for Ultrafast Plane Wave Microvessel Imaging.

    PubMed

    Song, Pengfei; Manduca, Armando; Trzasko, Joshua D; Chen, Shigao

    2017-11-01

    Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enable more robust clutter filtering based on singular value decomposition. However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This paper was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation induced) and microvessel blood flow signal and 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality.

  18. Photon escape probabilities in a semi-infinite plane-parallel medium. [from electron plasma surrounding galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Elsner, R. F.; Weisskopf, M. C.; Darbro, W.

    1984-01-01

    It is shown in this work how to obtain the probabilities of photons escaping from a cold electron plasma environment after having undergone an arbitrary number of scatterings. This is done by retaining the exact differential cross section for Thomson scattering as opposed to using its polarization and angle averaged form. The results are given in the form of recursion relations. The geometry used is the semi-infinite plane-parallel geometry witlh a photon source located on a plane at an arbitrary optical depth below the surface. Analytical expressions are given for the probabilities which are accurate over a wide range of initial optical depth. These results can be used to model compact X-ray galactic sources which are surrounded by an electron-rich plasma.

  19. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kheirandish, Ali; Vincent, Aaron C.

    2017-11-01

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  20. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    PubMed

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  1. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degGalactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  2. A search for new supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Bamba, A.; Fukui, Y.; Sano, H.; Yoshiike, S.

    2018-04-01

    A search for new supernova remnants (SNRs) has been conducted using TeV γ-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.

  3. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  4. Resonance Trapping in the Galactic Disc and Halo and its Relation with Moving Groups

    NASA Astrophysics Data System (ADS)

    Pichardo, Barbara; Moreno, Edmundo; william, schuster B.

    2015-08-01

    With the use of a detailed Milky Way nonaxisymmetric potential, observationally and dynamically constrained, the eects of the bar and the spiral arms in the Galaxy are studied in the disc and in the stellar halo. Especially the trapping of stars in the disk and Galactic halo by resonances on the Galactic plane created by the Galactic bar has been analysed in detail. To this purpose, a new method is presented to delineate the trapping regions using empirical diagrams of some orbital properties obtained in the Galactic potential. In these diagrams we plot in the inertial Galactic frame a characteristic orbital energy versus a characteristic orbital angular momentum, or versus the orbital Jacobi constant in the reference frame of the bar, when this is the only nonaxisymmetric component in the Galactic potential. With these diagrams some trapping regions are obtained in the disc and halo using a sample of disc stars and halo stars in the solar neighborhood. We compute several families of periodic orbits on the Galactic plane, some associated with this resonant trapping. In particular, we nd that the trapping eect of these resonances on the Galactic plane can extend some kpc from this plane, trapping stars in the Galactic halo. The purpose of our analysis is to investigate if the trapping regions contain some known moving groups in our Galaxy. We have applied our method to the Kapteyn group, a moving group in the halo, and we have found that this group appears not to be associated with a particular resonance on the Galactic plane.

  5. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  6. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  7. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  8. Image design and replication for image-plane disk-type multiplex holograms

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cheng, Yih-Shyang

    2017-09-01

    The fabrication methods and parameter design for both real-image generation and virtual-image display in image-plane disk-type multiplex holography are introduced in this paper. A theoretical model of a disk-type hologram is also presented and is then used in our two-step holographic processes, including the production of a non-image-plane master hologram and optical replication using a single-beam copying system for the production of duplicated holograms. Experimental results are also presented to verify the possibility of mass production using the one-shot holographic display technology described in this study.

  9. Out-of-focal plane imaging by leakage radiation microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wen, Xiaolei; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-09-01

    Leakage radiation microscopy (LRM) is used to investigate the optical properties of surfaces. The front-focal plane (FFP) image with LRM reveals the structural features on the surfaces. A back-focal plane (BFP) image with LRM reveals the angular distribution of the radiation. Herein, we experimentally demonstrate that the out-of-focal plane (OFP) images present a link between the FFP and BFP images and provide optical information that cannot be resolved by either FFP or BFP images. The OFP image provides a link between the spatial location of the emission and the angular distribution from the same location, and thus information about the film’s discontinuity, nonuniformity or variable thickness can be uncovered. The use of OFP imaging will extend the scope and applications of the LRM and coupled emission imaging, which are powerful tools in nanophotonics and high throughput fluorescence screening.

  10. A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Wang, Jun-Zhi; Jiang, Dong-Rong; Li, Juan; Dong, Jian; Wu, Ya-Jun; Qiao, Hai-Hua; Ren, Zhiyuan

    2017-09-01

    We performed a systematic 6.7 GHz Class II methanol maser survey using the Shanghai Tianma Radio Telescope toward targets selected from the all-sky Wide-Field Infrared Survey Explorer (WISE) point catalog. In this paper, we report the results from the survey of those at high Galactic latitudes, I.e., | b| > 2°. Of 1473 selected WISE point sources at high latitude, 17 point positions that were actually associated with 12 sources were detected with maser emission, reflecting the rarity (1%-2%) of methanol masers in the region away from the Galactic plane. Out of the 12 sources, 3 are detected for the first time. The spectral energy distribution at infrared bands shows that these new detected masers occur in the massive star-forming regions. Compared to previous detections, the methanol maser changes significantly in both spectral profiles and flux densities. The infrared WISE images show that almost all of these masers are located in the positions of the bright WISE point sources. Compared to the methanol masers at the Galactic plane, these high-latitude methanol masers provide good tracers for investigating the physics and kinematics around massive young stellar objects, because they are believed to be less affected by the surrounding cluster environment.

  11. Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging

    PubMed Central

    Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.

    2017-01-01

    Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169

  12. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W ; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  13. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  14. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  15. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    DOE PAGES

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; ...

    2018-02-26

    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less

  16. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  17. Monitoring the Galactic - Search for Hard X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  18. Planck intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giardino, G.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-04-01

    We use Planck HFI data combined with ancillary radio data to study the emissivity index of the interstellar dust emission in the frequency range 100-353 GHz, or 3-0.8 mm, in the Galactic plane. We analyse the region l = 20°-44° and |b| ≤ 4° where the free-free emission can be estimated from radio recombination line data. We fit the spectra at each sky pixel with a modified blackbody model and two opacity spectral indices, βmm and βFIR, below and above 353 GHz, respectively. We find that βmm is smaller than βFIR, and we detect a correlation between this low frequency power-law index and the dust optical depth at 353 GHz, τ353. The opacity spectral index βmm increases from about 1.54 in the more diffuse regions of the Galactic disk, |b| = 3°-4° and τ353 ~ 5 × 10-5, to about 1.66 in the densest regions with an optical depth of more than one order of magnitude higher. We associate this correlation with an evolution of the dust emissivity related to the fraction of molecular gas along the line of sight. This translates into βmm ~ 1.54 for a medium that is mostly atomic and βmm ~ 1.66 when the medium is dominated by molecular gas. We find that both the two-level system model and magnetic dipole emission by ferromagnetic particles can explain the results. These results improve our understanding of the physics of interstellar dust and lead towards a complete model of the dust spectrum of the Milky Way from far-infrared to millimetre wavelengths.

  19. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-01-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  20. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  1. Analysis of nulling phase functions suitable to image plane coronagraphy

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2016-07-01

    Coronagraphy is a very efficient technique for identifying and characterizing extra-solar planets orbiting in the habitable zone of their parent star, especially in a space environment. An important family of coronagraphs is actually based on phase plates located at an intermediate image plane of the optical system, and spreading the starlight outside the "Lyot" exit pupil plane of the instrument. In this commutation we present a set of candidate phase functions generating a central null at the Lyot plane, and study how it propagates to the image plane of the coronagraph. These functions include linear azimuthal phase ramps (the well-known optical vortex), azimuthally cosine-modulated phase profiles, and circular phase gratings. Nnumerical simulations of the expected null depth, inner working angle, sensitivity to pointing errors, effect of central obscuration located at the pupil or image planes, and effective throughput including image mask and Lyot stop transmissions are presented and discussed. The preliminary conclusion is that azimuthal cosine functions appear as an interesting alternative to the classical optical vortex of integer topological charge.

  2. High contrast imaging through adaptive transmittance control in the focal plane

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  3. Massive stellar content of some Galactic supershells

    NASA Astrophysics Data System (ADS)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  4. The galactic gamma-ray distribution: Implications for galactic structure and the radial cosmic ray gradient

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Stecker, F. W.

    1984-01-01

    The radial distribution of gamma ray emissivity in the Galaxy was derived from flux longitude profiles, using both the final SAS-2 results and the recently corrected COS-B results and analyzing the northern and southern galactic regions separately. The recent CO surveys of the Southern Hemisphere, were used in conjunction with the Northern Hemisphere data, to derive the radial distribution of cosmic rays on both sides of the galactic plane. In addition to the 5 kpc ring, there is evidence from the radial asymmetry for spiral features which are consistent with those derived from the distribution of bright HII regions. Positive evidence was also found for a strong increase in the cosmic ray flux in the inner Galaxy, particularly in the 5 kpc region in both halves of the plane.

  5. Parallax handling of image stitching using dominant-plane homography

    NASA Astrophysics Data System (ADS)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  6. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense

  7. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  8. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74

  9. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  10. Fourier Plane Image Combination by Feathering

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.

    2017-09-01

    Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.

  11. Update on the X-Ray Variability Plane for Active Galactic Nuclei: The Role of the Obscuration

    NASA Astrophysics Data System (ADS)

    González-Martín, Omaira

    2018-05-01

    Scaling relations are the most powerful astrophysical tools to set constraints on the physical mechanisms of astronomical sources and to infer properties that cannot be accessed directly. We reinvestigate here one of these scaling relations in active galactic nuclei (AGNs); the so-called X-ray variability plane (or mass–luminosity timescale relation). This relation links the power-spectral density (PSD) break frequency with the super-massive black hole (SMBH) mass and the bolometric luminosity. We used the available XMM-Newton observations of a sample of 22 AGNs to study the PSD and spectra in short segments within each observation. This allows us to report for the first time that the PSD break frequency varies for each object, showing variations in 19 out of the 22 AGNs analyzed. Our analysis of the variability plane confirms the relation between the break frequency and the SMBH mass and finds that the obscuration along the line of sight N H (or the variations on the obscuration using its standard deviation, ΔN H) is also a required parameter, at least for the range of frequencies analyzed here (∼ 3 × {10}-5-5× {10}-2 {Hz}). We constrain a new variability plane of the following form: {log}({ν }Break})=(-0.589 +/- 0.005) {log}({{{M}}}BH})+(0.10+/- 0.01) {log}({{{N}}}{{H}})-(1.5+/- 0.3) (or {log}({ν }Break})=(-0.549+/- 0.009) {log}({{{M}}}BH}) +(0.56+/- 0.06) {{Δ }}{N}{{H}}+(0.19+/- 0.08)). The X-ray variability plane found by McHardy et al. is roughly recovered when we use unobscured segments. We speculate that this behavior is well explained if most of the reported frequencies are related to inner clouds (within 1 pc), following Kepler orbits under the gravitational field of the SMBH.

  12. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  13. Edge detection - Image-plane versus digital processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Park, Stephen K.; Triplett, Judith A.

    1987-01-01

    To optimize edge detection with the familiar Laplacian-of-Gaussian operator, it has become common to implement this operator with a large digital convolution mask followed by some interpolation of the processed data to determine the zero crossings that locate edges. It is generally recognized that this large mask causes substantial blurring of fine detail. It is shown that the spatial detail can be improved by a factor of about four with either the Wiener-Laplacian-of-Gaussian filter or an image-plane processor. The Wiener-Laplacian-of-Gaussian filter minimizes the image-gathering degradations if the scene statistics are at least approximately known and also serves as an interpolator to determine the desired zero crossings directly. The image-plane processor forms the Laplacian-of-Gaussian response by properly combining the optical design of the image-gathering system with a minimal three-by-three lateral-inhibitory processing mask. This approach, which is suggested by Marr's model of early processing in human vision, also reduces data processing by about two orders of magnitude and data transmission by up to an order of magnitude.

  14. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  15. Coded-aperture imaging of the Galactic center region at gamma-ray energies

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.

    1991-01-01

    The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.

  16. A radio characterization of Galactic compact bubbles

    NASA Astrophysics Data System (ADS)

    Ingallinera, A.; Trigilio, C.; Umana, G.; Leto, P.; Noriega-Crespo, A.; Flagey, N.; Paladini, R.; Agliozzo, C.; Buemi, C. S.

    2014-02-01

    We report the radio observations of a subsample of the 428 Galactic compact bubbles discovered at 24 μm with the MIPSGAL survey. Pervasive through the entire Galactic plane, these objects are thought to be different kinds of evolved stars. The very large majority of the bubbles (˜70 per cent) are however not yet classified. We conducted radio observations with the Expanded Very Large Array at 6 and 20 cm in order to obtain the spectral index of 55 bubbles. We found that at least 70 per cent of the 31 bubbles for which we were effectively able to compute the spectral index (or its lower limit) are likely to be thermal emitters. We were also able to resolve some bubbles, obtaining that the size of the radio nebula is usually similar to the IR size, although our low resolution (with respect to IR images) did not allow further morphological studies. Comparisons between radio flux densities and IR archive data from Spitzer and IRAS suggest that at least three unclassified bubbles can be treated as planetary nebula candidates.

  17. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  18. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  19. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Feng; Wang, Jun-Ling; Gao, Mei-Guo

    2015-04-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. Project supported by the National Natural Science Foundation of China (Grant No. 61401024), the Shanghai Aerospace Science and Technology Innovation Foundation, China (Grant No. SAST201240), and the Basic Research Foundation of Beijing Institute of Technology (Grant No. 20140542001).

  20. General image method in a plane-layered elastostatic medium

    NASA Technical Reports Server (NTRS)

    Fares, N.; Li, V. C.

    1988-01-01

    The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.

  1. Hunting for Active Galactic Nuclei in JWST/MIRI Imaging

    NASA Astrophysics Data System (ADS)

    Lin, Kenneth W.; Pope, Alexandra; Kirkpatrick, Allison

    2018-01-01

    The mid-infrared is uniquely sensitive to both star formation and active galactic nuclei (AGN) activity in galaxies. While spectra in this range can unambiguously identify these two processes, imaging data from the Spitzer Space Telescope found that the mid-infrared colors are also able to separate AGN from star forming galaxies. With the launch of the James Webb Space Telescope, our access to mid-infrared will be renewed; specifically, MIRI will provide imaging in 9 bands from 5.6-25.5 microns. While predictions show that color diagnostics will be useful with JWST/MIRI, this does not exploit the full dataset of MIRI imaging. In this poster, we discuss a Principal Component Analysis to identify the JWST filters that are most sensitive to the AGN contribution and demonstrate how to use it to identify large samples of AGN from planned MIRI imaging surveys.

  2. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  3. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  4. Searching for High Proper Motion Sources Towards the Galactic Center using Convolution Neural Networks

    NASA Astrophysics Data System (ADS)

    Giongo Fernandes, Alexandre; Benjamin, Robert A.; Babler, Brian

    2018-01-01

    Two sets of infrared images of the Galactic Center region (|L|< 1 degree and |B| < 0.75 degrees) taken by the Spitzer Space Telescope in IRAC 3.6 micron and 4.5 micron bands are searched for high proper motion objects (> 100 mas/year). The two image sets come from GALCEN observations in 2005 and GLIMPSE proper observations in 2015 with matched observation modes. We use three different methods to search for these objects in extremely crowded fields: (1) comparing matched point source lists, (2) crowd sourcing by several college introductory astronomy classes in the state of Wisconsin (700 volunteers), and (3) convolutional neural networks trained using objects from the previous two methods. Before our search six high proper objects were known, four of which were found by the VVV near-infrared Galactic plane survey. We compare and describe our methods for this search, and present a preliminary catalog of high proper motions objects.

  5. The ATLASGAL survey: a catalog of dust condensations in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Urquhart, J. S.; Schuller, F.; Motte, F.; Bontemps, S.; Wyrowski, F.; Menten, K. M.; Bronfman, L.; Beuther, H.; Henning, Th.; Testi, L.; Zavagno, A.; Walmsley, M.

    2014-05-01

    Context. The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites that can potentially host precursors to high-mass stars. Aims: The ATLASGAL survey covers 420 sq. degree of the Galactic plane, between -80° < ℓ < +60° at 870 μm. Here we identify the population of embedded sources throughout the inner Galaxy. With this catalog we first investigate the general statistical properties of dust condensations in terms of their observed parameters, such as flux density and angular size. Then using mid-infrared surveys we aim to investigate their star formation activity and the Galactic distribution of star-forming and quiescent clumps. Our ultimate goal is to determine the statistical properties of quiescent and star-forming clumps within the Galaxy and to constrain the star formation processes. Methods: We optimized the source extraction method, referred to as MRE-GCL, for the ATLASGAL maps in order to generate a catalog of compact sources. This technique is based on multiscale filtering to remove extended emission from clouds to better determine the parameters corresponding to the embedded compact sources. In a second step we extracted the sources by fitting 2D Gaussians with the Gaussclumps algorithm. Results: We have identified in total 10861 compact submillimeter sources with fluxes above 5σ. Completeness tests show that this catalog is 97% complete above 5σ and >99% complete above 7σ. Correlating this sample of clumps with mid-infrared point source catalogs (MSX at 21.3 μm and WISE at 22 μm), we have determined a lower limit of 33% that is associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with

  6. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    PubMed

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  7. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.

    PubMed

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jorgen Arendt

    2016-11-01

    This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where image quality for a λ -pitch transducer is compared with a λ /2-pitch transducer. Grating lobe artifacts for λ -pitch transducers degrade the contrast in plane wave images, and the impact on frame rate is studied. Field II simulations of plane wave images are made for all combinations of the parameters, and the optimal setup is selected based on Pareto optimality. The optimal setup for a simulated 4.1-MHz λ -pitch transducer uses 61 emissions and a maximum steering angle of 20° for depths from 0 to 60 mm. The achieved lateral full-width at half-maximum (FWHM) is 1.5λ and the contrast is -29 dB for a scatterer at 9 mm ( 24λ ). Using a λ /2-pitch transducer and only 21 emissions within the same angle range, the image quality is improved in terms of contrast, which is -37 dB. For imaging in regions deeper than 25 mm ( 66λ ), only 21 emissions are optimal for both the transducers, resulting in a -36 dB contrast at 34 mm ( 90λ ). Measurements are performed using the experimental SARUS scanner connected to a λ -pitch and λ /2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned and show the performance using the optimized sequences for the transducers. FWHM is 1.6λ and contrast is -25 dB for a wire at 9 mm using the λ -pitch transducer. For the λ /2-pitch transducer, contrast is -29 dB. In vivo scans of the carotid artery of a healthy volunteer show improved contrast and present fewer artifacts, when using the λ /2-pitch transducer compared with the λ -pitch. It is demonstrated with a frame rate, which is three times higher for the λ /2-pitch transducer.

  8. A derivation of the free-free emission on the Galactic plane between ℓ= 20° and 44°

    NASA Astrophysics Data System (ADS)

    Alves, Marta I. R.; Davies, Rodney D.; Dickinson, Clive; Calabretta, Mark; Davis, Richard; Staveley-Smith, Lister

    2012-05-01

    We present the derivation of the free-free emission on the Galactic plane between ℓ= 20° and 44° and |b|≤ 4°, using radio recombination line (RRL) data from the H I Parkes All Sky Survey (HIPASS). Following an upgrade of the RRL data reduction technique, which improves significantly the quality of the final RRL spectra, we have extended the analysis to three times the area covered in Alves et al. The final RRL map has an angular resolution of 14.8 arcmin and a velocity resolution of 20 km s-1. The electron temperature (Te) distribution of the ionized gas in the area under study at 1.4 GHz is derived using the line and continuum data from the present survey. The mean Te on the Galactic plane is 6000 K. The first direct measure of the free-free emission is obtained based on the derived Te distribution. Subtraction of this thermal component from the total continuum leads to the first direct measurement of the synchrotron emission at 1.4 GHz. A narrow component of width 2° is identified in the latitude distribution of the synchrotron emission. We present a list of H II regions and supernova remnants (SNRs) extracted from the present free-free and synchrotron maps, where we confirm the synchrotron nature of the SNRs G42.0-0.1 and G41.5+0.4 proposed by Kaplan et al. and the SNR G35.6-0.4 recently re-identified by Green. The latitude distribution for the RRL-derived free-free emission shows that the Wilkinson Microwave Anisotropy Probe (WMAP) maximum entropy method is too high by ˜50 per cent, in agreement with other recent results. The extension of this study to the inner Galaxy region ℓ=-50° to 50° will allow a better overall comparison of the RRL result with WMAP.

  9. Observations of (S III) emission from Galactic radio sources - The detection of distant planetary nebulae and a search for supernova remnant emission

    NASA Technical Reports Server (NTRS)

    Kistiakowsky, V.; Helfand, D. J.

    1993-01-01

    Narrow-band near-infrared imaging observations at wavelengths corresponding to forbidden S III 9069,9532 A have been carried out at the MDM 1.3 m telescope for 23 radio sources near the Galactic plane in an attempt to detect emission associated with nebulae marking the endpoints of stellar evolution. While none of the known remnants or remnant candidates were detected, 10 of the 11 PN candidates from a new radio imaging survey of the Galactic plane were clearly seen in the forbidden S III 9532 A line. We present a calculation of the relative efficacy of searching for PNe in the forbidden O III and forbidden S III lines; for the majority of all PNe, the observed forbidden S III 9532 A line is predicted to be stronger than forbiden O III 5007 A whenever the visual extinction exceeds 3 magnitudes. This makes forbidden S III the superior tracer of PNe at distances exceeding a few kpc. We briefly comment on the significance of this approach to defining the spatial distribution of the PN population of the Galaxy.

  10. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    were oriented perpendicular to the plane of the Galaxy, which would have aligned them with the Galaxy’s own magnetic field. "The problem with this hypothesis is that more recent images have revealed a population of weaker filaments oriented randomly in relation to the plane of the Galaxy," said Yusef-Zadeh. "This makes it difficult to explain the origin of the filaments by an organized Galactic magnetic field." In March and June of 2004, a team of astronomers using the GBT made images of the Galactic center at various wavelengths. The purpose of these surveys was to help identify radio features produced by hot gas (thermal emission) and those produced in magnetic fields (non-thermal emission). In general, thermal features radiate more strongly at shorter wavelengths and non-thermal at longer wavelengths. By comparing the GBT images with earlier VLA data taken of the same region, Yusef-Zadeh determined that a number of the non-thermal filaments seemed to connect to concentrated areas of thermal emission, which identify pockets of star formation. Galatic Center Combined radio image from the Very Large Array and Green Bank Telescope. The linear filaments near the top are some of the nonthermal radio filaments (NRFs) studied by the researchers. Other features, such as supernova remnants (SNRs) and the area surrounding our Galaxy's supermassive black hole (Sgr A) are shown. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) "What this showed us is that two seemingly disparate processes, thermal and non-thermal radio emission, can be created by the very same phenomenon," said Yusef-Zadeh. "In this case, that phenomenon is pockets of starburst activity." Yusef-Zadeh notes that the exact mechanism for how the areas of starburst generate the magnetic fields is still being investigated. "There are many ideas about the mechanism that generates these filaments," added Yusef-Zadeh, "but one possibility is that they are produced by the collision of winds

  11. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.

