Science.gov

Sample records for galactic rotation curves

  1. Mass Distributions Implying Flat Galactic Rotation Curves

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…

  2. Study of galactic rotation curves in wormhole spacetime

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Sen, Banashree; Chakraborty, Koushik; Shit, G. C.

    2016-03-01

    The spacetime of the galactic halo region is described by a wormhole like line element. We assume violation of Null Energy Condition (NEC) in the galactic halo. The Einstein Field equations are solved for two different conditions of pressure and density to obtain physical parameters like tangential velocity of test particles and parameters related to the wormhole geometry. The theoretical rotation curve of the test particles is plotted and compared the same with an observed rotation curve. We obtain a satisfactory fit between the observed curve and the curve obtained from the present theory for the radial distances in the range 9 Kpc to 100 Kpc.

  3. Testing MONDian dark matter with galactic rotation curves

    SciTech Connect

    Edmonds, Doug; Farrah, Duncan; Minic, Djordje; Takeuchi, Tatsu; Ho, Chiu Man; Ng, Y. Jack E-mail: farrah@vt.edu E-mail: takeuchi@vt.edu E-mail: yjng@physics.unc.edu

    2014-09-20

    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z ≈ 0.003). For comparison, we also fit the galactic rotation curves using MOND and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (∼1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.

  4. Testing MONDian Dark Matter with Galactic Rotation Curves

    NASA Astrophysics Data System (ADS)

    Farrah, Duncan; Edmonds, Doug; Ho, Chiu Man; Minic, Djordje; Ng, Jack; Takeuchi, Tatsu

    2015-01-01

    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z=0.003). For comparison, we also fit the galactic rotation curves using MOND and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.

  5. Spherically symmetric problem on the brane and galactic rotation curves

    NASA Astrophysics Data System (ADS)

    Viznyuk, Alexander; Shtanov, Yuri

    2007-09-01

    We investigate the braneworld model with induced gravity to clarify the role of the crossover length scale ℓ in the possible explanation of the dark-matter phenomenon in astrophysics and in cosmology. Observations of the 21 cm line from neutral hydrogen clouds in spiral galaxies reveal that the rotational velocities remain nearly constant at a value υc˜10-3 10-4 in the units of the speed of light in the region of the galactic halo. Using the smallness of υc, we develop a perturbative scheme for reconstructing the metric in a galactic halo. In the leading order of expansion in υc, at the distances r≳υcℓ, our result reproduces that obtained in the Randall-Sundrum braneworld model. This inequality is satisfied in a real spiral galaxy such as our Milky Way for distances r˜3kpc, at which the rotational velocity curve becomes flat, υc˜7×10-4, if ℓ≲2Mpc. The gravitational situation in this case can be approximately described by the Einstein equations with the so-called Weyl fluid playing the role of dark matter. In the region near the gravitating body, we derive a closed system of equations for the static spherically symmetric situation under the approximation of zero anisotropic stress of the Weyl fluid. We find the Schwarzschild metric to be an approximate vacuum solution of these equations at distances r≲rgℓ23. The value ℓ≲2Mpc complies well with the solar system tests. At the same time, in cosmology, a low-density braneworld with ℓ of this order of magnitude can mimic the expansion properties of the high-density Λ+colddarkmatter (LCDM) universe at late times. Combined observations of galactic rotation curves and gravitational lensing can possibly discriminate between the higher-dimensional effects and dark matter.

  6. Determination of the Galactic Rotation Curve Based on Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Diara, C. M.; Maciel, W. J.

    1990-11-01

    ABSTRACT:Planetary nebulae of types I, lIa, and llb are considered in order to determine the galactic rotation curve. It is shown that the curves defined by the first two types do not differ substantially from the one derived on the basis of young population I objects, such as CO-H II molecular complexes. RESUMO:Um grupo de nebulosas planetarias de tipos I, lIa, e lIb e utilizado para determinar a curva de rota o galatica. Mostra-se que as curvas definidas pelos dois primeiros tipos de nebulosas diferem substancialmente da curva obtida a partir de objetos jovens, de popuIa o I, como Os complexos moleculares CO-H II. Koy words: GALAXY-STRUCTURE - NEBULAE-PLANETARY

  7. Mirror matter, mirror gravity and galactic rotational curves

    NASA Astrophysics Data System (ADS)

    Berezhiani, Zurab; Pilo, Luigi; Rossi, Nicola

    2010-11-01

    We discuss astrophysical implications of the modified gravity model in which the two matter components, ordinary and dark, couple to separate gravitational fields that mix to each other through small mass terms. There are two spin-2 eigenstates: the massless graviton, which induces universal Newtonian attraction, and the massive one, which gives rise to the Yukawa-like potential which is repulsive between the ordinary and dark bodies. As a result for distances much smaller than the Yukawa radius r m the gravitation strength between the two types of matter becomes vanishing. If r m ˜10 kpc, the typical size of a galaxy, there are interesting implications for the nature of dark matter. In particular, one can avoid the problem of the cusp that is typical for the cold dark matter halos. Interestingly, the flat shape of the rotational curves can be explained even in the case of the collisional and dissipative dark matter (as e.g. mirror matter), which cannot give the extended halos but instead must form galactic discs similarly to the visible matter. The observed rotational curves for the large, medium-size and dwarf galaxies can be nicely reproduced. We also briefly discuss possible implications for the direct search of dark matter.

  8. Galactic Rotation Curves from Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2014-03-01

    Yang-Mills Gravity (YMG) is a gauge field theory based on the T4 group in flat spacetime. In its macroscopic limit, it modifies the trajectories of classical objects such that it serves as an alternative to General Relativity (GR). Since YMG is relatively new and unknown, a brief review of the general theory is given and a more comprehensive list of references is provided. In the present work, we find that the Schwarzchild-like solution to YMG supports a term like αr with constant α. This translates into an r-term in the effective gravitational potential of classical objects. We use this modified potential to predict the shape of the rotation curves of spiral galaxies, and then use data from SDSS to constrain α, which seems to be a free parameter in YMG. This work was supported the NSF's GK12 Vibes and Waves Fellowship.

  9. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    NASA Technical Reports Server (NTRS)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.

  10. Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter

    SciTech Connect

    Foot, R.

    2014-12-01

    If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent of galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.

  11. Galactic rotation curve and spiral density wave parameters from 73 masers

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2013-12-01

    Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s-1. We have obtained the series of residual tangential, Δ V θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s-1 and f R = 7.8±0.7 km s-1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = -5.2° ±0.7°. The phase of the Sun ζ ⊙ in the spiral density wave is -50° ± 15° and -160° ± 15° from the residual tangential and radial velocities, respectively.

  12. Bose-Einstein Condensate Dark Matter Model Tested by Galactic Rotation Curves

    NASA Astrophysics Data System (ADS)

    Dwornik, Marek; Keresztes, Zoltán Gergely, László Á.

    2015-01-01

    Rotation curves of spiral galaxies are fundamental tools in the study of dark matter. Here we test the Bose-Einstein condensate (BEC) dark matter model against rotation curve data of High and Low Surface Brightness (HSB and LSB) galaxies, respectively. When the rotational velocities increase over the whole observed range, the fit of the BEC model is similar to the one of the Navarro-Frenk-White (NFW) dark matter model. When however the rotation curves exhibit long flat regions, the NFW profiles provide a slightly better fit.

  13. Diversity of Galactic Rotation Curves and Self-interacting Dark Matter

    NASA Astrophysics Data System (ADS)

    Pace, Andrew; Andrade, Kevin; Kaplinghat, Manoj; Tulin, Sean; Yu, Hai-bo

    2016-01-01

    We compile a large sample of rotation curves from the literature with maximum rotation velocity spanning the range of 20-300 km/s. We model each individual system including its stellar, gas and dark matter components. We use a prescription for self-interacting dark matter (SIDM) halos that has been tested against simulations to infer the cross section for elastic scattering between dark matter particles required to explain the large cores. We discuss how the diversity of observed rotation curves and the constancy of the inferred surface density of dark matter may arise in SIDM models.

  14. CO 7-6 submillimeter emission from the galactic center - warm molecular gas and the rotation curve in the central 10 parsecs

    SciTech Connect

    Harris, A.I.; Jaffe, D.T.; Silber, M.; Genzel, R.

    1985-07-01

    Bright CO J = 7-6 submillimeter line emission in the central 10 pc of the Galaxy has been mapped. This is the first detection of the 7-6 line from the Galactic center; it was made with a new submillimeter heterodyne spectrometer mounted on the 3.0-m NASA IRTF telescope at Mauna Kea, Hawaii. The 372-micrometer CO emission comes from a dense, clumpy disk (10,000 solar masses) of temperature about 300 K. The luminosity of all CO rotational lines emitted from this approximately 4-arcmin diameter region is about 20,000 solar luminosities. CO line emission is a major contribution to the cooling of the interstellar gas near Sgr A. The CO data show that the rotational velocities drop by a factor of 1.4 to 2 between 2 and 6 pc from the center. The rotation curve is consistent with a Keplerian fall off around a point mass and implies that most of the mass is in a more compact distribution than an isothermal stellar cluster. Broad line width emission toward the central 30 arcsec of the Galaxy indicates that there is a significant amount of molecular material in the inner, mostly ionized, cavity. 21 references.

  15. The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, X.-W.; Yuan, H.-B.; Xiang, M.-S.; Zhang, H.-W.; Chen, B.-Q.; Ren, J.-J.; Wang, C.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.; Cao, Z.-H.

    2016-08-01

    The rotation curve (RC) of the Milky Way out to ˜ 100 kpc has been constructed using ˜ 16,000 primary red clump giants (PRCGs) in the outer disk selected from the LSS-GAC and the SDSS-III/APOGEE survey, combined with ˜ 5700 halo K giants (HKGs) selected from the SDSS/SEGUE survey. To derive the RC, the PRCG sample of the warm disc population and the HKG sample of halo stellar population are respectively analyzed using a kinematical model allowing for the asymmetric drift corrections and re-analyzed using the spherical Jeans equation along with measurements of the anisotropic parameter β currently available. The typical uncertainties of RC derived from the PRCG and HKG samples are respectively 5-7 km s-1 and several tens km s-1. We determine a circular velocity at the solar position, Vc(R0) = 240 ± 6 km s-1 and an azimuthal peculiar speed of the Sun, V⊙ = 12.1 ± 7.6 km s-1, both in good agreement with the previous determinations. The newly constructed RC has a generally flat value of 240 km s-1 within a Galactocentric distance r of 25 kpc and then decreases steadily to 150 km s-1 at r ˜ 100 kpc. On top of this overall trend, the RC exhibits two prominent localized dips, one at r ˜ 11 kpc and another at r ˜ 19 kpc. From the newly constructed RC, combined with other constraints, we have built a parametrized mass model for the Galaxy, yielding a virial mass of the Milky Way's dark matter halo of 0.90^{+0.07}_{-0.08} × 10^{12} M⊙ and a local dark matter density, ρ _{odot , dm} = 0.32^{+0.02}_{-0.02} GeV cm-3.

  16. Alternative Gravity Rotation Curves for the LITTLE THINGS Survey

    NASA Astrophysics Data System (ADS)

    Stulge, Modestas; Stefanski, Brian; Dentico, Jeremy; O'Brien, James; Gay, Joseph; Moss, Robert; Young, Bryan; Smith, Adam

    2016-03-01

    Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW (ΛCDM) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Recently, the THINGS (The HI Nearby Galactic Survey) has been extended to include a sample of 25 dwarf galaxies now known as the LITTLE THINGS Survey. Here, we present a thorough application of alternative gravitational models to the LITTLE THINGS survey, specifically focusing on MOND and Conformal Gravity. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter.

  17. Combined Solar system and rotation curve constraints on MOND

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Famaey, Benoit; Angus, Garry W.; Gentile, Gianfranco

    2016-01-01

    The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this external field effect (EFE) can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this EFE also appears in the Solar system and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar system constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that Laser Interferometer Space Antenna Pathfinder will not be able to improve the current constraints on these still viable transition functions.

  18. EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES

    SciTech Connect

    Roy, Nirupam

    2010-11-01

    In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

  19. The rotation curves of gas and stars

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle; Bershady, Matthew A.; MaNGA Team

    2016-01-01

    In its first year alone, the SDSS-IV/MaNGA survey has provided kinematic data useful for determining the rotation curves of both the ionized-gas and stellar components for hundreds of disk galaxies. We use these data to study the well-known Tully-Fisher relation in the local Universe, as well as the difference between the ionized-gas and stellar rotation curves in a novel study of asymmetric drift. The physical scenario for the latter is that gas efficiently dissipates energy allowing it to settle toward the circular speed of the galactic potential, whereas the stellar ensemble orbits more slowly because stars are collisionless and retain any non-circular motions accrued over their dynamical history. In disk galaxies with line-of-sight velocity dispersions that are well-measured with MaNGA's moderate spectral resolution, we demonstrate the correlation between asymmetric drift and stellar velocity dispersion, as expected by the dynamical relation between the two via the stellar phase-space distribution function. This correlation is consistent with measurements obtained at higher spectral resolution by the DiskMass Survey, and it allows us to leverage asymmetric drift to provide stellar velocity dispersion estimates that probe well below the instrumental dispersion. These velocity dispersion measurements can then be used to estimate the dynamical mass surface density of the baryon-dominated disk (Bershady et al. 2010, 2011). Thus, by combining our circular-speed data --- which yield a well-defined Tully-Fisher relation that is consistent with literature studies --- and our measurements of asymmetric drift, we discuss the implications for the dark-matter mass fractions of our galaxy sample. Statistically, our results are consistent with previous claims (e.g., Martinsson et al. 2013) that dark matter is a significant, even dominant, mass component within the effective radius of disk galaxies.

  20. Rotation curves of ultralight BEC dark matter halos with rotation

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.

    2015-03-01

    We study the rotation curves of ultralight BEC dark matter halos. These halos are long lived solutions of initially rotating BEC fluctuations. In order to study the implications of the rotation characterizing these long-lived configurations we consider the particular case of a boson mass and no self-interaction. We find that these halos successfully fit samples of rotation curves of LSB galaxies.

  1. General relativistic effects in galactic rotation velocity profiles

    NASA Astrophysics Data System (ADS)

    Cisneros, Sophia

    2008-10-01

    The anomalously high galactic rotation velocities deduced from spectroscopic observations have motivated the conjecture of additional Dark Matter. Here we investigate to what extent this picture may be impacted by general relativistic effects. Previous work involving General Relativity has used linearized field equations to arrive at estimates of wavelength shifts arising from spin induced curvature. We show here that, using the fully contravariant 3+1 dimensional wave equation (the D'Alembertian for a Kerr Metric), non-trivial results for observed velocities can be obtained. These velocities are much higher than those obtained from the linearized equations. The Kerr rotation curve is derived from first principles. The wavelength shifts are then weighted by an empirical factor which accounts for difference in curvature of the originating galaxy and the Milky Way. The resulting apparent radial dependence of the velocity is much flatter than obtained in the Keplerian case, which opens the possibility that, for our test galaxy(M33), we have correct estimates of (luminous) matter on the exterior edges, but have only underestimated the mass at the center. This result suggests that general relativistic effects mitigate, or may possibly even obviate the need to invoke the presence of Dark Matter in order to explain the observed apparent velocity profiles. All rotation curves presented are computed with data graciously provided by E.Corbelli and R.Walterbos for M33, taken in the wavelength band of H/alpha.

  2. Smoothing Rotation Curves in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, Jerry

    2014-05-01

    We present evidence that spiral activity is responsible for the creation of featureless rotation curves. We examine a variety of simulations of disk galaxies beginning in equilibrium and allow them to evolve while adding particles in annuli to the hot disk using a variety of rules. Two unstable spiral modes develop when this new material forms a ridge-like feature in the surface density profile of the disk. The extra material is redistributed radially by the spiral activity, and the associated angular momentum changes remove more particles from the ridge than are added to it. This process eventually removes the density feature from the galaxy and creates a locally flat rotation curve. We argue that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ``disk-halo conspiracy'', could also be accounted for by this mechanism.

  3. Observational evidence of dust evolution in galactic extinction curves

    SciTech Connect

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2014-04-10

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds. Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.

  4. The study of rotation curve with MOND for ESO138-G014

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Salucci, P.; Abidin, Z. Z.

    2013-05-01

    This paper is devoted to solve the galactic rotation problem based on Modified Newtonian Dynamics (MOND). It addresses a new fundamental constant a0, called the acceleration constant, at which acceleration scale of Newton's second law fails to hold. It is an indication of a breakdown of classical Newtonian dynamics. In this respect, we choose the HI observations of a late type galaxy, ESO138-G014, to test the rotation curve within the MOND framework which leads to "MOND RC". We ask whether ESO138-G014 is compatible with MOND or dark matter is still favorable for the galactic rotation problem.

  5. Smoothing Rotation Curves and Mass Profiles

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called "disk-halo conspiracy," could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  6. SMOOTHING ROTATION CURVES AND MASS PROFILES

    SciTech Connect

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ''disk-halo conspiracy'', could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  7. Equation for the Origin of Spiral Galactic Formation and Rotation

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2012-03-01

    Already formed galactic arms existed in sets of two or more orbiting each other due to the Big Bang. As the orbits of the arms decayed due to gravitational attraction they attached in their fore sections tangentially accreting forming spiral galaxies which began to rotate due to the transformation of the orbital motion of the pre-galactic arms into the rotational motion of the newly formed spiral galaxy. If I1φ1, I2φ2, and Inφn are the angular momentums of the pre-galactic arms, and (Iφ)galaxy is the angular momentum of the newly formed spiral galaxy, the equation for the formation and origin of spiral galaxy rotation is I1φ1+ I2φ2+...+ Inφn= (Iφgalaxy).

  8. Flow in a rotating curved circular pipe.

    PubMed

    Zhang, Jinsuo; Li, Ning; Zhang, Benzhao

    2003-05-01

    The flow in a rotating curved pipe with circular cross section is investigated theoretically and numerically. A perturbation solution up to the second order is obtained. A numerical procedure is used to solve the full governing equations and the simplified governing equations in the small curvature limit. Comparisons are made between the numerical and perturbation results, elucidating the lost information due to simplification and the valid range of the perturbation solution. The flow characteristics, including the secondary flow, the axial flow, and the friction factor ratio, are examined in detail.

  9. Conformal Gravity Rotation Curves in Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    O'Brien, James

    2013-04-01

    We extend the application of the conformal gravity theory to tidal dwarf galaxies (TDGs). These dwarf galaxies are formed in the tidal tails of collisions of disk galaxies, and are thought to be predominantly composed of material expelled from the galactic disk of a parent galaxy. With any dark matter present in the parent galaxies expected to predominantly be in spherical haloes, tidal galaxies should thus have a very low dark matter content, and thus should not themselves be expected to possess the substantial spherical dark matter haloes that are ordinarily required to accompany and stabilize disk galaxies in standard gravity. In consequence, in the standard dark matter picture TDG rotation curves should not be expected to display any substantial mass discrepancies. Tidal dwarf galaxies thus provide a quite unusual laboratory for exploring the missing mass problem. Rotation curve data have become available for three TDGs associated with the parent galaxy NGC 5291, and it has been shown that there are in fact mass discrepancies, and that a good accounting of the data can be provided by MOND. Here we show that conformal gravity can also provide a good accounting of the data.

  10. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  11. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    SciTech Connect

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R. E-mail: tgp@submm.caltech.edu E-mail: ccomito@ph1.uni-koeln.de; and others

    2014-04-20

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H{sub 3}O{sup +} rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  12. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  13. Low frequency oscillatory flow in a rotating curved pipe.

    PubMed

    Chen, Hua-Jun; Zhang, Ben-Zhao; Su, Xiao-Yan

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of biparameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient. PMID:12861615

  14. Flat rotation curves in Chern-Simons modified gravity

    SciTech Connect

    Konno, Kohkichi; Asano, Yasuhiro; Tanda, Satoshi; Matsuyama, Toyoki

    2008-07-15

    We investigate the spacetime of a slowly rotating black hole in the Chern-Simons modified gravity. The long range feature of frame-dragging effect under the Chern-Simon gravity well explains the flat rotation curves of galaxies which is a central evidence of dark matter. Our solution provides a different scenario of rotating space from Goedel's solution.

  15. Running Newton constant, improved gravitational actions, and galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Weyer, H.

    2004-12-01

    A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton’s constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a “cutoff identification” which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton’s constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton’s constant with a small exponent of the order 10-6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo.

  16. 11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS STATIONARY. DISCARDED ROLLER NEAR CENTER OF FRAME. - Chicago, Milwaukee & St. Paul Railway, Bridge No. Z-6, Spanning North Branch of Chicago River, South of Cortland Street, Chicago, Cook County, IL

  17. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  18. An alternative view of flat rotation curves of spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Soares, D. S. L.

    1992-04-01

    The present view of flat rotation curves of spiral galaxies relies upon the necessity of a dark mass component to push up the predicted declining portion of the rotation curve, that arises when the galaxy luminous matter and mass to light ratios similar to the ones in the solar neighbourhood are combined. Mass to light ratios obtained from binary galaxy studies are about ten times as large as the values currently assumed for spiral galaxies (Schweizer, 1987; Soares, 1989). Considering them as the real M/L for spiral galaxies, it implies that the Keplerian rotation curve derived by the combination of these M/L values and the luminous matter distribution of a spiral galaxy lies above observed rotational profiles. Here the author argues that a more convincing and coherent approach is to search for the physical processes responsible for pulling down such a predicted rotation curve to the observed levels. Accordingly, a toy model is proposed based on the existence of significant buoyancy forces in the gaseous disk of spiral galaxies. The model has a plausible phenomenological counterpart, and predicts a wide range of rotation curve shapes including flat ones.

  19. The distribution of dark and luminous matter inferred from extended rotation curves

    NASA Astrophysics Data System (ADS)

    Bottema, Roelof; Pestaña, José Luis G.

    2015-04-01

    A better understanding of the formation of mass structures in the Universe can be obtained by determining the amount and distribution of dark and luminous matter in spiral galaxies. To investigate such matters a sample of 12 galaxies, most with accurate distances, has been composed of which the luminosities are distributed regularly over a range spanning two and a half orders of magnitude. Of the observed high quality and extended rotation curves of these galaxies decompositions have been made, for four different schemes, each with two free parameters. For a `maximum disc fit' the rotation curves can be well matched, yet a large range of mass-to-light (M/L) ratios for the individual galaxies is required. For the alternative gravitational theory of MOND (Modified Newtonian Dynamics) the rotation curves can be explained if the fundamental parameter associated with MOND is allowed as a free parameter. Fixing that parameter leads to a disagreement between the predicted and observed rotation curves for a few galaxies. When cosmologically motivated NFW dark matter haloes are assumed, the rotation curves for the least massive galaxies can, by no means, be reproduced; cores are definitively preferred over cusps. Finally, decompositions have been made for a pseudo-isothermal halo combined with a universal M/L ratio. For the latter, the light of each galactic disc and bulge has been corrected for extinction and has been scaled by the effect of stellar population. This scheme can successfully explain the observed rotations and leads to submaximum disc mass contributions. Properties of the resulting dark matter haloes are described and a ratio between dark and baryonic mass of ˜9 for the least, and of ˜5, for the most luminous galaxies has been determined, at the outermost measured rotation.

  20. On curve veering and flutter of rotating blades

    NASA Technical Reports Server (NTRS)

    Afolabi, Dare; Mehmed, Oral

    1993-01-01

    The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.

  1. An Analytic Mathematical Model to Explain the Spiral Structure and Rotation Curve of NGC 3198

    NASA Astrophysics Data System (ADS)

    Rout, Bruce; Rout, Cameron

    2016-06-01

    An analytical model of galactic morphology is presented. This model presents resolutions to two inter-related parameters of spiral galaxies: one being the flat velocity rotation profile and the other being the spiral morphology of such galaxies. This model is a mathematical transformation dictated by the general theory of relativity applied to rotating polar coordinate systems that conserve the metric. The model shows that the flat velocity rotation profile and spiral shape of certain galaxies are both products of the general theory. Validation of the model is presented by application to 878 rotation curves provided by Salucci, and by comparing the results of a derived distance modulus to those using Cepheid variables, water masers and Tully-Fisher calculations. The model suggests means of determining galactic linear density, mass and angular momentum. We also show that the morphology of NGC 3198 is congruent to the geodesic as observed within a rotating reference frame and that galaxies are gravitationally viscous and self bound.

  2. Galactic rotation parameters from data on open star clusters

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.; Lebedeva, S. V.

    2007-11-01

    Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = -26.0 ± 0.3 km s-1 kpc-1, ω'0 = 4.18 ± 0.17 km s-1 kpc-2, ω″0 = -0.45 ± 0.06 km s-1 kpc-3, the system contraction parameter K = -2.4 ± 0.1 km s-1 kpc-1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = -4.3 ± 1.0 km s-1.

  3. Dissipative dark matter and the rotation curves of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and Hα fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  4. The unexpected diversity of dwarf galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Navarro, Julio F.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; White, Simon D. M.; Bower, Richard; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2015-10-01

    We examine the circular velocity profiles of galaxies in Λ cold dark matter (CDM) cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark-matter-dominated systems, reflecting the expected similarity of the underlying CDM haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for CDM haloes and include many galaxies where previous work claims the presence of a constant density `core'. The `cusp versus core' issue is thus better characterized as an `inner mass deficit' problem than as a density slope mismatch. For several galaxies, the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the diversity in the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of `inner mass deficit' galaxies inferred from kinematic data are incorrect.

  5. Conformal Gravity rotation curves with a conformal Higgs halo

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    2016-06-01

    We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's fourth-order Poisson equation if and only if the Higgs field has a particular radial profile, S(r) = S0 a/(r + a), decreasing from S0 at r = 0 with radial scalelength a. Since particle rest masses scale with S(r)/S0, their world lines do not follow time-like geodesics of the MK metric gμν, as previously assumed, but rather those of the Higgs-frame MK metric tilde{g}_{μ ν }=Ω ^2 g_{μ ν }, with the conformal factor Ω(r) = S(r)/S0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

  6. The Milky Way rotation curve in Horava-Lifshitz theory

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Radicella, N.; Ruggiero, M. L.; Capone, M.

    2010-08-01

    The Horava-Lifshitz (HL) theory has recently attracted a lot of interest as a viable solution to some quantum gravity related problems and the presence of an effective cosmological constant able to drive the cosmic speed up. We show here that, in the weak field limit, the HL proposal leads to a modification of the gravitational potential because of two additive terms (scaling, respectively, as r2 and r-4) to the Newtonian 1/r potential. We then derive a general expression to compute the rotation curve of an extended system under the assumption that the mass density only depends on the cylindrical coordinates (R, z) showing that the HL modification induces a dependence of the circular velocity on the mass function which is a new feature of the theory. As a first exploratory analysis, we then try fitting the Milky Way rotation curve using its visible components only in order to see whether the HL modified potential can be an alternative to the dark matter framework. This turns out not to be the case so that we argue that dark matter is still needed, but the amount of dark matter and the dark halo density profile have to be revised according to the new HL potential.

  7. Rapidly rotating lenses: repeating features in the light curves of short-period binary microlenses

    NASA Astrophysics Data System (ADS)

    Penny, Matthew T.; Kerins, Eamonn; Mao, Shude

    2011-11-01

    Microlensing is most sensitive to binary lenses with relatively large orbital separations, and as such, typical binary microlensing events show little or no orbital motion during the event. However, despite the strength of binary microlensing features falling off rapidly as the lens separation decreases, we show that it is possible to detect repeating features in the light curve of binary microlenses that complete several orbits during the microlensing event. We investigate the light-curve features of such rapidly rotating lens (RRL) events. We derive analytical limits on the range of parameters where these effects are detectable, and confirm these numerically. Using a population synthesis Galactic model, we estimate the RRL event rate for a ground-based and a space-based microlensing survey to be 0.32fb and 7.8fb events per year, respectively, assuming year-round monitoring, where fb is the binary fraction. We detail how RRL event parameters can be quickly estimated from their light curves, and suggest a method to model RRL events using timing measurements of light-curve features. Modelling RRL light curves will yield the lens orbital period and possibly measurements of all orbital elements, including the inclination and eccentricity. Measurement of the period from the light curve allows a mass-distance relation to be defined, which when combined with a measurement of microlens parallax or finite-source effects can yield a mass measurement to a twofold degeneracy. With sub-per cent accuracy photometry, it is possible to detect planetary companions, but the likelihood of this is very small.

  8. Rotating Type Ia SN progenitors: explosion and light curves

    SciTech Connect

    Dominguez, I.; Piersanti, L.; Gagliardi, S.; Straniero, O.; Tornambe, A.; Bravo, E.

    2005-10-21

    High redshift SNe Ia have been recently used to calibrate the cosmological distance scale and to infer the existence of the dark energy. The reliability of such a method depends on the effective knowledge of the absolute brightness of this class of supernovae. This would require a complete understanding of the physics of SNeIa.Starting from an accreting rotating white dwarf, the only progenitor that we found to be able to grow till the Chandrasekhar mass and undergo a thermonuclear explosion, we simulate the explosion, deriving the nucleosynthesis and the light curve. We explore the final outcome in the framework of a 1D delayed detonation model, where the characteristic density for which the transition from deflagration to detonation takes place is a free parameter.Although preliminary, our results imply that rotating white dwarfs produce a range of explosive conditions, characterized by different ignition densities and total masses. Maximum luminosities of successfully explosive models differ up to 0.11 mag. In a few cases, the formation of a small highly neutronised remnant is found.

  9. Kinematic Disturbances in Rotation Curves among 89 Virgo Galaxies

    NASA Astrophysics Data System (ADS)

    Rubin, V. C.; Waterman, A. H.; Kenney, J. D. P.

    1999-05-01

    For 89 (mostly) spirals in the Virgo cluster, we have obtained optical long-slit spectra of the ionized gas. We find: (1) 50% of the Virgo galaxies we observed have regular rotation patterns; 50% exhibit kinematic disturbances ranging from mild to major. Velocity complexities are consistent with those resulting from tidal encounters or accretion. Since kinematic disturbances will to fade within ~ 1Gyr, many Virgo galaxies have experienced several significant kinematic disturbances during their lifetimes. (2) There is no strong correlation of rotation curve complexity with Hubble type, galaxy luminosity, local galaxy density, or HI deficiency. (3) There is a remarkable difference in the distribution of galaxy systemic velocity for galaxies in the two classes. Galaxies with regular rotation patterns show a flat distribution with velocities ranging from V = -300 km/sec to V = +2500 km/sec; galaxies with disturbed kinematics have a Gaussian distribution which peaks at V = +1172+/-100 km/sec, near the cluster mean velocity. This distribution is virtually identical to the distribution of systemic velocities for elliptical galaxies in Virgo. However, disturbed spirals are less centrally concentrated than the ellipticals and those near the periphery are more likely to have the mean cluster velocity. We suggest that spirals with disturbed kinematics are preferentially on radial orbits, which bring them to the denser core, where tidal interactions are strong and/or more common. However, because they spend most of their time near apocenter, we observe them near the periphery of the cluster. Some may be falling into the core for the first time. For a non-virialized cluster like Virgo, galaxies may encounter either local (nearby galaxies) or global (cluster related) interactions. These interactions may alter the galaxy morphology, and may play a role in driving the Virgo cluster toward dynamical equilibrium.

  10. Rotation curve of the Milky Way out to ∼200 kpc

    SciTech Connect

    Bhattacharjee, Pijushpani; Chaudhury, Soumini; Kundu, Susmita E-mail: soumini.chaudhury@saha.ac.in

    2014-04-10

    The rotation curve (RC) of our Galaxy, the Milky Way, is constructed starting from its very inner regions (few hundred parsecs) out to a large galactocentric distance of ∼200 kpc using kinematical data on a variety of tracer objects moving in the gravitational potential of the Galaxy, without assuming any theoretical models of the visible and dark matter (DM) components of the Galaxy. We study the effect on the RC due to the uncertainties in the values of the Galactic constants (GCs) R {sub 0} and V {sub 0} (these being the Sun's distance from and circular rotation speed around the Galactic center, respectively) and the velocity anisotropy parameter β of the halo tracer objects used for deriving the RC at large galactocentric distances. The resulting RC in the disk region is found to depend significantly on the choice of the GCs, while the dominant uncertainty in the RC at large distances beyond the stellar disk comes from the uncertainty in the value of β. In general we find that the mean RC steadily declines at distances beyond ∼60 kpc, independently of the value of β. Also, at a given radius, the circular speed is lower for larger values of β (i.e., for more radially biased velocity anisotropy). Considering that the largest possible value of β is unity, which corresponds to stellar orbits being purely radial, our results for the case of β = 1 give a lower limit to the total mass of the Galaxy within ∼200 kpc, M(200 kpc) ≳ (6.8 ± 4.1) × 10{sup 11} M {sub ☉}, independently of any model of the DM halo of the Galaxy.

  11. Correlation Analysis of Optical and Radio Light Curves for a Large Sample of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Smith, A. G.; Aller, H. D.; Aller, M. F.

    1995-08-01

    The Rosemary Hill Observatory has accumulated internally consistent light curves extending over as much as 26 years for a large sample of active galactic nuclei. Forty-six of these optical records have been compared with similar radio records from the University of Michigan Radio Astronomy Observatory and the Algonquin Radio Observatory. For 18 objects, pairs of records were sufficiently long and unconfused to allow reliable application of the Discrete Correlation Function analysis; this group included 8 BL Lacertids, 8 quasars, and 2 Seyfert galaxies. Nine of the 18 sources showed positive radio-optical correlations, with the radio events lagging the optical by intervals ranging from 0 to 14 months. Consistent with the relativistic beaming model of the BL Lacertids, the group displaying correlations was dominated by this type of object.

  12. Rotation curve and mass distribution in the Galaxy from the velocities of objects at distances up to 200 kpc

    NASA Astrophysics Data System (ADS)

    Bajkova, A. T.; Bobylev, V. V.

    2016-09-01

    Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto-Nagai expressions. The Allen-Santillán (I), Wilkinson-Evans (II), and Navarro-Frenk-White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen-Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ ⊙ = 0.1 M ⊙ pc-3 and the force K z =1.1/2 πG = 77 M ⊙ pc-2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G ( R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M ⊙, is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G ( R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M ⊙, M G ( R ≤ 200 kpc) = (1.29± 0.14)× 1012 M ⊙ at γ = 6.3, and the smallest value has been found in model II, M G ( R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M ⊙. In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G ( R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M ⊙. A comparative analysis with the models by Irrgang et al. (2013), including those using

  13. FURTHER RESULTS FROM THE GALACTIC O-STAR SPECTROSCOPIC SURVEY: RAPIDLY ROTATING LATE ON GIANTS

    SciTech Connect

    Walborn, Nolan R.; MaIz Apellaniz, Jesus; Sota, Alfredo; Alfaro, Emilio J.; Barba, Rodolfo H.; Arias, Julia I.; Gamen, Roberto C. E-mail: jmaiz@iaa.es E-mail: emilio@iaa.es E-mail: rbarba@dfuls.cl E-mail: rgamen@fcaglp.unlp.edu.ar

    2011-11-15

    With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two 'clones' (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, 'Howarth's Star'). We compare the locations of these objects in the theoretical H-R diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is, but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of these properties. They may have preserved high initial rotational velocities or may have been spun up by terminal-age main-sequence core contraction; alternatively, and perhaps more likely, they may be products of binary mass transfer. At least some of them are also runaway stars.

  14. Further Results from the Galactic O-Star Spectroscopic Survey: Rapidly Rotating Late ON Giants

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Maíz Apellániz, Jesús; Sota, Alfredo; Alfaro, Emilio J.; Morrell, Nidia I.; Barbá, Rodolfo H.; Arias, Julia I.; Gamen, Roberto C.

    2011-11-01

    With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two "clones" (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, "Howarth's Star"). We compare the locations of these objects in the theoretical H-R diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is, but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of these properties. They may have preserved high initial rotational velocities or may have been spun up by terminal-age main-sequence core contraction; alternatively, and perhaps more likely, they may be products of binary mass transfer. At least some of them are also runaway stars.

  15. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Iorio, G.; Agertz, O.; Fraternali, F.

    2016-11-01

    The shape and diversity of dwarf galaxy rotation curves is at apparent odds with dark matter halos in a Λ Cold Dark Matter (ΛCDM) cosmology. We use mock data from isolated dwarf galaxy simulations to show that this owes to three main effects. Firstly, stellar feedback heats dark matter, leading to a `CORENFW' dark matter density profile with a slowly rising rotation curve. Secondly, if close to a recent starburst, large H I bubbles push the rotation curve out of equilibrium, deforming the rotation curve shape. Thirdly, when galaxies are viewed near face-on, their best fit inclination is biased high. This can lead to a very shallow rotation curve that falsely implies a large dark matter core. All three problems can be avoided, however, by a combination of improved mass models and a careful selection of target galaxies. Fitting our CORENFW model to mock rotation curve data, we show that we can recover the rotation curve shape, dark matter halo mass M200 and concentration parameter c within our quoted uncertainties. We fit our CORENFW model to real data for four isolated dwarf irregulars, chosen to span a wide range of rotation curve shapes. We obtain an excellent fit for NGC 6822 and WLM, with tight constraints on M200, and c consistent with ΛCDM. However, IC 1613 and DDO 101 give a poor fit. For IC 1613, we show that this owes to disequilibria and its uncertain inclination i; for DDO 101, it owes to its uncertain distance D. If we assume iIC1613 ˜ 15° and DDDO101 ˜ 12 Mpc, consistent with current uncertainties, we are able to fit both galaxies very well. We conclude that ΛCDM appears to give an excellent match to dwarf galaxy rotation curves.

  16. Comment on 'Scalar-tensor gravity coupled to a global monopole and flat rotation curves'

    SciTech Connect

    Salucci, P.; Gentile, G.

    2006-06-15

    The recent paper by Lee and Lee [Phys. Rev. D 69, 127502 (2004)] may strongly leave the impression that astronomers have established that the rotation curves of spiral galaxies are flat. We show that the old paradigm of flat rotation curves lacks, today, any observational support and following it at face value leads to intrinsically flawed alternatives to the standard dark matter scenario. On the other hand, we claim that the rich systematics of spiral galaxy rotation curves, which reveals, in the standard Newtonian gravity framework, the phenomenon of dark matter, in alternative scenarios, works as a unique benchmark.

  17. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.

  18. Deriving the Global Structure of the Galactic Magnetic Field from Faraday Rotation Measures of Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Tinyakov, P. G.; Kronberg, P. P.; Newton-McGee, K. J.

    2011-09-01

    We made use of the two latest sets of rotation measures (RMs) of extragalactic radio sources, namely the NRAO VLA Sky Survey rotation measures catalog and a compilation by Kronberg and Newton-McGee, to infer the global structure of the Galactic magnetic field (GMF). We have checked that these two data sets are mutually consistent. Given the existence of clear patterns in the all-sky RM distributions we considered GMF models consisting of two components: disk (spiral or ring) and halo. The parameters of these components were determined by fitting different model field geometries to the observed RMs. We found that the model consisting of a symmetric (with respect to the Galactic plane) spiral disk and antisymmetric halo fits the data best and reproduces the observed distribution of RMs over the sky very well. We confirm that ring disk models are disfavored. Our results favor small pitch angles around ~ - 5° and an increased vertical scale of electron distribution, in agreement with some recent studies. Based on our fits, we select two benchmark models suitable for studies of cosmic ray propagation, including cosmic rays at ultrahigh energies.

  19. Giant-scale supernova remnants - The role of differential galactic rotation and the formation of molecular clouds

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Palous, J.

    1987-01-01

    The evolution of remnants produced by the total supernova power from an evolved OB association in a differentially rotating galactic disk is presented. The calculations at 5 kpc and 10 kpc from the galactic center lead to column densities across the remnant shell, or across sections of the remnants, which eventually exceed the opacity criterion of Franco and Cox (1986) and thus form molecular clouds. The resultant clouds have masses larger than 100,000 solar masses, dimensions of several hundred parsecs, and a separation larger than 1 kpc. In contrast, at 20 kpc from the galactic center the opacity criterion is never fulfilled.

  20. Formation and evolution of blue compact dwarfs: the origin of their steep rotation curves

    NASA Astrophysics Data System (ADS)

    Watts, Adam; Bekki, Kenji

    2016-11-01

    The origin of the observed steep rotation curves of blue compact dwarf galaxies (BCDs) remains largely unexplained by theoretical models of BCD formation. We therefore investigate the rotation curves in BCDs formed from mergers between gas-rich dwarf irregular galaxies based on the results of numerical simulations for BCD formation. The principal results are as follows. The dark matter of merging dwarf irregulars undergoes a central concentration so that the central density can become up to six times higher than those of the initial dwarf irregulars. However, the more compact dark matter halo alone cannot reproduce the gradient differences observed between dwarf irregulars and BCDs. We provide further support that the central concentration of gas due to rapid gas transfer to the central regions of dwarf-dwarf mergers is responsible for the observed difference in rotation curve gradients. The BCDs with central gas concentration formed from merging can thus show steeply rising rotation curves in their central regions. Such gas concentration is also responsible for central starbursts of BCDs and the high central surface brightness and is consistent with previous BCD studies. We discuss the relationship between rotational velocity gradient and surface brightness, the dependence of BCD rotation curves on star formation threshold density, progenitor initial profile, interaction type, and merger mass ratio, as well as potential evolutionary links between dwarf irregulars, BCDs, and compact dwarf irregulars.

  1. DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY

    SciTech Connect

    Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubino-Martin, J. A.

    2012-08-20

    The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B{sub {phi}} {approx} 2 {mu}G at distances of {approx}2 R{sub 0}(16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.

  2. ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS

    SciTech Connect

    Mottola, Stefano; Erikson, Anders; Gonano-Beurer, Maria; Carsenty, Uri; Hahn, Gerhard; Di Martino, Mario; Carbognani, Albino; Schober, Hans-Josef; Lahulla, Felix; Delbo, Marco; Lagerkvist, Claes-Ingvar

    2011-05-15

    We present the results of a Jupiter Trojans' light curve survey aimed at characterizing the rotational properties of Trojans in the approximate size range 60-150 km. The survey, which was designed to provide reliable and unbiased estimates of rotation periods and amplitudes, resulted in light curves for a total of 80 objects, 56 of which represent the first determinations published to date and nine of which supersede previously published erroneous values. Our results more than double the size of the existing database of rotational properties of Jovian Trojans in the selected size range. The analysis of the distributions of the rotation periods and light curve amplitudes is the subject of companion papers.

  3. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    SciTech Connect

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-08-10

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100 Degree-Sign -117 Degree-Sign , within 30 Degree-Sign of the Galactic plane. For |b| < 15 Degree-Sign , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic mid-plane. In the range 15 Degree-Sign < |b| < 30 Degree-Sign , we find median RMs of -15 {+-} 4 rad m{sup -2} and -62 {+-} 5 rad m{sup -2} in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 {mu}G (7 {mu}G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  4. On the nature of local instabilities in rotating galactic coronae and cool cores of galaxy clusters

    SciTech Connect

    Nipoti, Carlo; Posti, Lorenzo

    2014-09-01

    A long-standing question is whether radiative cooling can lead to local condensation of cold gas in the hot atmospheres of galaxies and galaxy clusters. We address this problem by studying the nature of local instabilities in rotating, stratified, weakly magnetized, optically thin plasmas in the presence of radiative cooling and anisotropic thermal conduction. For both axisymmetric and nonaxisymmetric linear perturbations, we provide general equations which can be applied locally to specific systems to establish whether they are unstable and, in case of instability, to determine the kind of evolution (monotonically growing or overstable) and the growth rates of the unstable modes. We present results for models of rotating plasmas representative of Milky-Way-like galaxy coronae and cool-cores of galaxy clusters. We show that the unstable modes arise from a combination of thermal, magnetothermal, magnetorotational, and heat-flux-driven buoyancy instabilities. Local condensation of cold clouds tends to be hampered in cluster cool cores, while it is possible under certain conditions in rotating galactic coronae. If the magnetic field is sufficiently weak, then the magnetorotational instability is dominant even in these pressure-supported systems.

  5. A CONSTRAINT ON THE ORGANIZATION OF THE GALACTIC CENTER MAGNETIC FIELD USING FARADAY ROTATION

    SciTech Connect

    Law, C. J.; Brentjens, M. A.; Novak, G.

    2011-04-10

    We present new 6 and 20 cm Very Large Array (VLA) observations of polarized continuum emission of roughly 0.5 deg{sup 2} of the Galactic center (GC) region. The 6 cm observations detect diffuse linearly polarized emission throughout the region with a brightness of roughly 1 mJy per 15''x10'' beam. The Faraday rotation measure (RM) toward this polarized emission has structure on degree size scales and ranges from roughly +330 rad m{sup -2} east of the dynamical center (Sgr A) to-880 rad m{sup -2} west of the dynamical center. This RM structure is also seen toward several nonthermal radio filaments, which implies that they have a similar magnetic field orientation and constrains models for their origin. Modeling shows that the RM and its change with Galactic longitude are best explained by the high electron density and strong magnetic field of the GC region. Considering the emissivity of the GC plasma shows that while the absolute RM values are indirect measures of the GC magnetic field, the RM longitude structure directly traces the magnetic field in the central kiloparsec of the Galaxy. Combining this result with previous work reveals a larger RM structure covering the central {approx}2{sup 0} of the Galaxy. This RM structure is similar to that proposed by Novak and coworkers, but is shifted roughly 50 pc west of the dynamical center of the Galaxy. If this RM structure originates in the GC region, it shows that the GC magnetic field is organized on {approx}300 pc size scales. The pattern is consistent with a predominantly poloidal field geometry, pointing from south to north, that is perturbed by the motion of gas in the Galactic disk.

  6. Luminosity-velocity diagrams for Virgo Cluster spirals. I - Inner rotation curves

    NASA Technical Reports Server (NTRS)

    Woods, David; Fahlman, Gregory G.; Madore, Barry F.

    1990-01-01

    Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution.

  7. Luminosity-velocity diagrams for Virgo Cluster spirals. I. Inner rotation curves

    SciTech Connect

    Woods, D.; Fahlman, G.G.; Madore, B.F. California Institute of Technology, Pasadena )

    1990-04-01

    Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution. 28 refs.

  8. PROJECTED ROTATIONAL VELOCITIES AND STELLAR CHARACTERIZATION OF 350 B STARS IN THE NEARBY GALACTIC DISK

    SciTech Connect

    Braganca, G. A.; Daflon, S.; Cunha, K.; Bensby, T.; Oey, M. S.; Walth, G.

    2012-11-01

    Projected rotational velocities (v sin i) are presented for a sample of 350 early B-type main-sequence stars in the nearby Galactic disk. The stars are located within {approx}1.5 kpc from the Sun, and the great majority within 700 pc. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5 m telescope at the Las Campanas Observatory in Chile. Spectral types were estimated based on relative intensities of some key line absorption ratios and comparisons to synthetic spectra. Effective temperatures were estimated from the reddening-free Q index, and projected rotational velocities were then determined via interpolation on a published grid that correlates the synthetic FWHM of the He I lines at 4026, 4388 and 4471 A with v sin i. As the sample has been selected solely on the basis of spectral types, it contains a selection of B stars in the field, in clusters, and in OB associations. The v sin i distribution obtained for the entire sample is found to be essentially flat for v sin i values between 0 and 150 km s{sup -1}, with only a modest peak at low projected rotational velocities. Considering subsamples of stars, there appears to be a gradation in the v sin i distribution with the field stars presenting a larger fraction of the slow rotators and the cluster stars distribution showing an excess of stars with v sin i between 70 and 130 km s{sup -1}. Furthermore, for a subsample of potential runaway stars we find that the v sin i distribution resembles the distribution seen in denser environments, which could suggest that these runaway stars have been subject to dynamical ejection mechanisms.

  9. Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Stilp, Adrienne M.

    2010-09-01

    Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds lsim75 km s-1 but are unlikely to be significant in higher-mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in real or simulated galaxies. Thus, while pressure support may help to alleviate possible tensions between rotation curve observations and ΛCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.

  10. PRESSURE SUPPORT IN GALAXY DISKS: IMPACT ON ROTATION CURVES AND DARK MATTER DENSITY PROFILES

    SciTech Connect

    Dalcanton, Julianne J.; Stilp, Adrienne M. E-mail: adrienne@astro.washington.ed

    2010-09-20

    Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds {approx}<75 km s{sup -1} but are unlikely to be significant in higher-mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in real or simulated galaxies. Thus, while pressure support may help to alleviate possible tensions between rotation curve observations and {Lambda}CDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.

  11. Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.

    1993-01-01

    We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.

  12. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Broderick, Avery E.; McKinney, Jonathan C. E-mail: jmckinne@stanford.ed

    2010-12-10

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  13. The neutral curve for stationary disturbances in rotating-disk flow

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1986-01-01

    The neutral curve for stationary vortex disturbances in rotating-disk flow is computed up to a Reynolds number of 10 to the 7th using the sixth-order system of linear stability equations which includes the effects of streamline curvature and Coriolis force. It is found that the neutral curve has two minima: one at R = 285.36 (upper branch) and the other at R = 440.88 (lower branch). At large Reynolds numbers, the upper branch tends to Stuart's asymptotic solution while the lower branch tends to a solution that is associated with the wave angle corresponding to the direction of zero mean wall shear.

  14. Dark matter in spiral galaxies. I. Galaxies with optical rotation curves

    SciTech Connect

    Kent, S.M.

    1986-06-01

    Data obtained with a CCD camera are presented for 37 Sb and Sc galaxies with existing optical rotation curves. The CCD images are used to derive luminosity profiles using standard reduction methods, and multicolor images are obtained for several galaxies in order to investigate the effects of color gradients. A new method for decomposing the profiles into bulge and disk components is presented. It is found that optical rotation curves do not always place strong constraints on the amount of dark matter in galaxies. Three methods of constraining the halo or bulge/disk parameters are presented. The stellar M/L ratio is shown to correlate with galaxy mass, morphological type, and inclination. 31 references.

  15. Testing Modified Newtonian Dynamics with Rotation Curves of Dwarf and Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Swaters, R. A.; Sanders, R. H.; McGaugh, S. S.