  12. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  13. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  14. A WISE Survey of New Star Clusters in the Central Plane Region of the Milky Way

    NASA Astrophysics Data System (ADS)

    Ryu, Jinhyuk; Lee, Myung Gyoon

    2018-04-01

    We present the discovery of new star clusters in the central plane region (| l| < 30^\\circ and | b| < 6^\\circ ) of the Milky Way. In order to overcome the extinction problem and the spatial limit of previous surveys, we use the Wide-field Infrared Survey Explorer (WISE) data to find clusters. We also use other infrared survey data in the archive for additional analysis. We find 923 new clusters, of which 202 clusters are embedded clusters. These clusters are concentrated toward the Galactic plane and show a symmetric distribution with respect to the Galactic latitude. The embedded clusters show a stronger concentration to the Galactic plane than the nonembedded clusters. The new clusters are found more in the first Galactic quadrant, while previously known clusters are found more in the fourth Galactic quadrant. The spatial distribution of the combined sample of known clusters and new clusters is approximately symmetric with respect to the Galactic longitude. We estimate reddenings, distances, and relative ages of the 15 class A clusters using theoretical isochrones. Ten of them are relatively old (age >800 Myr) and five are young (age ≈4 Myr).

  15. Integral imaging with multiple image planes using a uniaxial crystal plate.

    PubMed

    Park, Jae-Hyeung; Jung, Sungyong; Choi, Heejin; Lee, Byoungho

    2003-08-11

    Integral imaging has been attracting much attention recently for its several advantages such as full parallax, continuous view-points, and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to relatively small value due to the degradation of the image resolution. In this paper, we propose a method to provide observers with enhanced perception of the depth without severe resolution degradation by the use of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both elemental images and dynamic slit array mask accordingly. We explain the principle of the proposed method and verify it experimentally.

  16. A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components

    NASA Astrophysics Data System (ADS)

    Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.

    2013-06-01

    Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases

  17. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  18. Pulmonary intersegmental planes: imaging appearance and possible reasons leading to their visualization.

    PubMed

    Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei

    2013-04-01

    To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (<55 years). The number, location, and appearance rate of intersegmental planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P < .05). Visible intersegmental planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely

  19. Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalacynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2017-11-01

    The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken {E}-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.

  20. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  1. A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg.

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-12-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.

  2. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  3. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    NASA Astrophysics Data System (ADS)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative

  4. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  5. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  6. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    NASA Technical Reports Server (NTRS)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  7. HESS J1741-302: a hidden accelerator in the Galactic plane

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'c.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; De Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; De Los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.; NANTEN Collaboration; Enokiya, R.; Fukui, Y.; Hayakawa, T.; Okuda, T.; Torii, K.; Yamamoto, H.

    2018-04-01

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source ( 1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature of a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.

  8. HESS J1741-302: a hidden accelerator in the Galactic plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (~1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature ofmore » a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.« less

  9. HESS J1741-302: a hidden accelerator in the Galactic plane

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (~1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature ofmore » a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.« less

  10. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    NASA Astrophysics Data System (ADS)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  11. A SUBSTRUCTURE INSIDE SPIRAL ARMS, AND A MIRROR IMAGE ACROSS THE GALACTIC MERIDIAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.p.vallee@gmail.com

    2016-04-10

    Though the galactic density wave theory is over 50 years old and is well known in science, it has been difficult to say whether it fits our own Milky Way disk. Here we show a substructure inside the spiral arms. This substructure is reversing with respect to the Galactic Meridian (longitude zero), and crosscuts of the arms at negative longitudes appear as mirror images of crosscuts of the arms at positive longitudes. Four lanes are delineated: a mid-arm (extended {sup 12}CO gas at the mid-arm, H i atoms), an in-between offset by about 100 pc (synchrotron, radio recombination lines), anmore » in-between offset by about 200 pc (masers, colder dust), and an inner edge (hotter dust seen in mid-IR and near-IR)« less

  12. Large-format InGaAs focal plane arrays for SWIR imaging

    NASA Astrophysics Data System (ADS)

    Hood, Andrew D.; MacDougal, Michael H.; Manzo, Juan; Follman, David; Geske, Jonathan C.

    2012-06-01

    FLIR Electro Optical Components will present our latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. FLIR will present imaging from their latest small pitch (15 μm) focal plane arrays in VGA and High Definition (HD) formats. FLIR will present characterization of the FPA including dark current measurements as well as the use of correlated double sampling to reduce read noise. FLIR will show imagery as well as FPA-level characterization data.

  13. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent

  14. Adaptive Optics Images of the Galactic Center: Using Empirical Noise-maps to Optimize Image Analysis

    NASA Astrophysics Data System (ADS)

    Albers, Saundra; Witzel, Gunther; Meyer, Leo; Sitarski, Breann; Boehle, Anna; Ghez, Andrea M.

    2015-01-01

    Adaptive Optics images are one of the most important tools in studying our Galactic Center. In-depth knowledge of the noise characteristics is crucial to optimally analyze this data. Empirical noise estimates - often represented by a constant value for the entire image - can be greatly improved by computing the local detector properties and photon noise contributions pixel by pixel. To comprehensively determine the noise, we create a noise model for each image using the three main contributors—photon noise of stellar sources, sky noise, and dark noise. We propagate the uncertainties through all reduction steps and analyze the resulting map using Starfinder. The estimation of local noise properties helps to eliminate fake detections while improving the detection limit of fainter sources. We predict that a rigorous understanding of noise allows a more robust investigation of the stellar dynamics in the center of our Galaxy.

  15. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  16. Galactic Haze seen by Planck and Galactic Bubbles seen by Fermi

    NASA Image and Video Library

    2012-02-13

    This all-sky image shows the distribution of the galactic haze seen by ESA Planck mission at microwave frequencies superimposed over the high-energy sky, as seen by NASA Fermi Gamma-ray Space Telescope.

  17. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes around the Lyot Plane

    NASA Technical Reports Server (NTRS)

    Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent

    2012-01-01

    In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.

  18. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  19. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    NASA Astrophysics Data System (ADS)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r < 22.4 for 42 429 H-ATLAS sources (37.8 per cent), with an estimated completeness of 71.7 per cent and a false identification rate of 4.7 per cent. We also identified counterparts in the near-infrared using deeper K-band data which covers a smaller ˜25 deg2. We found reliable near-infrared counterparts to 61.8 per cent of the 250-μm-selected sources within that area. We assessed the performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  20. A high-frequency survey of the southern Galactic plane for pulsars

    NASA Technical Reports Server (NTRS)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  1. The Discovery of an Eccentric Millisecond Pulsar in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Cordes, James M.; Hessels, Jason W. T.; Bassa, Cees; Lorimer, Duncan R.; Stairs, Ingrid H.; van Leeuwen, Joeri; Arzoumnian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Crawford, Fronefield; Deneva, Julia S.; Faucher-Giguère, Claude-André; Gaensler, B. M.; Han, Jinlin; Jenet, Fredrick A.; Kasian, Laura; Kondratiev, Vlad I.; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A.; Stappers, Ben W.; Venkataraman, Arun; Vlemmings, Wouter

    2008-02-01

    The evolution of binary systems is governed by their orbital properties and the stellar density of the local environment. Studies of neutron stars in binary star systems offer unique insights into both these issues. In an Arecibo survey of the Galactic disk, we have found PSR J1903+0327, a radio emitting neutron star (a ``pulsar'') with a 2.15 ms rotation period, in a 95-day orbit around a massive companion. Observations in the infra-red suggests that the companion may be a main-sequence star. Theories requiring an origin in the Galactic disk cannot account for the extraordinarily high orbital eccentricity observed (0.44) or a main-sequence companion of a pulsar that has spin properties suggesting a prolonged accretion history. The most likely formation mechanism is an exchange interaction in a globular star cluster. This requires that the binary was either ejected from its parent globular cluster as a result of a three-body interaction, or that that cluster was disrupted by repeated passages through the disk of the Milky Way.

  2. Extended Galactic emission at l=312°: a comparison of mid-infrared and radio continuum (843 MHz) images

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Green, Anne J.

    2001-08-01

    We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.

  3. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  4. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    NASA Astrophysics Data System (ADS)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  5. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  6. OT2_nflagey_2: Capturing missing evolved stars in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2011-09-01

    We discovered more than 400 compact shells in the MIPSGAL 24 microns survey of the Galactic plane. About 15% of all these objects were already known as planetary nebulae, supernova remnants, Wolf-Rayet stars, and luminous blue variables. The unknown bubbles are expected to be envelopes of evolved stars that could account for the ``missing massive stars in the Galaxy. Indeed, recent spectroscopic follow-ups in the near-IR and mid-IR have revealed several dust-free planetary nebulae with very hot central white dwarf and significantly increased the number of WR and LBV candidates. Our OT1 Priority 1 proposal just provided us with a first observation in the PACS-SED B2A mode of one object, revealing only a strong [N II] 122 microns line. Without further spectral information, identification and modeling of the target are impossible. However, analysis of the PACS and SPIRE data from the HiGal survey has recently enabled us to measure much higher detection rates of the shells in the far-IR than with MIPS 70 microns. We are thus very confident that dust features and/or gas lines can be detected with the PACS and SPIRE spectrometers. Therefore, we request complementary PACS-SED B2B and SPIRE-FTS observations on our OT1 sample. The complete far-IR/submm spectrum of each target will allow its unequivocal identification thanks to comparison with spectra of known evolved stars from the MESS key program. We will also model with much detail the different phases of the envelopes, thanks to our expertise in circumstellar envelopes, dust models and photoionization codes.

  7. Radio Recombination Line Surveys of the inner Galactic Plane: SIGGMA and GDIGS

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Anderson, Loren Dean; Luisi, Matteo; Balser, Dana; Bania, Thomas; Wenger, Trey; Haffner, Lawrence Matthew; Minchin, Robert; Roshi, Anish; Churchwell, Edward; Terzian, Yervant; McIntyre, Travis; Lebron, Mayra; SIGGMA team, GDIGS team

    2018-01-01

    Ionized gas is one of the primary components of the interstellar medium (ISM) and plays a crucial role in star formation and galaxy evolution. Radio recombination lines (RRLs) can directly trace ionized gas in HII regions and warm ionized medium (WIM) without being affected by interstellar extinction. Single-dish telescopes like Arecibo Observatory and the Green Bank Telescope (GBT) are sensitive to low surface brightness emission, and are therefore powerful tools for the study of HII regions and the WIM. We report here on two large surveys of RRL emission: The Survey of Ionized Gas in the Galaxy, Made with the Arecibo telescope (SIGGMA) and the GBT Diffuse Ionized Gas Survey (GDIGS). These are the first large-scale fully-sampled RRL surveys, and together cover nearly the entire first quadrant of the Galactic plane at ~arcmin spatial resolution (l = -5 - 32 deg. for GDIGS and l = 32 - 70 deg. for SIGGMA). SIGGMA is performed with the Arecibo L-band Feed Array (ALFA) receiver, whose bandpass covers twelve hydrogen alpha lines from H163α to H174α. By stacking the α-lines and smoothing to 4 km/s velocity resolution, the final SIGGMA spectra have a mean rms level of ~0.65 mJy per beam. The GDIGS data were taken with the GBT C-band receiver and the VEGAS backend and include RRLs from H95α to H117α, and when stacked and smoothed to 5 km/s resolution achieve 1 mJy per beam rms. Here, we report on early analysis of the SIGGMA and GDIGS data, and present first scientific results.

  8. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  9. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  10. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Estrada, Juan; Cease, Herman

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 yearsmore » starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.« less

  11. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  12. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  13. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  14. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  15. NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster

    NASA Astrophysics Data System (ADS)

    Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.

    2016-09-01

    NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.

  16. A polarized fast radio burst at low Galactic latitude

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  17. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙} yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  18. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  19. Open Cluster Dynamics via Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Cheng; Pang, Xiao-Ying

    2018-04-01

    Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.

  20. Stellar populations in the Carina region. The Galactic plane at l = 291°

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Context. Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. However, in many cases, these studies only concentrated on the central region (Trumpler 14/16) or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. Aims: The aim of this work is to study in detail an area of the Galactic plane in Carina, eastward η Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of young stellar objects and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. Methods: We obtained deep and homogeneous photometric data (UBVIKC) for six young open clusters: NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11, and 12, located in Carina at l ~ 291°, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature, which includes stellar spectral classifications and near-infrared photometry from 2MASS. We finally developed a numerical code that allowed us to perform a homogeneous and systematic analysis of the data. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. Results: We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations located at about 1.8 kpc and 2.8 kpc, with EB - V ~ 0.1 - 0.6. We find evidence of pre-main-sequence populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the

  1. High spatial resolution restoration of IRAS images

    NASA Technical Reports Server (NTRS)

    Grasdalen, Gary L.; Inguva, R.; Dyck, H. Melvin; Canterna, R.; Hackwell, John A.

    1990-01-01

    A general technique to improve the spatial resolution of the IRAS AO data was developed at The Aerospace Corporation using the Maximum Entropy algorithm of Skilling and Gull. The technique has been applied to a variety of fields and several individual AO MACROS. With this general technique, resolutions of 15 arcsec were achieved in 12 and 25 micron images and 30 arcsec in 60 and 100 micron images. Results on galactic plane fields show that both photometric and positional accuracy achieved in the general IRAS survey are also achieved in the reconstructed images.

  2. Positioning of electrode plane systematically influences EIT imaging.

    PubMed

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Müller-Lisse, Ullrich; Möller, Knut; Zhao, Zhanqi

    2015-06-01

    Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔIERV/ERV, ΔIVT/VT and ΔIIRV/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔIERV/ERV ratio in all subjects was significantly higher than the normalized ΔIIRV/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions.

  3. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    NASA Astrophysics Data System (ADS)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  4. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; hide

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  5. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  6. Vertical Shear of the Galactic Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Benjamin, Robert A.

    2000-01-01

    The detection of UV absorption, 21 cm, H alpha and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first, opportunity to probe the rotational properties of the ionized "atmospheres" of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R = 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by approximately 30 kilometers per second from z = 1 to 5 kpc and is expected to drop by 80 kilometers per second. Magnetic tension forces may resolve this discrepancy. Other possibilities will be examined in the near future.

  7. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Rosolowsky, Erik

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region ofmore » the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.« less

  8. Evaluation of aortic regurgitation by using PC MRI: A comparison of the accuracies at different image plane locations

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Gull; Kim, Kyung-Soo; Kim, Soon-Bae; Chung, Woon-Kwan; Cho, Jae-Hwan; Park, Yong-Soon

    2012-12-01

    The goal of this study is to determine which imaging location on phase contrast magnetic resonance imaging (PC MRI) best correlates with echocardiography to enable the severity of aortic regurgitation to be accurately evaluated by using PC MRI. The subjects were 34 patients with aortic regurgitation confirmed by echocardiography and cardiac MRI. Two velocity distribution images were obtained by positioning image planes above and below the aortic valve in the PC MRI. Using the acquired images, regurgitation fractions were calculated by calculating the average forward and reverse blood flows. The severity of aortic regurgitation was then evaluated and compared with the severity as determined by using echocardiography. When image planes were positioned above the aortic valve, the regurgitation fraction obtained by using PC MRI was 44.5 ± 18.7%, and when planes were positioned below the valve, the regurgitation fraction was 34.8 ± 15.9%. Regarding agreement with echocardiographic findings, concurrence was shown to be 50% when image planes sections were positioned above the valve and 85.3% when they were positioned below the valve. The present study shows that if image planes are positioned below the valve rather than above the valve, provides as accurate evaluation of the severity of aortic regurgitation.

  9. Detection of extended galactic sources with an underwater neutrino telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.

    2014-11-18

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects.

  10. THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-12-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time- and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rathermore » than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  11. The GINI coefficient as a morphological measurement of strongly lensed galaxies in the image plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-11-30

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather thanmore » the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  12. Dust Temperatures and Opacities in the Central Parsec of the Galactic Center Modeled from Analysis of Multi-Wavelength Mid-Infrared Images

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Gezari, D.; Dwek, E.; Telesco, C.

    2016-01-01

    We have analyzed multi-wavelength mid-infrared images of the central parsec of the Galactic Center using a two-temperature line-of-sight (LOS) radiative transfer model at each pixel of the images, giving maps of temperatures, luminosities and opacities of the hot, warm, cold (dark)dust components. The data consists of images at nine wavelengths in the mid-infrared (N-band and Q-band) from the Thermal Region Camera and Spectrograph (T-ReCS) instrument operating at the Gemini South Observatory. The results of the LOS modeling indicate that the extinction optical depth is quite large and varies substantially over the FOV. The high-resolution images of the central parsec of the Galactic center region were obtained with T-ReCS at Gemini South in January 2004. These images provide nearly diffraction-limited resolution (approx. 0.5) of the central parsec. The T-ReCS images were taken with nine filters (3.8, 4.7, 7.7, 8.7, 9.7, 10.3, 12.3, 18.3 and 24.5m), over a field-of-view (FOV) of 20 x 20 arcsec.

  13. THE AUSTRALIA TELESCOPE COMPACT ARRAY H I SURVEY OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure-Griffiths, N. M.; Green, J. A.; Dickey, J. M.

    2012-03-01

    We present a survey of atomic hydrogen (H I) emission in the direction of the Galactic Center (GC) conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 Degree-Sign {<=} l {<=} +5 Degree-Sign , -5 Degree-Sign {<=} b {<=} +5 Degree-Sign over the velocity range -309 km s{sup -1} {<=} v{sub LSR} {<=} 349 km s{sup -1} with a velocity resolution of 1 km s{sup -1}. The ATCA data are supplemented with data from the Parkes Radio Telescope for sensitivity to all angular scales larger than the 145'' angular resolution of the survey. Themore » mean rms brightness temperature across the field is 0.7 K, except near (l, b) = 0 Degree-Sign , 0 Degree-Sign where it increases to {approx}2 K. This survey complements the Southern Galactic Plane Survey to complete the continuous coverage of the inner Galactic plane in H I at {approx}2' resolution. Here, we describe the observations and analysis of this GC survey and present the final data product. Features such as Bania's Clump 2, the far 3 kpc arm, and small high-velocity clumps are briefly described.« less

  14. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    NASA Astrophysics Data System (ADS)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  15. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy

    PubMed Central

    Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang

    2016-01-01

    Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937

  16. Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Herring, G. C.

    2007-01-01

    An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.

  17. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-01

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  18. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in verticalmore » distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.« less

  19. Milky Way tomography with K and M dwarf stars: The vertical structure of the galactic disk

    DOE PAGES

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-06-02

    Here, we use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey (SDSS), to probe the structure of the Milky Way disk across the survey's footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin and thick disk subsamples in regions of some 200 square degrees within 2more » kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the compared latitude regions, possibly allowing access to the systematic metallicity difference between thin and thick disk populations through photometry.« less

  20. Polarization imaging of imperfect m-plane GaN surfaces

    NASA Astrophysics Data System (ADS)

    Sakai, Yuji; Kawayama, Iwao; Nakanishi, Hidetoshi; Tonouchi, Masayoshi

    2017-04-01

    Surface polar states in m-plane GaN wafers were studied using a laser terahertz (THz) emission microscope (LTEM). Femtosecond laser illumination excites THz waves from the surface due to photocarrier acceleration by local spontaneous polarization and/or the surface built-in electric field. The m-plane, in general, has a large number of unfavorable defects and unintentional polarization inversion created during the regrowth process. The LTEM images can visualize surface domains with different polarizations, some of which are hard to visualize with photoluminescence mapping, i.e., non-radiative defect areas. The present study demonstrates that the LTEM provides rich information about the surface polar states of GaN, which is crucial to improve the performance of GaN-based optoelectronic and power devices.

  1. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, L; Samant, S; Baciak, J

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material

  2. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  3. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  4. Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An astronomer using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered that two prominent features rising out of the center of the Milky Way Galaxy are actually the distant edges of the same superstructure. This object, which has the appearance of a "lobe," may have been formed during an epoch of furious star formation. Lobe Galactic center radio image with lobe feature shown in outline. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click for Image w/o lines) Astronomer Casey Law of Northwestern University presented his results at the Denver, Colorado, meeting of the American Astronomical Society. "The center of our Galaxy is an incredibly dynamic place and morphologically very difficult to untangle" said Law. "Among the many features we see there, including supernova remnants, hot star-forming regions, and massive molecular clouds, are two very prominent columns of radio-emitting material that seem to erupt out of the plane of the Galaxy. The nature and origin of these features have been the subjects of much speculation, but with the new data from the Green Bank Telescope we're finally able to discern that they are in fact part of the same superstructure." Much of what we know about the center of our Galaxy has come from studies conducted on radio telescopes. The center of the Milky Way is, in fact, hidden from view to optical telescopes due to intervening clouds of dust and gas. Radio waves, however, are able to pass through the obscuring material and reveal details about the core of our Galaxy. Astronomers now know that this area of the Milky Way -- approximately 26,000 light-years from Earth -- is a densely packed region brimming with hot , young stars, supernova remnants, and more esoteric features -- like long radio-emitting filaments. At the center of it all is a remarkably radio-bright region known as Sagittarius A* (pronounced A-star), which is known to contain a supermassive black hole. Deciphering what all these

  5. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    PubMed

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  6. Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Gottschall, D.; Capasso, M.; Deil, C.; Djannati-Atai, A.; Donath, A.; Eger, P.; Marandon, V.; Maxted, N.; Pühlhofer, G.; Renaud, M.; Sasaki, M.; Terrier, R.; Vink, J.; H.E.S.S. Collaboration

    2017-01-01

    Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.

  7. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  8. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  9. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    NASA Astrophysics Data System (ADS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-12-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 ' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm × 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.

  10. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    PubMed

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  11. Intra-operative adjustment of standard planes in C-arm CT image data.

    PubMed

    Brehler, Michael; Görres, Joseph; Franke, Jochen; Barth, Karl; Vetter, Sven Y; Grützner, Paul A; Meinzer, Hans-Peter; Wolf, Ivo; Nabers, Diana

    2016-03-01

    With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures. We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction. For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants. By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.

  12. Integral imaging with Fourier-plane recording

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Barreiro, J. C.; Llavador, A.; Sánchez-Ortiga, E.; Sola-Pikabea, J.; Scrofani, G.; Saavedra, G.

    2017-05-01

    Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recording. This new capture geometry permits substantial improvements in resolution, depth of field and computation time

  13. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  14. Gravitational lensing of active galactic nuclei.

    PubMed

    Hewitt, J N

    1995-12-05

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.

  15. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  16. Understanding EROS2 observations toward the spiral arms within a classical Galactic model framework

    NASA Astrophysics Data System (ADS)

    Moniez, M.; Sajadian, S.; Karami, M.; Rahvar, S.; Ansari, R.