    2010-07-01

    Dwarf and low surface brightness (LSB) galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and LSB galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a 0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a 0, in the sense that lower surface brightness galaxies tend to have lower a 0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a 0 ≈ 0.7 × 10-8 cm s-2 is somewhat lower than derived from previous studies. Such lower fitted values of a 0 could occur if external gravitational fields are important.

  16. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  17. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  18. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Xu Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  19. Usefulness of Simple Rod Rotation to Correct Curve of Adolescent Idiopathic Scoliosis

    PubMed Central

    Kim, Ji Yong; Song, Kyungchul; Kim, Kyung Hyun; Rim, Dae Cheol

    2015-01-01

    Objective To correct apical vertebral rotation for adolescent idiopathic scoliosis (AIS), direct vertebral derotation (DVD) or simple rod rotation (SRR) might be considered. The aim of the present study is to introduce the surgical experiences of AIS by a Korean neurosurgeon and to evaluate the effectiveness of SRR for apical vertebral rotation. Methods A total of 9 patients (1 male and 8 females) underwent scoliosis surgery by a neurosurgeon of our hospital. The Lenke classifications of the patients were 1 of 1B, 2 of 1C, 1 of 2A, 1 of 2C, 3 of 5C and 1 of 6C. Surgery was done by manner of simple rod rotation on the concave side and in situ coronal bending. Coronal Cobb's angles, vertebral rotation angles and SRS-22 were measured on a plain standing X-ray and CT before and after surgery. Results The mean follow up period was 25.7 months (range : 5–52). The mean number of screw positioning level was nine (6–12). The mean age was 16.4 years (range : 13–25) at surgery. The mean Risser grade was 3.7±0.9. The apical vertebral rotation measured from the CT scans was 25.8±8.5° vs. 9.3±6.7° (p<0.001) and the Coronal Cobb's angle was 53.7±10.4° vs. 15.4±6.5° (p<0.001) preoperatively and postoperative, respectively. The SRS-22 improved from 71.9 preoperatively to 90.3 postoperatively. There were no complications related with the operations. Conclusion SRR with pedicle screw instrumentation could be corrected successfully by axial rotation without complications. SRR might serve as a good option to correct AIS deformed curves of AIS. PMID:26819688

  20. Determination of the anisotropies and reversal process in exchange-bias bilayers using a rotational magnetization curve approach

    SciTech Connect

    Sui Wenbo; Zhu Jingyi; Li Jinyun; Chai Guozhi; Jiang Changjun; Fan Xiaolong; Xue Desheng

    2011-05-15

    Rotational magnetization curves of the exchange-bias bilayers were investigated based on the Stoner-Wohlfarth model, which can be grouped into three cases according to the magnetization reversal process. The unidirectional anisotropic field H{sub E} = 41.4 Oe, the uniaxial anisotropic field H{sub k} = 4.2 Oe and the accurate direction of the easy axis of our FeNi/FeMn exchange-bias bilayers were obtained by fitting their experimental rotational magnetization curves. During the rotational process the magnetization reversal of the bilayers is a coherent rotation with a critical magnetization reversal field H{sub 1} = 41.372 Oe.

  1. Discriminating solar and antisolar differential rotation in high-precision light curves

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Arlt, Rainer

    2015-04-01

    Context. Surface differential rotation (DR) is one major ingredient of the magnetic field generation process in the Sun and likely in other stars. The term solar-like differential rotation describes the observation that solar equatorial regions rotate faster than polar ones. The opposite effect of polar regions rotating faster than equatorial ones (termed as antisolar DR) has only been observed in a few stars, although there is evidence from theoretical dynamo models. Aims: We present a new method of detecting the sign of DR (i.e., solar-like or antisolar DR) by analyzing long-term high-precision light curves with the Lomb-Scargle periodogram. Methods: We compute the Lomb-Scargle periodogram and identify a set of significant periods Pk, which we associate with active regions located at different latitudes on the stellar surface. If detectable, the first harmonics (P_k') of these periods were identified to compute their peak-height-ratios rk:= h(P'k)/h(Pk) . Spots rotating at lower latitudes generate less sine-shaped light curves, which requires additional power in the harmonics, and results in larger ratios rk. Comparing different ratios rk and the associated periods Pk yields information about the spot latitudes, and reveals the sign of DR. Results: We tested our method on different sets of synthetic light curves all exhibiting solar-like DR. The number of cases where our method detects antisolar DR is the false-positive rate of our method. Depending on the set of light curves, the noise level, the required minimum peak separation, and the presence or absence of spot evolution, our method fails to detect the correct sign in at most 20%. We applied our method to 50 Kepler G stars and found 21-34 stars with solar-like DR and 5-10 stars with antisolar DR, depending on the minimum peak separation. Conclusions: The method is able to determine the sign of DR in a statistical way with a low false-positive rate. Applying our method to real data might suggest that - within

  2. Microlensing results toward the galactic bulge, theory of fitting blended light curves, and discussion of weak lensing corrections

    NASA Astrophysics Data System (ADS)

    Thomas, Christian L.

    2006-06-01

    Analysis and results (Chapters 2-5) of the full 7 year Macho Project dataset toward the Galactic bulge are presented. A total of 450 high quality, relatively large signal-to-noise ratio, events are found, including several events exhibiting exotic effects, and lensing events on possible Sagittarius dwarf galaxy stars. We examine the problem of blending in our sample and conclude that the subset of red clump giants are minimally blended. Using 42 red clump giant events near the Galactic center we calculate the optical depth toward the Galactic bulge to be t = [Special characters omitted.] × 10 -6 at ( l, b ) = ([Special characters omitted.] ) with a gradient of (1.06 ± 0.71) × 10 -6 deg -1 in latitude, and (0.29±0.43) × 10 -6 deg -1 in longitude, bringing measurements into consistency with the models for the first time. In Chapter 6 we reexamine the usefulness of fitting blended light-curve models to microlensing photometric data. We find agreement with previous workers (e.g. Wozniak & Paczynski) that this is a difficult proposition because of the degeneracy of blend fraction with other fit parameters. We show that follow-up observations at specific points along the light curve (peak region and wings) of high magnification events are the most helpful in removing degeneracies. We also show that very small errors in the baseline magnitude can result in problems in measuring the blend fraction, and study the importance of non- Gaussian errors in the fit results. The biases and skewness in the distribution of the recovered blend fraction is discussed. We also find a new approximation formula relating the blend fraction and the unblended fit parameters to the underlying event duration needed to estimate microlensing optical depth. In Chapter 7 we present work-in-progress on the possibility of correcting standard candle luminosities for the magnification due to weak lensing. We consider the importance of lenses in different mass ranges and look at the contribution

  3. Kinematic Disturbances in Optical Rotation Curves among 89 Virgo Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Rubin, Vera C.; Waterman, Andrew H.; Kenney, Jeffrey D. P.

    1999-07-01

    For 89 galaxies, mostly spirals, in the Virgo Cluster region, we have obtained optical long-slit major-axis spectra of the ionized gas. We find the following: (1) One-half of the Virgo galaxies we observed have regular rotation patterns, while the other half exhibit kinematic disturbances ranging from mild to major. Velocity complexities are generally consistent with those resulting from tidal encounters or accretion events. Since kinematic disturbances are expected to fade within ~10^9 yr, many Virgo galaxies have experienced several significant kinematic disturbances during their lifetimes. (2) There is no strong correlation of rotation curve complexity with Hubble type, with galaxy luminosity, with local galaxy density, or with H I deficiency. (3) A few Virgo galaxies have ionized gas of limited extent, with velocities exceptionally low for their luminosities. In these galaxies the gas must be not rotationally supported. (4) There is a remarkable difference in the distribution of galaxy systemic velocity for galaxies with regular rotation curves and galaxies with disturbed rotation curves. Galaxies with regular rotation patterns show a flat distribution with velocities ranging from V_0=-300 km s^-1 to V_0=+2500 km s^-1 galaxies with disturbed kinematics have a Gaussian distribution that peaks at V_0=+1172+/-100 km s^-1, close to the cluster mean velocity. This latter distribution is virtually identical to the distribution of systemic velocity for elliptical galaxies in Virgo. However, disturbed galaxies are less concentrated to the cluster core than are the ellipticals; those near the periphery have velocities closer to the mean cluster velocity. Thus, spirals with disturbed kinematics are preferentially on radial orbits, which bring them to the denser core, where tidal interactions are strong and/or more common. Because they spend much time near apocenter, we observe them near the cluster periphery. Some may be falling into the core for the first time. These

  4. AN INVESTIGATION OF THE RELATIONSHIP BETWEEN SHAPE AND ROTATION TO EXPLAIN THE LIGHT CURVE OF NEREID

    SciTech Connect

    Hesselbrock, Andrew J.; Alexander, S. G.; Harp, Thomas W.; Abel, N. P.

    2013-06-15

    The observed photometric variability of Nereid over both short and long time scales has been known for some time and has remained a mystery. Schaefer et al. have documented some twenty years worth of observations that reveal that Nereid's light curve shows both short period intranight variations and long term active and inactive episodes. In this work, we report on a set of computational simulations of both the orbital and rotational motion of Nereid in an effort to understand Nereid's behavior. We model Nereid as an ellipsoid that is subject to torques from other bodies, and we calculate both its orbital and rotational motion. In addition, we only consider the case where Nereid is uniformly reflecting with no albedo variations on its surface. Thus, any brightness variations are caused solely by Nereid's changing orientation. We find for reasonable geometries, orientation, and spin rates that we can reproduce some of the features, but not all, of the observed light curve for Nereid. In particular, we show how active and inactive episodes can arise; however, our calculated light curve differs from observations in other aspects.

  5. Curved Radio Jet in Center of Nearby Galaxy Complicates Picture of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    New observations with the National Science Foundation's Very Long Baseline Array (VLBA) indicate that the inner workings of active galaxies may be considerably more complex than astronomers have previously thought. Drs. Alan Roy and James Ulvestad of the National Radio Astronomy Observatory, together with Drs. Edward Colbert and Andrew Wilson of the Space Telescope Science Institute and the University of Maryland, used the VLBA to image a light-year-sized radio jet in NGC 4151, a relatively nearby spiral galaxy. The jet seen by the radio telescopes is not aligned as the scientists expected, and this misalignment may require changes to theoretical models of active galactic nuclei. The astronomers presented their findings today to the American Astronomical Society meeting in Winston- Salem, North Carolina. The radio structure at the center of the Seyfert galaxy NGC 4151, located approximately 43 million light-years from Earth, was imaged with a resolution of better than 1 light-year. The radio images were made using the 25-meter (82-foot) telescopes of the VLBA, an array of 10 telescopes spread out over the full length and width of the United States, from the Virgin Islands to Hawaii. Seyfert galaxies are spiral galaxies that are nearby examples of galaxies containing active galactic nuclei (AGN), which are thought to be powered by black holes having masses millions of times greater than the Sun. They represent nearby cousins of the more distant and energetic quasars; their relative proximity to Earth permits images to be made with much finer spatial resolution than is possible for quasars. The radio images of NGC 4151 reveal a chain of knots several light years in length, separated by a few light months, which then appear to make a fairly sharp turn -- about 55 degrees -- to merge with a previously known straight radio jet about 800 light-years in length. This large-scale radio jet is nearly coincident with a complex of gas clouds imaged at optical wavelengths with

  6. TESTING MODIFIED NEWTONIAN DYNAMICS WITH ROTATION CURVES OF DWARF AND LOW SURFACE BRIGHTNESS GALAXIES

    SciTech Connect

    Swaters, R. A.; McGaugh, S. S.; Sanders, R. H.

    2010-07-20

    Dwarf and low surface brightness (LSB) galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and LSB galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a {sub 0}, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a{sub 0}, in the sense that lower surface brightness galaxies tend to have lower a{sub 0}. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a{sub 0} {approx} 0.7 x 10{sup -8} cm s{sup -2} is somewhat lower than derived from previous studies. Such lower fitted values of a{sub 0} could occur if external gravitational fields are important.

  7. On the vacuum Einstein equations along curves with a discrete local rotation and reflection symmetry

    SciTech Connect

    Korzyński, Mikołaj; Bentivegna, Eloisa E-mail: ian.hinder@aei.mpg.de

    2015-08-01

    We discuss the possibility of a dimensional reduction of the Einstein equations in S{sup 3} black-hole lattices. It was reported in previous literature that the evolution of spaces containing curves of local, discrete rotation and reflection symmetry (LDRRS) can be carried out via a system of ODEs along these curves. However, 3+1 Numerical Relativity computations demonstrate that this is not the case, and we show analytically that this is due to the presence of a tensorial quantity which is not suppressed by the symmetry. We calculate the term analytically, and verify numerically for an 8-black-hole lattice that it fully accounts for the anomalous results, and thus quantify its magnitude in this specific case. The presence of this term prevents the exact evolution of these spaces via previously-reported methods which do not involve a full 3+1 integration of Einstein's equation.

  8. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    NASA Astrophysics Data System (ADS)

    Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro

    2016-07-01

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  9. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  10. Bona Fide, Strong-Variable Galactic Luminous Blue Variable Stars are Fast Rotators: Detection of a High Rotational Velocity in HR Carinae

    NASA Astrophysics Data System (ADS)

    Groh, J. H.; Damineli, A.; Hillier, D. J.; Barbá, R.; Fernández-Lajús, E.; Gamen, R. C.; Moisés, A. P.; Solivella, G.; Teodoro, M.

    2009-11-01

    We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV λλ4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v rot sime 150 ± 20 km s-1 is needed (assuming an inclination angle of 30°), implying that HR Car rotates at sime0.88 ± 0.2 of its critical velocity for breakup (v crit). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the "LBV minimum instability strip"). We suggest this region corresponds to where v crit is reached. To the left of this strip, a forbidden zone with v rot/v crit>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v rot, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase. Based on observations made with the 1.6 m telescope at the Observatório Pico dos Dias (OPD-LNA, Brazil), with the 2.15 m telescope of the Complejo Astronomico El Leoncito (CASLEO, Argentina), and with the 2.2 m ESO telescope at La Silla (Chile) under program 083.D-0589. CASLEO is operated under agreement between CONICET, SECYT, and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  11. Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Di Teodoro, E. M.; Fraternali, F.; Miller, S. H.

    2016-10-01

    The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ~ 1, observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ~ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s-1, which leads to V/σ = 3-10. These characteristics are similar to those of disc galaxies in the local Universe. Finally, we also report no significant evolution of the stellar-mass Tully-Fisher relation. Our results show that disc galaxies are kinematically mature and rotation-dominated at z ~ 1 already. The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A77

  12. Declining rotation curves - The end of a conspiracy. [HI rotation velocity decrease of two galaxies as indication of large luminous to dark mass ratio

    SciTech Connect

    Casertano, S.; Van gorkom, J.H. Pittsburgh Univ., PA Columbia Univ., New York National Radio Astronomy Observatory, Socorro, NM )

    1991-04-01

    Two new H I rotation curves, observed at the Very Large Array as part of a search for galaxies with extended H I envelopes, are presented. The two curves are characterized by a large decrease in rotation velocity (more than 50 km/s, or about 25 percent of the maximum rotation velocity) between 1 and 3 optical radii. The velocity decrease is present on both sides of each galaxy and is not due to projection effects. The decrease in rotation velocity is interpreted as an indication of a large ratio of luminous to dark mass in the luminous regions of these systems. While confirming the idea that dark matter is ubiquitous, the discovery indicates that the match between the properties of luminous and dark matter required by the well-known 'conspiracy' is not perfect. 69 refs.

  13. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    SciTech Connect

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil E-mail: salucci@sissa.it

    2014-03-10

    The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  14. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-06-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

  15. A method for evaluating models that use galaxy rotation curves to derive the density profiles

    NASA Astrophysics Data System (ADS)

    de Almeida, Álefe O. F.; Piattella, Oliver F.; Rodrigues, Davi C.

    2016-11-01

    There are some approaches, either based on General Relativity (GR) or modified gravity, that use galaxy rotation curves to derive the matter density of the corresponding galaxy, and this procedure would either indicate a partial or a complete elimination of dark matter in galaxies. Here we review these approaches, clarify the difficulties on this inverted procedure, present a method for evaluating them, and use it to test two specific approaches that are based on GR: the Cooperstock-Tieu (CT) and the Balasin-Grumiller (BG) approaches. Using this new method, we find that neither of the tested approaches can satisfactorily fit the observational data without dark matter. The CT approach results can be significantly improved if some dark matter is considered, while for the BG approach no usual dark matter halo can improve its results.

  16. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  17. Declining rotation curves of galaxies as a test of gravitational theory

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Bazkiaei, Amir E.; Zonoozi, Akram Hasani; Kroupa, Pavel

    2016-06-01

    Unlike Newtonian dynamics which is linear and obeys the strong equivalence principle, in any non-linear gravitation such as Milgromian dynamics (MOND), the strong version of the equivalence principle is violated and the gravitational dynamics of a system is influenced by the external gravitational field in which it is embedded. This so called external field effect (EFE) is one of the important implications of MOND and provides a special context to test Milgromian dynamics. Here, we study the rotation curves (RCs) of 18 spiral galaxies and find that their shapes constrain the EFE. We show that the EFE can successfully remedy the overestimation of rotation velocities in 80 per cent of the sample galaxies in Milgromian dynamics fits by decreasing the velocity in the outer part of the RCs. We compare the implied external field with the gravitational field for non-negligible nearby sources of each individual galaxy and find that in many cases it is compatible with the EFE within the uncertainties. We therefore argue that in the framework of Milgromian dynamics, one can constrain the gravitational field induced from the environment of galaxies using their RCs. We finally show that taking into account the EFE yields more realistic values for the stellar mass-to-light ratio in terms of stellar population synthesis than the ones implied without the EFE.

  18. A New Estimator of the Deceleration Parameter from Galaxy Rotation Curves

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2016-06-01

    The nature of dark energy can be probed by the derivative Q={{dq}(z)/{dz}| }0 at redshift z = 0 of the deceleration parameter q(z). It is probably static if Q\\lt 1 or dynamic if Q\\gt 2.5, supporting ΛCDM or {{Λ }}=(1-q){H}2, respectively, where H denotes the Hubble parameter. We derive q=1-{(4π {a}0/{cH})}2, enabling a determination of q(z) by measuring Milgrom’s parameter, {a}0(z), in galaxy rotation curves, equivalent to the coefficient A in the Tully–Fisher relation {V}c4={{AM}}b between a rotation velocity V c and a baryonic mass M b . We infer that dark matter should be extremely light, with clustering limited to the size of galaxy clusters. The associated transition radius to non-Newtonian gravity can conceivably be probed in a freefall Cavendish-type experiment in space.

  19. Broad-line active galactic nuclei rotate faster than narrow-line ones.

    PubMed

    Kollatschny, Wolfram; Zetzl, Matthias

    2011-02-17

    The super-massive black holes of 10(6)M(⊙) to 10(9)M(⊙) that reside in the nuclei of active galaxies (AGN) are surrounded by a region emitting broad lines, probably associated with an accretion disk. The diameters of the broad-line regions range from a few light-days to more than a hundred light-days, and cannot be resolved spatially. The relative significance of inflow, outflow, rotational or turbulent motions in the broad-line regions as well as their structure (spherical, thin or thick accretion disk) are unknown despite intensive studies over more than thirty years. Here we report a fundamental relation between the observed emission linewidth full-width at half-maximum (FWHM) and the emission line shape FWHM/σ(line) in AGN spectra. From this relation we infer that the predominant motion in the broad-line regions is Keplerian rotation in combination with turbulence. The geometry of the inner region varies systematically with the rotation velocity: it is flattest for the fast-rotating broad-line objects, whereas slow-rotating narrow-line AGN have a more spherical structure. Superimposed is the trend that the line-emitting region becomes geometrically thicker towards the centre within individual galaxies. Knowing the rotational velocities, we can derive the central black-hole masses more accurately; they are two to ten times smaller than has been estimated previously.

  20. The Light-Curve and Rotation Rate of 'Active Asteroid' 313P/Gibbs

    NASA Astrophysics Data System (ADS)

    Milewski, Dave Gerald

    2016-10-01

    The 'Active Asteroids' are a strange, yet newly discovered class of small bodies in the Solar System that have the orbital and dynamical properties of asteroids, but also the physical properties of comets (ejection of dust and volatile materials). Of the known ~25 Active Asteroids discovered thus far (Jewitt, Hseih, Argwal, 2015), only 4 have been known to be active on subsequent multiple occasions 238P/Read, 133P/Elst-Pizarro, 324P/La Sagra, (Jewitt et al. 2016) and 313P/Gibbs. In this work, we have determined the rotation rate and light-curve for Active Asteroid 313P/Gibbs using the Keck 10-m telescope to better understand the mechanisms and drivers of subsequent activity in this Solar System Small Body so that we may form a more complete picture of this population, better characterize them, and add to our inventory of Solar System small bodies to form a more complete model of the formation of the Solar System as well as what this may imply for future detection of activity in the Active Asteroid population.

  1. OPTICAL/NEAR-INFRARED SELECTION OF RED QUASI-STELLAR OBJECTS: EVIDENCE FOR STEEP EXTINCTION CURVES TOWARD GALACTIC CENTERS?

    SciTech Connect

    Fynbo, J. P. U.; Krogager, J.-K.; Vestergaard, M.; Geier, S.; Venemans, B.; Noterdaeme, P.; Moller, P.; Ledoux, C.

    2013-01-15

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z {approx}> 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 10{sup 10} M{sub Sun} (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 10{sup 10} M{sub Sun} kpc{sup -2}, which is among the highest measured for early

  2. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'. PMID:21525928

  3. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  4. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    SciTech Connect

    Garmany, C. D.; Glaspey, J. W.; Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K.; Oey, M. S.; Bensby, T.

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  5. Quark matter as dark matter in modeling galactic halo

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Kuhfittig, P. K. F.; Amin, Ruhul; Mandal, Gurudas; Ray, Saibal; Islam, Nasarul

    2012-08-01

    Considering the flat rotation curves as input and treating the matter content in the galactic halo region as quark matter, we have found out a background spacetime metric for the region of the galactic halo. We obtain fairly general conditions that ensure that gravity in the halo region is attractive. We also investigate the stability of circular orbits, along with a different role for quark matter. Bag-model quark matter meeting these conditions therefore provides a suitable model for dark matter.

  6. Ultraviolet light curves of galactic and extra-galactic classical CNO novae: PW Vul, OS, and LMC 1988 no. 1 and no. 2

    NASA Technical Reports Server (NTRS)

    Austin, S.; Starrfield, Sumner G.; Saizar, P.; Shore, Steven N.; Sonneborn, George

    1990-01-01

    In order to determine the comparative energy budgets of novae in outburst, the ultraviolet light curves for a number of novae are determined. The low dispersion IUE (International Ultraviolet Explorer) spectra of PW Vul 1984, OS And 1986, LMC 1988 number 1 and number 2 and obtained values for the integrated energy emitted in the wavelength interval from 1200 to 3400 A, not including the geocoronal Lyman-alpha emission line are re-examined. The light curves show that the brightness of the nova declines much more slowly in the ultraviolet than the optical, that the maximum brightness of the nova occurs much later in the ultraviolet than in the optical, and the peak luminosity is super Eddington for LMC 1988 number 2.

  7. Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Haverkorn, M.; Gaensler, B. M.; Taylor, A. R.; Bizunok, N. S.; McClure-Griffiths, N. M.; Dickey, J. M.; Green, A. J.

    2007-07-01

    We present new Faraday rotation measures (RMs) for 148 extragalactic radio sources behind the southern Galactic plane (253deg<=l<=356deg, |b|<=1.5deg), and use these data in combination with published data to probe the large-scale structure of the Milky Way's magnetic field. We show that the magnitudes of these RMs oscillate with longitude in a manner that correlates with the locations of the Galactic spiral arms. The observed pattern in RMs requires the presence of at least one large-scale magnetic reversal in the fourth Galactic quadrant, located between the Sagittarius-Carina and Scutum-Crux spiral arms. To quantitatively compare our measurements to other recent studies, we consider all available extragalactic and pulsar RMs in the region we have surveyed, and jointly fit these data to simple models in which the large-scale field follows the spiral arms. In the best-fitting model, the magnetic field in the fourth Galactic quadrant is directed clockwise in the Sagittarius-Carina spiral arm (as viewed from the north Galactic pole), but is oriented counterclockwise in the Scutum-Crux arm. This contrasts with recent analyses of pulsar RMs alone, in which the fourth-quadrant field was presumed to be directed counterclockwise in the Sagittarius-Carina arm. Also in contrast to recent pulsar RM studies, our joint modeling of pulsar and extragalactic RMs demonstrates that large numbers of large-scale magnetic field reversals are not required to account for observations.

  8. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    SciTech Connect

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.; Skowron, Jan; Fouque, Pascal; Gonzalez, Oscar A.; Udalski, Andrzej; Szymanski, Michal K.; Kubiak, Marcin; Pietrzynski, Grzegorz; Soszynski, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Lukasz; Poleski, Radoslaw

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.

  9. The variation of rotation curve shapes as a signature of the effects of baryons on dark matter density profiles

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.

    2015-12-01

    Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.

  10. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    SciTech Connect

    Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke; Ofek, Eran O.; Laher, Russ; Surace, Jason; Masci, Frank; Helou, George; Levitan, David; Prince, Thomas A.; Kulkarni, Shrinivas

    2015-09-15

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we find that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms

  11. Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry

    NASA Astrophysics Data System (ADS)

    Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; Surace, Jason; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas

    2015-09-01

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ˜53,000 fitted periods. By this method we find that 9033 of our light curves (of ˜8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ˜2 g cm-3, while C types have a lower limit of between 1 and 2 g cm-3. These results are in agreement with previous density estimates. For 5-20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of

  12. Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry

    NASA Astrophysics Data System (ADS)

    Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; Surace, Jason; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas

    2015-09-01

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we find that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm‑3, while C types have a lower limit of between 1 and 2 g cm‑3. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a

  13. Space telescope searches for black holes in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.

    1989-01-01

    The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.

  14. Rotational kinematics of a curved fold: The Balzes anticline (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pintó, A.; Pueyo, E. L.; Calvín, P.; Sánchez, E.; Ramajo, J.; Casas, A. M.; Ramón, M. J.; Pocoví, A.; Barnolas, A.; Román, T.

    2016-05-01

    This study deals with how vertical-axis rotations are accommodated in thrust fronts. Studies on the rotational kinematics of fold and thrust belts are limited owing to the scarcity of the record of syntectonic rocks and other data required for 4D reconstruction approaches. We studied the Balzes anticline, a 17-km long, thrust-related, arc-shaped anticline with dense paleomagnetic sampling (75 sites) to unravel the origin of its curvature (about 50° of arc in map view). The availability of both synfolding and synrotational indicators enables us to decipher the complete kinematic history of the fold. Reliable paleomagnetic data (more than 500 specimens and about 1000 measurements) were obtained from Ypresian to Priabonian rocks, typically with six demagnetization steps. The ChRM is unblocked between 420 and 575 °C in most samples (85%), and at 675 °C in the others. The primary direction displays two polarities and passes the fold test. Vertical axis rotation values for the structure range from non-significant up to > 80° clockwise. A strike vs. rotation diagram clearly relates this variability to the fold curvature (VAR = - 46° + 0.5 ∗ TREND [R = 0.97]) and reveals the addition of primary and secondary curvatures. The original (primary) curvature is related to the emplacement of the thrust sheet underlying the Balzes anticline; it shows an obliquity of approximately 15° with respect to the expected Pyrenean trend. Progressive unconformity in the field (Santa Marina site) provides a record of a Middle-Late Lutetian major folding event. The detailed analysis of the synrotational sedimentary record together with accurate temporal calibration based on previous magnetostratigraphic data allows us to date the rotation stage as Lutetian-Bartonian and to estimate the rotation velocity of the Balzes anticline to have been about 5.2°/Ma, both in agreement with previously published observations for the South Pyrenean front.

  15. Thermal light curves of Earth-like planets: 1. Varying surface and rotation on planets in a terrestrial orbit

    NASA Astrophysics Data System (ADS)

    Gómez-Leal, I.; Codron, F.; Selsis, F.

    2016-05-01

    The integrated thermal emission of an exoplanet and its variations along the orbital motion can carry information about the climatic conditions and the rotation of the planet. In this study, we use the LMDZ 3D Global Climate Model (GCM) to simulate the climate of a synthetic Earth and three quasi-Earth configurations: a slowly rotating Earth, an ocean-covered Earth and its snowball counterpart. We also generate the time-dependent broadband thermal emission of the planet from these simulations. In a first step, we validate the model by comparing the synthetic Earth emission with the actual emission of our planet as constrained by observations. Then, we determine the main properties of the climate and emission of the three Earth-like planets and compare them to those of the Earth. We show that planets with an uneven distribution of continents exhibit a maximum of emission during the summer of the hemisphere with larger continental masses, and they may exhibit a maximum of emission at apastron. Large convective clouds might form over the continents of slow rotating planets, having an important effect over their climate and their emission. We also show that, in all the modeled cases, the equilibrium temperature, the Bond albedo and the rotation period can in theory be retrieved from the light curve by a distant observer. The values obtained at transiting geometries have a low deviation from the global values for cases with an axis tilt similar to that of the Earth, and we are able to distinguish between the four planets presented here by the data obtained from their light curves. However, this might not be the case under different conditions.

  16. Rotational Analysis of Phase Plane Curves: Complex and Pure Imaginary Eigenvalues

    ERIC Educational Resources Information Center

    Murray, Russell H.

    2005-01-01

    Although the phase plane can be plotted and analyzed using an appropriate software package, the author found it worthwhile to engage the students with the theorem and the two proofs. The theorem is a powerful tool that provides insight into the rotational behavior of the phase plane diagram in a simple way: just check the signs of c and [alpha].…

  17. THE ROTATION PERIOD AND LIGHT-CURVE AMPLITUDE OF KUIPER BELT DWARF PLANET 136472 MAKEMAKE (2005 FY9)

    SciTech Connect

    Heinze, A. N.; DeLahunta, Daniel E-mail: ddelahun@mail.rochester.edu

    2009-08-15

    Kuiper Belt dwarf planet 136472 Makemake, formerly known as 2005 FY9, is currently the third-largest known object in the Kuiper Belt, after the dwarf planets Pluto and Eris. It is currently second only to Pluto in apparent brightness, due to Eris' much larger heliocentric distance. Makemake shows very little photometric variability, which has prevented confident determination of its rotation period until now. Using extremely precise time-series photometry, we find that the rotation period of Makemake is 7.7710 {+-} 0.0030 hr, where the uncertainty is a 90% confidence interval. An alias period is detected at 11.41 hr, but is determined with approximately 95% confidence not to be the true period. Makemake's 7.77 hr rotation period is in the typical range for Kuiper Belt objects, consistent with Makemake's apparent lack of a substantial satellite to alter its rotation through tides. The amplitude of Makemake's photometric light curve is 0.0286 {+-} 0.0016 mag in V. This amplitude is about 10 times less than Pluto's, which is surprising given the two objects' similar sizes and spectral characteristics. Makemake's photometric variability is instead similar to that of Eris, which is so small that no confident rotation period has yet been determined. It has been suggested that dwarf planets such as Makemake and Eris, both farther from the Sun and colder than Pluto, exhibit lower photometric variability because they are covered with a uniform layer of frost. Such a frost is probably the correct explanation for Eris. However, it may be inconsistent with the spectrum of Makemake, which resembles reddish Pluto more than neutrally colored Eris. Makemake may instead be a more Pluto-like object that we observe at present with a nearly pole-on viewing geometry-a possibility that can be tested with continuing observations over the coming decades.

  18. Could wormholes form in dark matter galactic halos?

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Shit, G. C.; Sen, Banashree; Ray, Saibal

    2016-01-01

    We estimate expression for velocity as a function of the radial coordinate r by using polynomial interpolation based on the experimental data of rotational velocities at distant outer regions of galaxies. The interpolation technique has been used to estimate fifth degree polynomial followed by cubic spline interpolation. This rotational velocity is used to find the geometry of galactic halo regions within the framework of Einstein's general relativity. In this paper we have analyzed features of galactic halo regions based on two possible choices for the dark matter density profile, viz. Navarro, Frenk & White (NFW) type (Navarro et al. in Astrophys. J. 462:563, 1996) and Universal Rotation Curve (URC) (Castignani et al. in Nat. Sci. 4:265, 2012). It is argued that spacetime of the galactic halo possesses some of the characteristics needed to support traversable wormholes.

  19. Rotational flow in a curved-wall diffuser designed by using the inverse method of solution of potential flow theory

    NASA Astrophysics Data System (ADS)

    Yang, T. T.; Ntone, F.

    1981-05-01

    Curved wall diffusers designed by using an inverse method of solution of potential flow theory have been shown to be both short and highly efficient. These features make this type of diffuser attractive in thrust ejector applications. In ejectors, however, the flow at the diffuser inlet is nearly a uniform shear flow. This paper presents a method used in examining the flow velocity along the diffuser wall and some of the analytical results for diffusers designed with potential flow theory and receiving a rotational flow. The inlet flow vorticity and the diffuser area ratios prescribed in the inverse solution of the irrotational flow are the parameters of the study. The geometry of a sample ejector using such a diffuser and its estimated thrust augmentation ratio are also presented.

  20. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  1. Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2013-04-01

    All galaxies began as spiral galaxies. The early universe began with sets of two or more pre-galactic arms orbiting each other. As gravitational attraction between the arms took effect, the fore-sections of the arms tangentially collided forming spiral galaxies when they attached with the orbital motion of the arms being converted to the rotational motion of the newly formed spiral galaxies or (Iφ)arm1+ (Iφ)arm2+ ...+ (Iφ)armn= (Iφ)galaxy. If the centripetal force on the arms is more than the gravitational force on the arms, the spiral galaxy remains a spiral galaxy i.e. mv^2/r>=Gmarmmgalaxy/r^2. If the galaxy is slowly rotating, the spiral arms collapse into the body of the galaxy because the gravitational force is greater than the centripetal force on the arms and an elliptical galaxy is formed i.e. mv^2/r < Gmarmsmgalaxy/r^2.

  2. Small-scale variations in the galactic magnetic field - The rotation measure structure function and birefringence in interstellar scintillations

    NASA Technical Reports Server (NTRS)

    Simonetti, J. H.; Cordes, J. M.; Spangler, S. R.

    1984-01-01

    The structure function of rotation measures of extragalactic sources and birefringence in interstellar scintillations are used to investigate variations in the interstellar magnetic field on length scales of about 0.01-100 pc and 10 to the 11th cm, respectively. Model structure functions are derived for the case of a power-law power spectrum of irregularities in the quantity (n(e)B), and an estimate for the structure function is computed for several regions of the sky using data on extragalactic sources. The results indicate an outer angular scale for rotation measure (RM) variations of not less than about 5 deg (a linear scale of about 9-90 pc at a distance of 0.1-1 kpc). There is also evidence for RM variations on angular scales as small as 1 arcmin, but it cannot be determined whether these are intrinsic to the source or caused by the interstellar medium. The effect of a random, Faraday-active medium on the diffraction of radio waves is derived, and an upper limit to the variations in n(e)B on a length scale of 10 to the 11th cm is obtained from available observations.

  3. Effects of the dark energy and flat rotation curve on the gravitational time delay of particle with non-zero mass

    NASA Astrophysics Data System (ADS)

    Sarkar, Tamal; Ghosh, Shubhrangshu; Bhadra, Arunava

    2016-07-01

    The effects of several dark energy models on gravitational time delay of particles with non-zero mass are investigated and analytical expressions for the same are obtained at the first order accuracy. Also the expression for gravitational time delay under the influence of conformal gravity potential that well describes the flat rotation curve of spiral galaxies is derived. The findings suggest that (i) the conformal gravity description of dark matter reduces the net time delay in contrast to the effect of normal dark matter, and therefore in principle the models can be discriminated using gravitational time delay observations, and (ii) the effect of dark energy/flat rotation curve may be revealed from high-precision measurements of gravitational time delay of particles involving the megaparsec and beyond distance scale.

  4. SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star

    NASA Astrophysics Data System (ADS)

    Oshagh, M.; Boisse, I.; Boué, G.; Montalto, M.; Santos, N. C.; Bonfils, X.; Haghighipour, N.

    2013-01-01

    We present an improved version of SOAP named "SOAP-T", which can generate the radial velocity variations and light curves for systems consisting of a rotating spotted star with a transiting planet. This tool can be used to study the anomalies inside transit light curves and the Rossiter-McLaughlin effect, to better constrain the orbital configuration and properties of planetary systems and the active zones of their host stars. Tests of the code are presented to illustrate its performance and to validate its capability when compared with analytical models and real data. Finally, we apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space telescope and use this system to discuss the capability of this tool in analyzing light curves for the cases where the transiting planet overlaps with the star's spots. The tool's public interface is available at http://www.astro.up.pt/resources/soap-t/

  5. Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. I. Method and simulations

    NASA Astrophysics Data System (ADS)

    Gnerucci, A.; Marconi, A.; Capetti, A.; Axon, D. J.; Robinson, A.

    2010-02-01

    This is the first in a series of papers in which we study the application of spectroastrometry in the context of gas kinematical studies aimed at measuring the mass of supermassive black holes. The spectroastrometrical method consists in measuring the photocenter of light emission in different wavelength or velocity channels. In particular we explore the potential of spectroastrometry of gas emission lines in galaxy nuclei to constrain the kinematics of rotating gas disks and to measure the mass of putative supermassive black holes. By means of detailed simulations and test cases, we show that the fundamental advantage of spectroastrometry is that it can provide information on the gravitational potential of a galaxy on scales significantly smaller (~1/10) than the limit imposed by the spatial resolution of the observations. We then describe a simple method to infer detailed kinematical informations from spectroastrometry in longslit spectra and to measure the mass of nuclear mass concentrations. Such method can be applied straightforwardly to integral field spectra, which do not have the complexities due to a partial spatial covering of the source in the case of longslit spectra.

  6. Aberration in proper motions for Galactic stars

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Xie, Y.; Zhu, Z.

    2014-12-01

    Accelerations of both the solar system barycenter (SSB) and stars in the MilkyWay cause a systematic observational effect on the stellar proper motions, which was first studied by J. Kovalevsky (2003). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center (GC). We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. We show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Then we investigate the applicability of the theoretical expressions: if the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression with approximation proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. In the future this aberrational effect under consideration should be considered with high-accurate astrometry, particularly in constructing the Gaia celestial reference system realized by Galactic stars.

  7. Spiral Galactic Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2009-05-01

    Before the period of galactic formation the uiverse consisted of a vast number of pre-formed systems consisting of two or more pre-galactic arms, the arms orbiting each other. As the orbits of the arms decayed the sides of the fore-sections of the arms tangentially collided and joined and thereby forming multi-armed spiral galaxies which began to rotate.The rotation resulted from the conversion of the orbital motion of the individual arms when joined into faster rotational motion of the newly formed galaxy. The spiral arms were maintained by the centripital force of the rapidly rotational motion of the galaxy system. As the rotational motion of the galaxy slowed down the arms of the spiral galaxy collapsed towards the body of the galaxy due to lessening of centripetal force on the arms and elliptical galaxies were formed and with further lessening of galactic rotational motion galactic disks were formed. One can see in galaxies M51, M100, NGC2336 and NGC4939 the galactic arms came from external orbit, not disks or instabilities in support of this theory. Also in support of this theory of galactic evolution is that spiral galaxies rotate faster than ellipticals or disks.

  8. Milky Way Kinematics. II. A Uniform Inner Galaxy H I Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McClure-Griffiths, N. M.; Dickey, John M.

    2016-11-01

    Using atomic hydrogen (H i) data from the VLA Galactic Plane Survey, we measure the H i terminal velocity as a function of longitude for the first quadrant of the Milky Way. We use these data, together with our previous work on the fourth Galactic quadrant, to produce a densely sampled, uniformly measured, rotation curve of the northern and southern Milky Way between 3 {kpc}\\lt R\\lt 8 {kpc}. We determine a new joint rotation curve fit for the first and fourth quadrants, which is consistent with the fit we published in McClure-Griffiths & Dickey and can be used for estimating kinematic distances interior to the solar circle. Structure in the rotation curves is now exquisitely well defined, showing significant velocity structure on lengths of ∼200 pc, which is much greater than the spatial resolution of the rotation curve. Furthermore, the shape of the rotation curves for the first and fourth quadrants, even after subtraction of a circular rotation fit shows a surprising degree of correlation with a roughly sinusoidal pattern between 4.2\\lt R\\lt 7 kpc.

  9. A new integral representation for reconstructing the density distribution of matter in the discs of spiral galaxies using the rotation velocity curve in it

    NASA Astrophysics Data System (ADS)

    Shatskiy, A. A.; Novikov, I. D.; Silchenko, O. K.; Hansen, J.; Katkov, I. Yu.

    2012-03-01

    In this paper, we propose a new integral representation for reconstructing the surface density of matter in the flat discs of spiral galaxies. The surface density is expressed through the observed rotation velocity curves of visible matter in the discs of spiral galaxies. The new integral representation is not based on the quadrature of special functions. The solution that is found is used to process and analyse observational data from several spiral galaxies. The new integral representation can be used to more accurately estimate the amount of dark matter in spiral galaxies.

  10. Numerical computation of gravitational field of infinitely thin axisymmetric disc with arbitrary surface mass density profile and its application to preliminary study of rotation curve of M33

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-03-01

    We developed a numerical method to compute the gravitational field of an infinitely thin axisymmetric disc with an arbitrary surface mass density profile. We evaluate the gravitational potential by a split quadrature using the double exponential rule and obtain the acceleration vector by numerically differentiating the potential by Ridder's algorithm. The new method is of around 12 digit accuracy and sufficiently fast because requiring only one-dimensional integration. By using the new method, we show the rotation curves of some non-trivial discs: (i) truncated power-law discs, (ii) discs with a non-negligible centre hole, (iii) truncated Mestel discs with edge softening, (iv) double power-law discs, (v) exponentially damped power-law discs, and (vi) an exponential disc with a sinusoidal modulation of the density profile. Also, we present a couple of model fittings to the observed rotation curve of M33: (i) the standard deconvolution by assuming a spherical distribution of the dark matter and (ii) a direct fit of infinitely thin disc mass with a double power-law distribution of the surface mass density. Although the number of free parameters is a little larger, the latter model provides a significantly better fit. The FORTRAN 90 programs of the new method are electronically available.

  11. Wormhole solutions for f(G) gravity in galactic halo region

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ismat Fatima, H.

    2016-04-01

    In this paper, we study static spherically symmetric wormhole solutions in galactic halo region. Two observational results, Navarro-Frenk-White energy density profile in standard cosmological model and the observed flat rotational curves, are used to discuss traversable wormholes supported by galactic halo in modified Gauss-Bonnet gravity. We explore these solutions either by considering a viable f(G) model to construct shape function or by specifying the shape function to deduce f(G) model. We explore energy conditions and find physically acceptable wormhole solutions threaded by normal matter for all values of r. Finally, we investigate stability of the resulting wormhole solutions.

  12. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  13. Investigating the Relationship of Luminosity and Curvature Using the Luminous Convolution Model for Spiral Galaxy Rotation Curves

    NASA Astrophysics Data System (ADS)

    Crowley, Meagan

    2016-03-01

    The Luminous Convolution Model maps velocities of galaxies given by data of visible matter with respect to the relative curvature of the emitter and receiver galaxy using five different models of the Milky Way. This model purports that observations made of the luminous profiles of galaxies do not take the relative curvatures of the emitter and receiver galaxies into account, and thus maps the luminous profile onto the curvature using Lorentz transformations, and then back into the flat frame where local observations are made. The five models of the Milky Way used to compile galaxy data are proposed by Klypin:Anatoly (2002) A and B, Xue (2008), Sofue (2013), and a mixture of Xue and Sofue data. The Luminous Convolution Model has been able to accurately describe the rotation of spiral galaxies through this method without the need for dark matter. In each fitting of a given galaxy, the luminous profile graph exhibits a crossing with the graph of the curvature component, suggesting a correlation between the two. This correlation is currently under investigation as being related to phenomena apparent within each galaxy. To determine the correlation between the luminous profile and the curvature component, a functional analysis of the Luminous Convolution Model will be presented

  14. Understanding the kinematics of Galactic centre gas

    NASA Astrophysics Data System (ADS)

    Binney, James; Gerhard, Ortwin E.; Stark, Antony A.; Bally, John; Uchida, Keven I.

    1991-09-01

    A coherent picture is constructed of the Galaxy's H I, CO and CS emissions in the region l below 10 deg, b below 0.5 deg. The flow of gas at the Galactic center is dominated by a bar that has corotation at r = 2.4 + or - 0.5 kpc, which is viewed at an angle of 16 + or - 2 deg from its major axis. The first CO emission arises where gas is obliged to switch from x(1) orbits to x(2) orbits, in the notation of Contopoulos. This gives rise to a shock and a clear signature in the (l, v) diagram. The great Galactic center molecular clouds such as Sgr B, are on x(2) orbits. From the structure of the H I terminal velocity envelope, it is deduced that the central mass density scales as rho varies with r to the -1.75 power out to at least about 1.2 kpc along the bar's major axis. Consequently, the circular velocity curve is rising significantly through the radius range where naive analysis of the tangent velocity leads to a falling rotation curve. The great ring of molecular material at r of about 3.5 kpc is probably associated with the bar's outer Lindblad resonance, and the region of low gas densities inward from there with corotation.

  15. The α CrB binary system: A new radial velocity curve, apsidal motion, and the alignment of rotation and orbit axes

    NASA Astrophysics Data System (ADS)

    Schmitt, J. H. M. M.; Schröder, K.-P.; Rauw, G.; Hempelmann, A.; Mittag, M.; González-Pérez, J. N.; Czesla, S.; Wolter, U.; Jack, D.

    2016-02-01

    We present a new radial velocity curve for the two components of the eclipsing spectroscopic binary α CrB. This binary consists of two main-sequence stars of types A and G in a 17.3599-day orbit, according to the data from our robotic TIGRE facility that is located in Guanajuato, Mexico. We used a high-resolution solar spectrum to determine the radial velocities of the weak secondary component by cross-correlation and wavelength referencing with telluric lines for the strongly rotationally broadened primary lines (v sin(i) = 138 km s-1) to obtain radial velocities with an accuracy of a few hundred m/s. We combined our new RV data with older measurements, dating back to 1908 in the case of the primary, to search for evidence of apsidal motion. We find an apsidal motion period between 6600 and 10 600 yr. This value is consistent with the available data for both the primary and secondary and is also consistent with the assumption that the system has aligned orbit and rotation axes.

  16. The Skipping Rope Curve

    ERIC Educational Resources Information Center

    Nordmark, Arne; Essen, Hanno

    2007-01-01

    The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)

  17. Gravitational lensing of wormholes in the galactic halo region

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2014-03-01

    A recent study by Rahaman et al. has shown that the galactic halo possesses the necessary properties for supporting traversable wormholes, based on two observational results, the Navarro-Frenk-White density profile and the observed flat rotation curves of galaxies. Using a method for calculating the deflection angle pioneered by V. Bozza, it is shown that the deflection angle diverges at the throat of the wormhole. The resulting photon sphere has a radius of about 0.40 ly. Given the dark-matter background, detection may be possible from past data using ordinary light.

  18. Galactic models; Proceedings of the 4th Florida Workshop on Nonlinear Dynamics, University of Florida, Gainesville, Mar. 1, 2, 1989

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Gottesman, S. T.; Hunter, J. H., Jr.

    1990-06-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings.

  19. Galactic space-times in modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Bhattacharya, Kaushik; Sarkar, Tapobrata

    2015-09-01

    We study Bertrand space-times (BSTs), which have been proposed as viable models of space-times seeded by galactic dark matter, in modified theories of gravity. We first critically examine the issue of galactic rotation curves in general relativity, and establish the usefulness of BSTs to fit experimental data in this context. We then study BSTs in metric f( R) gravity and in Brans-Dicke theories. For the former, the nature of the Newtonian potential is established, and we also compute the effective equation of state and show that it can provide good fits to some recent experimental results. For the latter, we calculate the Brans-Dicke scalar analytically in some limits and numerically in general, and find interesting constraints on the parameters of the theory. Our results provide evidence for the physical nature of BSTs in modified theories of gravity.

  20. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    PubMed

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  1. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liang, Chunlei

    2015-08-01

    This paper presents a simple, efficient, and high-order accurate sliding-mesh interface approach to the spectral difference (SD) method. We demonstrate the approach by solving the two-dimensional compressible Navier-Stokes equations on quadrilateral grids. This approach is an extension of the straight mortar method originally designed for stationary domains [7,8]. Our sliding method creates curved dynamic mortars on sliding-mesh interfaces to couple rotating and stationary domains. On the nonconforming sliding-mesh interfaces, the related variables are first projected from cell faces to mortars to compute common fluxes, and then the common fluxes are projected back from the mortars to the cell faces to ensure conservation. To verify the spatial order of accuracy of the sliding-mesh spectral difference (SSD) method, both inviscid and viscous flow cases are tested. It is shown that the SSD method preserves the high-order accuracy of the SD method. Meanwhile, the SSD method is found to be very efficient in terms of computational cost. This novel sliding-mesh interface method is very suitable for parallel processing with domain decomposition. It can be applied to a wide range of problems, such as the hydrodynamics of marine propellers, the aerodynamics of rotorcraft, wind turbines, and oscillating wing power generators, etc.