    2017-08-01

    Aims: EROS (Expérience de Recherche d'Objets Sombres) has searched for microlensing toward four directions in the Galactic plane away from the Galactic center. The interpretation of the catalog optical depth is complicated by the spread of the source distance distribution. We compare the EROS microlensing observations with Galactic models (including the Besançon model), tuned to fit the EROS source catalogs, and take into account all observational data such as the microlensing optical depth, the Einstein crossing durations, and the color and magnitude distributions of the catalogued stars. Methods: We simulated EROS-like source catalogs using the HIgh-Precision PARallax COllecting Satellite (Hipparcos) database, the Galactic mass distribution, and an interstellar extinction table. Taking into account the EROS star detection efficiency, we were able to produce simulated color-magnitude diagrams that fit the observed diagrams. This allows us to estimate average microlensing optical depths and event durations that are directly comparable with the measured values. Results: Both the Besançon model and our Galactic model allow us to fully understand the EROS color-magnitude data. The average optical depths and mean event durations calculated from these models are in reasonable agreement with the observations. Varying the Galactic structure parameters through simulation, we were also able to deduce contraints on the kinematics of the disk, the disk stellar mass function (at a few kpc distance from the Sun), and the maximum contribution of a thick disk of compact objects in the Galactic plane (Mthick< 5 - 7 × 1010M⊙ at 95%, depending on the model). We also show that the microlensing data toward one of our monitored directions are significantly sensitive to the Galactic bar parameters, although much larger statistics are needed to provide competitive constraints. Conclusions: Our simulation gives a better understanding of the lens and source spatial distributions in

  17. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  18. The Survival of the Core Fundamental Plane against Galactic Mergers

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Richstone, Douglas

    1999-05-01

    The basic dimensional properties of the centers of elliptical galaxies, such as length scale, luminosity, and velocity dispersion, lie on a fundamental plane similar to that of elliptical galaxies as a whole. The orientation of this plane, and the distribution of core parameters within it, point to a strong correlation of core density with either core or total luminosity, and indicate that low-luminosity ellipticals are much denser than high-luminosity galaxies (Hubble Space Telescope data suggest that this relationship may be as steep as ρc~L-2). In addition, low-luminosity ellipticals have a much smaller length scale than their high-luminosity counterparts. Since we think that small galaxies are occasionally accreted by big ones, the high density of these galaxies and their likely durability against the time-varying tidal field of the bigger ones suggests that they will survive substantially intact in the cores of larger galaxies and would be easily visible. Their presence would destroy the observed correlation. Motivated by this apparent inconsistency between an observed fact and a simple physical argument, we have developed an effective simulation method and applied it to the problem of the accretion of very dense secondary companions by tenuous primaries. We have studied the accretion of objects of varying luminosity ratios, with sizes and densities drawn from the fundamental plane under the assumption that the mass distribution in the central parts of the galaxies follows the light. The results indicate that in mergers with mass ratios greater than 10, chosen with an appropriate central density dependence on luminosity, the smaller object is only stripped down to the highest density encountered in the primary during the accretion process. Thus, the form of the core fundamental plane suggests that the mass distribution in galaxy centers is different from the light distribution, or that an understanding of secondary survival requires more than the dynamics of

  19. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  20. SPI measurements of Galactic 26Al

    NASA Astrophysics Data System (ADS)

    Diehl, R.; Knödlseder, J.; Lichti, G. G.; Kretschmer, K.; Schanne, S.; Schönfelder, V.; Strong, A. W.; von Kienlin, A.; Weidenspointner, G.; Winkler, C.; Wunderer, C.

    2003-11-01

    The precision measurement of the 1809 keV gamma-ray line from Galactic 26Al is one of the goals of the SPI spectrometer on INTEGRAL with its Ge detector camera. We aim for determination of the detailed shape of this gamma-ray line, and its variation for different source regions along the plane of the Galaxy. Data from the first part of the core program observations of the first mission year have been inspected. A clear detection of the 26Al line at =~ 5-7 sigma significance demonstrates that SPI will deepen 26Al studies. The line intensity is consistent with expectations from previous experiments, and the line appears narrower than the 5.4 keV FWHM reported by GRIS, more consistent with RHESSI's recent value. Only preliminary statements can be made at this time, however, due to the multi-component background underlying the signal at =~ 40 times higher intensity than the signal from Galactic 26Al.

  1. Planck 2013 results. XIII. Galactic CO emission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

  2. Three-dimensional imaging using phase retrieval with two focus planes

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  3. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line

    NASA Astrophysics Data System (ADS)

    Langer, William

    2012-01-01

    The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  5. The preferred magnetic resonance imaging planes in quantifying visceral adipose tissue and evaluating cardiovascular risk.

    PubMed

    Liu, K H; Chan, Y L; Chan, J C N; Chan, W B; Kong, M O; Poon, M Y

    2005-09-01

    Magnetic Resonance Imaging (MRI) is a well-accepted non-invasive method in the quantification of visceral adipose tissue. However, a standard method of measurement has not yet been universally agreed. The objectives of the present study were 2-fold, firstly, to identify the imaging plane in the Chinese population which gives the best correlation with total visceral adipose tissue volume and cardiovascular risk factors; and secondly to compare the correlations between single-slice and multiple-slice approach with cardiovascular risk factors. Thirty-seven Chinese subjects with no known medical history underwent MRI examination for quantifying total visceral adipose tissue volume. The visceral adipose tissue area at five axial imaging levels within abdomen and pelvis were determined. All subjects had blood pressure measured and fasting blood taken for analysis of cardiovascular risk factors. Framingham risk score for each subject was calculated. The imaging plane at the level of 'lower costal margin' (LCM) in both men and women had the highest correlation with total visceral adipose tissue volume (r = 0.97 and 0.99 respectively). The visceral adipose tissue area at specific imaging levels showed higher correlations with various cardiovascular risk factors and Framingham risk score than total visceral adipose tissue volume. The visceral adipose tissue area at 'umbilicus' (UMB) level in men (r = 0.88) and LCM level in women (r = 0.70) showed the best correlation with Framingham risk score. The imaging plane at the level of LCM is preferred for reflecting total visceral adipose tissue volume in Chinese subjects. For investigating the association of cardiovascular risk with visceral adipose tissue in MRI-obesity research, the single-slice approach is superior to the multiple-slice approach, with the level of UMB in men and LCM in women as the preferred imaging planes.

  6. ATLASGAL - Ammonia observations towards the southern Galactic plane

    NASA Astrophysics Data System (ADS)

    Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Walmsley, C. M.; Csengeri, T.; Koribalski, B. S.; Schuller, F.

    2018-02-01

    Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims: We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods: Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1-0) line was measured with the Mopra telescope. Results: We measured a median NH3 (1, 1) line width of 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions: A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of

  7. From ATLASGAL to SEDIGISM: Towards a Complete 3D View of the Dense Galactic Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Urquhart, J.; Bronfman, L.; Csengeri, T.; Bontemps, S.; Duarte-Cabral, A.; Giannetti, A.; Ginsburg, A.; Henning, T.; Immer, K.; Leurini, S.; Mattern, M.; Menten, K.; Molinari, S.; Muller, E.; Sánchez-Monge, A.; Schisano, E.; Suri, S.; Testi, L.; Wang, K.; Wyrowski, F.; Zavagno, A.

    2016-09-01

    The ATLASGAL survey has provided the first unbiased view of the inner Galactic Plane at sub-millimetre wavelengths. This is the largest ground-based survey of its kind to date, covering 420 square degrees at a wavelength of 870 µm. The reduced data, consisting of images and a catalogue of > 104 compact sources, are available from the ESO Science Archive Facility through the Phase 3 infrastructure. The extremely rich statistics of this survey initiated several follow-up projects, including spectroscopic observations to explore molecular complexity and high angular resolution imaging with the Atacama Large Millimeter/submillimeter Array (ALMA), aimed at resolving individual protostars. The most extensive follow-up project is SEDIGISM, a 3D mapping of the dense interstellar medium over a large fraction of the inner Galaxy. Some notable results of these surveys are highlighted.

  8. Finding evolved stars in the inner Galactic disk with Gaia

    NASA Astrophysics Data System (ADS)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  9. Evaluation of an image-based tracking workflow with Kalman filtering for automatic image plane alignment in interventional MRI.

    PubMed

    Neumann, M; Cuvillon, L; Breton, E; de Matheli, M

    2013-01-01

    Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.

  10. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  11. Research on auto-calibration technology of the image plane's center of 360-degree and all round looking camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Xu, Xiping

    2015-10-01

    The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.

  12. Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, K.W.; Holmes, R.A.

    1984-01-01

    The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less

  13. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  14. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image

  15. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    PubMed Central

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  16. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI.

    PubMed

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K

    2015-12-01

    To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane

  17. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less

  18. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    NASA Astrophysics Data System (ADS)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  19. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    PubMed Central

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  20. Evaluation of Rib Fractures on a Single-in-plane Image Reformation of the Rib Cage in CT Examinations.

    PubMed

    Dankerl, Peter; Seuss, Hannes; Ellmann, Stephan; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2017-02-01

    This study aimed to evaluate the diagnostic performance of using a reformatted single-in-plane image reformation of the rib cage for the detection of rib fractures in computed tomography (CT) examinations, employing different levels of radiological experience. We retrospectively evaluated 10 consecutive patients with and 10 patients without rib fractures, whose CT scans were reformatted to a single-in-plane image reformation of the rib cage. Eight readers (two radiologists, two residents in radiology, and four interns) independently evaluated the images for the presence of rib fractures using a reformatted single-in-plane image and a multi-planar image reformation. The time limit was 30 seconds for each read. A consensus of two radiologist readings was considered as the reference standard. Diagnostic performance (sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) was assessed and evaluated per rib and per location (anterior, lateral, posterior). To determine the time limit, we prospectively analyzed the average time it took radiologists to assess the rib cage, in a bone window setting, in 50 routine CT examinations. McNemar test was used to compare the diagnostic performances. Single image reformation was successful in all 20 patients. The sensitivity, specificity, PPV, and NPV for the detection of rib fractures using the conventional multi-planar read were 77.5%, 99.2%, 89.9%, and 98.0% for radiologists; 46.3%, 99.7%, 92.5%, and 95.3% for residents; and 29.4%, 99.4%, 82.5%, and 93.9% for interns, respectively. Sensitivity, PPV, and NPV increased across all three groups of experience, using the reformatted single-in-plane image of the rib cage (radiologists: 85.0%, 98.6%, and 98.7%; residents: 80.0%, 92.8%, and 98.2%; interns: 66.9%, 89.9%, and 97.1%), whereas specificity did not change significantly (99.9%, 99.4%, and 99.3%). The diagnostic performance of the interns and residents was significantly better when

  1. Effects of missing low-frequency information on ptychographic and plane-wave coherent diffraction imaging.

    PubMed

    Liu, Haigang; Xu, Zijian; Zhang, Xiangzhi; Wu, Yanqing; Guo, Zhi; Tai, Renzhong

    2013-04-10

    In coherent diffractive imaging (CDI) experiments, a beamstop (BS) is commonly used to extend the exposure time of the charge-coupled detector and obtain high-angle diffraction signals. However, the negative effect of a large BS is also evident, causing low-frequency signals to be missed and making CDI reconstruction unstable or causing it to fail. We performed a systematic simulation investigation of the effects of BSs on the quality of reconstructed images from both plane-wave and ptychographic CDI (PCDI). For the same imaging quality, we found that ptychography can tolerate BSs that are at least 20 times larger than those for plane-wave CDI. For PCDI, a larger overlap ratio and a smaller illumination spot can significantly increase the imaging robustness to the negative influence of BSs. Our results provide guidelines for the usage of BSs in CDI, especially in PCDI experiments, which can help to further improve the spatial resolution of PCDI.

  2. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    PubMed

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  3. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  4. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    PubMed Central

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  5. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    PubMed Central

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  6. Simultaneous application of two independent EIT devices for real-time multi-plane imaging.

    PubMed

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Mueller-Lisse, U; Moeller, K

    2016-09-01

    Diagnosis and treatment of many lung diseases like cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD) could benefit from 3D ventilation information. Applying two EIT systems concurrently is a simple approach without specialized hardware that allows monitoring of regional changes of ventilation distribution inside the thorax at different planes with the high temporal resolution much valued in common single plane EIT. Effects of two simultaneously operated EIT devices on one subject were investigated to monitor rapid processes inside the thorax with a multi-plane approach. Results obtained by simulations with a virtual phantom and measurements with a phantom tank reveal that the distance of electrode planes has an important influence on the signal quality. Band-pass filters adapted according to the distance of the planes, can be used to reduce the crosstalk of the concurrent EIT systems. Besides simulations and phantom tank experiments measurements were also taken from a lung healthy volunteer to demonstrate the operation under realistic conditions. Reconstructed images indicate that it is possible to simultaneously visualize regional ventilation at different planes if settings of the EIT devices are chosen appropriately.

  7. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  8. CT triage for lung malignancy: coronal multiplanar reformation versus images in three orthogonal planes.

    PubMed

    Kusk, Martin Weber; Karstoft, Jens; Mussmann, Bo Redder

    2015-11-01

    Generation of multiplanar reformation (MPR) images has become automatic on most modern computed tomography (CT) scanners, potentially increasing the workload of the reporting radiologists. It is not always clear if this increases diagnostic performance in all clinical tasks. To assess detection performance using only coronal multiplanar reformations (MPR) when triaging patients for lung malignancies with CT compared to images in three orthogonal planes, and to evaluate performance comparison of novice and experienced readers. Retrospective study of 63 patients with suspicion of lung cancer, scanned on 64-slice multidetector computed tomography (MDCT) with images reconstructed in three planes. Coronal images were presented to four readers, two novice and two experienced. Readers decided whether the patients were suspicious for malignant disease, and indicated their confidence on a five-point scale. Sensitivity and specificity on per-patient basis was calculated with regards to a reference standard of histological diagnosis, and compared with the original report using McNemar's test. Receiver operating characteristic (ROC) curves were plotted to compare the performance of the four readers, using the area under the curve (AUC) as figure of merit. No statistically significant difference of sensitivity and specificity was found for any of the readers when compared to the original reports. ROC analysis yielded AUCs in the range of 0.92-0.93 for all readers with no significant difference. Inter-rater agreement was substantial (kappa = 0.72). Sensitivity and specificity were comparable to diagnosis using images in three planes. No significant difference was found between experienced and novice readers. © The Foundation Acta Radiologica 2014.

  9. Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.

    PubMed

    Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K

    2016-11-01

    In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.

  10. KINEMATIC DISTANCES OF GALACTIC PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, A. Y.; Tian, W. W.; Zhu, H.

    2016-03-15

    We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2−00.1 is not a PN because of its large distance found here.

  11. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  12. VizieR Online Data Catalog: NIR spectroscopy of Galactic WR stars. III (Kanarek+, 2015)

    NASA Astrophysics Data System (ADS)

    Kanarek, G.; Shara, M.; Faherty, J.; Zurek, D.; Moffat, A.

    2016-02-01

    This survey was previously described in Paper I (Shara et al., 2009AJ....138..402S). More than 88000 exposures were taken of the Galactic plane on the Cerro Tololo Inter-American Observatory (CTIO) 1.5-m telescope over approximately 200 nights during 2005-2006. IRTF: at the 3m NASA Infrared Telescope Facility (IRTF), we obtained NIR spectra of 150 candidate WR stars, selected using the criteria above, with the SpeX spectrograph. MDM 2011: during a run of excellent weather over the seven nights in 2011 June, we obtained 113 NIR spectra of candidate stars using TIFKAM in spectroscopic mode on the 2.4m Hiltner telescope at MDM Observatory. MDM 2012: during early 2012, the original survey data were reduced again, using different methods to produce better images. (10 data files).

  13. CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey

    NASA Astrophysics Data System (ADS)

    Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.

    2016-03-01

    We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.

  14. Infrared imaging spectroscopy of the Galactic center - Distribution and motions of the ionized gas

    NASA Technical Reports Server (NTRS)

    Herbst, T. M.; Beckwith, S. V. W.; Forrest, W. J.; Pipher, J. L.

    1993-01-01

    High spatial spectral resolution IR images of the Galactic center in the Br-gamma recombination line of hydrogen were taken. A coherent filament of gas extending from north of IRS 1, curving around IRS 16/Sgr A complex, and continuing to the southwest, is seen. Nine stellar sources have associated Br-gamma emission. The total Br-gamma line flux in the filament is approximately 3 x 10 exp -15 W/sq m. The distribution and kinematics of the northern arm suggest orbital motion; the observations are accordingly fit with elliptical orbits in the field of a central point of mass.

  15. The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy L.; Battersby, Cara; Rosolowsky, Erik W.; Ginsburg, Adam G.; Ellsworth-Bowers, Timothy P.; Pestalozzi, Michele R.; Dunham, Miranda K.; Evans, Neal J., II; Bally, John; Glenn, Jason

    2016-05-01

    We sort 4683 molecular clouds between 10° < ℓ < 65° from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 70 μm sources, mid-IR color-selected YSOs, H2O and CH3OH masers, and UCH II regions. We also present a combined NH3-derived gas kinetic temperature and H2O maser catalog for 1788 clumps from our own GBT 100 m observations and from the literature. We identify a subsample of 2223 (47.5%) starless clump candidates (SCCs), the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1 dex) progressions when sorted by star formation indicator. The median SCC is marginally subvirial (α ˜ 0.7) with >75% of clumps with known distance being gravitationally bound (α < 2). These samples show a statistically significant increase in the median clump mass of ΔM ˜ 170-370 M ⊙ from the starless candidates to clumps associated with protostars. This trend could be due to (I) mass growth of the clumps at \\dot{M}˜ 200{--}440 M ⊙ Myr-1 for an average freefall 0.8 Myr timescale, (II) a systematic factor of two increase in dust opacity from starless to protostellar phases, and/or (III) a variation in the ratio of starless to protostellar clump lifetime that scales as ˜M -0.4. By comparing to the observed number of CH3OH maser containing clumps, we estimate the phase lifetime of massive (M > 103 M ⊙) starless clumps to be 0.37 ± 0.08 Myr (M/103 M ⊙)-1 the majority (M < 450 M ⊙) have phase lifetimes longer than their average freefall time.

  16. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  17. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dékány, I.; Palma, T.; Minniti, D.

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentricmore » distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)« less

  18. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  19. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  20. Evaluation of an image-based tracking workflow using a passive marker and resonant micro-coil fiducials for automatic image plane alignment in interventional MRI.

    PubMed

    Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M

    2012-01-01

    In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.

  1. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  2. Osteoblastic lesion screening with an advanced post-processing package enabling in-plane rib reading in CT-images.

    PubMed

    Seuss, Hannes; Dankerl, Peter; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2016-05-20

    To evaluate screening and diagnostic accuracy for the detection of osteoblastic rib lesions using an advanced post-processing package enabling in-plane rib reading in CT-images. We retrospectively assessed the CT-data of 60 consecutive prostate cancer patients by applying dedicated software enabling in-plane rib reading. Reading the conventional multiplanar reconstructions was considered to be the reference standard. To simulate clinical practice, the reader was given 10 s to screen for sclerotic rib lesions in each patient applying both approaches. Afterwards, every rib was evaluated individually with both approaches without a time limit. Sensitivities, specificities, positive/negative predictive values and the time needed for detection were calculated depending on the lesion's size (largest diameter < 5 mm, 5-10 mm, > 10 mm). In 53 of 60 patients, all ribs were properly displayed in plane, in five patients ribs were partially displayed correctly, and in two patients none of the ribs were displayed correctly. During the 10-s screening approach all patients with sclerotic rib lesions were correctly identified reading the in-plane images (including the patients without a correct rib segmentation), whereas 14 of 23 patients were correctly identified reading conventional multiplanar images. Overall screening sensitivity, specificity, and positive/negative predictive values were 100/27.0/46.0/100 %, respectively, for in-plane reading and 60.9/100/100/80.4 %, respectively, for multiplanar reading. Overall diagnostic (no time limit) sensitivity, specificity, and positive/negative predictive values of in-plane reading were 97.8/92.8/74.6/99.5 %, respectively. False positive results predominantly occurred for lesions <5 mm in size. In-plane reading of the ribs allows reliable detection of osteoblastic lesions for screening purposes. The limited specificity results from false positives predominantly occurring for small lesions.

  3. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  4. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  5. Galactic Supernova Remnant Candidates Discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team

    2018-01-01

    There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

  6. Simultaneous in-plane and out-of-plane displacement measurement based on a dual-camera imaging system and its application to inspection of large-scale space structures

    NASA Astrophysics Data System (ADS)

    Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi

    2015-07-01

    Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.

  7. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains.

    PubMed

    Rizzo, Giuseppe; Capponi, Alessandra; Persico, Nicola; Ghi, Tullio; Nazzaro, Giovanni; Boito, Simona; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-10-01

    The purpose of this study was to test new 5D CNS+ software (Samsung Medison Co, Ltd, Seoul, Korea), which is designed to image axial, sagittal, and coronal planes of the fetal brain from volumes obtained by 3-dimensional sonography. The study consisted of 2 different steps. First in a prospective study, 3-dimensional fetal brain volumes were acquired in 183 normal consecutive singleton pregnancies undergoing routine sonographic examinations at 18 to 24 weeks' gestation. The 5D CNS+ software was applied, and the percentage of adequate visualization of brain diagnostic planes was evaluated by 2 independent observers. In the second step, the software was also tested in 22 fetuses with cerebral anomalies. In 180 of 183 fetuses (98.4%), 5D CNS+ successfully reconstructed all of the diagnostic planes. Using the software on healthy fetuses, the observers acknowledged the presence of diagnostic images with visualization rates ranging from 97.7% to 99.4% for axial planes, 94.4% to 97.7% for sagittal planes, and 92.2% to 97.2% for coronal planes. The Cohen κ coefficient was analyzed to evaluate the agreement rates between the observers and resulted in values of 0.96 or greater for axial planes, 0.90 or greater for sagittal planes, and 0.89 or greater for coronal planes. All 22 fetuses with brain anomalies were identified among a series that also included healthy fetuses, and in 21 of the 22 cases, a correct diagnosis was made. 5D CNS+ was efficient in successfully imaging standard axial, sagittal, and coronal planes of the fetal brain. This approach may simplify the examination of the fetal central nervous system and reduce operator dependency.

  8. InGaAs focal plane arrays for low-light-level SWIR imaging

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan

    2011-06-01

    Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.

  9. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  10. Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.

    PubMed

    Razansky, Daniel; Vinegoni, Claudio; Ntziachristos, Vasilis

    2009-05-07

    Mesoscopic-scale living organisms (i.e. 1 mm to 1 cm sized) remain largely inaccessible by current optical imaging methods due to intensive light scattering in tissues. Therefore, imaging of many important model organisms, such as insects, fishes, worms and similarly sized biological specimens, is currently limited to embryonic or other transparent stages of development. This makes it difficult to relate embryonic cellular and molecular mechanisms to consequences in organ function and animal behavior in more advanced stages and adults. Herein, we have developed a selective-plane illumination optoacoustic tomography technique for in vivo imaging of optically diffusive organisms and tissues. The method is capable of whole-body imaging at depths from the sub-millimeter up to centimeter range with a scalable spatial resolution in the order of magnitude of a few tenths of microns. In contrast to pure optical methods, the spatial resolution here is not determined nor limited by light diffusion; therefore, such performance cannot be achieved by any other optical imaging technology developed so far. The utility of the method is demonstrated on several whole-body models and small-animal extremities.

  11. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  12. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of

  13. Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Dong, Xiao-Bo; Xie, Fu-Guo; Liu, Wenjuan; Li, Di

    2018-06-01

    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (L R ), X-ray luminosity (L X), and BH mass ({M}BH}), the so-called “fundamental plane” (FP) of BH activity. Yet the supporting data are very limited in the {M}BH} regime between stellar mass (i.e., BHXBs) and 106.5 {M}ȯ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the Dong et al. sample. As a result, we obtained 19 new low-mass AGNs for FP research with both {M}BH} estimates ({M}BH} ≈ 105.5–6.5 {M}ȯ ), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature. Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined data set of BHXBs and supermassive AGNs by Gültekin et al.; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different {M}BH}. In view of the FP relation, we speculate that the radio loudness { \\mathcal R } (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on {M}BH}.

  14. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng, E-mail: mengwu@stanford.edu; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images thatmore » are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the

  15. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously

    PubMed Central

    Abrahamsson, Sara; McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Larsch, Johannes; Ilic, Rob; Heintzmann, Rainer; Bargmann, Cornelia I.; Gladfelter, Amy S.; Oldenbourg, Rudolf

    2015-01-01

    We have developed an imaging system for 3D time-lapse polarization microscopy of living biological samples. Polarization imaging reveals the position, alignment and orientation of submicroscopic features in label-free as well as fluorescently labeled specimens. Optical anisotropies are calculated from a series of images where the sample is illuminated by light of different polarization states. Due to the number of images necessary to collect both multiple polarization states and multiple focal planes, 3D polarization imaging is most often prohibitively slow. Our MF-PolScope system employs multifocus optics to form an instantaneous 3D image of up to 25 simultaneous focal-planes. We describe this optical system and show examples of 3D multi-focus polarization imaging of biological samples, including a protein assembly study in budding yeast cells. PMID:25837112

  16. The Dusty Galactic Center as Seen by SCUBA-2

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Dempsey, J. T.; Thomas, H. S.; Berry, D.; Currie, M. J.; Friberg, P.; Wouterloot, J. G. A.; Chrysostomou, A.; Graves, S.; Tilanus, R. P. J.; Bell, G. S.; Rawlings, M. G.

    2018-02-01

    We present new JCMT SCUBA-2 observations of the Galactic Center region from 355^\\circ < l< 5^\\circ and b< +/- 1^\\circ , covering 10 × 2 square degrees along the Galactic Plane to a depth of 43 mJy beam‑1 at 850 μm and 360 mJy beam‑1 at 450 μm. We describe the mapping strategy and reduction method used. We present 12CO(3-2) observations of selected regions in the field. We derive the molecular-line conversion factors (mJy beam‑1 per K km s‑1) at 850 and 450 μm, which are then used to obtain the amount of contamination in the continuum maps due to 12CO(3-2) emission in the 850 μm band. Toward the fields where the CO contamination has been accounted for, we present an 850 μm CO-corrected compact source catalog. Finally, we look for possible physical trends in the CO contamination with respect to column density, mass, and concentration. No trends were seen in the data despite the recognition of three contributors to CO contamination: opacity, shocks, and temperature, which would be expected to relate to physical conditions. These SCUBA-2 Galactic Center data and catalog are available via https://doi.org/10.11570/17.0009.

  17. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  18. Device localization and dynamic scan plane selection using a wireless magnetic resonance imaging detector array.

    PubMed

    Riffe, Matthew J; Yutzy, Stephen R; Jiang, Yun; Twieg, Michael D; Blumenthal, Colin J; Hsu, Daniel P; Pan, Li; Gilson, Wesley D; Sunshine, Jeffrey L; Flask, Christopher A; Duerk, Jeffrey L; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A

    2014-06-01

    A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system. The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and does not require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. Copyright © 2013 Wiley Periodicals, Inc.

  19. Galactic City at the Edge of the Universe

    NASA Image and Video Library

    2011-01-12

    Astronomers have discovered a massive cluster of young galaxies forming in the distant universe. The growing galactic metropolis is known as COSMOS-AzTEC3. This image was taken Japan Subaru telescope atop Mauna Kea in Hawaii.

  20. DHIGLS: DRAO H I Intermediate Galactic Latitude Survey

    NASA Astrophysics Data System (ADS)

    Blagrave, K.; Martin, P. G.; Joncas, G.; Kothes, R.; Stil, J. M.; Miville-Deschênes, M. A.; Lockman, Felix J.; Taylor, A. R.

    2017-01-01

    Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1\\prime angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute-resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. In fitting power-spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the three-dimensional density and velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.

  1. Gravitational lensing by a massive black hole at the Galactic center

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    1992-01-01

    The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.

  2. Observations of galactic X-ray sources by OSO-7

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Canizares, C. R.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Sprott, G. F.; Winkler, P. F.

    1977-01-01

    We present the MIT data from the OSO-7 satellite for observations of the galactic plane between 1971 and 1974. A number of sources discovered in the MIT all-sky survey are described in detail: MX 0049 + 59, MX 0836 - 42, MX 1353 - 64, MX 1406 - 61, MX 1418 - 61, MX 1709 - 40, and MX 1608 - 52 (the persistent source suggested to be associated with the X-ray burst source XB 1608 - 52). Upper limits to the X-ray emission from a number of interesting objects are also derived. General results describing all of our observations of galactic sources are presented. Specifically, we display the number-intensity diagrams, luminosity functions, and color-color diagrams for all of the sources we detected. The data are divided between disk and bulge populations, and the characteristics of the two groups are contrasted. Finally, the concept of X-ray source populations and the relationship of globular cluster sources and burst sources to the disk and bulge populations are discussed.

  3. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  4. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  5. A Search for Galactic Red Supergiant Variables Beyond the Solar Circle

    NASA Astrophysics Data System (ADS)

    Alves, David; MacConnell, Jack; Wing, Robert; Bond, Howard E.; Zurek, David; Hoard, Donald W.

    2000-02-01

    The Galactic rotation curve outside of the Solar circle is particularly difficult to ascertain, yet of critical importance for characterizing the distribution of mass in the Galaxy. We propose to identify a new and large sample of stellar kinematic tracers beyond the Solar circle, in the form of red supergiant variables (RSVs; spectral type M0-M5, luminosity class Ia-Ib). RSVs are ideal tracers of the heavily extincted outer Galactic disk, because (1) they are the intrinsically most luminous Pop I standard candles in the near-infrared, (2) they are more common than the classically employed Cepheids, and (3) they exhibit a period-luminosity relation of comparable precision to that of Cepheids. With the CTIO 0.9m in queue mode, we will derive the pulsation periods of our RSV candidates, allowing us to identify the most distant RSVs for further study. In addition, follow- up observations to obtain accurate, phase-weighted (``(gamma)'') radial velocities (a prerequisite for determining the Galactic rotation curve with RSVs) cannot be planned without period information. We have preselected RSV candidates from a catalog of ~1500 red supergiants in the Galactic plane, originally identified on objective-prism plates. Spectral types and luminosity classes have been determined from 8-color Wing photometry and medium-resolution spectra. The pulsation periods are expected to be 100 to 1000 days, and thus we request long-term status.

  6. Galactic supernova remnant candidates discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.

    2017-09-01

    Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and

  7. Investigating Galactic Supernova Remnant Candidates Using LOFAR

    NASA Astrophysics Data System (ADS)

    Driessen, Laura N.; Domček, Vladimír; Vink, Jacco; Hessels, Jason W. T.; Arias, Maria; Gelfand, Joseph D.

    2018-06-01

    We investigate six supernova remnant (SNR) candidates—G51.21+0.11, G52.37–0.70, G53.07+0.49, G53.41+0.03, G53.84–0.75, and the possible shell around G54.1+0.3—in the Galactic plane using newly acquired Low-Frequency Array High-band Antenna observations, as well as archival Westerbork Synthesis Radio Telescope and Very Large Array Galactic Plane Survey mosaics. We find that G52.37–0.70, G53.84–0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of α = ‑ 0.7 ± 0.21, but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of α = ‑ 0.6 ± 0.2 and it has the X-ray spectral characteristics of a 1000–8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a nonequilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but placed stringent upper limits on the flux density of such a source if it was beamed toward Earth.

  8. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  9. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  10. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidalmore » light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.« less

  11. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.

    PubMed

    Chen, Yuling; Lou, Yang; Yen, Jesse

    2017-07-01

    During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.

  12. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  13. 3D Asymmetrical motions of the Galactic outer disc with LAMOST K giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; López-Corredoira, Martín; Carlin, Jeffrey L.; Deng, Licai

    2018-07-01

    We present a three dimensional velocity analysis of Milky Way disc kinematics using LAMOST K giant stars and the GPS1 proper motion catalogue. We find that Galactic disc stars near the anticentre direction (in the range of Galactocentric distance between R = 8 and 13 kpc and vertical position between Z = -2 and 2 kpc) exhibit asymmetrical motions in the Galactocentric radial, azimuthal, and vertical components. Radial motions are not zero, thus departing from circularity in the orbits; they increase outwards within R ≲ 12 kpc, show some oscillation in the northern (0 < Z < 2 kpc) stars, and have north-south asymmetry in the region corresponding to a well-known nearby northern structure in the velocity field. There is a clear vertical gradient in azimuthal velocity, and also an asymmetry that shifts from a larger azimuthal velocity above the plane near the solar radius to faster rotation below the plane at radii of 11-12 kpc. Stars both above and below the plane at R ≳ 9 kpc exhibit net upward vertical motions. We discuss some possible mechanisms that might create the asymmetrical motions, such as external perturbations due to dwarf galaxy minor mergers or dark matter sub-haloes, warp dynamics, internal processes due to spiral arms or the Galactic bar, and (most likely) a combination of some or all of these components.

  14. Columbia/Einstein observations of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1979-01-01

    The imaging observations of galactic clusters are presented. These fall into three categories: pre-main-sequence stars in the Orion nebulae, isolated-main-and-post main-sequence stars, and supernova remnants SNR. In addition to SNR, approximately 30 sources were detected.

  15. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is <<1 μK. Angular power spectra of the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  16. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  17. ASTE Surveys of Galactic Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2008-05-01

    We report some recent highlights on the observational studies of Galactic star formation based on surveys using the Atacama Submillimeter Telescope Experiment (ASTE), a new 10 m telescope in the Atacama desert in northern Chile (Kohno et al., 2008, ApSS, 313, 279). The highlights will include (1) a large scale CO(3-2) imaging survey of the Galactic Center, unveiling the presence of numerous compact high velocity clouds with high CO(3-2)/CO(1-0) ratios as a "fossil” of the recent burst of star formation in the Galactic Center region (Oka et al., 2007, PASJ, 59, 15; Nagai et al., 2007, PASJ, 59, 25; Tanaka et al., 2007, PASJ, 59, 323), (2) a large scale CO(3-2) imaging survey of the Sgr arm and inter-am regions, revealing the distinct difference on the morphology and physical property of molecular gas between the arm and inter-arm regions for the first time (Sawada, Koda, et al., in prep.), and (3) a wide area 1.1 mm imaging survey of Southern low mass star-forming regions such as Chamaeleon and Lupus molecular clouds using the bolometer camera AzTEC (Wilson et al., 2008, MNRAS, in press) mounted on ASTE, yielding detections of starless cores with a very low mass detection limist down to 0.1 solar masses (Hiramatsu, Tsukagoshi, Kawabe et al., in prep.). Related topics on the massive star-forming regions in very nearby galaxies such as LMC (Minamidani et al., 2008, ApJS, in press) and M 33 (Tosaki et al., 2007, ApJ, 664, L27; Onodera et al., in prep.; Komugi et al., in prep.) will also be reviewed.

  18. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  19. Virtual plane-wave imaging via Marchenko redatuming

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Wapenaar, Kees; Thorbecke, Jan

    2018-04-01

    Marchenko redatuming is a novel scheme used to retrieve up- and down-going Green's functions in an unknown medium. Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but similarly to standard migration methods, Marchenko redatuming only requires an estimate of the direct wave from the virtual source (or to the virtual receiver), illumination from only one side of the medium, and no physical sources (or receivers) inside the medium. In this contribution we consider a different time-focusing condition within the frame of Marchenko redatuming that leads to the retrieval of virtual plane-wave responses. As a result, it allows multiple-free imaging using only a one-dimensional sampling of the targeted model at a fraction of the computational cost of standard Marchenko schemes. The potential of the new method is demonstrated on 2D synthetic models.

  20. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    NASA Astrophysics Data System (ADS)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° < l < 135° and Galactic latitude 1°< |b| < 10° with a dwell time of 1800 s, resulting in the detection of 28 pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  1. G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan; hide

    2013-01-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  2. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy.

    PubMed

    Panier, Thomas; Romano, Sebastián A; Olive, Raphaël; Pietri, Thomas; Sumbre, Germán; Candelier, Raphaël; Debrégeas, Georges

    2013-01-01

    The optical transparency and the small dimensions of zebrafish at the larval stage make it a vertebrate model of choice for brain-wide in-vivo functional imaging. However, current point-scanning imaging techniques, such as two-photon or confocal microscopy, impose a strong limit on acquisition speed which in turn sets the number of neurons that can be simultaneously recorded. At 5 Hz, this number is of the order of one thousand, i.e., approximately 1-2% of the brain. Here we demonstrate that this limitation can be greatly overcome by using Selective-plane Illumination Microscopy (SPIM). Zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3 were illuminated with a scanned laser sheet and imaged with a camera whose optical axis was oriented orthogonally to the illumination plane. This optical sectioning approach was shown to permit functional imaging of a very large fraction of the brain volume of 5-9-day-old larvae with single- or near single-cell resolution. The spontaneous activity of up to 5,000 neurons was recorded at 20 Hz for 20-60 min. By rapidly scanning the specimen in the axial direction, the activity of 25,000 individual neurons from 5 different z-planes (approximately 30% of the entire brain) could be simultaneously monitored at 4 Hz. Compared to point-scanning techniques, this imaging strategy thus yields a ≃20-fold increase in data throughput (number of recorded neurons times acquisition rate) without compromising the signal-to-noise ratio (SNR). The extended field of view offered by the SPIM method allowed us to directly identify large scale ensembles of neurons, spanning several brain regions, that displayed correlated activity and were thus likely to participate in common neural processes. The benefits and limitations of SPIM for functional imaging in zebrafish as well as future developments are briefly discussed.

  3. Distribution and Kinematics of O VI in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.

    2003-05-01

    Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo

  4. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    NASA Astrophysics Data System (ADS)

    Dugan, Zachary; Gaibler, Volker; Silk, Joseph

    2017-07-01

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2-3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  5. Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald

    2018-05-01

    Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.

  6. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  7. South Galactic Cap u-band Sky Survey (SCUSS): Data Release

    NASA Astrophysics Data System (ADS)

    Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Peng, Xiyan; Fan, Dongwei; Fan, Xiaohui; Fan, Zhou; He, Boliang; Jing, Yipeng; Lesser, Michael; Li, Cheng; Ma, Jun; Nie, Jundan; Shen, Shiyin; Wang, Jiali; Wu, Zhenyu; Zhang, Tianmeng; Zhou, Zhimin

    2016-02-01

    The South Galactic Cap u-band Sky Survey (SCUSS) is a deep u-band imaging survey in the south Galactic cap using the 2.3 m Bok telescope. The survey observations were completed at the end of 2013, covering an area of about 5000 square degrees. We release the data in the region with an area of about 4000 deg2 that is mostly covered by the Sloan digital sky survey. The data products contain calibrated single-epoch images, stacked images, photometric catalogs, and a catalog of star proper motions derived by Peng et al. The median seeing and magnitude limit (5σ) are about 2.″0 and 23.2 mag, respectively. There are about 8 million objects having measurements of absolute proper motions. All the data and related documentations can be accessed through the SCUSS data release website http://batc.bao.ac.cn/Uband/data.html.

  8. HST Imaging of the Eye of Horus, a Double Source Plane Gravitational Lens

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth

    2017-08-01

    Double source plane (DSP) gravitational lenses are extremely rare alignments of a massive lens galaxy with two background sources at distinct redshifts. The presence of two source planes provides important constraints on cosmology and galaxy structure beyond that of typical lens systems by breaking degeneracies between parameters that vary with source redshift. While these systems are extremely valuable, only a handful are known. We have discovered the first DSP lens, the Eye of Horus, in the Hyper Suprime-Cam survey and have confirmed both source redshifts with follow-up spectroscopy, making this the only known DSP lens with both source redshifts measured. Furthermore, the brightest image of the most distant source (S2) is split into a pair of images by a mass component that is undetected in our ground-based data, suggesting the presence of a satellite or line-of-sight galaxy causing this splitting. In order to better understand this system and use it for cosmology and galaxy studies, we must construct an accurate lens model, accounting for the lensing effects of both the main lens galaxy and the intermediate source. Only with deep, high-resolution imaging from HST/ACS can we accurately model this system. Our proposed multiband imaging will clearly separate out the two sources by their distinct colors, allowing us to use their extended surface brightness distributions as constraints on our lens model. These data may also reveal the satellite galaxy responsible for the splitting of the brightest image of S2. With these observations, we will be able to take full advantage of the wealth of information provided by this system.

  9. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    NASA Astrophysics Data System (ADS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  10. New Asymptotic Giant Branch Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Kostandyan, G. R.

    2018-03-01

    For the first time the data on the eight confirmed or candidate carbon (C) stars found mainly from objective-prism plates are presented. By using the Catalina database of lightcurves, we find that all these stars are pulsating, allowing a distance to be estimated through the K-band Period-Luminosity (PL) relation. This relation does not depend on spectral type (M or C) and distances are reliable even for C candidates. Seven stars are more than 10 kpc from the galactic plane, suggesting they do not belong to the galactic disk. We also find one star located at about 180 kpc from the Sun, being one of the most distant star in the Galaxy. Many of these new C stars are relatively blue. Some comments are also provided on seven other known halo carbon stars for which either a pulsation period is obtained, or because they were not included in previous works on halo C stars.

  11. High-spatial-resolution K-band Imaging of Select K2 Campaign Fields

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Howell, Steve B.; Ciardi, David R.; Barclay, Thomas

    2017-12-01

    NASA's K2 mission began observing fields along the ecliptic plane in 2014. Each observing campaign lasts approximately 80 days, during which high-precision optical photometry of select astrophysical targets is collected by the Kepler spacecraft. Due to the 4 arcsec pixel scale of the Kepler photometer, significant blending between the observed targets can occur (especially in dense fields close to the Galactic plane). We undertook a program to use the Wide Field Camera (WFCAM) on the 3.8 m United Kingdom InfraRed Telescope (UKIRT) to collect high-spatial-resolution near-infrared images of targets in select K2 campaign fields, which we report here. These 0.4 arcsec resolution K-band images offer the opportunity to perform a variety of science, including vetting exoplanet candidates by identifying nearby stars blended with the target star and estimating the size, color, and type of galaxies observed by K2.

  12. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| < 5°). Our search revealed four sources with periodic variability on timescales of 200-5000 s, all of which are probably accreting white dwarfs. We identify 7 of 12 known Galactic magnetars, but find no new examples with periods between 5 and 20 s. We convert this nondetection into limits on the total number of Galactic magnetars by computing the fraction of the young Galactic stellar population that our survey covered. We find that easily detectable magnetars, modeled after persistent anomalous X-ray pulsars (e.g., with LX = 1035 ergs s-1 [0.5-10.0 keV] and Arms = 12% ), could have been identified in ≈5% of the Galactic spiral arms by mass. If we assume that three previously known examples randomly fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that <540 exist in the Galaxy (90% confidence). Similar constraints are found by considering the detectability of transient magnetars in outburst. For assumed lifetimes of 104 yr, the birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  13. Through thick and thin: Structure of the Galactic thick disc from extragalactic surveys

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Hill, V.; Irwin, M.; Gilmore, G.; Wyse, R. F. G.; Tolstoy, E.; de Laverny, P.; Recio-Blanco, A.; Battaglia, G.; Starkenburg, E.

    2013-07-01

    Context. We aim to understand the accretion history of the Milky Way by exploring the vertical and radial properties of the Galactic thick disc. Aims: We study the chemical and kinematic properties of roughly a thousand spectra of faint magnitude foreground Galactic stars observed serendipitously during extra-galactic surveys in four lines-of-sight: three in the southern Galactic hemisphere (surveys of the Carina, Fornax and Sculptor dwarf spheroidal galaxies) and one in the northern Galactic hemisphere (a survey of the Sextans dwarf spheroidal galaxy). The foreground stars span distances up to ~3 kpc from the Galactic plane and Galactocentric radii up to 11 kpc. Methods: The stellar atmospheric parameters (effective temperature, surface gravity, metallicity) are obtained by an automated parameterisation pipeline and the distances of the stars are then derived by a projection of the atmospheric parameters on a set of theoretical isochrones using a Bayesian approach. The metallicity gradients are estimated for each line-of-sight and compared with predictions from the Besançon model of the Galaxy, in order to test the chemical structure of the thick disc. Finally, we use the radial velocities in each line-of-sight to derive a proxy for either the azimuthal or the vertical component of the orbital velocity of the stars. Results: Only three lines-of-sight have a sufficient number of foreground stars for a robust analysis. Towards Sextans in the Northern Galactic hemisphere and Sculptor in the South, we measure a consistent decrease in mean metallicity with height from the Galactic plane, suggesting a chemically symmetric thick disc. This decrease can either be due to an intrinsic thick disc metallicity gradient, or simply due to a change in the thin disc/thick disc population ratio and no intrinsic metallicity gradients for the thick disc. We favour the latter explanation. In contrast, we find evidence of an unpredicted metal-poor population in the direction of Carina

  14. Measurements of Morphology in Strongly Lensed Galaxies in the Image Plane

    NASA Astrophysics Data System (ADS)

    Florian, Michael Kenneth

    2017-02-01

    The peak of star formation in the universe, the so-called "cosmic noon", occurs around redshift 2. Therefore, to study the physical mechanisms driving galaxy assembly and star formation, and thus the bulk morphological appearances of present day galaxies, we must look to galaxies at this redshift and greater. Unfortunately, even with current space-based telescopes, the internal structures of these galaxies cannot be resolved. The point spread function of the Hubble Space Telescope (HST), for example, corresponds to scales of about 0.5 kpc at redshift 2. Even the next generation of telescopes (e.g., the James Webb Space Telescope, the Wide-Field Infrared Survey Telescope, and the new thirty meter class of ground-based telescopes) will not be able to access the spatial scales--tens of parsecs or less--on which star formation has been shown to occur in the local universe. Fortunately, strong gravitational lensing can magnify these spatial scales to angular scales comparable to, or larger than, the HST point spread function. However, this increased access to small scales comes at the cost of strong distortions of the underlying image. To deal with this, I use simulations to show that some morphological measurements (e.g., the Gini coefficient) are preserved by gravitational lensing and can be measured in the image plane. I further show how such measurements can aid image family identification and thus improve lens models and source reconstructions. I explore a method to measure the fraction of a lensed galaxy's light that is contained in star-forming clumps in the image plane, which would bypass the need for lens modeling and source reconstruction to carry out similar measurements. I present a proof of concept for a simple case, and show where the major uncertainties lie--uncertainties that will need to be dealt with in order to expand this technique for use on more image configurations and tighten the relationship between the intrinsic values and the measured values

  15. A dual-modality optical coherence tomography and selective plane illumination microscopy system for mouse embryonic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.