  2. Alterations of the Danger Zone after Preparation of Curved Root Canals Using WaveOne with Reverse Rotation or Reciprocation Movements

    PubMed Central

    Shantiaee, Yazdan; Dianat, Omid; Paymanpour, Payam; Nahvi, Golnaz; Ketabi, Mohammad Ali; Kolahi Ahari, Golbarg

    2015-01-01

    Introduction: The aim of this study was to compare the changes that occur in the danger zone (DZ) after preparation of curved mesiobuccal (MB) canals of mandibular first molars with WaveOne instruments in two different movements [reciprocation (RCP) and counter-clockwise rotation (CCWR)] by means of cone-beam computed tomography (CBCT). Methods and Materials: MB canals of 30 mandibular molars were randomly divided into 2 groups (n=15); WaveOne/RCP and WaveOne/CCWR. Pre- and post-instrumentation CBCT images were assessed for changes in the dentin thickness in DZ (2 and 4 mm below the highest point of the root furcation) in both groups. Data was analyzed using the repeated measures ANOVA test. Results: There was no statistically significant difference between two experimental groups in terms of remaining dentin thickness at 2 and 4 mm levels below the highest point of the furcation (P>0.05). Conclusion: The efficacy of WaveOne instrument on changes of the dentin thickness in the DZ was not affected by different file movements. PMID:26213536

  3. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    SciTech Connect

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  4. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  5. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  6. Distribution of Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan; Foss, Asa

    2001-04-01

    In this paper we examine the rotational curves of two dwarf spiral galaxies, NGC 2403 and NGC 3198. The observed rotation cannot be accounted for by luminous matter alone, therefore there must be a substantial dark component. We found the dark matter in both galaxies to be distributed according to the equation rho(r) = b*r/(r^2 + x^2). Combining this with a distribution of luminous matter rho(r)= rho(o)* e^-(a*r), we produced a rotation curve that matched the observed orbital velocities to within 4%.

  7. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  8. Galactic Diffuse Polarized Emission

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis - the new powerful instrument devised to unlock the information encoded in such an emission - and the surveys currently in progress like S-PASS and GMIMS.

  9. Probing galactic disks with planetary nebulae

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.

    Our understanding of galaxy formation and evolution is severely limited by poorly known galaxy mass profiles. Flat rotation curves indicate the presence of dark matter in the outer regions of spirals and determine total galactic mass, but rotation curves alone cannot decouple the mass contribution of the dark halo from that of the disk. Thus astronomers typically assume a constant disk mass-to-light ratio ( M/L ) in models. While studies indicate that M/L is constant in the inner regions of spirals, nothing is known about the M/L of outer disks. To determine this quantity, one must measure the surface mass of a disk directly from the z -motions of its old disk stars. Planetary nebulae (PNe) are ideal test particles because they are: bright and abundant to >5 scale lengths ( h R ), representative of the old disk, relatively easy to distinguish from H II regions, and their velocities are measurable to ~2 kms - 1 with fiber-fed spectrographs. The first step, then, is to use narrow-band imaging to identify large (~100) samples of PNe in face-on spirals. The magnitudes of the PN samples also provide reliable distances to the galaxies themselves via the Planetary Nebula Luminosity Function (PNLF). I discovered 165, 153, 241, 150, 19, and 71 PNe in IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), NGC 5068, and NGC 6946, respectively, and determined distances of 3.5±0.3 Mpc, 8.6±0.3 Mpc, 4.8±0.1 Mpc, [Special characters omitted.] Mpc, [Special characters omitted.] Mpc and 6.1 ± 0.6 Mpc, which agree well with values in the literature. I also explored minor fluctuations in the PNLFs as a function of position in the galaxies. The next step is to perform follow-up spectroscopy to measure as many velocities as possible and yet also obtain a high precision. I used the Hydra multi-fiber spectrographs on the WIYN 3.5-m and CTIO Blanco 4-m telescopes, as well as the Hobby-Eberly Telescope's Medium Resolution Spectrograph, to measure velocities of 99, 102, 162, 127, and 48

  10. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  11. Development of a Single Station 6C-Approach for Array Analysis and Microzonation: Using Vertical Rotation Rate to Estimate Love-Wave Disperion Curves and Direction Finding

    NASA Astrophysics Data System (ADS)

    Wassermann, J. M.; Wietek, A.; Hadziioannou, C.; Igel, H.

    2014-12-01

    Microzonation, i.e. the estimation of (shear) wave velocity profiles of the upper few 100m in dense 2D surface grids is one of the key methods to understand the variation in seismic hazard caused by ground shaking events. In this presentation we introduce a novel method for estimating the Love-wave phase velocity dispersion by using ambient noise recordings. We use the vertical component of rotational motions inherently present in ambient noise and the well established relation to simultaneous recordings of transverse acceleration. In this relation the frequency dependent phase velocity of a plane SH (or Love)-type wave acts as a proportionality factor between the anti-correlated amplitudes of both measures. In a first step we used synthetic data sets with increasing complexity to evaluate the proposed technique and the developed algorithm to extract the direction and amplitude of the incoming ambient noise wavefield measured at a single site. Since reliable weak rotational motion sensors are not yet readily available, we apply array derived rotation measurements in order to test our method. We next use the technique to analyze different real data sets of ambient noise measurements as well as seismic recordings at active volcanoes and compare these results with findings of the Spatial AutoCorrelation technique which was applied to the same data set. We demonstrate that the newly developed technique shows comparable results to more classical, strictly array based methods. Furthermore, we show that as soon as portable weak motion rotational motion sensors are available, a single 6C-station approach will be feasible, not only for microzonation but also for general array applications, with performance comparable to more classical techniques. An important advantage, especially in urban environments, is that with this approach, the number of seismic stations needed is drastically reduced.

  12. Trishear for curved faults

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.

    2013-08-01

    Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.

  13. INTEGRAL Galactic bulge monitoring program

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.; Belloni, T.; Chenevez, J.; Ibarra, A.; Munoz-Darias, T.; Bazzano, A.; Cadolle Bel, M.; De Cesare, G.; Diaz Trigo, M.; Jourdain, E.; Lubinski, P.; Natalucci, L.; Ness, J. U.; Parmar, A.; Pollock, A. M. T.; Rodriguez, J.; Roques, J. P.; Sanchez-Fernandez; C.; Ubertini, P.; Winkler, C.

    2010-12-01

    The central region of our Galaxy, the Galactic bulge, is a rich host of variable high-energy X-ray and gamma-ray point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, high-mass X-ray binaries, etc.. We have a program to monitor the Galactic bulge region regularly and frequently with the gamma-ray observatory INTEGRAL, whenever it is observable. As a service to the scientific community the high-energy light curves of sources present, as well as the images of the region are made available through the WWW at http://integral.esac.esa.int/BULGE/ as soon as possible after the observations have been performed. We show the ongoing results of this exciting program.

  14. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  15. Vertical Shear of the Galactic Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Benjamin, R. A.

    2000-05-01

    The detection of UV absorption, 21 cm, Hα and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first opportunity to probe the rotational properties of the ionized ``atmospheres'' of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R= 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by ~ 30 km s-1 from z=1 to 5 kpc and is expected to drop by 80 km s-1. Magnetic tension forces may resolve this discrepancy. Other possiblilities will be examined in the near future.

  16. Tool For Making Curved Holes

    NASA Technical Reports Server (NTRS)

    Allard, Robert; Calve, Andrew; Pastreck, Edwin; Padden, Edward

    1992-01-01

    Tool for use in electrical-discharge machining (EDM) guides EDM electrode in making curved holes. Guide rod fits in slot in arm, which moves through arc. Motion drives electrode into workpiece along desired curved path. Electrode burns into workpiece while arm rotates on spindle. Discharge cuts hole of same radius of curvature.

  17. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    SciTech Connect

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela E-mail: lpengx@mail2.sysu.edu.cn2 E-mail: gabriela.mocanu@ubbcluj.ro

    2015-11-01

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10{sup −7} fm.

  18. Densities of Galactic Center Clouds

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Mills, Elisabeth A. C.; Morris, Mark R.

    2015-04-01

    The central 300 parsecs of the Galaxy is full of giant molecular clouds containing 107 solar masses worth of gas. However, our Galactic center is not forming as many stars as we think it can, based on the amount of molecular gas in this region. By studying the densities of the Galactic center clouds we hope to better understand why there is not much star formation occurring. Using data from the Green Bank and MOPRA telescopes we have observed multiple rotation transitions of HC3N and its 13C isotopologues. By measuring the integrated intensity of the HC3 N we are able to calculate the densities of these giant molecular clouds. The measured intensities are used with a radiative transfer code called RADEX, to determine volume densities. Our initial results suggest that there may be either less dense or cooler gas in these clouds that previously thought. If there is a significant quantity of gas less dense than 104 molecules/cm3 , this could explain the lack of ongoing star formation in these clouds, and might also suggest a shorter timescale for dynamical disruption of theses clouds. In the future, we plan to improve these results by observing additional HC3N transitions, allowing us better to constrain the relative contributions of multiple temperature and density components in Galactic center clouds.

  19. Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides

    NASA Technical Reports Server (NTRS)

    Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.

    1994-01-01

    Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability

  20. Galactic kinematics derived from classical cepheids

    NASA Astrophysics Data System (ADS)

    Zhu, Zi

    On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂V θ∂θ)/R = -2.60 ± 1.07 km s -1 kpc -1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S⊙ = 18.78 ± 0.86 km/s in the direction l⊙ = 54.4° ± 2.9° and b⊙ = +26.6° ± 2.6°.

  1. Discovery in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  2. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  3. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  4. Domain wall model in the galactic Bose-Einstein condensate halo

    SciTech Connect

    Souza, J.C.C. de; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2013-05-01

    We assume that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [1], can present topological defects, namely domain walls, arising as the dark soliton solution for the Gross-Pitaevskii equation in a self-graviting potential. We investigate the influence that such substructures would have in the gravitational interactions within a galaxy. We find that, for the simple domain wall model proposed, the effects are too small to be identified, either by means of a local measurement of the gradient of the gravitational field or by analysing galaxy rotation curves. In the first case, the gradient of the gravitational field in the vicinity of the domain wall would be 10{sup −31} (m/s{sup 2})/m. In the second case, the ratio of the tangential velocity correction of a star due to the presence of the domain wall to the velocity in the spherical symmetric case would be 10{sup −8}.

  5. Searching for IMBHs in Galactic globular clusters through radial velocities of individual stars

    NASA Astrophysics Data System (ADS)

    Lanzoni, Barbara

    2016-02-01

    I present an overview of our ongoing project aimed at building a new generation of velocity dispersion profiles ad rotation curves for a representative sample of Galactic globular clusters, from the the radial velocity of hundreds of individual stars distributed at different distances from the cluster center. The innermost portion of the profiles will be used to constrain the possible presence of intermediate-mass black holes. The adopted methodology consists of combining spectroscopic observations acquired with three different instruments at the ESO-VLT: the adaptive-optics assisted, integral field unit (IFU) spectrograph SINFONI for the innermost and highly crowded cluster cores, the multi-IFU spectrograph KMOS for the intermediate regions, and the multi-fiber instrument FLAMES/GIRAFFE-MEDUSA for the outskirts. The case of NGC 6388, representing the pilot project that motivated the entire program, is described in some details.

  6. Distribution of SiO and OH Maser Stars in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Jiang, Bi-Wei; Jia, Shu-Mei

    2001-04-01

    The observational results of the Nobeyama 45-m SiO maser survey and the Arecibo 305-m OH maser survey are assembled for an analysis of the distribution and kinematics of late-type stars in the Galactic plane. It is found that neither SiO maser stars nor OH maser stars show any concentration to the spiral arms, which imply that they do not belong to the arm population and quite possibly they are low-mass stars in late stage of evolution. A rotational curve is also derived for these objects and a few features which may be real are discussed and compared with those derived from planetary nebulae and AGB stars.

  7. Bradford Curves.

    ERIC Educational Resources Information Center

    Rousseau, Ronald

    1994-01-01

    Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)

  8. BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE

    SciTech Connect

    Takahashi, Masaaki; Takahashi, Rohta

    2010-05-15

    We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

  9. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  10. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  11. Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wong, K. C.; Harko, T.; Cheng, K. S.; Gergely, L. Á.

    2012-08-01

    The higher-dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies spacetime geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric braneworld metrics. We find that the lensing profile in the braneworld scenario is distinguishable from dark matter lensing, despite both the braneworld scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions, light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid, we further find a critical radius below which braneworld effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.

  12. Formation Models of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Gerhard, O.

    2015-05-01

    The Galactic bulge is now considered to be the inner three-dimensional part of the Milky Way's bar. It has a peanut shape and is characterized by cylindrical rotation. In N-body simulations, box/peanut bulges arise from disks through bar and buckling instabilities. Models of this kind explain much of the structure and kinematics of the Galactic bulge and, in principle, also its vertical metallicity gradient. Cosmological disk galaxy formation models with high resolution and improved feedback models are now able to generate late-type disk galaxies with disk-like or barred bulges. These bulges often contain an early collapse stellar population and a population driven by later disk instabilities. Due to the inside-out disk formation, these bulges can be predominantly old, similar to the Milky Way bulge.

  13. Trajectories of ballistic impact ejecta on a rotating Earth

    NASA Technical Reports Server (NTRS)

    Alvarez, W.

    1994-01-01

    On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.

  14. VERITAS Galactic Observations

    NASA Astrophysics Data System (ADS)

    Hughes, Gareth

    2013-06-01

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  15. Research on Galactic Dark Matter Implied by Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Palanque, Nathalie Katya

    1998-07-01

    One of the most compelling pieces of evidence for dark matter comes from the observation of the rotation curves of spiral galaxies. The dynamical mass implied exceeds that in visible components by about a factor of three. We will place this problem in the general context of dark matter in the Universe and see that galactic halos could be composed of compact baryonic objects. Using the effect of gravitational microlensing, the French experiment EROS (Experience de Recherche d'Objets Sombres) monitored stars in the Magellanic clouds for four years to search for dark halo objects. It excluded that objects in the mass range 5e-7 to 0.02 solar mass made up more than 20% of a standard halo. With a new set-up, EROS2 probes the high mass range, where a different line-of-sight is investigated: the Small Magellanic Cloud. The EROS2 scientific objectives, set-up and data acquisition pipeline are explained. We present a new stellar detection algorithm which increases the number of stars we are able to monitor. The analysis of the first year SMC data (5 million light curves) is described in detail, and one event compatible with microlensing is identified. Assuming a standard halo, a likelihood analysis allows the estimate of its most probable mass to about 1.7 solar masses. One of the main sources of systematics in crowded fields, blending, is studied thoroughly with the help of simulated images, and its impact on the efficiency quantified. Finally, a variety of realistic Galactic models are presented. For each of them, the optical depth and event rate are calculated and compared to the values derived from the detection of one candidate. The lack of statistics (and temporal baseline) calls for a second year of data, but we are already sensitive to objects in the mass range 0.01 to 1 solar mass. Because they probe different regions of the halo, the comparison of the LMC and SMC results will soon allow us to better constrain the shape and nature of our Halo.

  16. THE STELLAR CONTENT OF OBSCURED GALACTIC GIANT H II REGIONS. VII. W3

    SciTech Connect

    Navarete, F.; Figueredo, E.; Damineli, A.; Moises, A. P.; Blum, R. D.; Conti, P. S.

    2011-09-15

    Spectrophotometric distances in the K band have been reported by different authors for a number of obscured Galactic H II regions. Almost 50% of them show large discrepancies compared to the classical method using radial velocities measured in the radio spectral region. In order to provide a crucial test of both methods, we selected a target that does not present particular difficulty for any method and which has been measured by as many techniques as possible. The W3 star-forming complex, located in the Perseus arm, offers a splendid opportunity for such a task. We used the Near-Infrared Integral Field Spectrograph on the Frederick C. Gillett Gemini North telescope to classify candidate 'naked photosphere' OB stars based on Two Micron All Sky Survey photometry. Two of the targets are revealed to be mid-O-type main-sequence stars leading to a distance of d = 2.20 kpc. This is in excellent agreement with the spectrophotometric distance derived in the optical band (d = 2.18 pc) and with a measurement of the W3 trigonometric parallax (d = 1.95 kpc). Such results confirm that the spectrophotometric distances in the K band are reliable. The radio-derived kinematic distance, on the contrary, gives a distance twice as large (d = 4.2 kpc). This indicates that this region of the Perseus arm does not follow the Galactic rotation curve, and this may also be the case for other H II regions for which discrepancies have been found.

  17. Review of the fermionic dark matter model applied to galactic structures

    SciTech Connect

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  18. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS

    SciTech Connect

    Reid, M. J.; Sato, M.; Menten, K. M.; Brunthaler, A.; Xu, Y.; Choi, Y. K.; Zheng, X. W.; Zhang, B.; Moscadelli, L.; Honma, M.; Hirota, T.; Hachisuka, K.; Moellenbrock, G. A.; Bartkiewicz, A.

    2009-07-20

    We are using the Very Long Baseline Array and the Japanese VLBI Exploration of Radio Astronomy project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 deg. {+-} 3 deg., which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete three-dimensional kinematic information. We find that star-forming regions on average are orbiting the Galaxy {approx}15 km s{sup -1} slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R {sub 0} = 8.4 {+-} 0.6 kpc and a circular rotation speed {theta}{sub 0} = 254 {+-} 16 km s{sup -1}. The ratio {theta}{sub 0}/R {sub 0} can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 {+-} 0.9 km s{sup -1} kpc{sup -1}, in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than 2; they can be brought into better agreement with the trigonometric parallaxes by increasing {theta}{sub 0}/R {sub 0} from the IAU recommended value of 25.9 km s{sup -1} kpc{sup -1} to a value near 30 km s{sup -1} kpc{sup -1}. We offer a 'revised' prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of {theta}{sub 0} and {theta}{sub 0}/R{sub 0}, when coupled with direct estimates of R {sub 0}, provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two

  19. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  20. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  1. Magnetized galactic haloes and velocity lags

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Irwin, J. A.

    2016-06-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas (not with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height z. The formula also predicts the change in lag with radius, r.

  2. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  3. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  4. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Barbuy, B.

    2016-06-01

    The Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.

  5. Grains in galactic haloes.

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Barsella, B.; Ferrini, F.; Greenberg, J. M.; Aiello, S.

    1989-12-01

    The authors considered the effect of extensive forces on dust grains subjected to the light and matter distribution of the spiral galaxy NGC 3198. They have shown that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. The authors present here the preliminary results of the study of the motion of a dust grain for NGC 3198.

  6. Positions of galactic X-ray sources - Galactic latitudes between zero and 20 deg

    NASA Technical Reports Server (NTRS)

    Doxsey, R. E.; Bradt, H. V.; Dower, R. G.; Jernigan, J. G.; Apparao, K. M. V.

    1977-01-01

    Precise (to 20 or 25 arcsec) positions of six X-ray sources located in the galactic bulge are reported which were obtained as part of a survey of the galactic plane performed with the SAS-3 rotating modulation collimators. The sources include GX1+4, GX9+9, GX3+1, GX9+1, GX13+1, and GX17+2. The error radii and X-ray intensities (2 to 11 keV) determined for the sources are also presented along with finding charts and proposed optical and radio counterparts. The results are compared with those of previous satellite and sounding-rocket experiments. The status of each source with respect to optical or radio identifications is briefly discussed.

  7. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  8. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  9. Radio polarimetry of Galactic Centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  10. Theoretical Models of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhao-Yu

    Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disc and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disc plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.

  11. Curves and Their Properties.

    ERIC Educational Resources Information Center

    Yates, Robert C.

    This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch or sketches, a description of the curve, a discussion of pertinent facts, and a bibliography. Depending upon the curve,…

  12. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  13. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  14. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  15. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    yet," he said. Earlier this year, data taken with the newly commissioned GBT demonstrated that rather than a diffuse mist or other ill-defined feature - as many astronomers had speculated - the halo was in fact made up of well-defined clouds. "The discovery of these clouds, each containing 50-to-100 solar masses of hydrogen and averaging about 100 light-years in diameter, challenged many of the prevailing theories about the structure and dynamics of the halo," said Lockman. The clouds were discovered about 25,000 light-years from Earth toward the center of our Galaxy. The latest findings show the clouds extend at least 5,000 light-years above and below the Galactic plane. Though the initial studies by Lockman revealed the presence of these clouds, the data were insufficient to conclusively show that they were present throughout the entire halo. These latest results provide valuable evidence that the earlier results were truly representative of the entire halo. "The richness and variety of this phenomenon continues to astound me," remarked Lockman. Lockman's new studies also confirm that these clouds travel along with the rest of the Galaxy, rotating about its center. These studies clearly rule out the possibility that so-called "high-velocity clouds" were responsible for what was detected initially. High-velocity clouds are vagabond clumps of intergalactic gas, possibly left over from the formation of the Milky Way and other nearby galaxies. "One thing that is for certain is that these are not high-velocity clouds, this is an entirely separate phenomenon," said Lockman. According to the researcher, the ubiquitous nature and dynamics of these newly discovered clouds support the theory that they are condensing out of the hot gas that is lifted into the halo through supernova explosions. When a massive star dies, it produces a burst of cosmic rays and an enormous expanding bubble of gas at a temperature of several million degrees Celsius. Over time, this hot gas will

  16. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    SciTech Connect

    Olson, Edward C.; Etzel, Paul B. E-mail: pbetzel@mail.sdsu.edu

    2015-04-15

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations in Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.

  17. Properties of galactic dark matter: Constraints from astronomical observations

    SciTech Connect

    Burch, B.; Cowsik, R.

    2013-12-10

    The distributions of normal matter and of dark matter in the Galaxy are coupled to each other as they both move in the common gravitational potential. In order to fully exploit this interplay and to derive the various properties of dark matter relevant to their direct and indirect detection, we have comprehensively reviewed the astronomical observations of the spatial and velocity distributions of the components of normal matter. We then postulate that the phase-space distribution of dark matter follows a lowered-isothermal form and self-consistently solve Poisson's equation to construct several models for the spatial and velocity distributions of dark matter. In this paper, we compute the total gravitational potential of the normal and dark matter components and investigate their consistency with current observations of the rotation curve of the Galaxy and of the spatial and velocity distributions of blue horizontal-branch and blue straggler stars. Even with this demand of consistency, a large number of models with a range of parameters characterizing the dark matter distribution remain. We find that the best choice of parameters, within the range of allowed values for the surface density of the disk 55 M {sub ☉} pc{sup –2}, are the following: the dark matter density at the Galactic center ρ{sub DM,} {sub c} ≈ 100-250 GeV cm{sup –3}, the local dark matter density ρ{sub DM}(R {sub 0}) ≈ 0.56-0.72 GeV cm{sup –3}, and the rms speed of dark matter particles 〈v{sub DM}{sup 2}(R{sub 0})〉{sup 1/2}≈490−−550 km s{sup –1}. We also discuss possible astronomical observations that may further limit the range of the allowed models. The predictions of the allowed models for direct and indirect detection will be discussed separately in a companion paper.

  18. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  19. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  20. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    SciTech Connect

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  1. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  2. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  3. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  4. Rotation of Hyperion. I - Observations

    NASA Technical Reports Server (NTRS)

    Klavetter, James Jay

    1989-01-01

    Precise and well sampled observations of Hyperion over a long period of time have been performed to test the prediction of Wisdom et al. (1984) that the satellite is in a state of chaotic rotation. CCD data for a 13-week period were obtained in Chile and in Arizona. A phase-dispersion-minimization analysis of the light curve indicates that Hyperion is not in a periodic rotational state, thus suggesting that it is chaotic.

  5. Explicit superconic curves.

    PubMed

    Cho, Sunggoo

    2016-09-01

    Conics and Cartesian ovals are extremely important curves in various fields of science. In addition, aspheric curves based on conics are useful in optical design. Superconic curves, recently suggested by Greynolds, are extensions of both conics and Cartesian ovals and have been applied to optical design. However, they are not extensions of aspheric curves based on conics. In this work, we investigate another type of superconic curves. These superconic curves are extensions of not only conics and Cartesian ovals but also aspheric curves based on conics. Moreover, these are represented in explicit form, while Greynolds's superconic curves are in implicit form. PMID:27607506

  6. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  7. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  8. The Galactic Center

    NASA Astrophysics Data System (ADS)

    Genzel, Reinhard; Karas, Vladimír

    2007-04-01

    In the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source SgrA* at the Center of the Milky Way. These observations show that SgrA* is a three million solar mass black hole, beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black holes which have long been postulated, and is also an ideal 'lab' for studying the physics in the vicinity of such an object. Remarkably, young massive stars are present there and probably have formed in the innermost stellar cusp. Variable infrared and X-ray emission from SgrA* are a new probe of the physics and space time just outside the event horizon.

  9. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  10. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  11. Rice University observations of the galactic center

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1978-01-01

    The most sensitive of the four balloon fight observations of the galactic center made by Rice University was conducted in 1974 from Rio Cuarto, Argentina at a float altitude of 4 mbar. The count rate spectrum of the observed background and the energy spectrum of the galactic center region are discussed. The detector used consists of a 6 inch Nal(T 1ambda) central detector collimated to approximately 15 deg FWHM by a Nal(T lamdba) anticoincidence shield. The shield in at least two interaction mean free paths thick at all gamma ray energies. The instrumental resolution is approximately 11% FWHM at 662 keV. Pulses from the central detector are analyzed by two 256 channel PHA's covering the energy range approximately 20 keV to approximately 12 MeV. The detector is equatorially mounted and pointed by command from the ground. Observations are made by measuring source and background alternately for 10 minute periods. Background is measured by rotating the detector 180 deg about the azimuthal axis.

  12. DISCOVERY OF CANDIDATE H{sub 2}O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    SciTech Connect

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti; Kondratko, Paul T.