    2017-02-01

    Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.

  16. Where Galactic Snakes Live

    NASA Image and Video Library

    2006-10-27

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a "snake" (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the "snake's belly" may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the "belly" of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a "supernova remnant," the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were

  17. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  18. The Split Red Clump of the Galactic Bulge from OGLE-III

    NASA Astrophysics Data System (ADS)

    Nataf, D. M.; Udalski, A.; Gould, A.; Fouqué, P.; Stanek, K. Z.

    2010-09-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter "main") component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ~0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  19. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    PubMed

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  20. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  1. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  2. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  3. The K2 Ecliptic Plane Input Catalog (EPIC) and Stellar Classifications of 138,600 Targets in Campaigns 1-8

    NASA Astrophysics Data System (ADS)

    Huber, Daniel; Bryson, Stephen T.; Haas, Michael R.; Barclay, Thomas; Barentsen, Geert; Howell, Steve B.; Sharma, Sanjib; Stello, Dennis; Thompson, Susan E.

    2016-05-01

    The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ≈80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to ≈0.1 mag for the Kepler field, and the EPIC is typically complete to Kp ≈ 17 (Kp ≈ 19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138,600 targets in Campaigns 1-8 (≈88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of ≈3% in {T}{{eff}}, ≈0.3 dex in {log} g, ≈40% in radius, ≈10% in mass, and ≈40% in distance. Our results show that stars targeted by K2 are dominated by K-M dwarfs (≈41% of all selected targets), F-G dwarfs (≈36%), and K giants (≈21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars. The EPIC is hosted at the Mikulski Archive for Space Telescopes (MAST): http://archive.stsci.edu/k2/epic/search.php.

  4. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  5. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  6. Limits on the spatial variations of the electron-to-proton mass ratio in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Reimers, D.; Henkel, C.; Winkel, B.; Mignano, A.; Centurión, M.; Molaro, P.

    2013-11-01

    Aims: We aim to validate the Einstein equivalence principle (local position invariance) by limiting the fractional changes in the electron-to-proton mass ratio, μ = me/mp, measured in Galactic plane objects. Methods: High-resolution spectral observations of dark clouds in the inversion line of NH3(1, 1) and pure rotational lines of other molecules (the so-called ammonia method) were performed at the Medicina 32-m and the Effelsberg 100-m radio telescopes to measure the radial velocity offsets, ΔRV = Vrot - Vinv, between the rotational and inversion transitions, which have different sensitivities to the value of μ. Results: In our previous observations (2008-2010), a mean offset of ⟨ΔRV⟩ = 0.027 ± 0.010 km s-1 (3σ confidence level (C.L.)) was measured. To test for possible hidden errors, we carried out additional observations of a sample of molecular cores in 2010-2013. As a result, a systematic error with an amplitude ~0.02 km s-1 in the radial velocities was revealed. The averaged offset between the radial velocities of the rotational transitions of HC3N(2-1), HC5N(9-8), HC7N(16-15), HC7N(21-20), and HC7N(23-22), and the inversion transition of NH3(1, 1) is ⟨ΔRV⟩ = 0.003 ± 0.018 km s-1 (3σ C.L.). This value, when interpreted in terms of Δμ/μ = (μobs - μlab)/μlab, constraints the μ-variation at the level of Δμ/μ < 2 × 10-8 (3σ C.L.), which is the most stringent limit on the fractional changes in μ based on astronomical observations. Based on observations obtained with the Effelsberg 100-m telescope operated by the Max-Planck Institut für Radioastronomie on behalf of the Max-Planck-Gesellschaft (Germany), and with the Medicina 32-m telescope operated by INAF (Italy).

  7. Morphology of Gas in the Galactic Center from Spectroscopy of H_3^+

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Indriolo, Nick; Goto, Miwa

    2012-06-01

    Over the last several years our observations of the infrared spectrum of H_3^+ toward the Galactic center (GC) have established a high ionization rate (ζ > 2 × 10-15 s-1) and the existence of a vast amount of warm (T ˜250 K) and diffuse (n < 100 cm-3) gas with a high volume filling factor (f > 0.3) in the Central Molecular Zone (CMZ) of the GC, a region of radius ˜150 pc. These findings are gradually being assimilated into the astrophysics of the GC. Determining the morphology of this gas is difficult because the sightlines for study are limited by the uncontrollable locations of background stars suitable for spectroscopy of H_3^+. There are wide longitudinal gaps in the locations of those stars and the precise radial locations of the stars within the CMZ are uncertain. Nevertheless, the velocity profiles of the observed H_3^+ spectra indicate the presence of the Expanding Molecular Ring (EMR), a structure containing mostly diffuse gas expanding from the center with velocities of up to 180 km s-1 and bordering the CMZ. On the other hand, the 120 pc Molecular Ring, an inner t ring of cold dust and dense gas with radius ˜100 pc is not clearly seen in H_3^+. This is possibly because the sightlines that we have observed to date lie close to the Galactic plane and miss the ring, which goes above and below the Galactic plane. Oka, T., Geballe, T.R., Goto, M., Usuda, T., McCall, B.J. 2005, ApJ, 632, 882 Goto, Usuda, Nagata, Geballe, McCall, Indriolo, Suto, Henning, Morong, and Oka, 2008, ApJ, 688, 306. Geballe, T.R. and Oka, T. 2010, ApJ, 709, L70 Sofue, Y. 1995, PASJ, 47, 527 Molinari, S. et al. 2011, ApJ, 735, L33.

  8. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Zachary; Silk, Joseph; Gaibler, Volker

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-drivenmore » and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.« less

  9. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, I.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  10. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combinedmore » with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.« less

  11. On obtaining neutron-star mass and radius constraints from quiescent low-mass X-ray binaries in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Marino, Alessio; Degenaar, N.; Di Salvo, T.; Wijnands, R.; Burderi, L.; Iaria, R.

    2018-06-01

    X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of R ≲14.5 km for EXO 0748-676 (for assumed ranges for mass and distance). Using these seven sources, we also investigate systematic biases on the mass/radius determination; for Aql X-1 we find that omitting a power-law spectral component when it does not seem to be required by the data, results in peculiar trends in the obtained radius with changing mass and distance. For EXO 0748-676 we find that a slight variation in the lower limit of the energy range chosen for the fit leads to systematically different masses and radii. Finally, we simulated Athena spectra and found that some of the biases can be lifted when higher quality spectra are available and that, in general, the search for constraints on the equation of state of ultra-dense matter via NS radius and mass measurements may receive a considerable boost in the future.

  12. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  13. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  14. Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, P.; Krishnan, A., E-mail: ananthk@iitm.ac.in; Experimental Optics Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai-600036

    We demonstrate an optical technique for refractive index and thickness sensing of sub-wavelength-thick dielectric analytes. The technique utilizes the broadband, multimode, directional leakage radiation arising from the excitation of hybrid mode surface plasmons (SP) on low aspect ratio periodic plasmonic substrates with period ≈λ. The approach requires relaxed fabrication tolerances compared to extra ordinary transmission-based sensing techniques, wherein minor shifts in the fabricated dimensions result in a very large change from the designed resonant wavelength. We show that refractive index perturbations due to about 10-nm-thick dielectric can be captured optically by the usage of carefully designed plasmonic substrates, a halogenmore » lamp source, free-space optical components, polarizers, and a low-end, consumer-grade charge coupled device camera. The plasmonic substrates were designed for converting the signature of hybrid mode SP excitation into a transmission peak by utilizing a thin homogeneous metal layer sandwiched between the periodic plasmonic structures and the substrate. The resonance is highly sensitive to the refractive index and thickness of the analyte superstrate. The excitation of hybrid mode SP results in a polarization rotation of 90° of the leaked radiation at resonant wavelength. In order to eliminate the problem of image registration (i.e., placing the same feature in the same pixel of the image, for comparison before and after a change in refractive index) for sensing, we perform the color analysis in the Fourier plane. The change in color of the bright emitted spot with highest momentum, corresponding to the leakage of fundamental SP mode, was used to measure the changes in refractive index, whereas the number and color of spots of lower momenta, corresponding to higher-order Fabry Perot modes, was used to measure the variation in thickness. We further show that the Fourier plane analysis can also be used to sense the index of

  15. Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing

    NASA Astrophysics Data System (ADS)

    Arora, P.; Krishnan, A.

    2015-12-01

    We demonstrate an optical technique for refractive index and thickness sensing of sub-wavelength-thick dielectric analytes. The technique utilizes the broadband, multimode, directional leakage radiation arising from the excitation of hybrid mode surface plasmons (SP) on low aspect ratio periodic plasmonic substrates with period ≈λ. The approach requires relaxed fabrication tolerances compared to extra ordinary transmission-based sensing techniques, wherein minor shifts in the fabricated dimensions result in a very large change from the designed resonant wavelength. We show that refractive index perturbations due to about 10-nm-thick dielectric can be captured optically by the usage of carefully designed plasmonic substrates, a halogen lamp source, free-space optical components, polarizers, and a low-end, consumer-grade charge coupled device camera. The plasmonic substrates were designed for converting the signature of hybrid mode SP excitation into a transmission peak by utilizing a thin homogeneous metal layer sandwiched between the periodic plasmonic structures and the substrate. The resonance is highly sensitive to the refractive index and thickness of the analyte superstrate. The excitation of hybrid mode SP results in a polarization rotation of 90° of the leaked radiation at resonant wavelength. In order to eliminate the problem of image registration (i.e., placing the same feature in the same pixel of the image, for comparison before and after a change in refractive index) for sensing, we perform the color analysis in the Fourier plane. The change in color of the bright emitted spot with highest momentum, corresponding to the leakage of fundamental SP mode, was used to measure the changes in refractive index, whereas the number and color of spots of lower momenta, corresponding to higher-order Fabry Perot modes, was used to measure the variation in thickness. We further show that the Fourier plane analysis can also be used to sense the index of thicker

  16. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  17. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  18. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  19. Hydrodynamic Simulations of the Central Molecular Zone with a Realistic Galactic Potential

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.; Baba, Junichi; Saitoh, Takayuki R.; Hwang, Jeong-Sun; Chun, Kyungwon; Hozumi, Shunsuke

    2017-06-01

    We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions (MEs) that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid ME model, with two different basis sets and a thick-disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone-like nuclear ring. We find that the size of the nuclear ring evolves into ˜ 240 {pc} at T˜ 1500 {Myr}, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ˜ 0.02 {M}⊙ {{yr}}-1. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ˜100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, ∞ -like shape.

  20. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  1. To the Galactic Virial Radius with Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.

    2018-01-01

    We exploit the exquisite, deep Hyper Suprime-Cam (HSC) imaging data to probe the Galactic halo out to 200 kpc. Using the ∼100 square degree, multiband photometry of the first HSC Wide survey data release, we identify blue horizontal branch (BHB) stars beyond 50 kpc in the halo. The presence of the Sagittarius (Sgr) stream in the HSC fields produces a notable excess of stars at the apocenter of the leading arm (∼50–60 kpc). For fields excluding Sgr, the BHB counts are consistent with a continuation of a ‑4 power law from the inner halo. However, we find that the majority of the non-Sgr BHB stars beyond 50 kpc reside in one 27 square degree HSC field called “VVDS.” Curiously, this field is located close to the Magellanic plane, and we hypothesize that the excess of stars between 50 and 200 kpc could be associated with distant Magellanic debris. Indeed, without the VVDS, there are very few BHBs in the remaining portions of the Galaxy probed by the HSC. Accordingly, this scarcity of tracers is consistent with a significant decline in stellar density beyond 50 kpc, with a power law of ‑4 or steeper.

  2. Inner Milky Way Raging with Star Formation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 444,580 frames from NASA's Spitzer Space Telescope were stitched together to create this portrait of the raging star-formation occurring in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The red haze that permeates the picture comes from organic molecules called polycyclic aromatic hydrocarbons, which are illuminated by light from massive baby stars. On Earth, these molecules are found in automobile exhaust, or charred barbeque grills anywhere carbon molecules are burned incompletely.

    The patches of black are dense, obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This picture was taken with Spitzer's infrared array camera, as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. This is a four-color composite where blue is 3.6-micron light, green is 4.5 microns, orange is 5.8 microns and red is 8.0 microns.

  3. A Low-Cost Demonstration Kit for Locating an Image Formed by a Plane Mirror Integrated with a Ray Diagram

    ERIC Educational Resources Information Center

    Kaewkhong, Kreetha; Chitaree, Ratchapak

    2015-01-01

    This article introduces a low-cost, easy to make apparatus that can be used to locate the position of an image formed by a plane mirror. The apparatus is combined with a method used to identify an image's position by drawing a ray diagram, based on the principle of reflection, to show how an image is formed. An image's distance and an object's…

  4. An information-theoretic approach to designing the plane spacing for multifocal plane microscopy

    PubMed Central

    Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2015-01-01

    Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup. PMID:26113764

  5. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  6. High-mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties

    NASA Astrophysics Data System (ADS)

    Yuan, Jinghua; Wu, Yuefang; Ellingsen, Simon P.; Evans, Neal J., II; Henkel, Christian; Wang, Ke; Liu, Hong-Li; Liu, Tie; Li, Jin-Zeng; Zavagno, Annie

    2017-07-01

    We report a sample of 463 high-mass starless clump (HMSC) candidates within -60^\\circ < l< 60^\\circ and -1^\\circ < b< 1^\\circ . This sample has been singled out from 10,861 ATLASGAL clumps. None of these sources are associated with any known star-forming activities collected in SIMBAD and young stellar objects identified using color-based criteria. We also make sure that the HMSC candidates have neither point sources at 24 and 70 μm nor strong extended emission at 24 μm. Most of the identified HMSCs are infrared dark, and some are even dark at 70 μm. Their distribution shows crowding in Galactic spiral arms and toward the Galactic center and some well-known star-forming complexes. Many HMSCs are associated with large-scale filaments. Some basic parameters were attained from column density and dust temperature maps constructed via fitting far-infrared and submillimeter continuum data to modified blackbodies. The HMSC candidates have sizes, masses, and densities similar to clumps associated with Class II methanol masers and H II regions, suggesting that they will evolve into star-forming clumps. More than 90% of the HMSC candidates have densities above some proposed thresholds for forming high-mass stars. With dust temperatures and luminosity-to-mass ratios significantly lower than that for star-forming sources, the HMSC candidates are externally heated and genuinely at very early stages of high-mass star formation. Twenty sources with equivalent radii {r}{eq}< 0.15 pc and mass surface densities {{Σ }}> 0.08 g cm-2 could be possible high-mass starless cores. Further investigations toward these HMSCs would undoubtedly shed light on comprehensively understanding the birth of high-mass stars.

  7. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  8. The Optical-Mid-infrared Extinction Law of the l = 165° Sightline in the Galactic Plane: Diversity of the Extinction Law in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Jiang, B. W.; Zhao, He; Chen, Xiaodian; de Grijs, Richard

    2017-10-01

    Understanding the effects of dust extinction is important to properly interpret observations. The optical total-to-selective extinction ratio, {R}V={A}V/E(B-V), is widely used to describe extinction variations in ultraviolet and optical bands. Since the {R}V=3.1 extinction curve adequately represents the average extinction law of diffuse regions in the Milky Way, it is commonly used to correct observational measurements along sightlines toward diffuse regions in the interstellar medium. However, the {R}V value may vary even along different diffuse interstellar medium sightlines. In this paper, we investigate the optical-mid-infrared (mid-IR) extinction law toward a very diffuse region at l=165^\\circ in the Galactic plane, which was selected based on a CO emission map. Adopting red clump stars as extinction tracers, we determine the optical-mid-IR extinction law for our diffuse region in two APASS bands (B,V), three XSTPS-GAC bands (g,r,I), three 2MASS bands (J,H,{K}s), and two WISE bands (W1,W2). Specifically, 18 red clump stars were selected from the APOGEE-RC catalog based on spectroscopic data in order to explore the diversity of the extinction law. We find that the optical extinction curves exhibit appreciable diversity. The corresponding {R}V ranges from 1.7 to 3.8, while the mean {R}V value of 2.8 is consistent with the widely adopted average value of 3.1 for Galactic diffuse clouds. There is no apparent correlation between {R}V value and color excess E(B-V) in the range of interest, from 0.2 to 0.6 mag, or with specific visual extinction per kiloparsec, {A}V/d.

  9. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  10. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    NASA Astrophysics Data System (ADS)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  11. CCD Centroiding Experiment for Correcting a Distorted Image on the Focal Plane

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Kawano, Nobuyuki; Tazawa, Seiichi; Yamada, Yoshiyuki; Hanada, Hideo; Asari, Kazuyoshi; Tsuruta, Seiitsu

    2006-10-01

    JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) and ILOM (In situ Lunar Orientation Measurement) are space missions that are in progress at the National Astronomical Observatory of Japan. These two projects require a common astrometric technique to obtain precise positions of star images on solid-state detectors in order to accomplish their objectives. In the laboratory, we have carried out measurements of the centroid of artificial star images on a CCD array in order to investigate the precision of the positions of the stars, using an algorithm for estimating them from photon-weighted means of the stars. In the calibration of the position of a star image at the focal plane, we have also taken into account the lowest order distortion due to optical aberrations, which is proportional to the cube of the distance from the optical axis. Accordingly, we find that the precision of the measurement for the positions of the stars reaches below 1/100 pixel for one measurement.

  12. A Modified Kinematic Model of Neutral and Ionized Gas in Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Benjamin, Robert A.; Haffner, L. Matthew

    2018-01-01

    Gas near the center of the Milky Way is very complex across all phases (cold, warm, neutral, ionized, atomic, molecular, etc.) and shows strong observational evidence for warping, lopsided orientations and strongly non-circular kinematics. Historically, the kinematic complexities were modeled with many discrete features involved with expulsive phenomena near Galactic Center. However, much of the observed emission can be explained with a single unified and smooth density structure when geometrical and perspective effects are accounted for. Here we present a new model for a tilted, elliptical disk of gas within the inner 2 kpc of Galactic center based on the series of models following Burton & Liszt (1978 - 1992, Papers I- V). Machine learning techniques such as the Histogram of Oriented Gradients image correlation statistic are used to optimize the geometry and kinematics of neutral and ionized gas in 3D observational space (position,position, velocity). The model successfully predicts emission from neutral gas as seen by HI (Hi4Pi) and explains anomalous ionized gas features in H-Alpha emission (Wisconsin H-Alpha Mapper) and UV absorption lines (Hubble Space Telescope - Space Telescope Imaging Spectrograph). The modeled distribution of this tilted gas disk along with its kinematics of elliptical x1 orbits can reveal new insight about the Galactic Bar, star formation, and high-velocity gas near Galactic Center and its relation with the Fermi Bubble.

  13. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    NASA Astrophysics Data System (ADS)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  14. The JCMT Plane Survey: early results from the ℓ = 30° field

    NASA Astrophysics Data System (ADS)

    Moore, T. J. T.; Plume, R.; Thompson, M. A.; Parsons, H.; Urquhart, J. S.; Eden, D. J.; Dempsey, J. T.; Morgan, L. K.; Thomas, H. S.; Buckle, J.; Brunt, C. M.; Butner, H.; Carretero, D.; Chrysostomou, A.; deVilliers, H. M.; Fich, M.; Hoare, M. G.; Manser, G.; Mottram, J. C.; Natario, C.; Olguin, F.; Peretto, N.; Polychroni, D.; Redman, R. O.; Rigby, A. J.; Salji, C.; Summers, L. J.; Berry, D.; Currie, M. J.; Jenness, T.; Pestalozzi, M.; Traficante, A.; Bastien, P.; diFrancesco, J.; Davis, C. J.; Evans, A.; Friberg, P.; Fuller, G. A.; Gibb, A. G.; Gibson, S.; Hill, T.; Johnstone, D.; Joncas, G.; Longmore, S. N.; Lumsden, S. L.; Martin, P. G.; Nguyen Lu'o'ng, Q.; Pineda, J. E.; Purcell, C.; Richer, J. S.; Schieven, G. H.; Shipman, R.; Spaans, M.; Taylor, A. R.; Viti, S.; Weferling, B.; White, G. J.; Zhu, M.

    2015-11-01

    We present early results from the JCMT (James Clerk Maxwell Telescope) Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes ℓ = 7° and ℓ = 63° in the 850-μm continuum with SCUBA-2 (Submm Common-User Bolometer Array 2), as part of the JCMT Legacy Survey programme. Data from the ℓ = 30° survey region, which contains the massive-star-forming regions W43 and G29.96, are analysed after approximately 40 per cent of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy beam-1 after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy beam-1. An initial extraction of compact sources was performed using the FELLWALKER method, resulting in the detection of 1029 sources above a 5σ surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy beam-1 (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower APEX (Atacama Pathfinder Experiment) Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average.

  15. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system.

    PubMed

    Zhong, Hua; Redo-Sanchez, Albert; Zhang, X-C

    2006-10-02

    We present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration. The samples are identified by their absorption peaks extracted from the negative derivative of the reflection coefficient respect to the frequency (-dr/dv) of each pixel. Classification of the samples is achieved by using minimum distance classifier and neural network methods with a rate of accuracy above 80% and a false alarm rate below 8%. This result supports the future application of THz time-domain spectroscopy (TDS) in standoff distance sensing, imaging, and identification.

  16. An application of Galactic parallax: the distance to the tidal stream GD-1

    NASA Astrophysics Data System (ADS)

    Eyre, Andy

    2010-04-01

    We assess the practicality of computing the distance to stellar streams in our Galaxy, using the method of Galactic parallax suggested by Eyre & Binney. We find that the uncertainty in Galactic parallax is dependent upon the specific geometry of the problem in question. In the case of the tidal stream GD-1, the problem geometry indicates that available proper-motion data, with individual accuracy ~4masyr-1, should allow estimation of its distance with about 50 per cent uncertainty. Proper motions accurate to ~1masyr-1, which are expected from the forthcoming Pan-STARRS PS-1 survey, will allow estimation of its distance to about 10 per cent uncertainty. Proper motions from the future Large Synoptic Survey Telescope (LSST) and Gaia projects will be more accurate still, and will allow the parallax for a stream 30 kpc distant to be measured with ~14 per cent uncertainty. We demonstrate the feasibility of the method and show that our uncertainty estimates are accurate by computing Galactic parallax using simulated data for the GD-1 stream. We also apply the method to actual data for the GD-1 stream, published by Koposov, Rix & Hogg. With the exception of one datum, the distances estimated using Galactic parallax match photometric estimates with less than 1 kpc discrepancy. The scatter in the distances recovered using Galactic parallax is very low, suggesting that the proper-motion uncertainty reported by Koposov et al. is in fact overestimated. We conclude that the GD-1 stream is (8 +/- 1)kpc distant, on a retrograde orbit inclined 37° to the plane, and that the visible portion of the stream is likely to be near pericentre.

  17. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound.

    PubMed

    Ta, Casey N; Eghtedari, Mohammad; Mattrey, Robert F; Kono, Yuko; Kummel, Andrew C

    2014-11-01

    Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines

  18. Near-IR trigonometric parallaxes of nearby stars in the Galactic plane using the VVV survey

    NASA Astrophysics Data System (ADS)

    Beamín, J. C.; Mendez, R. A.; Smart, R. L.; Jara, R.; Kurtev, R.; Gromadzki, M.; Villanueva, V.; Minniti, D.; Smith, L. C.; Lucas, P. W.

    2018-01-01

    We used VVV multi-epoch KS band observations, over a ˜ 5 years baseline to obtain milli and sub-milli arcsec precision astrometry for a sample of 18 previously known high proper motion sources, including precise parallaxes for the first time. Five of these systems are most likely very low mass stars (VLMS) belonging to the galactic halo based on their tangential velocities. This proves the capability of the VVV project to measure high precision trigonometric parallaxes for VLMS up to distances of ˜ 400 pc reaching farther than most other ground based surveys or space missions for these types of stars.

  19. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  20. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    PubMed

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Transient Events in Archival Very Large Array Observations of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Chatterjee, Shami; Wharton, Robert; Cordes, James; Lazio, T. Joseph W.; Kaplan, David L.; Bower, Geoffrey C.; Croft, Steve

    2016-12-01

    The Galactic center has some of the highest stellar densities in the Galaxy and a range of interstellar scattering properties, which may aid in the detection of new radio-selected transient events. Here, we describe a search for radio transients in the Galactic center, using over 200 hr of archival data from the Very Large Array at 5 and 8.4 GHz. Every observation of Sgr A* from 1985 to 2005 has been searched using an automated processing and detection pipeline sensitive to transients with timescales between 30 s and 5 minutes with a typical detection threshold of ˜100 mJy. Eight possible candidates pass tests to filter false-positives from radio-frequency interference, calibration errors, and imaging artifacts. Two events are identified as promising candidates based on the smoothness of their light curves. Despite the high quality of their light curves, these detections remain suspect due to evidence of incomplete subtraction of the complex structure in the Galactic center, and apparent contingency of one detection on reduction routines. Events of this intensity (˜100 mJy) and duration (˜100 s) are not obviously associated with known astrophysical sources, and no counterparts are found in data at other wavelengths. We consider potential sources, including Galactic center pulsars, dwarf stars, sources like GCRT J1745-3009, and bursts from X-ray binaries. None can fully explain the observed transients, suggesting either a new astrophysical source or a subtle imaging artifact. More sensitive multiwavelength studies are necessary to characterize these events, which, if real, occur with a rate of {14}-12+32 {{hr}}-1 {\\deg }-2 in the Galactic center.

  2. Astronomers Go Behind The Milky Way To Solve X-Ray Mystery

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Through layers of gas and dust that stretch for more than 30,000 light years, astronomers using NASA's Chandra X-ray Observatory have taken a long, hard look at the plane of the Milky Way galaxy and found that its X-ray glow comes from hot and diffuse gas. The findings, published in the August 10 issue of Science, help to settle a long-standing mystery about the source of the X-ray emission from the galactic plane. Scientists have debated whether the Milky Way plane's X-ray emission was diffuse light or from individual stars. Armed with Chandra, an international team led Dr. Ken Ebisawa of NASA's Goddard Space Flight Center, Greenbelt, MD zoomed in on a tiny region of the galactic plane in the constellation Scutum. "The point sources we saw in the galactic plane were actually active galaxies with bright cores millions of light years behind our galaxy," said Ebisawa. "The number of these sources is consistent with the expected number of extragalactic sources in the background sky. We saw few additional point sources within our Galaxy." The observation marks the deepest X-ray look at the so-called "zone of avoidance" -- a region of space behind which no optical observation has ever been taken because thick dust and gas in the spiral arms of the Milky Way galaxy block out visible radiation. Infrared, radio, and X-rays, however, can penetrate this dust and gas. Detection of diffuse X rays emanating from the Galactic plane, what we call the "Milky Way" in visible light, indicates the presence of plasma gas with temperatures of tens of millions of degrees Celsius. Smoothed X-ray Image of the Galactic Plane Smoothed X-ray Image of the Galactic Plane Gas this hot would escape the gravitational confines of the Milky Way galaxy under normal circumstances. The fact that it still lingers within the Galactic plane is the next mystery to solve. One possibility, suggested by Ebisawa is that hot plasma may be confined to the Milky Way by magnetic fields. The Chandra observation

  3. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  4. Distribution of cosmic gamma rays in the galactic anticenter region as observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.; Ozel, M. E.; Tumer, T.; Bignami, G. F.; Ogelman, H.

    1975-01-01

    The high energy (above 35 MeV) gamma ray telescope flown on the second Small Astronomy Satellite has collected over one thousand gamma rays from the direction of the galactic anticenter. In addition to the diffuse galactic emission the distribution indicates a strong pulsed contribution from the Crab nebula with the same period and phase as the NP0532 pulsar. There also seems to be an excess in the direction of (gal. long. ? 195 deg; gal. lat ? +5 deg) where there is a region containing old supernova remnants. Search for gamma ray pulsations from other pulsars in the region do not show any statistically significant signal. The general intensity distribution of the gamma rays away from the plane appear to be similar to nonthermal radio emission brightness contours.

  5. Eleven fetal echocardiographic planes using 4-dimensional ultrasound with spatio-temporal image correlation (STIC): a logical approach to fetal heart volume analysis.

    PubMed

    Jantarasaengaram, Surasak; Vairojanavong, Kittipong

    2010-09-15

    Theoretically, a cross-sectional image of any cardiac planes can be obtained from a STIC fetal heart volume dataset. We described a method to display 11 fetal echocardiographic planes from STIC volumes. Fetal heart volume datasets were acquired by transverse acquisition from 200 normal fetuses at 15 to 40 weeks of gestation. Analysis of the volume datasets using the described technique to display 11 echocardiographic planes in the multiplanar display mode were performed offline. Volume datasets from 18 fetuses were excluded due to poor image resolution. The mean visualization rates for all echocardiographic planes at 15-17, 18-22, 23-27, 28-32 and 33-40 weeks of gestation fetuses were 85.6% (range 45.2-96.8%, N = 31), 92.9% (range 64.0-100%, N = 64), 93.4% (range 51.4-100%, N = 37), 88.7%(range 54.5-100%, N = 33) and 81.8% (range 23.5-100%, N = 17) respectively. Overall, the applied technique can favorably display the pertinent echocardiographic planes. Description of the presented method provides a logical approach to explore the fetal heart volumes.

  6. The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Valerius, K.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law RPWN(Ė) Ė-0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1-10 TeV Ė0.59±0.21. We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1-10 TeV/Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.

  7. OGLE-III Microlensing Events and the Structure of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg2 toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  8. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  9. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-07-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics, which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle discs, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disc is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disc. Thus, the MW thick disc may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  10. Resolving the structure of the Galactic foreground using Herschel measurements and the Kriging technique

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.

    2018-05-01

    Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.

  11. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  12. Impact of the number of image planes of real-time three-dimensional echocardiography on the accuracy of left atrial and ventricular volume measurements.

    PubMed

    Li, Fang; Wang, Qian; Yao, Gui Hua; Zhang, Peng Fei; Ge, Zhi Ming; Zhang, Mei; Zhang, Yun

    2008-01-01

    Real-time three-dimensional (3D) echocardiography (RT-3DE) has emerged as a new technique in measuring left atrial and ventricular volume. However, the impact of cutting planes of RT-3DE on the accuracy of volume measurement in patients with a normal or enlarged heart is still unknown. We enrolled 30 normal subjects (control group) and 30 patients with heart failure (patient group). RT-3DE was performed to measure maximal volume of the left atrium (LAVmax) and left ventricular end-diastole volume (LVEDV) with 2-, 4-, 8- and 16-cutting planes, compared with cardiac magnetic resonance imaging (CMRI). In both groups, LAVmax by RT-3DE using 2- and 4-cutting planes was significantly underestimated (mean difference: -10.4 +/- 16.6 mL, p = 0.001 and -8.8 +/- 14.2 mL, p = 0.002 in the control group and -13.4 +/- 19.6 mL, p = 0.001 and -11.2 +/- 17.5 mL, p = 0.001 in the patient group, respectively). These differences became nonsignificant when 8- and 16-cutting planes were adopted (mean difference: -2.1 +/- 7.6 mL and -1.9 +/- 7.4 mL in the control group and -2.7 +/- 8.4 mL and -2.2 +/- 8.3 mL in the patient group, respectively). The agreement for LVEDV was acceptable when 4- or more cutting planes were used in the control group and when 8- or 16-cutting planes were used in the patient group. The time expense for data analysis of LAVmax with 8-image planes was only 7 +/- 4 min in the control group and 6 +/- 5 min in the patient group, almost halving that of the 16-image planes. Similarly, 4- and 8-cutting planes were required for an accurate measurement of LVEDV in the control and patient groups, respectively. In conclusion, RT-3DE with 8-cutting planes is both accurate and timesaving for measurement of LAVmax and LVEDV in patients with normal or enlarged left atria and ventricles.

  13. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

    NASA Astrophysics Data System (ADS)

    Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li

    2016-09-01

    Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).

  14. Passage through the Ring Plane

    NASA Image and Video Library

    2004-06-03

    The path that lies ahead for the Cassini-Huygens mission is indicated in this image which illustrates where the spacecraft will be just 27 days from now, when it arrives at Saturn and crosses the ring plane 33 minutes before performing its critical orbital insertion maneuver. The X indicates the point where Cassini will pierce the ring plane on June 30, 2004, going from south to north of the ring plane, 33 minutes before the main engine fires to begin orbital insertion. The indicated point is between the narrow F-ring on the left and Saturn's tenuous G-ring which is too faint to be seen in this exposure. The image was taken on May 11, 2004 when the spacecraft was 26.3 million kilometers (16.3 million miles) from Saturn. Image scale is 158 kilometers (98 miles) per pixel. Moons visible in this image: Janus (181 kilometers or 113 miles across), one of the co-orbital moons; Pandora (84 kilometers or 52 miles across), one of the F ring shepherding moons; and Enceladus (499 kilometers or 310 miles across), a moon which may be heated from within and thus have a liquid sub-surface ocean. http://photojournal.jpl.nasa.gov/catalog/PIA06061

  15. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  16. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  17. On the stability of satellite planes - I. Effects of mass, velocity, halo shape and alignment

    NASA Astrophysics Data System (ADS)

    Fernando, Nuwanthika; Arias, Veronica; Guglielmo, Magda; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris

    2017-02-01

    The recently discovered vast thin plane of dwarf satellites orbiting the Andromeda Galaxy (M31) adds to the mystery of the small-scale distribution of the Local Group's galaxy population. Such well-defined planar structures are apparently rare occurrences in cold dark matter cosmological simulations, and we lack a coherent explanation of their formation and existence. In this paper, we explore the long-term survivability of thin planes of dwarfs in galactic haloes, focusing, in particular, on systems mimicking the observed Andromeda distribution. The key results show that, in general, planes of dwarf galaxies are fragile, sensitive to the shape of the dark matter halo and other perturbing effects. In fact, long-lived planes of satellites only exist in polar orbits in spherical dark matter haloes, presenting a challenge to the observed Andromeda plane that is significantly tilted with respect to the optical disc. Our conclusion is that, in the standard cosmological models, planes of satellites are generally short lived, and hence we must be located at a relatively special time in the evolution of the Andromeda Plane, lucky enough to see its coherent pattern.

  18. Sampling of the telescope image plane using single- and few-mode fibre arrays

    NASA Astrophysics Data System (ADS)

    Corbett, Jason C.

    2009-02-01

    The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes. This work is of direct relevance to the coupling of celestial light into photonic instrumentation and the removal of image scrambling and reduction of focal ratio degradation (FRD) using multi-mode fibre to single-mode fibre array converters.

  19. Resolving z ~2 galaxy using adaptive coadded source plane reconstruction

    NASA Astrophysics Data System (ADS)

    Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian

    2018-06-01

    Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.

  20. Erratum: The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Nelson, C. A.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Stubbs, C. W.; Sutherland, W.; Tomaney, A. B.; Vandehei, T.; Welch, D. L.

    2001-08-01

    In the paper ``The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis'' by C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennett, K. H. Cook, A. J. Drake, K. C. Freeman, M. Geha, K. Griest, M. J. Lehner, S. L. Marshall, D. Minniti, C. A. Nelson, B. A. Peterson, P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, A. B. Tomaney, T. Vandehei, and D. L. Welch (ApJ, 541, 734 [2000]) an incorrect version of Table 3 was published. A second copy of Table 2 was given as Table 3. The correct version of Table 3 is available in the preprint version of the paper (astro-ph/0002510) and is printed below. This correction does not affect any of the results in the paper.

  1. High-Resolution Millimeter-VLBI Imaging of the super-massive black hole candidate at the Galactic center - Sgr A*

    NASA Astrophysics Data System (ADS)

    Shen, Zqs

    Sagittarius A* (Sgr A*), the extremely compact radio source at the Galactic center (GC), is the best candidate for the single super-massive black hole (SMBH). The accurate measurements of its mass (as a gravitational source) and size (as a radiative source) are of great importance in testing its SMBH hypothesis. Great progress has been made on determining its central dark mass of 3.7 million solar masses. Here, we will present the highest resolution VLBI imaging observations of Sgr A* made at both 7.0 and 3.5 millimeters with the Very Long Baseline Array (VLBA) plus the Green Bank Telescope (GBT) and the VLBA, respectively. Both the imaging and the model-fitting with the closure amplitudes show a consistent East-West elongated elliptical Gaussian emission. The inferred possible intrinsic emitting region is less than 1 AU at the distance of 8 kpc to GC.

  2. Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.

    Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability

  3. The galactic reddening law - The evidence from uvby-beta photometry of B stars

    NASA Astrophysics Data System (ADS)

    Tobin, W.

    1985-01-01

    Values of interstellar reddening derived from uvby photometry of intermediate and high latitude B stars are used to test between the conflicting ideas of total galactic reddening expounded by Burstein and Heiles (1982) and de Vaucouleurs and Buta (1983). B stars are useful tracers of the galactic reddening because of their empirically and theoretically well-defined colours, and their large distances, but peculiar colours can result in an overestimate of the interstellar reddening, and Nicolet's (1982) B-star estimates of the polar reddening are too high because of this. Selection criteria are developed to exclude B stars with peculiar colours, and 72 selected B stars more than 250 pc from the galactic plane support the Burstein and Heiles zero-point of galactic reddening. The evidence of a few stars supports Burstein and Heiles' use of deep galaxy counts to provide a first-order correction for variations in the dust-to-gas ratio, but for corrections E (b - y) > 0.03 the accuracy may be less than their claimed 10%. However, the comparison of photometrically-derived values of interstellar reddening with values predicted by some model is inevitably partly subjective unless an extensive study is made of every individual star because otherwise any insufficiently red star can always plausibly be discounted as not outside all of the galactic dust, and any star that is too red can always plausibly be discounted as e.g. an undetected binary or emission-line star. The Burstein and Heiles maps are used to determine the intrinsic colours of some slightly-reddened B stars. B stars with projected rotational velocities of 250-300 km s-1 do not appear to be significantly redder than the Crawford (1978) standard relation.

  4. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  5. The Fossil Nuclear Outflow in the Central 30 pc of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Ho, Paul T. P.; Hwang, Chorng-Yuan; Shimajiri, Yoshito; Matsushita, Satoki; Koch, Patrick M.; Iono, Daisuke

    2016-11-01

    We report a new 1 pc (30″) resolution CS(J=2-1) line map of the central 30 pc of the Galactic center (GC), made with the Nobeyama 45 m telescope. We revisit our previous study of an extraplanar feature called the polar arc (PA), which is a molecular cloud located above SgrA*, with a velocity gradient perpendicular to the galactic plane. We find that the PA can be traced back to the galactic disk. This provides clues to the launching point of the PA, roughly 6 × 106 years ago. Implications of the dynamical timescale of the PA might be related to the Galactic center lobe at parsec scale. Our results suggest that, in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of molecular gas down to the central tenth of a parsec. In the follow-up work of our new CS(J=2-1) map, we also find that, near systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of ˜13 pc. The latitude-velocity diagrams show that the eastern edge of the HG-feature is associated with an expanding bubble B1, ˜7 pc away from SgrA*. The dynamical timescale of this bubble is ˜3 × 105 years. This bubble is interacting with the 50 km s-1 cloud. Part of the molecular gas from the 50 km s-1 cloud was swept away by the bubble to b=-0\\buildrel{\\circ}\\over{.} 2. The western edge of the HG-feature seems to be molecular gas entrained from the 20 km s-1 cloud toward the north of the galactic disk. Our results suggest a fossil explosion in the central 30 pc of the GC, a few 105 years ago.

  6. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  7. Large-scale building scenes reconstruction from close-range images based on line and plane feature

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Zhang, Jianqing

    2007-11-01

    Automatic generate 3D models of buildings and other man-made structures from images has become a topic of increasing importance, those models may be in applications such as virtual reality, entertainment industry and urban planning. In this paper we address the main problems and available solution for the generation of 3D models from terrestrial images. We first generate a coarse planar model of the principal scene planes and then reconstruct windows to refine the building models. There are several points of novelty: first we reconstruct the coarse wire frame model use the line segments matching with epipolar geometry constraint; Secondly, we detect the position of all windows in the image and reconstruct the windows by established corner points correspondences between images, then add the windows to the coarse model to refine the building models. The strategy is illustrated on image triple of college building.

  8. MIRIS observation of near-infrared diffuse Galactic light

    NASA Astrophysics Data System (ADS)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  9. Performance quantification of a millimeter-wavelength imaging system based on inexpensive glow-discharge-detector focal-plane array.

    PubMed

    Shilemay, Moshe; Rozban, Daniel; Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S; Yadid-Pecht, Orly; Abramovich, Amir

    2013-03-01

    Inexpensive millimeter-wavelength (MMW) optical digital imaging raises a challenge of evaluating the imaging performance and image quality because of the large electromagnetic wavelengths and pixel sensor sizes, which are 2 to 3 orders of magnitude larger than those of ordinary thermal or visual imaging systems, and also because of the noisiness of the inexpensive glow discharge detectors that compose the focal-plane array. This study quantifies the performances of this MMW imaging system. Its point-spread function and modulation transfer function were investigated. The experimental results and the analysis indicate that the image quality of this MMW imaging system is limited mostly by the noise, and the blur is dominated by the pixel sensor size. Therefore, the MMW image might be improved by oversampling, given that noise reduction is achieved. Demonstration of MMW image improvement through oversampling is presented.

  10. A galactic sunflower

    NASA Image and Video Library

    2015-09-07

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in a new image from the NASA/ESA Hubble Space Telescope, recall the pattern at the centre of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars, readily seen in this Hubble image.

  11. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  12. EGRET excess of diffuse galactic gamma rays as tracer of dark matter

    NASA Astrophysics Data System (ADS)

    de Boer, W.; Sander, C.; Zhukov, V.; Gladyshev, A. V.; Kazakov, D. I.

    2005-12-01

    The public data from the EGRET space telescope on diffuse Galactic gamma rays in the energy range from 0.1 to 10 GeV are reanalyzed with the purpose of searching for signals of Dark Matter annihilation (DMA). The analysis confirms the previously observed excess for energies above 1 GeV in comparison with the expectations from conventional Galactic models. In addition, the excess was found to show all the key features of a signal from Dark Matter Annihilation (DMA): a) the excess is observable in all sky directions and has the same shape everywhere, thus pointing to a common source; b) the shape corresponds to the expected spectrum of the annihilation of non-relativistic massive particles into - among others - neutral π0 mesons, which decay into photons. From the energy spectrum of the excess we deduce a WIMP mass between 50 and 100 GeV, while from the intensity of the excess in all sky directions the shape of the halo could be reconstructed. The DM halo is consistent with an almost spherical isothermal profile with substructure in the Galactic plane in the form of toroidal rings at 4 and 14 kpc from the center. These rings lead to a peculiar shape of the rotation curve, in agreement with the data, which proves that the EGRET excess traces the Dark Matter.

  13. Detection of the Velocity Shear Effect on the Spatial Distributions of the Galactic Satellites in Isolated Systems

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun; Choi, Yun-Young

    2015-02-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.

  14. False-color image of the near-infrared sky as seen by the DIRBE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    False-color image of the near-infrared sky as seen by the DIRBE. Data at 1.25, 2.2, and 3.5 Aum wavelengths are represented respectively as blue, green and red colors. The image is presented in Galactic coordinates, with the plane of the Milky Way Galaxy horizontal across the middle and the Galactic center at the center. The dominant sources of light at these wavelengths are stars within our Galaxy. The image shows both the thin disk and central bulge populations of stars in our spiral galaxy. Our Sun, much closer to us than any other star, lies in the disk (which is why the disk appears edge-on to us) at a distance of about 28,000 light years from the center. The image is redder in directions where there is more dust between the stars absorbing starlight from distant stars. This absorption is so strong at visible wavelengths that the central part of the Milky Way cannot be seen. DIRBE data will facilitate studies of the content, energetics and large scale structure of the Galaxy, as well as the nature and distribution of dust within the Solar System. The data also will be studied for evidence of a faint, uniform infrared background, the residual radiation from the first stars and galaxies formed following the Big Bang.

  15. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    NASA Astrophysics Data System (ADS)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  16. Fourier-space combination of Planck and Herschel images

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Stutz, A.; Henning, Th.; Keto, E.; Ballesteros-Paredes, J.; Robitaille, T.

    2017-08-01

    Context. Herschel has revolutionized our ability to measure column densities (NH) and temperatures (T) of molecular clouds thanks to its far infrared multiwavelength coverage. However, the lack of a well defined background intensity level in the Herschel data limits the accuracy of the NH and T maps. Aims: We aim to provide a method that corrects the missing Herschel background intensity levels using the Planck model for foreground Galactic thermal dust emission. For the Herschel/PACS data, both the constant-offset as well as the spatial dependence of the missing background must be addressed. For the Herschel/SPIRE data, the constant-offset correction has already been applied to the archival data so we are primarily concerned with the spatial dependence, which is most important at 250 μm. Methods: We present a Fourier method that combines the publicly available Planck model on large angular scales with the Herschel images on smaller angular scales. Results: We have applied our method to two regions spanning a range of Galactic environments: Perseus and the Galactic plane region around l = 11deg (HiGal-11). We post-processed the combined dust continuum emission images to generate column density and temperature maps. We compared these to previously adopted constant-offset corrections. We find significant differences (≳20%) over significant ( 15%) areas of the maps, at low column densities (NH ≲ 1022 cm-2) and relatively high temperatures (T ≳ 20 K). We have also applied our method to synthetic observations of a simulated molecular cloud to validate our method. Conclusions: Our method successfully corrects the Herschel images, including both the constant-offset intensity level and the scale-dependent background variations measured by Planck. Our method improves the previous constant-offset corrections, which did not account for variations in the background emission levels. The image FITS files used in this paper are only available at the CDS via anonymous ftp

  17. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.