    2009-12-10

    Based on spectroscopic signatures, about one-third of known H{sub 2}O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v {sub sys} < 20, 000 km s{sup -1}). The remaining three disk maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s{sup -1}. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10{sup 7} M {sub sun}) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s{sup -1} galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not

  13. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  14. Rules of behavior for galactic warps

    SciTech Connect

    Briggs, F.H. Pittsburgh Univ., PA )

    1990-03-01

    An analysis conducted for 12 galaxies with extended, warped H I disks in a variety of reference frames has led to the formulation of clear empirical criteria for galactic warp behavior. In view of these criteria, it emerges that while the H I layer is typically planar within R(25), warping becomes detectable within R(26.5); this is consistent with a straight line of the nodes (LON) measured in the plane defined by the innermost regions of the galaxies. At radii larger than R(26.5), the LON measured in the plane of the inner galaxy advances in the direction of galaxy rotation for successively larger radii. The nodes will accordingly lie along leading spirals in this frame of reference. 32 refs.

  15. The Galactic magnetic field and some of its unexpected implications

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.

    2015-01-01

    Our understanding of the Galactic magnetic field (GMF) has improved considerably in recent years, although it remains far from adequate. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available, having been constrained by fitting all-sky Faraday Rotation Measures of extragalactic sources simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - a total of more than 10,000 datapoints, each with measured variances. In addition to disk and toroidal halo components, a coherent poloidal field can be shown to be necessary. Moreover a 'striated' random component is needed in addition to a fully random component, in both disk and halo.The out-of-plane (poloidal) field provides a heretofore-overlooked escape route for CRs by anisotropic diffusion along its field lines, drastically modifying CR transport. The spatial distribution and energy spectrum of Galactic cosmic rays enters into constraining the GMF with synchrotron data, predicting astrophysical backgrounds to dark matter annihilation signals, and understanding the WMAP-Fermi-Planck "bubble" emanating from the Galactic center. Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs and for modeling synchrotron emission (especially the spatial variation of the spectral index) to accurately subtract foreground to CMB signals essential to see the effects of primordial gravity waves. Given a 3D dust map, the structure of the polarized dust emission can potentially be estimated.In this talk, I will focus on 3 recent developments: establishing the robust features of the global structure of the coherent field, determining how the GMF lenses UHECRs with charges as high as Z=26, and constraining models for composition and origin of CRs above 100 PeV (the Galactic-extragalactic CR transition by) by anisotropy constraints. Preliminary results of efforts to simultaneously constrain the GMF and the Galactic cosmic ray

  16. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  17. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  18. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  19. Galactic planetary science

    PubMed Central

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  20. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  1. Mercury: infrared evidence for nonsynchronous rotation.

    PubMed

    Soter, S L

    1966-09-01

    An infrared observation of the dark side of Mercury made by Pettit and Nicholson in 1923 led them to suggest that the planet rotates nonsynchronously. Their early measurements, if taken at face value, would imply a brightness temperature of about 180 degrees K for the dark side. The asymmetry of the infrared phase curve is further interpreted as suggesting direct rotation. PMID:17737592

  2. Probabilistic stellar rotation periods with Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Aigrain, Suzanne; Foreman-Mackey, Daniel

    2015-08-01

    Stellar rotation has many applications in the field of exoplanets. High-precision photometry from space-based missions like Kepler and K2 allows us to measure stellar rotation periods directly from light curves. Stellar variability produced by rotation is usually not sinusoidal or perfectly periodic, therefore sine-fitting periodograms are not well suited to rotation period measurement. Autocorrelation functions are often used to extract periodic information from light curves, however uncertainties on rotation periods measured by autocorrelation are difficult to define. A ‘by eye’ check, or a set of heuristic criteria are used to validate measurements and rotation periods are only reported for stars that pass this vetting process. A probabilistic rotation period measurement method, with a suitable generative model bypasses the need for a validation stage and can produce realistic uncertainties. The physics driving the production of variability in stellar light curves is still poorly understood and difficult to model. We therefore use an effective model for stellar variability: a Gaussian process with a quasi-periodic covariance function. By injecting fake signals into Kepler light curves we show that the GP model is well suited to quasi-periodic, non-sinusoidal signals, is capable of modelling noise and physical signals simultaneously and provides probabilistic rotation period measurements with realistic uncertainties.

  3. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1994-02-01

    We investigate particle dynamics that is governed by a nonstandard kinetic action of a special form. We are guided by a phenomenological scheme-the modified dynamics (MOND)-that imputes the mass discrepancy, observed in galactic systems, not to the presence of dark matter, but to a departure from Newtonian dynamics below a certain scale of accelerations, a0. The particle's equation of motion in a potential φ is derived from an action, S, of the form S ~ Sk[r(t), a0] - ∫ φ dt. The limit a0 --> 0 corresponds to Newtonian dynamics, and there the kinetic action Sk must take the standard form. In the opposite limit, a0 --> ∞ we require Sk --> 0-and more specifically, for circular orbits Sk ~ a-10-in order to attain the phenomenological success of MOND. Galilei-invariant such theories must be strongly nonlocal. This is a blessing, as such theories need not suffer from the illnesses that are endemic to higher-derivative theories. We comment on the possibility that such a modified law of motion is an effective theory resulting from the elimination of degrees of freedom pertaining to the universe at large (the near equality a0 ≍ cH0 being a trace of that connection). We derive a general virial relation for bounded trajectories. Exact solutions are obtained for circular orbits, which pertain to rotation curves of disk galaxies. We also explore, in passing, theories that depart from the conventional Newtonian dynamics for very low frequencies.

  4. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  5. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes. PMID:17151661

  6. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  7. JASMINE: galactic structure surveyor

    NASA Astrophysics Data System (ADS)

    Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Yamauchi, Masahiro; Kawakatsu, Yasuhiro; Matsuhara, Hideo; Noda, Atsushi; Tsuiki, Atsuo; Utashima, Masayoshi; Ogawa, Akira

    2006-06-01

    We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry(JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of ~ 4microarcsec/ year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with σ/π < 0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where π is a parallax and σ is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. A 3-mirrors optical system(modified Korsch system)with a primary mirror of~ 0.85m is one of the candidate for the optical system. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The accurate measurements of the astrometric parameters requires the instrument line-of-sight highly stability and the opto-mechanical highly stability of the payload in the JASMINE spacecraft. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency(JAXA).

  8. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  9. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  10. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  11. Rotating polarizer and rotating retarder plate polarimeters: comparison of performances

    NASA Astrophysics Data System (ADS)

    Pelizzari, Stefano; Rovati, Luigi; De Angelis, C.

    2001-05-01

    Rotating polarizer and rotating retarder plate polarimeters are widely used in high-resolution polarimetry, for example in remote sensing, fiber optic measurements and biomedics; as a consequence the analysis of the performances of these devices is very important from the instrumental point of view. To compare the two methods, we developed a synchronous polarimeter based on a mechanically rotating stage, where a rotating Glan-Thompson linear polarizer or a wave retarder can be easily mounted. A specific design allows to acquire synchronously the intensity signals digitally process the data to extract the polarization Stokes parameters. We investigate the two cases along with their impact on measurement techniques. Performance curves are shown for various polarization input parameters and light levels. Specifically, we address issues concerning the accuracy and the systematic and statistical measuring errors. Moreover, computer simulations and measurement results are presented and discussed.

  12. Diffuse Galactic light at high Galactic latitude: nature and interpretation

    NASA Astrophysics Data System (ADS)

    Zagury, Frédéric

    2006-08-01

    The hypothesis of an extended red emission (ERE) in diffuse Galactic light (DGL) has been put forward in 1998 by Gordon, Witt & Friedmann who found that scattered starlight was not enough to explain the amount of DGL in the R band, in some high Galactic latitude directions. This paper re-investigates, for high Galactic latitudes, the brightnesses and colours of DGL, integrated star and galaxy light (ISGL), and of the total extrasolar light (ISGL+DGL) measured by Pioneer. Under the traditional assumption that DGL is forward scattering of background starlight by interstellar dust on the line of sight, ISGL and Pioneer have very close colours, as it is found by Gordon, Witt & Friedmann. Pioneer observations at high |b| thus accept an alternative and simple interpretation, with no involvement of ERE in DGL.

  13. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. Cosmological zoom simulations of z = 2 galaxies: The impact of galactic outflows

    SciTech Connect

    Anglés-Alcázar, Daniel; Davé, Romeel; Özel, Feryal; Oppenheimer, Benjamin D.

    2014-02-20

    We use high-resolution cosmological zoom simulations with ∼200 pc resolution at z = 2 and various prescriptions for galactic outflows in order to explore the impact of winds on the morphological, dynamical, and structural properties of eight individual galaxies with halo masses ∼10{sup 11}-2 × 10{sup 12} M {sub ☉} at z = 2. We present a detailed comparison to spatially and spectrally resolved Hα and other observations of z ≈ 2 galaxies. We find that simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kiloparsec. Strong winds are required to maintain high gas fractions, redistribute star-forming gas over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Winds also suppress early star formation to produce high-redshift cosmic star formation efficiencies in better agreement with observations. Sizes, rotation velocities, and velocity dispersions all scale with stellar mass in accord with observations. Our simulations produce a diversity of morphological characteristics—among our three most massive galaxies, we find a quiescent grand-design spiral, a very compact star-forming galaxy, and a clumpy disk undergoing a minor merger; the clumps are evident in Hα but not in the stars. Rotation curves are generally slowly rising, particularly when calculated using azimuthal velocities rather than enclosed mass. Our results are broadly resolution-converged. These results show that cosmological simulations including outflows can produce disk galaxies similar to those observed during the peak epoch of cosmic galaxy growth.

  15. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  16. OH/IR stars near the Galactic Center: Pulsation periods, luminosities, and polarimetry

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Mcgregor, Peter J.; Gehrz, Robert D.; Lawrence, Geoffrey F.

    1994-01-01

    17 stars in the direction of the Galactic Center, 15 of which are OH/IR stars, have been monitored at infrared wavelengths over a period of nearly eight years. Pulsation periods, bolometric luminosities, and light curves for 14 OH/IR stars are presented. The Galactic Center OH/IR stars range in luminosity between M(sub Bol) = -4.5 to M(sub Bol) = -6, implying main sequence progenitors with masses less than 3 solar mass. When compared to optically visible long period variables in the Large Magellanic Cloud (LMC) with similar bolometric luminosities, the Galactic Center OH/IR stars have pulsation periods on average 30% longer. This shift to longer periods is consistent with the current picture of late asymptotic giant branch evolution, placing the OH/IR stars in a phase immediately following the optically visible Mira variable phase during which the star dramatically increases its mass loss rate, becoming invisible at optical wavelength. Infrared polarimetry of 11 of the stars is also presented. The polarization for all of the stars is consistent with purely interstellar polarization, with little evidence for a significant intrinsic component. When compared to OH/IR stars in the galactic plane, the Galactic Center OH/IR stars appear similar in photometric characteristics, except none of the Galactic Center OH/IR stars shows the extremely thick dust shells or very high intrinsic polarization found in the more extreme galactic plane OH/IR stars.

  17. CHARACTERIZING TRANSITION TEMPERATURE GAS IN THE GALACTIC CORONA

    SciTech Connect

    Wakker, Bart P.; Savage, Blair D.; Fox, Andrew J.; Benjamin, Robert A.; Shapiro, Paul R. E-mail: savage@astro.wisc.edu E-mail: benjamir@uww.edu

    2012-04-20

    We present a study of the properties of the transition temperature (T {approx} 10{sup 5} K) gas in the Milky Way corona, based on the measurements of O VI, N V, C IV, Si IV, and Fe III absorption lines seen in the far-ultraviolet spectra of 58 sight lines to extragalactic targets, obtained with the Far-Ultraviolet Spectroscopic Explorer and the Space Telescope Imaging Spectrograph. In many sight lines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly ionized atoms are distributed irregularly in a layer with a scale height of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km s{sup -1}. On average the integrated column densities are log N(O VI) = 14.3, log N(N V) = 13.5, log N(C IV) = 14.2, log N(Si IV) = 13.6, and log N(Fe III) = 14.2, with a dispersion of just 0.2 dex in each case. In sight lines around the Galactic center and Galactic north pole, all column densities are enhanced by a factor {approx}2, while at intermediate latitudes in the southern sky there is a deficit in N(O VI) of about a factor of two, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling, and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that NIE radiative cooling is important in generating the transition temperature gas.

  18. THE GALACTIC PLANE INFRARED POLARIZATION SURVEY (GPIPS)

    SciTech Connect

    Clemens, Dan P.; Pinnick, A. F.; Pavel, M. D.; Taylor, B. W. E-mail: apinnick@bu.edu E-mail: bwtaylor@bu.edu

    2012-06-01

    The scientific motivation, data collection strategy, data reduction, and analysis methods are presented for the Galactic Plane Infrared Polarization Survey (GPIPS). The chief goal for the Survey was to reveal the nature of the magnetic field threading the Galactic disk, in particular through regions of low to moderate extinction (1-20 mag of A{sub V} ) and star formation in the cool interstellar medium. The Survey region spans 76 deg{sup 2} of the northern Milky Way disk, from l = 18 Degree-Sign to 56 Degree-Sign and b =-1 Degree-Sign to +1 Degree-Sign . Linear polarimetric imaging observations began in 2006 in the near-infrared H band (1.6 {mu}m) using the Mimir instrument on the 1.8 m Perkins telescope, located outside Flagstaff, AZ. Mimir used a cold, fixed wire grid and a rotateable cold, compound half-wave plate to obtain 'step-and-integrate' polarimetry over its full 10 Multiplication-Sign 10 arcmin field of view. The GPIPS bright and faint polarimetric limits are approximately 7th and 15th mag, respectively, set by saturation and photon noise. Polarimetric uncertainties track with stellar magnitude, from about 0.1% to 25%, on average, from the brightest to faintest stars. Across the 3237 field GPIPS region, approximately 0.5 million stars are estimated to show detectable linear polarization (P/{sigma}{sub P} > 3); most of these have m{sub H} < 12. This represents many orders of magnitude improvement in the number of polarization measurements across this region. GPIPS observations are more than 90% complete and should finish in 2012.

  19. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  20. Observing the next galactic supernova

    SciTech Connect

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Stanek, K. Z.; Vagins, Mark R.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (≅ 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (≅ 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (∼3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2{sub −2.6}{sup +7.3} per century and a Galactic SN Ia rate of 1.4{sub −0.8}{sup +1.4} per

  1. Gas clouds in galactic bulges

    SciTech Connect

    Mathews, W.G.; Murray, S.D.

    1987-01-01

    An analytical model is defined for the orbits of gas clouds moving through a low-density, hot resisting medium in a spiral galactic bulge. The model includes a virial equation that accounts for internal and magnetic energy, external self-pressure, self-gravity and tidal and differential shear stresses, and a criterion for assessing the Rayleigh-Taylor stability of clouds moving within a confining medium. Results are discussed from use of the model to predict the orbital decay efficiency of clouds at different radii moving in a galactic bulge similar to that of the Galaxy. 52 references.

  2. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  3. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  4. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  5. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  6. Far-ultraviolet diffuse galactic light

    NASA Technical Reports Server (NTRS)

    Henry, R. C.

    1981-01-01

    Diffuse galactic light is detected at very low galactic latitudes, and useful upper limits are obtained at moderate and high galactic latitudes. Together, these data indicate that the albedo of the interstellar grains is high (a greater than 0.5) and that the grains very strongly (g greater than 0.7) forward-scatter far-ultraviolet radiation.

  7. Shape parameters of Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Berczik, P.; Petrov, M. I.; Piskunov, A. E.; Röser, S.; Schilbach, E.; Scholz, R.-D.

    2009-03-01

    Context: Ellipticities have been determined for only a few tens of open clusters. Aims: We derive the observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. Methods: We compute the observed shape parameters of Galactic open clusters with a multi-component analysis. For the vast majority of clusters, these parameters are determined for the first time. High resolution (“star by star”) N-body simulations are carried out with a specially developed φGRAPE code providing models of clusters of different initial masses, Galactocentric distances, and rotation velocities. Results: By comparing models and observations for about 150 clusters, we find that the ellipticities of observed clusters are too low (0.2 vs. 0.3), and take a first step in identifying the main reason for this discrepancy. After ≈50 Myr, the models predict that clusters exhibit an oblate shape with an axis ratio of 1.65{:}1.35{:}1, and a major axis tilt by an angle of qXY ≈ 30° with respect to the Galactocentric radius due to the differential rotation of the Galaxy. Conclusions: Unbiased estimates of cluster shape parameters require reliable membership determination in large cluster areas out to 2-3 tidal radii, where the density of cluster stars is considerably lower than the background. Although dynamically bound stars beyond the tidal radius contribute insignificantly to the cluster mass, knowledge of their distribution is essential for a correct determination of cluster shape parameters. In contrast, a restricted mass range of cluster stars does not play such a dramatic role, although deep surveys allow us to identify more cluster members and, therefore, to increase the accuracy of the observed shape parameters. The determined shape parameters for 650 clusters are listed in a table that is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or

  8. Strong magnetic fields, galaxy formation, and the Galactic engine

    NASA Technical Reports Server (NTRS)

    Greyber, Howard D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed.

  9. Particle acceleration on Galactic scales

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The history of and current ideas concerning the origin of cosmic rays in the Galaxy and in extragalactic sources are surveyed. The observed properties of Galactic cosmic rays and shock acceleration are discussed. It is argued that shock acceleration in various guises is an essential and conceptually the most economical acceleration mechanism.

  10. QPOs from Random X-ray Bursts around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  11. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  12. Shadow shapes around the black hole in the galactic centre

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.; Nucita, A. A.; De Paolis, F.; Ingrosso, G.

    Recently Holz & Wheeler (2002) considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. Some time ago Falcke, Melia & Agol (2000) suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.

  13. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  14. Effect of different stellar galactic environments on planetary discs - I. The solar neighbourhood and the birth cloud of the Sun

    NASA Astrophysics Data System (ADS)

    Jiménez-Torres, Juan J.; Pichardo, Barbara; Lake, George; Throop, Henry

    2011-12-01

    We have computed trajectories, distances and times of closest approaches to the Sun by stars in the solar neighbourhood with known position, radial velocity and proper motions. For this purpose, we have used a full potential model of the Galaxy that reproduces the local z-force, the Oort constants, the local escape velocity and the rotation curve of the Galaxy. From our sample, we constructed initial conditions, within observational uncertainties, with a Monte Carlo scheme for the 12 most suspicious candidates because of their small tangential motion. We find that the star Gliese 710 will have the closest approach to the Sun, with a distance of approximately 0.34 pc in 1.36 Myr in the future. We show that the effect of a flyby with the characteristics of Gliese 710 on a 100 au test particle disc representing the Solar system is negligible. However, since there is a lack of 6D data for a large percentage of stars in the solar neighbourhood, closer approaches may exist. We calculate parameters of passing stars that would cause notable effects on the solar disc. Regarding the birth cloud of the Sun, we performed experiments to reproduce roughly the observed orbital parameters such as eccentricities and inclinations of the Kuiper belt. It is now known that in Galactic environments, such as stellar formation regions, the stellar densities of new born stars are high enough to produce close encounters within 200 au. Moreover, in these Galactic environments, the velocity dispersion is relatively low, typically σ˜ 1-3 km s-1. We find that with a velocity dispersion of ˜1 km s-1 and an approach distance of about 150 au, typical of these regions, we obtain approximately the eccentricities and inclinations seen in the current Solar system. Simple analytical calculations of stellar encounters effects on the Oort Cloud are presented.

  15. Galactic arm structure and gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.

    1974-01-01

    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density.

  16. Rotated balance in humans due to repetitive rotational movement

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  17. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  18. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  19. A Search for Moving Groups in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Aguilar, L. A.; Hoogerwerf, R.

    The idea that the Galactic Halo has been formed largely by the accretion and tidal disruption of satellite systems has been gaining strength. The discovery of a retrograde rotating stellar group (Majewski et al., 1992), patchiness in the kinematics of halo stars (Majewski et al., 1996), the realization that most of the Milky Way satellites lie near two great circles in the sky (Lynden-Bell, 1976) and the discovery of an elongated dwarf galaxy in Sagittarius (Ibata et al., 1994), all add credence to this idea. Theoretically, the apparent fragility of galactic disks (Toth & Ostriker, 1992) no longer seems to be a problem for accretion (Velazquez & White, 1997). The tidal ``streamers'' from tidal disruption seem to be long lived (Barnes 1996) and can be exploited to devise algorithms to search for them in galactic surveys (Johnston et al., 1996). The phase space portrait of the halo, far from being a smooth distribution, should consist of a patchy aggregation of tidally disrupted systems that have been phase mixed over wide swaths in the sky, but which retain kinematic memory of their existence as a coherent entity. The challenges to discover these moving groups in the halo are enormous due to the distances involved and the fact that they can span large angles in the sky. The availability of astrometric databases of unprecedent accuracies (HIPPARCOS) and plans for follow up (GAIA), offer an opportunity to search for these moving groups. Together with these databases, new search techniques must be devised (Chen etal. 1997, Hoogerwerf & Aguilar, 1997).

  20. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  1. Box-shaped galactic bulges. I. Equilibrium models

    SciTech Connect

    Rowley, G.

    1988-08-01

    Simple self-consistent stellar distribution-function models are presented which have a box-shaped appearance and are cylindrically rotating. The distribution function is a function only of the two classical isolating integrals of an axisymmetric system, energy and the component of angular momentum parallel to the axis of symmetry. The major difference between these models and previous ones is the mode of truncation of the distribution function. The truncation contour has the same functional form as all of the other contours of the distribution function. This ensures that the mean rotation in the meridional plane of the models is identically cylindrical. It is argued that this mode of truncation is similar to what would be found in a system that has suffered significant dissipation. A second paper in this series presents comparisons of the models to photometric and kinematic observations of a number of box-shaped galactic bulges. 23 references.

  2. Distribution and evolution of asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.

    1984-01-01

    Data on the rotational characteristics of more than 300 asteroids are currently available, and it is now clear that the distribution of the rotation rates is nonrandom. A plot of rotation rate against asteroid diameter shows large dispersion but is distinctly V-shaped. The minimum of this curve at about 120 km may separate primordial asteroids from their collision products. There is also evidence that rotation rate depends on type classification, and weak evidence that it may also depend on family membership. Recent bias-free observations suggest that the marked rise of rotation rate with decreasing diameter D for those asteroids with D less than 120 km cannot be completely accounted for by observational-selection effects. A significantly large subset of the small asteroids have exceptionally long rotation periods suggestive of either a different nature and origin or a peculiar history. Models that have been proposed to account for these results are discussed.

  3. Multiline Study of Galactic Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Mookerjea, B.; Kramer, C.; Jakob, H.; Stutzki, J.

    We present first results of observations with SMART at KOSMA of selected Galactic star forming regions in mid-J (4-3) and (7-6) rotational transitions of CO and the two fine structure transitions of C I at 492 and 810 GHz. The aim of this study is to understand the interplay of the physical and chemical structure of the interstellar matter and the UV radiation field from the stars within the molecular clouds by observing the Photon Dominated Regions (PDRs). During this ongoing observational programme, regions around Orion BN/KL, W3, S106, S140 have been observed. Here we present the first results of observations of the W3 region (Jakob et al. 2002). These observations will be combined with existing observations of the emission due to low-J transitions of CO and other tracers of PDRs. The database of intensities of different lines from each of these regions will be used to derive a self-consistent interpretation using the PDR model developed by Störzer, Stutzki, & Sternberg (1996).

  4. Galactic dark matter in the phantom field

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hsun; Yang, Kwei-Chou

    2012-12-01

    We investigate the possibility that the galactic dark matter exists in a scenario where the phantom field is responsible for the dark energy. We obtain the statically and spherically approximate solution for this kind of galaxy system with a supermassive black hole at its center. The solution of the metric functions is satisfied with gtt=-grr-1. Constrained by the observation of the rotational stars moving in circular orbits with nearly constant tangential speed in a spiral galaxy, the background of the phantom field which is spatially inhomogeneous has an exponential potential. To avoid the well-known quantum instability of the vacuum at high frequencies, the phantom field defined in an effective theory is valid only at low energies. Under this assumption, we further investigate the following properties. The absorption cross section of the low-energy S-wave excitations of the phantom field into the central black hole is shown to be the horizontal area of the central black hole. Because the infalling phantom particles have a total negative energy, the accretion of the phantom energy is related to the decrease of the black hole mass, which is estimated to be much less than a solar mass in the lifetime of the Universe. Using a simple model with the cold dark matter very weakly coupled to the “low-frequency” phantom particles that are generated from the background, we show that these two densities can be quasistable in the galaxy.

  5. Systematic effect of the Galactic aberration on the ICRS realization and the Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Capitaine, N.; Lambert, S. B.; Malkin, Z.; Zhu, Z.