    PubMed

    Hao, Zhenhua; Yue, Shihong; Sun, Benyuan; Wang, Huaxiang

    2017-12-01

    Electrical impedance tomography (EIT) is a visual imaging technique for obtaining the conductivity and permittivity distributions in the domain of interest. As an advanced technique, EIT has the potential to be a valuable tool for continuously bedside monitoring of pulmonary function. The EIT applications in any three-dimensional (3 D) field are very limited to the 3 D effects, i.e. the distribution of electric field spreads far beyond the electrode plane. The 3 D effects can result in measurement errors and image distortion. An important way to overcome the 3 D effect is to use the multiple groups of sensors. The aim of this paper is to find the best space resolution of EIT image over various electrode planes and select an optimal plane spacing in a 3 D EIT sensor, and provide guidance for 3 D EIT electrodes placement in monitoring lung function. In simulation and experiment, several typical conductivity distribution models, such as one rod (central, midway and edge), two rods and three rods, are set at different plane spacings between the two electrode planes. A Tikhonov regularization algorithm is utilized for reconstructing the images; the relative error and the correlation coefficient are utilized for evaluating the image quality. Based on numerical simulation and experimental results, the image performance at different spacing conditions is evaluated. The results demonstrate that there exists an optimal plane spacing between the two electrode planes for 3 D EIT sensor. And then the selection of the optimal plane spacing between the electrode planes is suggested for the electrodes placement of multi-plane EIT sensor.

  18. Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.

    2011-12-01

    We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.

  19. VizieR Online Data Catalog: Atlas of Galactic Neutral Hydrogen (Hartmann+, 1997)

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Burton, W. B.

    1999-04-01

    b=+90 reveals differences which are larger than expected. The origin of this discrepancy is currently unknown. There is also an instrumental effect which reveals itself as correlated noise, showing a pattern which alternates sign at adjacent channels when the very lowest levels of intensity are examined. This effect is due to an offset in the DAS autocorrelator used as the backend in the Leiden/Dwingeloo survey. The presence of this artifact becomes noticeable only after averaging 50 or more spectra. Although a Hanning convolution of the data would eliminate this effect, it would also degrade the velocity resolution; as the correlated noise is noticeable only at very low levels (about 15 mK), well below the mean rms sensitivity of the survey itself, the original spectra have not been Hanning smoothed. Excepted are those spectra which suffered from sinc interference. These spectra were Hanning smoothed to enable the elimination of the interference spike. Dr. Lloyd Higgs has compared the HI spectra made with the DRAO 26-m telescope in support of the Canadian Galactic Plane Survey with those of the Leiden Dwingeloo Survey, and has pointed out what are evidently calibration problems in a small number of isolated LDS spectra. Either Hartmann, Burton, or Higgs could provide additional information. The Leiden/Dwingeloo HI survey is intended primarily for studies of the interstellar gas associated with our own Galaxy. There are, however, a small number of spectra in which 'contaminating' signatures from known external galaxies are present. Detections of roughly 50 such external galaxies were made; refer to table 4 of the Atlas for a list. The HI spectra from the Leiden/Dwingeloo survey are archived as 721 files. Each file is in FITS image format, and maps the 21-cm brightness temperature at a fixed Galactic longitude for an evenly-spaced rectangular grid of (Galactic latitude, velocity) points. There is one FITS file for every 0.5 degree in Galactic longitude in the "fits

  20. Active point out-of-plane ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  1. Canting of the occlusal plane: Perceptions of dental professionals and laypersons

    PubMed Central

    Olivares, Amparo; Jacobo, Carmen; Molina, Sara M.; Rodríguez, Alicia; Bravo, Luis A.

    2013-01-01

    Objectives: To determine if canting of the occlusal plane influences esthetic evaluation of the smile among orthodontists, dentists and laypersons. Study Design: A frontal photo of a smile with 0º occlusal plane canting in relation to the bipupillary plane was modified using Adobe Photoshop C3 (Adobe Systems Inc, San José, California) to generate two images with occlusal plane inclinations of 2º and 4º. The three images were evaluated esthetically by orthodontists (n=40) general dentists (n=40) and laypersons (n=40). Each image was awarded a score as follows: 1=esthetically acceptable; 2=moderately acceptable; 3=esthetically unacceptable. Evaluators also placed the three images in order in preference. Data were analyzed using the Kruskal-Wallis (p<0.05) and the Mann-Whitney tests, applying the Bonferroni Correction (p<0.016). Results: No significant differences (p> 0.05) were found between the three groups for 0º and 2º cants (median for orthodontists=1; general dentists=1; laypersons=1). Orthodontists (median score=3) made evaluations of the image with 4º occlusal plane that were significantly different from general dentists (median=2) and laypersons (median=2). All three groups put the 0º image in first place in order of esthetic acceptability, the 2º image in second place and the 4º image in third place. Orthodontists placed the 0º image in first place with significantly greater frequency (p<0.016) than laypersons. Conclusions: Occlusal plane canting of 0º and 2º were evaluated as esthetically acceptable by the three groups. The 4º occlusal plane cant was evaluated more negatively by orthodontists than by general dentists and laypersons. All three groups placed the 0º image in first place of esthetic acceptability, 2º in second place and 4º in third. Orthodontists put the 0º image in first place with significantly greater frequency than laypersons. Key words:Canting, perception, smile, orthodontics, dental esthetics. PMID:23524412

  2. COMPACT GALACTIC PLANETARY NEBULAE: AN HST /WFC3 MORPHOLOGICAL CATALOG, AND A STUDY OF THEIR ROLE IN THE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanghellini, Letizia; Shaw, Richard A.; Villaver, Eva

    We present the images of a Hubble Space Telescope ( HST /WFC3) snapshot program of angularly compact Galactic planetary nebulae (PNe), acquired with the aim of studying their size, evolutionary status, and morphology. PNe that are smaller than ∼4″ are underrepresented in most morphological studies, and today they are less well studied than their immediate evolutionary predecessors, the pre-planetary nebulae. The images have been acquired in the light of [O iii] λ 5007, which is commonly used to classify the PN morphology, in the UV continuum with the aim of detecting the central star unambiguously, and in the I -bandmore » to detect a cool stellar companion, if present. The sample of 51 confirmed PNe exhibits nearly the full range of primary morphological classes, with the distribution more heavily weighted toward bipolar PNe, but with the total of aspherical PNe almost identical to that of the general Galactic sample. A large range of microstructures is evident in our sample as well, with many nebulae displaying attached shells, halos, ansae, and internal structure in the form of arcs, rings, and spirals. Various aspherical structures in a few PNe, including detached arcs, suggest an interaction with the ISM. We studied the observed sample of compact Galactic PNe in the context of the general Galactic PN population, and explore whether their physical size, spatial distribution, reddening, radial metallicity gradient, and possible progenitors are peculiar within the population of Galactic PNe. We found that these compact Galactic PNe, which have been selected based on apparent dimensions, constitute a diverse Galactic PN population that is relatively uniformly distributed across the Galactic disk, including the outskirts of our Galaxy. This unique sample will be used in the future to probe the old Galactic disk population.« less

  3. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L.; Kozorovitskiy, Yevgenia

    2018-05-01

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  4. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging.

    PubMed

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L; Kozorovitskiy, Yevgenia

    2018-05-14

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  5. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  6. Caught in the rhythm. I. How satellites settle into a plane around their central galaxy

    NASA Astrophysics Data System (ADS)

    Welker, C.; Dubois, Y.; Pichon, C.; Devriendt, J.; Chisari, N. E.

    2018-05-01

    Context. The anisotropic distribution of satellites around the central galaxy of their host halo is both well-documented in observations and predicted by the ΛCDM model. However its amplitude, direction and possible biases associated to the specific dynamics of such satellite galaxies are still highly debated. Aims: Using the cosmological hydrodynamics simulation Horizon-AGN, we aim to quantify the anisotropy of the spatial distribution of satellite galaxies relative to their central counterpart and explore its connexion to the local cosmic web, in the redshift range between 0.3 and 0.8. Methods: Haloes and galaxies were identified and their kinematics computed using their dark matter and stellar particles respectively. Sub-haloes were discarded and galaxies lying within 5 Rvir of a given halo are matched to it. The filamentary structure of the cosmic web was extracted from the density field - smoothed over a 3 h-1 Mpc typical scale - as a network of contiguous segments. We then investigated the distribution function of relevant angles, most importantly the angle α between the central-to-satellite separation vector and the group's nearest filament, aside with the angle between this same separation and the central minor axis. This allowed us to explore the correlations between filamentary infall, intra-cluster inspiralling and the resulting distribution of satellites around their central counterpart. Results: We find that, on average, satellites tend to be located on the galactic plane of the central object. This effect is detected for central galaxies with a stellar mass larger than 1010 M⊙ and found to be strongest for red passive galaxies, while blue galaxies exhibit a weaker trend. For galaxies with a minor axis parallel to the direction of the nearest filament, we find that the coplanarity is stronger in the vicinity of the central galaxy, and decreases when moving towards the outskirts of the host halo. By contrast, the spatial distribution of satellite

  7. Plane Transformations in a Complex Setting II: Isometries

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2007-01-01

    This paper is the second part of a study of plane transformations using a complex setting. The first part was devoted to homotheties and translations, now attention is turned towards plane isometries. The group theoretic properties of plane isometries are easy to derive and images of classical geometrical objects by these transformations are…

  8. Fourier plane modeling of the jet in the galaxy M81

    NASA Astrophysics Data System (ADS)

    Ramessur, Arvind; Bietenholz, Michael F.; Leeuw, Lerothodi L.; Bartel, Norbert

    2015-03-01

    The nearby spiral galaxy M81 has a low-luminosity Active Galactic Nucleus in its center with a core and a one-sided curved jet, dubbed M81*, that is barely resolved with VLBI. To derive basic parameters such as the length of the jet, its orientation and curvature, the usual method of model-fitting with point sources and elliptical Gaussians may not always be the most appropriate one. We are developing Fourier-plane models for such sources, in particular an asymmetric triangle model to fit the extensive set of VLBI data of M81* in the u-v plane. This method may have an advantage over conventional ones in extracting information close to the resolution limit to provide us with a more comprehensive picture of the structure and evolution of the jet. We report on preliminary results.

  9. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.

    PubMed

    Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond

    2016-01-01

    The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

  10. Nearby Quasars Result From Galactic Encounters, VLA Studies Indicate

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found previously unseen evidence that galaxy collisions trigger energetic quasar activity in relatively nearby galaxies. New radio images of galaxies with bright quasar cores show that, though the galaxies appear normal in visible-light images, their gas has been disrupted by encounters with other galaxies. "This is what theorists have believed for years, but even the best images from optical telescopes, including the Hubble Space Telescope, failed to show any direct evidence of interactions with other galaxies in many cases," said Jeremy Lim, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan. Lim, along with Paul Ho of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, reported their findings in the January 1 issue of Astrophysical Journal Letters. Quasars are among the most luminous objects in the universe, and generally are believed to be powered by material being drawn into a supermassive black hole at the center of a galaxy, releasing large amounts of energy. Many quasars are found at extremely great distances from Earth, billions of light-years away. Because the light from these quasars took billions of years to reach our telescopes, we see them as they were when they were much younger objects. These distant quasars are thought to "turn on" when the host galaxy's central black hole is "fueled" by material drawn in during an early stage of the galaxy's development, before the galaxy "settles down" to a more sedate life. However, other galaxies with quasar cores are much closer, and thus are older, more mature galaxies. Their quasar activity has been attributed to encounters with nearby galaxies -- encounters that disrupt material and provide new "fuel" to the black hole. The problem for this scenario was the lack of evidence for such galactic encounters in optical images of many nearby quasars. "Our VLA studies are the

  11. Plane Jane(s).

    ERIC Educational Resources Information Center

    Greenman, Geri

    2001-01-01

    Describes an assignment that was used in an advanced drawing class in which the students created self-portraits, breaking up their images using planes and angles to suggest their bone structure. Explains that the students also had to include three realistic portions in their drawings. (CMK)

  12. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  13. Galactic foreground science: Faraday Tomography at low frequencies

    NASA Astrophysics Data System (ADS)

    Haverkorn, Marijke

    2018-05-01

    This contribution describes how low-frequency radio-spectropolarimetric imaging as done for Epoch of Reionization detection is used to investigate the nearby Galactic interstellar medium. The method of Faraday Tomography allows disentangling of every line of sight into various components in Faraday depth, which is a proxy for density-weighted magnetic field. I discuss instrumental biases and side effects of this method, and early results it has yielded.

  14. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  15. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  16. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  17. The Propagation of Cosmic Rays from the Galactic Wind Termination Shock: Back to the Galaxy?

    NASA Astrophysics Data System (ADS)

    Merten, Lukas; Bustard, Chad; Zweibel, Ellen G.; Becker Tjus, Julia

    2018-05-01

    Although several theories exist for the origin of cosmic rays (CRs) in the region between the spectral “knee” and “ankle,” this problem is still unsolved. A variety of observations suggest that the transition from Galactic to extragalactic sources occurs in this energy range. In this work, we examine whether a Galactic wind that eventually forms a termination shock far outside the Galactic plane can contribute as a possible source to the observed flux in the region of interest. Previous work by Bustard et al. estimated that particles can be accelerated to energies above the “knee” up to R max = 1016 eV for parameters drawn from a model of a Milky Way wind. A remaining question is whether the accelerated CRs can propagate back into the Galaxy. To answer this crucial question, we simulate the propagation of the CRs using the low-energy extension of the CRPropa framework, based on the solution of the transport equation via stochastic differential equations. The setup includes all relevant processes, including three-dimensional anisotropic spatial diffusion, advection, and corresponding adiabatic cooling. We find that, assuming realistic parameters for the shock evolution, a possible Galactic termination shock can contribute significantly to the energy budget in the “knee” region and above. We estimate the resulting produced neutrino fluxes and find them to be below measurements from IceCube and limits by KM3NeT.

  18. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  19. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  20. Intermittent behavior of galactic dynamo activities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Parker, E. N.

    1989-01-01

    Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.

  1. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  2. The Optical Gravitational Lensing Experiment Catalog of stellar proper motions in the OGLE-II Galactic bulge fields

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Wu, X.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Woźniak, P.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-12-01

    We present proper motion (μ ) catalogue of 5,078,188 stars in 49 Optical Gravitational Lensing Experiment II (OGLE-II) Galactic bulge fields, with the total area close to 11 square degrees. The proper motion measurements are based on 138 - 555 I-band images taken during four observing seasons: 1997-2000. The catalogue stars are in the magnitude range 11 < I < 18 mag. In particular, the catalogue includes Red Clump Giants (RCGs) and Red Giants in the Galactic Bulge, and main sequence stars in the Galactic disc. The proper motions up to μ = 500 mas yr -1 were measured with the mean accuracy of 0.8 ˜ 3.5 mas yr-1, depending on the brightness of a star. This catalogue may be useful for studying the kinematic of stars in the Galactic Bulge and the Galactic disk with Extinction maps in these fields which are construncted by using two-band photometry of RCGs.

  3. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. 3; Measurement for URSA Minor

    NASA Technical Reports Server (NTRS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-01-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the "reference point". Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124 degrees (94 deg, 36 deg ) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present.

  4. Galactic Distribution of Planets From High-Magnification Microlensing Events

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean

    2015-10-01

    We will use Spitzer to measure microlens parallaxes for ~14 microlensing events that are high-magnification (as seen from Earth), in order to determine the Galactic distribution of planets. Simultaneous observations from Spitzer and Earth yield parallaxes because they are separated by ~1 AU, which is of order the size of the Einstein radius projected on the observer plane. Hence, Earth and Spitzer see substantially different lightcurves for the same event. These Spitzer parallaxes enable measurements of the distances to the lenses (and their masses), which is a crucial element for measuring the Galactic distribution of planets. High-mag events are exceptionally sensitive to planets: Gould+ (2010) detected 6 planets from 13 high-mag events. However, previously it was believed impossible to measure their parallaxes using Spitzer: scheduling constraints imply a 3-10 day delay from event recognition to first observation, while high-mag events are typically recognized only 1-2 days before peak. By combining aggressive observing protocols, a completely new photometry pipeline, and new mathematical techniques, we successfully measured parallaxes for 7 events with peak magnification A>100 and another ~7 with 50Galactic distribution. All lightcurves will be reduced using our customized software and then made public (unrestricted use), within 2 months of the completion of observations (as we did for our 2015 observations).

  5. Galactic Sources Detected in the NuSTAR Serendipitous Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsick, John A.; Clavel, Maïca; Chiu, Jeng-Lun

    The Nuclear Spectroscopic Telescope Array (NuSTAR) provides an improvement in sensitivity at energies above 10 keV by two orders of magnitude over non-focusing satellites, making it possible to probe deeper into the Galaxy and universe. Lansbury and collaborators recently completed a catalog of 497 sources serendipitously detected in the 3–24 keV band using 13 deg{sup 2} of NuSTAR coverage. Here, we report on an optical and X-ray study of 16 Galactic sources in the catalog. We identify 8 of them as stars (but some or all could have binary companions), and use information from Gaia to report distances and X-ray luminositiesmore » for 3 of them. There are 4 CVs or CV candidates, and we argue that NuSTAR J233426–2343.9 is a relatively strong CV candidate based partly on an X-ray spectrum from XMM-Newton . NuSTAR J092418–3142.2, which is the brightest serendipitous source in the Lansbury catalog, and NuSTAR J073959–3147.8 are low-mass X-ray binary candidates, but it is also possible that these 2 sources are CVs. One of the sources is a known high-mass X-ray binary (HMXB), and NuSTAR J105008–5958.8 is a new HMXB candidate that has strong Balmer emission lines in its optical spectrum and a hard X-ray spectrum. We discuss the implications of finding these HMXBs for the surface density (log N –log S ) and luminosity function of Galactic HMXBs. We conclude that with the large fraction of unclassified sources in the Galactic plane detected by NuSTAR in the 8–24 keV band, there could be a significant population of low-luminosity HMXBs.« less

  6. Use of One Time Pad Algorithm for Bit Plane Security Improvement

    NASA Astrophysics Data System (ADS)

    Suhardi; Suwilo, Saib; Budhiarti Nababan, Erna

    2017-12-01

    BPCS (Bit-Plane Complexity Segmentation) which is one of the steganography techniques that utilizes the human vision characteristics that cannot see the change in binary patterns that occur in the image. This technique performs message insertion by making a switch to a high-complexity bit-plane or noise-like regions with bits of secret messages. Bit messages that were previously stored precisely result the message extraction process to be done easily by rearranging a set of previously stored characters in noise-like region in the image. Therefore the secret message becomes easily known by others. In this research, the process of replacing bit plane with message bits is modified by utilizing One Time Pad cryptography technique which aims to increase security in bit plane. In the tests performed, the combination of One Time Pad cryptographic algorithm to the steganography technique of BPCS works well in the insertion of messages into the vessel image, although in insertion into low-dimensional images is poor. The comparison of the original image with the stegoimage looks identical and produces a good quality image with a mean value of PSNR above 30db when using a largedimensional image as the cover messages.

  7. A New Population of Galactic Bulge Planetary Nebulas

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    A new population of Galactic bulge planetary nebulas is presented. Nebula candidates were discovered by systematically reviewing archival [OIII] on/off band survey imaging of the central -5° ≤ l ≤ 5°, -5° ≤ b ≤ 5° region around the Galactic centre. An image segmentation and interleaving scheme was developed to facilitate this review. The resultant candidates (> 200) were then double checked against complementary archival Hα sky survey data to screen for obvious planetary nebula (PN) mimics or spurious image artefacts. Confirmatory spectroscopy of the PN candidates was pursued with thin slit, fibre multiobject and wide field spectrographs. Custom software was built to streamline interfacing with third-party spectroscopic management tools and a parallel greedy set cover algorithm implemented for efficient field selection in constrained multi-object observations. The combined imaging and spectroscopic evidence yielded true (4), probable (31) and possible (83) PNs toward the bulge. Secondary discoveries such as new PN mimics and late type stars were by-products of the confirmatory spectroscopy. Instances of literature PN duplication encountered during the investigation were noticed and documented. Spectral analysis of new PNs, including those obtained with a new optimised sky subtraction technique devised and demonstrated here, provided diagnostic data allowing radial velocity and Balmer decrement determination. Using a combined diameter and radial velocity criterion, bona fide bulge PNs were distinguished from new foreground PNs. Where Balmer decrements were available for new bulge PNs, differential aperture photometry was used to provide a modest data increment to Galactic bulge planetary nebula luminosity function (PNLF). The PNLF was revised with data from some new bulge PNs, but more significantly, by a series of corrections to the data derived from previously known bulge PNs (~225), such as improved filter transmission effects, statistically

  8. PSR J1740+1000: A Young Pulsar Well Out of the Galactic Plane

    NASA Technical Reports Server (NTRS)

    McLaughlin, M. A.; Arzoumanian, Z.; Cordes, J. M.; Backer, D. C.; Lommen, A. N.; Lorimer, D. R.; Zepka, A. F.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We discuss PSR J1740 + 1000, one of five pulsars recently discovered in a search of 470 deg at 430 MHz during the upgrade of the 305 m Arecibo Telescope. The period P = 154 ms and period derivative P = 2.1 x 10(exp -14) s s(exp -1) imply a spin-down age tau(sub s) = P/2P = 114 kyr that is smaller than 95% of all known pulsars. The youth and proximity of this pulsar make it a good candidate for detection at X-ray and gamma-ray energies. Its high Galactic latitude (b = 20.4 deg) suggests a very high velocity if the pulsar was born in the midplane of the Galaxy and if its kinematic age equals its spin-down age. Interstellar scintillations, however, suggest a much lower velocity. We discuss possible explanations for this discrepancy, taking into account (1) possible birth sites away from the midplane; (2) contributions from the unmeasured radial velocity; (3) a kinematic age different from the spin-down age; and (4) biasing of the scintillation velocity by enhanced scattering from the North Polar Spur.

  9. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  10. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Sivaramakrishnan, Anand

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includesmore » different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.« less

  11. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  12. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals

  13. Results from the MACHO Galactic Pixel Lensing Search

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Minniti, Dante; Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    The MACHO, EROS, OGLE and AGAPE collaborations have been studying nature of the galactic halo for a number of years using microlensing events. The MACHO group undertakes observations of the LMC, SMC and Galactic Bulge monitoring the light curves of millions of stars to detect microlensing. Most of these fields are crowded to the extent that all the monitored stars are blended. Such crowding makes the performance of accurate photometry difficult. We apply the new technique of Difference Image Analysis (DIA) on archival data to improve the photometry and increase both the detection sensitivity and effective search area. The application of this technique also allows us to detect so called `pixel lensing' events. These are microlensing events where the source star is only detectable during lensing. The detection of these events will allow us to make a large increase in the number of detected microlensing events. We present a light curve demonstrating the detection of a pixel lensing event with this technique.