    2012-12-01

    Context. The curvature of the motion of the solar system barycenter around the Galactic center induces an aberration effect varying linearly with time. It can be called the "Galactic aberration" and is also known as the "secular aberration (drift)" or "aberration in proper motions". This results in a systematic dipole pattern of the apparent proper motions of an ensemble of distant extragalactic objects, which are used to define the International Celestial Reference System (ICRS). Aims: The purpose of this paper is to investigate the effect of the Galactic aberration on the ICRS realization and on the Earth orientation parameters (EOP), which refer to the ICRS. Methods: We first computed the global rotation of the celestial reference system resulting from the Galactic aberration effect on the apparent proper motions of the ensemble of extragalactic objects that realize this system. Then we evaluated the influence of the Galactic aberration on the EOP using CIO based ICRS-to-ITRS coordinate transformation. Numerical evaluations of the effect were performed with the ICRF1 and ICRF2 catalogs over short and long time intervals. Results: We show that the effect of the Galactic aberration strongly depends on the distribution of the sources that are used to realize the ICRS. According to different distributions of sources (of the ICRF1 and ICRF2 catalogs) the amplitude of the apparent rotation of the ICRS is included between about 0.2 and 1 microarcsecond per year (μas yr-1). We show that this rotation has no component around the axis pointing to the Galactic center and has an zero amplitude in the case of uniform distribution of sources. The effect on the coordinates of the Celestial intermediate pole (CIP) is included between about 1 to 100 μas after one century from J2000.0, while the effects on the Earth rotation angle (ERA) are from 4 to several tens of μas after one century. Conclusions: We demonstrate that the Galactic aberration is responsible for a variation

  6. Veggie Light Curve Demo

    NASA Video Gallery

    In this activity, students will observe the surface of rotating potatoes to help them understand how astronomers can sometimes determine the shape of asteroids from variations in reflective brightn...

  7. Symmetric Monotone Venn Diagrams with Seven Curves

    NASA Astrophysics Data System (ADS)

    Cao, Tao; Mamakani, Khalegh; Ruskey, Frank

    An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 n possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A k-region in a diagram is a region that is in the interior of precisely k curves. A n-Venn diagram is symmetric if it has a point of rotation about which rotations of the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric if it is symmetric and its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. A Venn diagram is monotone if every k-region is adjacent to both some (k - 1)-region (if k > 0) and also to some k + 1 region (if k < n). A Venn diagram is simple if at most two curves intersect at any point. We prove that the "Grünbaum" encoding uniquely identifies monotone simple symmetric n-Venn diagrams and describe an algorithm that produces an exhaustive list of all of the monotone simple symmetric n-Venn diagrams. There are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are polar symmetric.

  8. A curved vitrectomy probe.

    PubMed

    Chalam, K V; Shah, Vinay A; Tripathi, Ramesh C

    2004-01-01

    A curved vitrectomy probe for better accessibility of the peripheral retina in phakic eyes is described. The specially designed curved vitrectomy probe has a 20-gauge pneumatic cutter. The radius of curvature at the shaft is 19.4 mm and it is 25 mm long. The ora serrata is accessed through a 3.0- or 4.0-mm sclerotomy in phakic eyes without touching the crystalline lens. Use of this instrument avoids inadvertent trauma to the clear lens in phakic eyes requiring vitreous base excision. This curved vitrectomy instrument complements wide-angle viewing systems and endoscopes for safe surgical treatment of peripheral retinal pathology in phakic eyes. PMID:15185799

  9. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  10. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  11. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    SciTech Connect

    Peek, J. E. G.; Schiminovich, David

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  12. RR Lyrae Variables in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Contreras, R.; Salinas, R.; Escobar, M. E.; Smith, H. A.; De Lee, N.; Pritzl, B. J.; Borissova, J.

    2004-12-01

    RR Lyrae variables are the cornerstone of the Population II distance scale, and yet our knowledge of the RR Lyrae variable star content in Galactic globular clusters is now known to be surprisingly incomplete. In the present paper, we present our new results in this area. Highlights of our work includes: i) The discovery of a vast number of variable stars in M62 (NGC 6266), making it one of the three most RR Lyrae-rich globular clusters known, and also placing it as Oosterhoff type I in spite of a blue horizontal branch morphology; ii) The determination of light curves and Oosterhoff types for globular clusters associated with the Sagittarius dSph galaxy, including NGC 5634, Arp 2, and Terzan 8; iii) A reassessment of the variable star content in the moderately metal-rich globular clusters M69 and NGC 6304; iv) The first theoretical calibration of the RR Lyrae period-luminosity-metallicity relation in I, J, and H, as well as an updated calibration of the K-band relation---along with comparisons against the empirical data, particularly in I. This project was supported in part by Proyecto Fondecyt Regular 1030954.

  13. ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES

    SciTech Connect

    Groot, Paul J.

    2012-01-20

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

  14. Constraints on galactic wind models

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery

    2016-09-01

    Observational implications are derived for two standard models of supernovae-driven galactic winds: a freely expanding steady-state wind and a wind sourced by a self-similarly expanding superbubble including thermal heat conduction. It is shown that, for the steady-state wind, matching the measured correlation between the soft X-ray luminosity and star formation rate of starburst galaxies is equivalent to producing a scaled wind mass-loading factor relative to the star formation rate of 0.5-3, in agreement with the amount inferred from metal absorption line measurements. The match requires the asymptotic wind velocity v∞ to scale with the star formation rate dot{M}_{ast } (in M⊙ yr-1) approximately as v_∞ ≃ (700-1000) {{km s^{-1}}} {dot{M}_{ast }}^{1/6}. The implied mass injection rate is close to the amount naturally provided by thermal evaporation from the wall of a superbubble in a galactic disc, suggesting that thermal evaporation may be a major source of mass loading. The predicted mass-loading factors from thermal evaporation within the galactic disc alone, however, are somewhat smaller, 0.2-2, so that a further contribution from cloud ablation or evaporation within the wind may be required. Both models may account for the 1.4 GHz luminosity of unresolved radio sources within starburst galaxies for plausible parameters describing the distribution of relativistic electrons. Further observational tests to distinguish the models are suggested.

  15. Development of a near infrared camera for conducting a survey of northern Galactic Cepheid variable stars

    NASA Astrophysics Data System (ADS)

    Monson, Andrew John

    light-curves. In conjunction with future astrometric data from GAIA and/or SIM these data will enable the accurate and precise calibration of the Galactic NIR Cepheid Period-Luminosity Relation. I have obtained the NIR light-curves for 131 Northern Galactic Cepheids. With these light-curves I have determined the mean intensity weighted NIR magnitudes and using a subset of 19 Galactic Cepheids with currently known distances and extinctions I have created a Galactic NIR PL relation. The NIR PL relation determined shows a dispersion of 0.13 mag and a slope which is indistinguishable from that of Cepheids in the Large Magellanic Cloud (LMC). The scatter is as small as any survey to date and attests to the quality of the survey data and the potential of the full data set. I have used the Galactic NIR PL relation to determine a distance modulus of 18:49 ± 0:06 to the LMC, consistent with the generally accepted value. I also report on the serendipitous photometric discovery of 72 previously unclassified Galactic Variables. The individual data for each star are presented in the Supplemental Data document available upon request to the author.

  16. SAS-2 galactic gamma ray results, 1

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  17. Rotating drops of axion dark matter

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Schwetz, Thomas

    2016-06-01

    We consider how QCD axions produced by the misalignment mechanism could form galactic dark matter halos. We recall that stationary, gravitationally stable axion field configurations have the size of an asteroid with masses of order 10-13M⊙ (because gradient pressure is insufficient to support a larger object). We call such field configurations "drops." We explore whether rotating drops could be larger, and find that their mass could increase by a factor ˜10 . This mass is comparable to the mass of miniclusters generated from misalignment axions in the scenario where the axion is born after inflation. We speculate that misalignment axions today are in the form of drops, contributing to dark matter like a distribution of asteroids (and not as a coherent oscillating background field). We consider some observational signatures of the drops, which seem consistent with a galactic halo made of axion dark matter.

  18. Shepherding tidal debris with the Galactic bar: the Ophiuchus stream

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Erkal, Denis; Sanders, Jason L.

    2016-07-01

    The dynamics of stellar streams in rotating barred potentials is explained for the first time. Naturally, neighbouring stream stars reach pericentre at slightly different times. In the presence of a rotating bar, these neighbouring stream stars experience different bar orientations during pericentric passage and hence each star receives a different torque from the bar. These differing torques reshape the angular momentum and energy distribution of stars in the stream, which in turn changes the growth rate of the stream. For a progenitor orbiting in the same sense as the bar's rotation and satisfying a resonance condition, the resultant stream can be substantially shorter or longer than expected, depending on whether the pericentric passages of the progenitor occur along the bar's minor or major axis, respectively. We present a full discussion of this phenomenon focusing mainly on streams confined to the Galactic plane. In stark contrast with the evolution in static potentials, which give rise to streams that grow steadily in time, rotating barred potentials can produce dynamically old, short streams. This challenges the traditional viewpoint that the inner halo necessarily consists of well phase-mixed material whilst the tidally disrupted structures in the outer halo are more spatially coherent. We argue that this mechanism may play an important role in explaining the mysteriously short Ophiuchus stream that was recently discovered near the bulge region of the Milky Way.

  19. Galactic Building Blocks Seen Swarming Around Andromeda

    NASA Astrophysics Data System (ADS)

    2004-02-01

    University of Virginia. The Milky Way and Andromeda were formed many billions of years ago in a cosmic neighborhood brimming with galactic raw materials -- among which hydrogen, helium, and cold dark matter were primary constituents. By now, most of this raw material has probably been gobbled up by the two galaxies, but astronomers suspect that some primitive clouds are still floating free. Previous studies have revealed a number of clouds of neutral atomic hydrogen that are near the Milky Way but not part of its disk. These were initially referred to as high-velocity clouds (HVCs) when they were first discovered because they appeared to move at velocities difficult to reconcile with Galactic rotation. Scientists were uncertain if HVCs comprised building blocks of the Milky Way that had so far escaped capture, or if they traced gas accelerated to unexpected velocities by energetic processes (multiple supernovae) within the Milky Way. The discovery of similar clouds bound to the Andromeda Galaxy strengthens the case that at least some of these HVCs are indeed galactic building blocks. Astronomers are able to use radio telescopes to detect the characteristic 21-centimeter radiation emitted naturally by neutral atomic hydrogen. The great difficulty in analyzing these low-mass galactic building blocks has been that their natural radio emission is extremely faint. Even those nearest to us, clouds orbiting our Galaxy, are hard to study because of serious distance uncertainties. "We know the Milky Way HVCs are relatively nearby, but precisely how close is maddeningly tough to determine," said Thilker. Past attempts to find missing satellites around external galaxies at well-known distances have been unsuccessful because of the need for a very sensitive instrument capable of producing high-fidelity images, even in the vicinity of a bright source such as the Andromeda Galaxy. One might consider this task similar to visually distinguishing a candle placed adjacent to a spotlight. The

  20. Systematic effect of the Galactic aberration on the ICRS realization and the Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Cheng; Capitaine, Nicole; Lambert, Sébastien; Malkin, Zinovy; Zhu, Zi

    2012-08-01

    The curvature of the motion of the solar system barycenter (SSB) around the Galactic center induces an aberration effect vary ing linearly with time that can be called "Galactic aberration". This results in a systematic dipole pattern of the apparent proper motions of the ensemble of distant extragalactic objects which defines the International Celestial Reference System (ICRS). The purpose of this paper is to investigate the effect of the Galactic aberration on the ICRS realization and on the Earth orientation parameters (EOP) referred to the ICRS. We first compute theoretically the global rotation of the ICRS resulting from the Galactic aberration effect and then evaluate the corresponding influence on the EOP using CIO based ICRS - to - ITRS coordinate transformation. Based on the ICRF and ICRF2 catalogs, we evaluate this effect over short and long time intervals. We have demonstrated that the effects of the Galactic aberration strongly depend on the distribution of the sources that are used to realize the celestial reference system. According to the realistic distribution of the defining sources of the ICRF and ICRF2, the amplitudes of the systematic effect on the coordinates of the Celestial intermediate pole (CIP) are up to 50 and 5 microarcseconds, respectively after one century from J2000.0 while the effects on the Earth Rotation Angle (ERA) are of several tens of microarcseconds. The Galactic aberration effect cannot be neglected with the improving precision in modern astrometry and the increasing length of the available VLBI observation time series. More radio sources, especially in the southern hemisphere should be observed to make more homogeneous distribution of the defining sources in the ICRF in order to minimize that effect.

  1. THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris

    2013-06-01

    We present 10 {mu}m-35 {mu}m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc Multiplication-Sign 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H{sub 2} emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H{sub 2} suggest that most of the H{sub 2} 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  2. Observation of microlensing toward the galactic spiral arms. EROS II 3 year survey

    NASA Astrophysics Data System (ADS)

    Derue, F.; Afonso, C.; Alard, C.; Albert, J.-N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J.-P.; Blanc, G.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Ferlet, R.; Fouqué, P.; Glicenstein, J.-F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haïssinski, J.; Hamilton, J.-C.; Hardin, D.; de Kat, J.; Kim, A.; Lasserre, T.; Le Guillou, L.; Lesquoy, É.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J.-B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.

    2001-07-01

    We present an analysis of the light curves of 9.1 million stars observed during three seasons by EROS (Expérience de Recherche d'Objets Sombres), in the Galactic plane away from the bulge. Seven stars exhibit luminosity variations compatible with gravitational microlensing effects due to unseen objects. The corresponding optical depth, averaged over four directions, is bar tau = 0.43 +/- 0.2\\ x\\ 10-6. While this value is compatible with expectations from simple Galactic models under reasonable assumptions on the target star distances, we find an excess of events with short timescales toward the direction closest to the Galactic centre. We discuss a possible interpretation involving the contribution of an elongated bar. This work is based on observations made with the MARLY telescope at the European Southern Observatory, La Silla, Chile.

  3. The sales learning curve.

    PubMed

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  4. HEGRA Observations of Galactic Sources

    NASA Astrophysics Data System (ADS)

    Völk, H.; Hegea Collaboration

    2000-06-01

    In this talk I will first give a summary of the observations of expected Galactic TeV gamma-ray sources with the HEGRA CT-Sytem since the Kruger Park Workshop in 1997. Then I will go into some detail regarding the observations of Supernova Remnants (SNRs), especially those of Tycho's SNR and of Cas A. The emphasis will not be on all aspects of these published data. I will rather review the selection of these observational targets, and discuss some of the physical implications of the results.

  5. HEGRA observations of Galactic sources

    NASA Astrophysics Data System (ADS)

    HEGRA Collaboration

    2000-06-01

    In this talk I will first give a summary of the observations of expected Galactic TeV γ-ray sources with the HEGRA CT-System since the Kruger Park Workshop in 1997. Then I will go into some detail regarding the observations of Supernova Remnants (SNRs), especially those of Tycho's SNR and of Cas A. The emphasis will not be on all aspects of these published data. I will rather review the selection of these observational targets, and discuss some of the physical implications of the results. .

  6. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  7. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  8. Curve Fit Challenge

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2005-01-01

    Graphic tips for using the Geometer's Sketchpad (GSP) are described. The methods to import an image into GSP, define a coordinate system, plot points and curve fit the function using a graphical calculator are demonstrated where the graphic features of GSP allow teachers to expand the use of the technology application beyond the classroom.

  9. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  10. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  11. Comparing Item Characteristic Curves.

    ERIC Educational Resources Information Center

    Rosenbaum, Paul R.

    1987-01-01

    This paper develops and applies three nonparametric comparisons of the shapes of two item characteristic surfaces: (1) proportional latent odds; (2) uniform relative difficulty; and (3) item sensitivity. A method is presented for comparing the relative shapes of two item characteristic curves in two examinee populations who were administered an…

  12. Straightening Out Learning Curves

    ERIC Educational Resources Information Center

    Corlett, E. N.; Morecombe, V. J.

    1970-01-01

    The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…

  13. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  14. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  15. Introduction to Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  16. Star formation in Galactic flows

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2016-06-01

    We investigate the triggering of star formation in clouds that form in Galactic scale flows as the interstellar medium passes through spiral shocks. We use the Lagrangian nature of smoothed particle hydrodynamics simulations to trace how the star-forming gas is gathered into self-gravitating cores that collapse to form stars. Large-scale flows that arise due to Galactic dynamics create shocks of the order of 30 km s-1 that compress the gas and form dense clouds (n > several × 102 cm-3) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of n > 103 cm-3 which occur on size scales of ≈1 pc for low-mass star-forming regions (M < 100 M⊙), and up to sizes approaching 10 pc for higher mass regions (M > 103 M⊙). Star formation in the 250 pc region lasts throughout the 5 Myr time-scale of the simulation with a star formation rate of ≈10-1 M⊙ yr-1 kpc-2. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 per cent at our sink accretion radius to values of <10-3 at low densities.

  17. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  18. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  19. A CATALOG OF GALACTIC INFRARED CARBON STARS

    SciTech Connect

    Chen, P. S.

    2012-02-15

    We collected almost all of the Galactic infrared carbon stars (IRCSs) from literature published up to the present to organize a catalog of 974 Galactic IRCSs in this paper. Some of their photometric properties in the near-, mid-, and far-infrared are discussed.

  20. Rotation Period Determination for 2484 Parenago

    NASA Astrophysics Data System (ADS)

    Marchini, Alessandro; Papini, Ricardo; Salvaggio, Fabio

    2015-01-01

    Photometric observations of the main-belt asteroid 2484 Parenago performed by the authors in Italy in 2014 September revealed the bimodal light curve phased to 3.433 ± 0.001 hours as the most likely solution representing the synodic rotation rate for this asteroid.

  1. Correlations between Kinematics and Metallicity in the Galactic Bulge: A Review

    NASA Astrophysics Data System (ADS)

    Babusiaux, Carine

    2016-06-01

    Recent large-scale surveys of galactic bulge stars allowed to build a detailed map of the bulge kinematics. The bulge exhibits cylindrical rotation consistent with a disky origin which evolved through bar-driven secular evolution. However, correlations between metallicity and kinematics complicate this picture. In particular a metal-poor component with distinct kinematic signatures has been detected. Its origin, density profile and link with the other Milky Way stellar populations are currently still poorly constrained.

  2. Anterior Overgrowth in Primary Curves, Compensatory Curves and Junctional Segments in Adolescent Idiopathic Scoliosis

    PubMed Central

    van Stralen, Marijn; Chu, Winnie C. W.; Lam, Tsz-Ping; Ng, Bobby K. W.; Vincken, Koen L.; Cheng, Jack C. Y.; Castelein, René M.

    2016-01-01

    Introduction Although much attention has been given to the global three-dimensional aspect of adolescent idiopathic scoliosis (AIS), the accurate three-dimensional morphology of the primary and compensatory curves, as well as the intervening junctional segments, in the scoliotic spine has not been described before. Methods A unique series of 77 AIS patients with high-resolution CT scans of the spine, acquired for surgical planning purposes, were included and compared to 22 healthy controls. Non-idiopathic curves were excluded. Endplate segmentation and local longitudinal axis in endplate plane enabled semi-automatic geometric analysis of the complete three-dimensional morphology of the spine, taking inter-vertebral rotation, intra-vertebral torsion and coronal and sagittal tilt into account. Intraclass correlation coefficients for interobserver reliability were 0.98–1.00. Coronal deviation, axial rotation and the exact length discrepancies in the reconstructed sagittal plane, as defined per vertebra and disc, were analyzed for each primary and compensatory curve as well as for the junctional segments in-between. Results The anterior-posterior difference of spinal length, based on “true” anterior and posterior points on endplates, was +3.8% for thoracic and +9.4% for (thoraco)lumbar curves, while the junctional segments were almost straight. This differed significantly from control group thoracic kyphosis (-4.1%; P<0.001) and lumbar lordosis (+7.8%; P<0.001). For all primary as well as compensatory curves, we observed linear correlations between the coronal Cobb angle, axial rotation and the anterior-posterior length difference (r≥0.729 for thoracic curves; r≥0.485 for (thoraco)lumbar curves). Conclusions Excess anterior length of the spine in AIS has been described as a generalized growth disturbance, causing relative anterior spinal overgrowth. This study is the first to demonstrate that this anterior overgrowth is not a generalized phenomenon. It is

  3. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  4. Analysis of Photometric Uncertainties in the OGLE-IV Galactic Bulge Microlensing Survey Data

    NASA Astrophysics Data System (ADS)

    Skowron, J.; Udalski, A.; Kozłowski, S.; Szymański, M. K.; Mróz, P.; Wyrzykowski, Ł.; Poleski, R.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Soszyński, I.

    2016-01-01

    We present a statistical assessment of both, observed and reported, photometric uncertainties in the OGLE-IV Galactic bulge microlensing survey data. This dataset is widely used for the detection of variable stars, transient objects, discovery of microlensing events, and characterization of the exo-planetary systems. Large collections of RR Lyr stars and Cepheids discovered by the OGLE project toward the Galactic bulge provide light curves based on this dataset. We describe the method of analysis, and provide the procedure, which can be used to update preliminary photometric uncertainties, provided with the light curves, to the ones reflecting the actual observed scatter at a given magnitude and for a given CCD detector of the OGLE-IV camera. This is of key importance for data modeling, in particular, for the correct estimation of the goodness of fit.

  5. Paleomagnetic analysis of curved thrust belts reproduced by physical models

    NASA Astrophysics Data System (ADS)

    Costa, Elisabetta; Speranza, Fabio

    2003-12-01

    This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1×1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms

  6. Factorization with genus 2 curves

    NASA Astrophysics Data System (ADS)

    Cosset, Romain

    2010-04-01

    The elliptic curve method (ECM) is one of the best factorization methods available. It is possible to use hyperelliptic curves instead of elliptic curves but it is in theory slower. We use special hyperelliptic curves and Kummer surfaces to reduce the complexity of the algorithm. Our implementation GMP-HECM is faster than GMP-ECM for factoring large numbers.

  7. ROTATION AND MULTIPLE STELLAR POPULATION IN GLOBULAR CLUSTERS

    SciTech Connect

    Bekki, Kenji

    2010-11-20

    We investigate structure and kinematics of the second generation of stars (SG) formed from gaseous ejecta of the first generation of stars (FG) in forming globular clusters (GCs). We consider that SG can be formed from gaseous ejecta from asymptotic giant branch stars of FG with the initial total mass of 10{sup 6} M {sub sun}-10{sup 8} M {sub sun} to explain the present masses of the Galactic GCs. Our three-dimensional hydrodynamical simulations with star formation show that SG formed in the central regions of FG can have a significant amount of rotation (V/{sigma}{approx} 0.8-2.5). The rotational amplitude of SG can depend strongly on the initial kinematics of FG. We thus propose that some GCs composed of FG and SG had a significant amount of rotation when they were formed. We also suggest that although later long-term ({approx}10 Gyr) dynamical evolution of stars can smooth out the initial structural and kinematical differences between FG and SG to a large extent, initial flattened structures and rotational kinematics of SG can be imprinted on shapes and internal rotation of the present GCs. We discuss these results in terms of internal rotation observed in the Galactic GCs.

  8. Lower extremity kinematics of athletics curve sprinting.

    PubMed

    Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang

    2015-01-01

    Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention. PMID:25495196

  9. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  10. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  11. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  12. Galactic cycles and their relationship to life on earth

    SciTech Connect

    Olson, A.P.

    1984-05-01

    This paper draws attention to episodic events in the geologic time scale of the evolution of life on earth, and discusses potentially cyclic behavior relative to galactic structure. The question is a simple one: Do galactic processes affect the solar system. It is known that the sun is moving at about 220 +- 15 km/sec at a distance of about 8.5 +- 0.5 kpc from the galactic center. This motion, if circular and unperturbed, implies an orbital period of 237 +- 21 My for the solar system around the galaxy. The Milky Way also evidences structure typically interpreted as spiral arms, in the distribution of gas clouds in its central plane. The relative motion of the spiral arms, known as the pattern speed, is about 2/3 that of the sun. Consequently the solar system gains upon and passes through all the structure in its orbital plane once in three rotations or approx.700 My. If this structure is persistent over times longer than 700 My, it is clear that the interaction (if any) can be called cyclic. Furthermore, if there is any sub-structure or inner pattern to the 700 My cycle, it may show up as higher harmonics. Age estimates for the Milky Way are 12-15 By, or approx.17 to 22 structure cycles of 0.70 By. It seems not unreasonable to expect some persistence of a pattern over a few structure cycles. It must be noted that the pattern speed is quite uncertain. Perhaps geophysical evidence can be used to improve on the nominally 700 My structure cycle which is assumed in this paper. 16 references, 8 figures.

  13. ON RINGS AND STREAMS IN THE GALACTIC ANTI-CENTER

    SciTech Connect

    Li Jing; Deng Licai; Xu Yan; Newberg, Heidi Jo; Carlin, Jeffrey L.; Newby, Matthew; Willett, Benjamin A.; Luo Zhiquan E-mail: heidi@rpi.edu

    2012-10-01

    We confirm that there are at least three separate low-latitude overdensities of blue F turnoff stars near the Milky Way anti-center: the Monoceros Ring, the Anti-Center Stream (ACS), and the Eastern Banded Structure (EBS). There might also be a small number of normal thick disk stars at the same location. The ACS is a tilted component that extends to higher Galactic latitude at lower Galactic longitude, 10 kpc from the Sun toward the anti-center. It has a sharp cutoff on the high-latitude side. Distance, velocity, and proper motion measurements are consistent with previous orbit fits. The mean metallicity is [Fe/H] =-0.96 {+-} 0.03, which is lower than the thick disk and Monoceros Ring. The Monoceros Ring is a higher density substructure that is present at 15 Degree-Sign < b < 22 Degree-Sign at all longitudes probed in this survey. The structure likely continues toward lower latitudes. The distances are consistent with a constant distance from the Galactic center of 17.6 kpc. The mean line-of-sight velocity of the structure is consistent with a thick disk rotation. However, the velocity dispersion of these stars is {approx}15 km s{sup -1} and the metallicity is [Fe/H] =-0.80 {+-} 0.01. Both of these quantities are lower than the canonical thick disk. We suggest that this ring structure is likely different from the thick disk, though its association with the disk cannot be definitively ruled out. The EBS is detected primarily photometrically, near (l, b) = (225 Degree-Sign , 30 Degree-Sign ), at a distance of 10.9 kpc from the Sun.