  14. First Extended Catalogue of Galactic bubble infrared fluxes from WISE and Herschel surveys

    NASA Astrophysics Data System (ADS)

    Bufano, F.; Leto, P.; Carey, D.; Umana, G.; Buemi, C.; Ingallinera, A.; Bulpitt, A.; Cavallaro, F.; Riggi, S.; Trigilio, C.; Molinari, S.

    2018-01-01

    In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the 'golden sample', and were selected from the Milky Way Project First Data Release (Simpson et al.) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-μm images) and Herschel data (using 70-, 160-, 250-, 350- and 500-μm wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 H II regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets.

  15. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    NASA Technical Reports Server (NTRS)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  16. Surface anatomy and anatomical planes in the adult turkish population.

    PubMed

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  17. Exploring the Dust Content of Galactic Winds with MIPS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal; Engelbracht, Charles; Gordon, Karl

    2005-06-01

    This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.

  18. Imaging the Heart of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the

  19. Modulate chopper technique used in pyroelectric uncooled focal plane array thermal imager

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Jin, Weiqi; Liu, Guangrong; Gao, Zhiyun; Wang, Xia; Wang, Lingxue

    2002-09-01

    Pyroelectric uncooled focal plane array (FPA) thermal imager has the advantages of low cost, small size, high responsibility and can work under room temperature, so it has great progress in recent years. As a matched technique, the modulate chopper has become one of the key techniques in uncooled FPA thermal imaging system. Now the Archimedes spiral cord chopper technique is mostly used. When it works, the chopper pushing scans the detector's pixel array, thus makes the pixels being exposed continuously. This paper simulates the shape of this kind of chopper, analyses the exposure time of the detector's every pixel, and also analyses the whole detector pixels' exposure sequence. From the analysis we can get the results: the parameter of Archimedes spiral cord, the detector's thermal time constant, the detector's geometrical dimension, the relative position of the detector to the chopper's spiral cord are the system's important parameters, they will affect the chopper's exposure efficiency and uniformity. We should design the chopper's relevant parameter according to the practical request to achieve the chopper's appropriate structure.

  20. Anatomical planes: are we teaching accurate surface anatomy?

    PubMed

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  1. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  2. Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1990-01-01

    Three gravitational potentials differing in the content of dark matter in the Galactic plane are used to study the structure of the z-distribution of mass and pressure in the solar neighborhood. A P(0) of roughly (3.9 + or - 0.6) x 10 to the -12th dyn/sq cm is obtained, with roughly equal contributions from magnetic field, cosmic ray, and kinetic terms. This boundary condition restricts both the magnitude of gravity and the high z-pressure. It favors lower gravity and higher values for the cosmic ray, magnetic field, and probably the kinetic pressures than have been popular in the past. Inclusion of the warm H(+) distribution carries a significant mass component into the z about 1 kpc regime.

  3. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  4. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a

  5. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  6. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  7. Automated abdominal plane and circumference estimation in 3D US for fetal screening

    NASA Astrophysics Data System (ADS)

    Lorenz, C.; Brosch, T.; Ciofolo-Veit, C.; Klinder, T.; Lefevre, T.; Cavallaro, A.; Salim, I.; Papageorghiou, A. T.; Raynaud, C.; Roundhill, D.; Rouet, L.; Schadewaldt, N.; Schmidt-Richberg, A.

    2018-03-01

    Ultrasound is increasingly becoming a 3D modality. Mechanical and matrix array transducers are able to deliver 3D images with good spatial and temporal resolution. The 3D imaging facilitates the application of automated image analysis to enhance workflows, which has the potential to make ultrasound a less operator dependent modality. However, the analysis of the more complex 3D images and definition of all examination standards on 2D images pose barriers to the use of 3D in daily clinical practice. In this paper, we address a part of the canonical fetal screening program, namely the localization of the abdominal cross-sectional plane with the corresponding measurement of the abdominal circumference in this plane. For this purpose, a fully automated pipeline has been designed starting with a random forest based anatomical landmark detection. A feature trained shape model of the fetal torso including inner organs with the abdominal cross-sectional plane encoded into the model is then transformed into the patient space using the landmark localizations. In a free-form deformation step, the model is individualized to the image, using a torso probability map generated by a convolutional neural network as an additional feature image. After adaptation, the abdominal plane and the abdominal torso contour in that plane are directly obtained. This allows the measurement of the abdominal circumference as well as the rendering of the plane for visual assessment. The method has been trained on 126 and evaluated on 42 abdominal 3D US datasets. An average plane offset error of 5.8 mm and an average relative circumference error of 4.9 % in the evaluation set could be achieved.

  8. Open star clusters and Galactic structure

    NASA Astrophysics Data System (ADS)

    Joshi, Yogesh C.

    2018-04-01

    In order to understand the Galactic structure, we perform a statistical analysis of the distribution of various cluster parameters based on an almost complete sample of Galactic open clusters yet available. The geometrical and physical characteristics of a large number of open clusters given in the MWSC catalogue are used to study the spatial distribution of clusters in the Galaxy and determine the scale height, solar offset, local mass density and distribution of reddening material in the solar neighbourhood. We also explored the mass-radius and mass-age relations in the Galactic open star clusters. We find that the estimated parameters of the Galactic disk are largely influenced by the choice of cluster sample.

  9. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  10. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  11. IMAGING AN 80 au RADIUS DUST RING AROUND THE F5V STAR HD 157587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik; Wang, Jason J.

    2016-11-01

    We present H -band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ∼80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrainmore » the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ∼70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system’s proximity to the galactic plane and the point sources’ positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk’s offset from the star.« less

  12. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE PAGES

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul; ...

    2016-10-21

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  13. Integrated spectral study of small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o < l < 345o) near the Galactic plane (∣b∣ ≤ 9o). We performed simultaneous estimates of foreground interstellar reddening and age by comparing the continuum distribution and line strenghts of the cluster spectra with those of template cluster spectra with known parameters. We thus provide spectroscopic information independent from that derived through color-magnitude diagram studies. We found three clusters (Collinder 249, NGC 4463 and Ruprecht 122) younger than ˜40 Myr, four moderately young ones (BH 92, Harvard 5, Hogg 14 and Pismis 23) with ages within 200-400 Myr, and two intermediate-age ones (Ruprecht 158 and ESO 065-SC07) with ages within 1.0-2.2 Gyr. The derived foreground E(B - V) color excesses vary from around 0.0 in Ruprecht 158 to ˜1.1 in Pismis 23. In general terms, the results obtained show good agreement with previous photometric results. In Ruprecht 158 and BH 92, however, some differences are found between the parameters here obtained and previous values in the literature. Individual spectra of some comparatively bright stars located in the fields of 5 out of the 9 clusters here studied, allowed us to evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  14. The Galactic O-Star Spectroscopic Survey (GOSSS): new results from the southern stars

    NASA Astrophysics Data System (ADS)

    Sota, A.; Maíz Apellániz, J.; Barbá, R. H.; Walborn, N. R.; Alfaro, E. J.; Gamen, R. C.; Morrell, N. I.; Arias, J. I.; Penadés Ordaz, M.

    2013-05-01

    The Galactic O-Star Spectroscopic Survey (GOSSS) is a project that will observe all known Galactic O stars with B < 14 in the blue-violet part of the spectrum with R ˜ 3000. It is based on v2.0 of the the most complete Galactic O star catalog with accurate spectral types (Maíz Apellániz et al. 2004, ApJS, 151, 103; Sota et al. 2008, RevMexAA Conf. Series, 33, 55) that we have recently compiled. We have completed the first part of the main project and recently published the first articles (Walborn et al. 2010, ApJ, 711, 143; Walborn et al. 2011, AJ, 142, 150; Sota et al. 2011, ApJS, 193, 24). GOSSS is part of a bigger project with the next companion surveys: High resolution spectroscopic surveys: OWN, IACOB, IACOB-sweG, NoMaDS, CAFÉ-BEANS High resolution imaging surveys: Astralux, Astralux Sur.

  15. Comparison of ultrasound imaging in transverse median and parasagittal oblique planes for thoracic epidurals: A pilot study.

    PubMed

    Khemka, Rakhi; Rastogi, Sonal; Desai, Neha; Chakraborty, Arunangshu; Sinha, Subir

    2016-06-01

    The use of ultrasound (US) scanning to assess the depth of epidural space to prevent neurological complications is established in current practice. In this study, we hypothesised that pre-puncture US scanning for estimating the depth of epidural space for thoracic epidurals is comparable between transverse median (TM) and paramedian sagittal oblique (PSO) planes. We performed pre-puncture US scanning in 32 patients, posted for open abdominal surgeries. The imaging was done to detect the depth of epidural space from skin (ultrasound depth [UD]) and needle insertion point, in parasagittal oblique plane in PSO group and transverse median plane in TM group. Subsequently, epidural space was localised through the predetermined insertion point by 'loss of resistance' technique and needle depth (ND) to the epidural space was marked. Correlation between the UD and actual ND was calculated and concordance correlation coefficient (CCC) was used to determine the degree of agreement between UD and ND in both the planes. The primary outcome, i.e., the comparison between UD and ND, done using Pearson correlation coefficient, was 0.99 in both PSO and TM groups, and the CCC was 0.93 (95% confidence interval [95% CI]: 0.81-0.97) and 0.90 (95% CI: 0.74-0.96) in PSO and TM groups respectively, which shows a strong positive association between UD and ND in both groups. The use of pre-puncture US scanning in both PSO and TM planes for estimating the depth of epidural space at the level of mid- and lower-thoracic spine is comparable.

  16. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  17. Variable stars in the Galactic center, as revealed by the VVV Survey

    NASA Astrophysics Data System (ADS)

    Molina, Claudio Navarro; Borissova, Jura; Catelan, Márcio; Kurtev, Radostin; Medina, Nicolás

    2017-09-01

    A variability search has been performed in the Galactic center, using the nearinfrared images from the Vista Variables in the Vía Láctea (VVV) Survey. Light curves contain 89 epochs in the KS band. A total of 353 variable stars were found, of which only 47 are already present in the literature.

  18. GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.

    2017-01-01

    This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into

  19. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  20. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  1. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P.

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below themore » Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.« less

  2. Uncorrelated Far Active Galactic Nuclei Flaring with Their Delayed Ultra High Energy Cosmic Rays Events

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Oliva, Pietro; De Sanctis Lucentini, Pier Giorgio

    The most distant Active Galactic Nuclei (AGN), within the allowed Greisen-Zatsepin-Kuzmin (GZK) cut-off radius ( ≲ 100 Mpc), have been recently candidate by many authors as the best location for the observed Ultra High Energy Cosmic Rays (UHECR) origination. Indeed, the apparent homogeneity and isotropy of recent UHECR signals seems to require a far cosmic isotropic and homogeneous scenario, involving a proton UHECR courier: our galaxy or nearest local group or super galactic plane (ruled by the Virgo cluster) are too near and apparently too anisotropic to be in agreement with the (Pierre Auger Observatory (PAO) and Telescope Array (TA) almost-homogeneous data sample. However, the few and mild UHECR observed clustering, the so called North and South Hot Spots, are smeared in wide (±18°) solid angles. Their consequent random walk flight from most far GZK UHECR sources, nearly at 100 Mpc, must be delayed — withrespect to a straight AGN photon gamma flaring arrival trajectory — at least by a million years. During this time, the AGN jet blazing signal, its probable axis deflection (such as the helical jet in Mrk 501), its miss alignment or even its almost certain exhaust activity, may lead to a complete misleading correlation between present UHECR events and a much earlier active AGN ejection. UHECR maps may be anyway related to galactic or nearest (Cen A, M82) AGN extragalactic UHECR sources shining in twin Hot Spot. Therefore we defend our (quite different) scenario where UHECR are mostly made by lightest UHECR nuclei originated by nearby AGN sources, or few galactic sources, whose delayed signals are reaching us within few thousand years in the observed smeared sky areas.

  3. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  4. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  5. The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.

  6. OBSERVATION OF TeV GAMMA RAYS FROM THE FERMI BRIGHT GALACTIC SOURCES WITH THE TIBET AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-01-20

    Using the Tibet-III air shower array, we search for TeV {gamma}-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe seven sources instead of the expected 0.61 sources at a significance of 2{sigma} or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10{sup -6}. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, themore » chance probability rises slightly, to 1.2 x 10{sup -5}, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV {gamma}-ray excesses. We also find that all seven sources are associated with pulsars, and six of them are coincident with sources detected by the Milagro experiment at a significance of 3{sigma} or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro {>=}3{sigma} sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.« less

  7. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    PubMed

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  9. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  10. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  11. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    Context. The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims: We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Methods: The SEDIGISM survey covers 78 deg2 of the inner Galaxy (-60°≤ℓ≤ 18°, |b|≤ 0.5°) in the J = 2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. Results: The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. To illustrate the scientific potential of this survey, preliminary results based on a science demonstration field covering -20°≤ℓ ≤ -18.5° are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with

  12. Deep Emission-Line Imaging of Local Galactic Winds with NEWFIRM: Part II.

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Trippe, Margaret; Swaters, Rob; Rupke, David; McCormick, Alex

    2010-08-01

    Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and deposited into the IGM. New observations are revealing the ubiquity of this process, particularly at high redshift. Measurements have shown that winds contain cool (molecular/neutral), warm (partly ionized), and hot (fully ionized) gases. Though most of the wind mass is likely contained in the dusty molecular gas, very little is known about this component. However, our recent observations of M 82 with NEWFIRM on the Mayall 4-m show that H_2 emission can be used as a sensitive tracer of the cool molecular wind component. We propose to use NEWFIRM to study the NIR emission- line properties of a small but representative set of local wind galaxies. Deep images of these objects will be obtained at H_2 2.122 (micron) and [Fe II] 1.644 (micron) and combined with existing optical emission-line maps to (1) constrain the importance of molecular gas in the energetics of these winds and (2) determine the nature of the interaction between the central energy injection zone and the wind material. 5 nights were allocated for this program in 10B; we now request to observe the rest of the sample. These data will complement an approved Spitzer program to constrain the hot dust content of these winds, and likely become part of A. McCormick's PhD thesis.

  13. RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, Mark; Krawczyk, Coleman; Duval, Julia

    The properties of Galactic molecular clouds tabulated by Solomon et al. (SRBY) are re-examined using the Boston University-FCRAO Galactic Ring Survey of {sup 13}CO J = 1-0 emission. These new data provide a lower opacity tracer of molecular clouds and improved angular and spectral resolution compared with previous surveys of molecular line emission along the Galactic Plane. We calculate giant molecular cloud (GMC) masses within the SRBY cloud boundaries assuming local thermodynamic equilibrium (LTE) conditions throughout the cloud and a constant H{sub 2} to {sup 13}CO abundance, while accounting for the variation of the {sup 12}C/{sup 13}C with galactocentric radius.more » The LTE-derived masses are typically five times smaller than the SRBY virial masses. The corresponding median mass surface density of molecular hydrogen for this sample is 42 M{sub sun} pc{sup -2}, which is significantly lower than the value derived by SRBY (median 206 M{sub sun} pc{sup -2}) that has been widely adopted by most models of cloud evolution and star formation. This discrepancy arises from both the extrapolation by SRBY of velocity dispersion, size, and CO luminosity to the 1 K antenna temperature isophote that likely overestimates the GMC masses and our assumption of constant {sup 13}CO abundance over the projected area of each cloud. Owing to the uncertainty of molecular abundances in the envelopes of clouds, the mass surface density of GMCs could be larger than the values derived from our {sup 13}CO measurements. From velocity dispersions derived from the {sup 13}CO data, we find that the coefficient of the cloud structure functions, v{sup 0} = {sigma}{sub v}/R {sup 1/2}, is not constant, as required to satisfy Larson's scaling relationships, but rather systematically varies with the surface density of the cloud as {approx}{sigma}{sup 0.5} as expected for clouds in self-gravitational equilibrium.« less

  14. Wafer plane inspection for advanced reticle defects

    NASA Astrophysics Data System (ADS)

    Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song

    2008-05-01

    Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.

  15. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  16. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  17. Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Khare, Kedar

    2018-05-01

    We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.

  18. Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy.

    PubMed

    Mu, Tingkui; Pacheco, Shaun; Chen, Zeyu; Zhang, Chunmin; Liang, Rongguang

    2017-02-13

    In this paper, the design and experimental demonstration of a snapshot linear-Stokes imaging spectropolarimeter (SLSIS) is presented. The SLSIS, which is based on division-of-focal-plane polarimetry with four parallel linear polarization channels and integral field spectroscopy with numerous slit dispersive paths, has no moving parts and provides video-rate Stokes-vector hyperspectral datacubes. It does not need any scanning in the spectral, spatial or polarization dimension and offers significant advantages of rapid reconstruction without heavy computation during post-processing. The principle and the experimental setup of the SLSIS are described in detail. The image registration, Stokes spectral reconstruction and calibration procedures are included, and the system is validated using measurements of tungsten light and a static scene. The SLSIS's snapshot ability to resolve polarization spectral signatures is demonstrated using measurements of a dynamic scene.

  19. Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy

    PubMed Central

    Mu, Tingkui; Pacheco, Shaun; Chen, Zeyu; Zhang, Chunmin; Liang, Rongguang

    2017-01-01

    In this paper, the design and experimental demonstration of a snapshot linear-Stokes imaging spectropolarimeter (SLSIS) is presented. The SLSIS, which is based on division-of-focal-plane polarimetry with four parallel linear polarization channels and integral field spectroscopy with numerous slit dispersive paths, has no moving parts and provides video-rate Stokes-vector hyperspectral datacubes. It does not need any scanning in the spectral, spatial or polarization dimension and offers significant advantages of rapid reconstruction without heavy computation during post-processing. The principle and the experimental setup of the SLSIS are described in detail. The image registration, Stokes spectral reconstruction and calibration procedures are included, and the system is validated using measurements of tungsten light and a static scene. The SLSIS’s snapshot ability to resolve polarization spectral signatures is demonstrated using measurements of a dynamic scene. PMID:28191819

  20. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M., E-mail: jzhao@cfa.harvard.edu

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radiomore » continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the

  1. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H II region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or

  2. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  3. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  4. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging

    PubMed Central

    Kumar, Abhishek; Wu, Yicong; Christensen, Ryan; Chandris, Panagiotis; Gandler, William; McCreedy, Evan; Bokinsky, Alexandra; Colón-Ramos, Daniel A; Bao, Zhirong; McAuliffe, Matthew; Rondeau, Gary; Shroff, Hari

    2015-01-01

    We describe the construction and use of a compact dual-view inverted selective plane illumination microscope (diSPIM) for time-lapse volumetric (4D) imaging of living samples at subcellular resolution. Our protocol enables a biologist with some prior microscopy experience to assemble a diSPIM from commercially available parts, to align optics and test system performance, to prepare samples, and to control hardware and data processing with our software. Unlike existing light sheet microscopy protocols, our method does not require the sample to be embedded in agarose; instead, samples are prepared conventionally on glass coverslips. Tissue culture cells and Caenorhabditis elegans embryos are used as examples in this protocol; successful implementation of the protocol results in isotropic resolution and acquisition speeds up to several volumes per s on these samples. Assembling and verifying diSPIM performance takes ~6 d, sample preparation and data acquisition take up to 5 d and postprocessing takes 3–8 h, depending on the size of the data. PMID:25299154

  5. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  6. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  7. The Fermi Galactic Center GeV excess and implications for dark matter

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2017-05-04

    Here, the region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertaintiesmore » in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Furthermore, based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  8. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  9. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  10. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  11. The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail

    2015-02-01

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 <= k <= 40 kpc-1. Most of the power is contained in a broad peak between 0.2 kpc-1 < k < 0.9 kpc-1. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  12. RECENT DEVELOPMENTS IN SURGICAL SKIN PLANING

    PubMed Central

    Ayres, Samuel; Wilson, J. Walter; Luikart, Ralph

    1958-01-01

    In surgical skin planing steel wire brushes have been largely replaced by the less hazardous diamond chip burs or “fraises” and serrated steel wheels. In addition to acne pits and wrinkling, multiple actinic (senile) keratoses are an important indication for planing. Planing provides a nonscarring method for the treatment of existing keratoses, as well as a prophylaxis against skin cancer by replacing the sun-damaged, precancerous epidermis with new epidermal cells derived from the cutaneous adnexa (pilosebaceous and sweat gland units). There are clinical landmarks indicating the depth of planing which can serve as a guide to the operator and can be correlated with microscopic findings. The results of experiments on the comparative effects of refrigerants on animal and human skin indicate that human facial skin can tolerate considerable freezing with ethyl chloride or dichlorotetrafluoroethane (Freon 114) but that mixtures containing large proportions of the much colder dichlorodifluoromethane (Freon 12) may be undesirable. Refreezing an area of the skin in order to perform a more adequate planing is not considered hazardous. The regeneration of the skin following planing has three components: Epidermal, adnexal and dermal. The cells of the epidermis and the adnexa are equipotential. A knowledge of the anatomy of the acne pit enables the operator to decide which pits can be benefited by planing and which should be excised before planing. The successful treatment of acne pits of the face by planing in patients having keloids elsewhere on the body is reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:13500217

  13. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  14. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  15. Analyzing γ rays of the Galactic Center with deep learning

    NASA Astrophysics Data System (ADS)

    Caron, Sascha; Gómez-Vargas, Germán A.; Hendriks, Luc; Ruiz de Austri, Roberto

    2018-05-01

    We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV γ rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the annihilation of dark matter particles and γ rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured γ ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of γ ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.

  16. Spatial judgments in the horizontal and vertical planes from different vantage points.

    PubMed

    Prytz, Erik; Scerbo, Mark W

    2012-01-01

    Todorović (2008 Perception 37 106-125) reported that there are systematic errors in the perception of 3-D space when viewing 2-D linear perspective drawings depending on the observer's vantage point. Because these findings were restricted to the horizontal plane, the current study was designed to determine the nature of these errors in the vertical plane. Participants viewed an image containing multiple colonnades aligned on parallel converging lines receding to a vanishing point. They were asked to judge where, in the physical room, the next column should be placed. The results support Todorović in that systematic deviations in the spatial judgments depended on vantage point for both the horizontal and vertical planes. However, there are also marked differences between the two planes. While judgments in both planes failed to compensate adequately for the vantage-point shift, the vertical plane induced greater distortions of the stimulus image itself within each vantage point.

  17. 4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

    PubMed Central

    Lavagnino, Zeno; Sancataldo, Giuseppe; d’Amora, Marta; Follert, Philipp; De Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca

    2016-01-01

    In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces. PMID:27033347

  18. Hubble Sees a Galactic Sunflower

    NASA Image and Video Library

    2017-12-08

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in an image from the NASA/ESA Hubble Space Telescope, recall the pattern at the center of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars and clusters, readily seen in this Hubble image. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  20. Processing vertical size disparities in distinct depth planes.

    PubMed

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.