  14. Rotational properties of the Maria asteroid family

    SciTech Connect

    Kim, M.-J.; Byun, Y.-I.; Choi, Y.-J.; Moon, H.-K.; Hinse, T. C.; Park, J.-H.; Brosch, N.; Kaplan, M.; Kaynar, S.; Uysal, Ö.; Eker, Z.; Güzel, E.; Behrend, R.; Yoon, J.-N.; Mottola, S.; Hellmich, S.

    2014-03-01

    The Maria family is regarded as an old-type (∼3 ± 1 Gyr) asteroid family that has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids to the inner solar system. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in the observed rotation rate distribution. The one-sample Kolmogorov-Smirnov test confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of light curves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a light-curve inversion method, we successfully determined the pole orientations for 13 Maria members and found an excess of prograde versus retrograde spins with a ratio (N{sub p} /N{sub r} ) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner solar system since the formation of the Maria family. We estimate that approximately 37-75 Maria family asteroids larger than 1 km have entered near-Earth space every 100 Myr.

  15. Galactic Center Fly-in

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Fu, C.-W.; Li, Y.; Frisch, P. C.

    2006-06-01

    Beginning with the familiar constellations of the night sky, we present a multispectral zoom into the core of the Milky Way Galaxy. After traveling over seven orders of magnitude in spatial scale, we discover the violent phenomena occurring within one light year of the Black Hole at the Galactic Core. This animated zoom includes data with wavelengths from radio to X-ray, and is based entirely on data or models that have been aligned at all spatial scales in order to provide a single continuous visual trip into the Center of the Milky Way Galaxy. The visualization challenge has been to align and choreograph data acquired over a wide range of wavelength and spatial scales, and obtain a new scientific as well as educational perspective of the dense core of our Galaxy.

  16. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  17. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  18. The galactic model of GRBs

    SciTech Connect

    Colgate, S.A.; Li, H.

    1997-09-01

    The galactic model of gamma ray bursts (GRBs) is based upon the observed production of soft gamma ray repeaters (SGRs) in the galaxy and the consequences of a reasonable model to explain them. In this view GRBs are the long term result of the burn-out conditions of the SGRs in this and in other galaxies. A delay of {approximately} 30 million years before GRBs are being actively produced can be understood as the time required for the ejected matter during the SGR phase to cool, condense, and form planetesimals that are eventually captured by the central neutron star. The amount of disk matter and the interaction between each GRB and the disk determine the rate of burst production and turn-off time of GRBs. The x-ray afterglow as well as optical emission is derived from x-ray fluorescence and ionization of previously ablated matter.

  19. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  20. Star Formation Across Galactic Environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    2013-01-01

    I present here parallel investigations of star formation in AGN-free and quasar host galaxies. These environments are both insightful; quasars are among the most violent objects known, reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to dwarf star-forming galaxies. The AGN-free galaxies are drawn from the KPNO International Spectroscopic Survey, an Hα-selected, volume-limited survey was designed to avoid continuum luminosity bias. This work studies the KISS galaxies in mid- and far-IR using Spitzer IRAC and MIPS photometry. These IR bands are interesting because the UV light from young stars is reprocessed into thermal emission in the far-IR (24μm MIPS) by dust and into vibrational transition features in the mid-IR (8.0μm IRAC) by polycyclic aromatic hydrocarbons (PAHs). This work examines the efficiencies of PAH and dust emission as tracers of star-formation. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has no systematic dependance on galactic mass. My study of quasar host galaxies utilizes images of eight PG quasars from the WFPC2 and NICMOS instruments aboard HST. I use narrow-band images centered on the Hβ, [OII]λ3727, [OIII]λ5007, and Paα emission lines to construct extinction and star formation maps. Additionally, I use line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission. I find star formation, albeit at rates are lower than expected, suggesting that quasar host galaxies are dynamically more advanced than suspected. Seven of the galaxies have higher mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses from earlier works that AGN activity quenches star formation in host galaxies by disrupting gas reservoirs.

  1. Microlensing by the galactic bar

    NASA Technical Reports Server (NTRS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1995-01-01

    We compute the optical depth and duration distribution of microlensing events towrd Baade's window in a model composed of a Galactic disk and a bar. The bar model is a self-consistent dynamical model built out of individual orbits that has been populated to be consistent with the COBE maps of the Galaxy and kinematic observations of the Galactic bulge. We find that most of the lenses are in the bulge with a line-of-sight distance 6.25 kpc (adopting R(sub 0) = 8 kpc). The microlensing optical depth of a 2 x 10(exp 10) solar mass bar plus a truncated disk is (2.2 +/- 0.45) x 10(exp -6), consistent with the large optical depth (3.2 +/- 1.2) x 10(exp -6) found by Udalski et al. (1994). This model optical depth is enhanced over the predictions of axisymmetric models by Kiraga & Paczynski (1994) by slightly more than a factor of 2, since the bar is elongated along the line of sight. The large Einstein radius and small transverse velocity dispersion also predict a longer event duration in the self-consistent bar model than in the Kiraga-Paczynski model. The event rate and duration distribution also depend on the lower mass cutoff of the lens mass function. With a 0.1 solar mass cutoff, five to seven events (depending on the contribution of disk lenses) with a logarithmic mean duration of 20 days are expected for the Optical Gravitational Lensing Experiment (OGLE) according to our model, while Udalski et al. (1994) observed nine events with durations from 8 to 62 days. On the other hand, if most of the lenses are brown dwarfs, our model predicts too many short-duration events. A Kolmogorov-Smirnov test finds only 7% probability for the model with 0.01 solar mass cutoff to be consistent with current data.

  2. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  3. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  4. Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair

    NASA Astrophysics Data System (ADS)

    Şenyurt, Süleyman; Altun, Yasin; Cevahir, Ceyda

    2016-04-01

    In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends Bertrand curve.

  5. Hercules and Wolf 630 stellar streams and galactic bar kinematics

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2016-04-01

    We have identified the four most significant features in the UV velocity distribution of solarneighborhood stars: H1, H2 in the Hercules stream and W1, W2 in the Wolf 630 stream. We have formulated the problemof determining several characteristics of the centralGalactic bar independently from each of the identified features by assuming that the Hercules and Wolf 630 streams are of a bar-induced dynamical nature. The problem has been solved by constructing 2: 1 resonant orbits in the rotating bar frame for each star in these streams. Analysis of the resonant orbits found has shown that the bar pattern speed is 45-55 km s-1 kpc-1, while the bar angle lies within the range 40°-60°. The results obtained are consistent with the view that the Hercules andWolf 630 streams could be formed by a long-term influence of the Galactic bar leading to a characteristic bimodal splitting of the UV velocity plane.

  6. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  7. An eccentric binary millisecond pulsar in the galactic plane.

    PubMed

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

  8. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  9. An eccentric binary millisecond pulsar in the galactic plane.

    PubMed

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value. PMID:18483399

  10. New Galactic Double Periodic Variables

    NASA Astrophysics Data System (ADS)

    Mennickent, R. E.; Rosales, J.

    2014-10-01

    We discovered two new Double Periodic Variables in the ASAS catalogue of variable stars, viz., V495 Cen and V4142 Sgr. Other 3 candidates for Double Periodic Variables were found. All systems have relatively long orbital periods. We present improved ephemerides and disentangled light curves.

  11. Difference Image Analysis of Galactic Microlensing. I. Data Analysis

    SciTech Connect

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.

    1999-08-20

    This is a preliminary report on the application of Difference Image Analysis (DIA) to Galactic bulge images. The aim of this analysis is to increase the sensitivity to the detection of gravitational microlensing. We discuss how the DIA technique simplifies the process of discovering microlensing events by detecting only objects that have variable flux. We illustrate how the DIA technique is not limited to detection of so-called ''pixel lensing'' events but can also be used to improve photometry for classical microlensing events by removing the effects of blending. We will present a method whereby DIA can be used to reveal the true unblended colors, positions, and light curves of microlensing events. We discuss the need for a technique to obtain the accurate microlensing timescales from blended sources and present a possible solution to this problem using the existing Hubble Space Telescope color-magnitude diagrams of the Galactic bulge and LMC. The use of such a solution with both classical and pixel microlensing searches is discussed. We show that one of the major causes of systematic noise in DIA is differential refraction. A technique for removing this systematic by effectively registering images to a common air mass is presented. Improvements to commonly used image differencing techniques are discussed. (c) 1999 The American Astronomical Society.

  12. Mapping optically variable quasars towards the Galactic plane

    NASA Astrophysics Data System (ADS)

    Fernandez-Trincado, J. G.; Verdugo, T.; Reylé, C.; Robin, A. C.; de Diego, J. A.; Motta, V.; Vega, L.; Downes, J. J.; Mateu, C.; Vivas, A. K.; Briceño, C.; Abad, C.; Vieira, K.; Hernández, J.; Nuñez, A.; Gatuzz, E.

    2015-12-01

    We present preliminary results of the CIDA Equatorial Variability Survey (CEVS), looking for quasar (hereafter QSO) candidates near the Galactic plane. The CEVS contains photometric data from extended and adjacent regions of the Milky Way disk (˜ 500 sq. deg.). In this work 2.5 square degrees with moderately high temporal sampling in the CEVS were analyzed. The selection of QSO candidates was based on the study of intrinsic optical photometric variability of 14,719 light curves. We studied samples defined by cuts in the variability index (V_{index}>66.5), periodicity index (Q > 2), and the distribution of these sources in the plane (A_T,γ), using a slight modification of the first-order of the structure function for the temporal sampling of the survey. Finally, 288 sources were selected as QSO candidates. The results shown in this work are a first attempt to develop a robust method to detect QSO towards the Galactic plane in the era of massive surveys such as VISTA and Gaia.

  13. Magnetism in curved geometries

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  14. Magnetism in curved geometries

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  15. Curved shock theory

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2016-07-01

    Curved shock theory (CST) is introduced, developed and applied to relate pressure gradients, streamline curvatures, vorticity and shock curvatures in flows with planar or axial symmetry. Explicit expressions are given, in an influence coefficient format, that relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. The effect of pre-shock flow divergence/convergence, on vorticity generation, is related to the transverse shock curvature. A novel derivation for the post-shock vorticity is presented that includes the effects of pre-shock flow non-uniformities. CST applicability to unsteady flows is discussed.

  16. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  17. Finding Compact Hot Subdwarf Binaries in the Galactic Disc

    NASA Astrophysics Data System (ADS)

    Kupfer, T.; Geier, S.; McLeod, A.; Groot, P.; Verbeek, K.; Schaffenroth, V.; Heber, U.; Heuser, C.; Ziegerer, E.; Östensen, R.; Nemeth, P.; Dhillon, V.; Butterley, T.; Littlefair, S.; Wilson, R.; Telting, J.; Shporer, A.; Fulton, B.

    2014-04-01

    We started a new project which aims to find compact hot subdwarf binaries at low Galactic latitudes. Targets are selected from several photometric surveys and a spectroscopic follow-up campaign to find radial velocity variations on timescales as short as tens of minutes has been started. Once radial variations are detected phase-resolved spectroscopy is obtained to measure the radial velocity curve and the mass function of the system. The observing strategy is described and the discovery of two short period hot subdwarf binaries is presented. UVEX J032855.25+503529.8 contains a hot subdwarf B star (sdB) orbited by a cool M-dwarf in a P=0.11017 days orbit. The lightcurve shows a strong reflection effect but no eclipses are visible. HS 1741+2133 is a short period (P=0.20 days) sdB most likely with a white dwarf (WD) companion.

  18. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  19. New Horizons approach photometry of Pluto and Charon: light curves and Solar phase curves

    NASA Astrophysics Data System (ADS)

    Zangari, A. M.; Buie, M. W.; Buratti, B. J.; Verbiscer, A.; Howett, C.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Stern, S. A.

    2015-12-01

    While the most captivating images of Pluto and Charon were shot by NASA's New Horizons probe on July 14, 2015, the spacecraft also imaged Pluto with its LOng Range Reconnaissance Imager ("LORRI") during its Annual Checkouts and Approach Phases, with campaigns in July 2013, July 2014, January 2015, March 2015, April 2015, May 2015 and June 2015. All but the first campaign provided full coverage of Pluto's 6.4 day rotation. Even though many of these images were taken when surface features on Pluto and Charon were unresolved, these data provide a unique opportunity to study Pluto over a timescale of several months. Earth-based data from an entire apparition must be combined to create a single light curve, as Pluto is never otherwise continuously available for observing due to daylight, weather and scheduling. From the spacecraft, Pluto's sub-observer latitude remained constant to within 0.05 degrees of 43.15 degrees, comparable to a week's worth of change as seen from Earth near opposition. During the July 2013 to June 2015 period, Pluto's solar phase curve increased from 11 degrees to 15 degrees, a small range, but large compared to Earth's 2 degree limit. The slope of the solar phase curve hints at properties such as surface roughness. Using PSF photometry that takes into account the ever-increasing sizes of Pluto and Charon as seen from New Horizons, as well as surface features discovered at closest approach, we present rotational light curves and solar phase curves of Pluto and Charon. We will connect these observations to previous measurements of the system from Earth.

  20. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Pavel, Michael D.; Clemens, D. P. E-mail: clemens@bu.edu

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  1. The Heliosphere and the Galactic Environment

    NASA Video Gallery

    The boundaries surrounding our heliosphere can change both due to changes in our galactic environment and through changes in the solar wind emitted by the Sun. We see here an animation of the bound...

  2. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  3. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  4. Dark matter particles in the galactic halo

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-01

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  5. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    PubMed

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  6. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  7. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    SciTech Connect

    Epstein, Courtney R.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.

  8. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  9. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  10. The Characteristic Curves of Water

    NASA Astrophysics Data System (ADS)

    Neumaier, Arnold; Deiters, Ulrich K.

    2016-09-01

    In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown's postulate—that these curves are unique and dome-shaped in a double-logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.

  11. Relativistic Dark Matter at the Galactic Center

    SciTech Connect

    Amin, Mustafa A.; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  12. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    SciTech Connect

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  13. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  14. Titration Curves: Fact and Fiction.

    ERIC Educational Resources Information Center

    Chamberlain, John

    1997-01-01

    Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…

  15. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  16. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt{sup -bar}), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb{sup -bar} is also enlarged to 35 GeV≲m{sub χ}≲165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  17. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  18. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  19. WIMPs at the galactic center

    DOE PAGES

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW,more » ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.« less

  20. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Fox, Patrick J.; Harnik, Roni; Batell, Brian E-mail: brian.batell@cern.ch E-mail: roni@fnal.gov

    2015-05-01

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, t t-bar ), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for b b-bar is also enlarged to 35 GeV ∼< m{sub χ} ∼< 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  1. Predictors of curve flexibility in adolescent idiopathic scoliosis: a retrospective study of 100 patients.

    PubMed

    Ameri, Ebrahim; Behtash, Hamid; Mobini, Bahram; Daraie, Ariasb

    2015-01-01

    Curve flexibility in adolescent idiopathic scoliosis (AIS) was one of the major concerns of spinal surgeons since the evolution of surgical correction techniques. In this respect, many tried to identify which criteria denote more rigid curve. In the present study, we aimed toward determining important factors influencing AIS curve flexibility on supine bending films. We assessed radiographs of 100 patients with AIS for direction of curves, number of involved vertebrae, apical vertebral translation and rotation, magnitude of main thoracic curve and T5-T12 kyphosis. Statistical analysis performed via stepwise linear regression model with these variables plus age and sex against flexibility index. According to regression analysis, there was a clear relationship between flexibility indexes (FI) and magnitude of main thoracic curve at all (P<0.001). When we consider flexible curves (FI>50%) against rigid curves, apical vertebral rotation was a major determinant of curve flexibility also (P<0.001). Adolescent idiopathic scoliosis curves with larger Cobb's angle and apical vertebral rotation show less flexibility on supine bending films. PMID:25796026

  2. Generating Resources Supply Curves.

    SciTech Connect

    United States. Bonneville Power Administration. Division of Power Resources Planning.

    1985-07-01

    This report documents Pacific Northwest supply curve information for both renewable and other generating resources. Resources are characterized as ''Renewable'' and ''Other'' as defined in section 3 or the Pacific Northwest Electric Power Planning and Conservation Act. The following resources are described: renewable: (cogeneration; geothermal; hydroelectric (new); hydroelectric (efficiency improvement); solar; and wind); other (nonrenewable generation resources: coal; combustion turbines; and nuclear. Each resource has the following information documented in tabular format: (1) Technical Characteristics; (2) Costs (capital and O and M); (3) Energy Distribution by Month; and (4) Supply Forecast (energy). Combustion turbine (CT) energy supply is not forecasted because of CT's typical peaking application. Their supply is therefore unconstrained in order to facilitate analysis of their operation in the regional electrical supply system. The generic nuclear resource is considered unavailable to the region over the planning horizon.

  3. Enhancements of Bayesian Blocks; Application to Large Light Curve Databases

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2015-01-01

    Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).

  4. Orbital Signatures from Observed Light Curves of Blazars

    NASA Astrophysics Data System (ADS)

    Mangalam, A.; Mohan, P.

    2014-09-01

    Variability in active galactic nuclei is observed in UV to X-ray emission based light curves. This could be attributed to orbital signatures of the plasma that constitutes the accretion flow on the putative disk or in the developing jet close to the inner region of the central black hole. We discuss some theoretical models based on this view. These models include general relativistic effects such as light bending, aberration effects, gravitational and Doppler redshifts. The novel aspects relate to the treatment of helical flow in cylindrical and conical geometries in the vicinity of a Schwarzschild black hole that leads to amplitude and frequency modulations of simulated light curves as well as the inclusion of beaming effects in these idealized geometries. We then present a suite of time series analysis techniques applicable to data with varied properties which can extract detailed information from them for their use in theoretical models.

  5. A deep VLA search for OH (1612 MHz) maser sources in the galactic plane

    NASA Astrophysics Data System (ADS)

    Blommaert, J. A. D. L.; van Langevelde, H. J.; Michiels, W. F. P.

    1994-07-01

    The results of a Very Large Array (VLA) OH (1612 MHz) search for OH/IR stars in 7 fields along the galactic plane are presented. Forty-four sources were detected of which 35 were not previously known. It is shown that 'blind' radio interferometric observ- ations (such as with the VLA) are capable of filling up the gap in the IRAS based OH surveys near the galactic plane. This is important for the dynamical modeling of the disc and bulge of our Galaxy. It is also demonstrated that the high resolution of a synthesis telescope is needed to avoid confusion in the galactic plane. Most detected sources are likely to be young (approximately less than 1 Gyr) and massive (Mms greater than 2-3 solar masses) evolved stars and have high expansion velocities (vexp greater than 14.5 km/s) and small deviations (less than 10 km/s) from galactic rotation. Like Baud et al. (1981) we find a peak in the number of sources around l = 25 deg, a region associated with active star formation and a low number of stars at l = 5 deg and 10 deg.

  6. A New High-Frequency Search for Galactic Center Millisecond Pulsars using DSS-43

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Prince, Thomas Allen; Majid, Walid A.; Murchikova, Elena

    2016-01-01

    The primary 70-meter Deep Space Network antenna (DSS-43) in Canberra, Australia was equipped with a new high-frequency (18-28 GHz) receiver system in May 2015 for use in a search for Galactic Center (GC) millisecond pulsars. The primary motivation for this search is that a pulsar in the Galactic Center region (especially one that is gravitationally bound to the massive black hole at the GC) would provide unprecedented tests of gravity in the strong-field regime and would offer an entirely new tool for probing the characteristics of the Galactic Center region. Preparation for the GC pulsar search has involved the development of a single-pulse search pipeline that integrates tools from both Fortran and Python as well as the implementation of this pipeline on high performance CPUs. The original version of the search pipeline was developed using Vela Pulsar data from DSS-43, and a more refined version that relies upon chi-squared fitting techniques was ultimately developed using Crab Pulsar data. Future work will involve continued testing of the single-pulse search pipeline using data from the rotating radio transient (RRAT) J1819-1458, the characterization of RRAT pulses using high time resolution data from the new receiver system on DSS-43, and ultimately the analysis of high-frequency data using the existing pipeline to search for millisecond pulsars in the Galactic Center.

  7. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  8. Rotator cuff problems

    MedlinePlus

    ... rotator cuff is a group of muscles and tendons that attach to the bones of the shoulder ... Rotator cuff tendinitis refers to irritation of these tendons and inflammation of the bursa (a normally smooth ...

  9. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation.

  10. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation. PMID:23028163

  11. Spin and Mass of the Supermassive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    2015-03-01

    The promising observational signatures for the measurement of black hole mass and spin are the azimuthal and latitudinal oscillation frequencies of the bright spots in the accretion flow and also the frequency of black hole event horizon rotation. Interpretation of the known quasi-periodic oscillations data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, a = 0.65 ± 0.05, and mass, M = (4.2 ± 0.2)106M⊙, of the supermassive black hole in the Galactic center. The observed first 11.5 min quasi-periodic oscillation period is identified with a period of the black hole event horizon rotation, and, respectively, the second 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow.

  12. Spin and mass of the supermassive black hole at the Galactic center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    The promising observational signatures for the measurement of black hole mass and spin are the azimuthal and latitudinal oscillation frequencies of the bright spots in the accretion flow and also the frequency of black hole event horizon rotation. Interpretation of the known quasi-periodic oscillations data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, a = 0.65±0.05, and mass, M = (4.2±0.2)106M⊙, of the supermassive black hole in the Galactic center. The observed first 11.5 min quasi-periodic oscillation period is identified with a period of the black hole event horizon rotation, and, respectively, the second 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow.

  13. Modeling Host Disk Kinematics of Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Machuca, Camilo; Crenshaw, D. Michael; Fischer, Travis C.

    2016-01-01

    Previous work by our group has shown that, although the kinematics of many active galactic nuclei (AGN) can be modeled by biconal outflow, most AGN have kinematics that are too convolved with other forms of motion to be modeled so simply, such as the rotation of the host disk. To disentangle these rotational components from the outflowing ionized gas due to AGN "feedback" in the narrow-line region (NLR) and understand the AGN's relationship with the host galaxy at extended distances, we present this study on two Seyfert 2 galaxies, Markarian 3 and Markarian 573, based on two-dimensional long-slit spectra taken with the ARC 3.5m telescope at Apache-Point Observatory. The two targets were observed multiple times at varying position angles (in order to trace the kinematics of the host disk at multiple points) and their total kinematics were analyzed and modeled using DiskFit, a publicly available code that fits given velocity fields. We compare the results of DiskFit to observed velocities and consider the applications of this technique to the kinematic fitting of other nearby AGN with convolved motions.

  14. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  15. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  16. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  17. Masses for Galactic Beat Cepheids

    NASA Astrophysics Data System (ADS)

    D'Cruz, Noella L.; Morgan, Siobahn M.; Böhm-Vitense, Erika

    2000-08-01

    Accurate mass determinations for Cepheids may be used to determine the degree of excess mixing in the interiors of their main-sequence progenitors: the larger the excess mixing, the larger the luminosity of the Cepheid of a given mass, or the smaller the mass of a Cepheid with given luminosity. Dynamical masses determined recently for a few Cepheid binaries indicate excess mixing somewhat stronger than that corresponding to the convective overshoot models by Schaller et al. Beat Cepheids can be used similarly to test main-sequence mixing in stellar interiors. The period ratios for beat Cepheids depend on luminosity, Teff, heavy element abundance, and mass. By comparing pulsational models and the observationally derived luminosity, Teff, metallicities, and period ratios it is possible to obtain masses for these stars, the so-called beat masses. With the old opacities masses much smaller than the evolutionary masses were obtained. With the new OPAL opacities a beat mass close to the dynamical mass was obtained for the binary beat Cepheid Y Carinae, showing that it is now possible to obtain reliable beat masses. In this paper, we determine beat masses for seven Galactic beat Cepheids for which photometric and spectroscopic data are available. We find an average mass around 4.2+/-0.3 Msolar for these stars, though the actual error limits for each star may be larger mainly because of uncertainties in E(B-V) and the heavy element abundances. (As derived spectroscopically, beat Cepheids are in general metal-poor, with -0.4<~[Fe/H]<~0.0). The relation between the derived beat masses and the luminosities again indicates excess mixing that is somewhat larger than that corresponding to the models by Schaller et al.

  18. Galactic Globular Cluster Relative Ages

    NASA Astrophysics Data System (ADS)

    De Angeli, Francesca; Piotto, Giampaolo; Cassisi, Santi; Busso, Giorgia; Recio-Blanco, Alejandra; Salaris, Maurizio; Aparicio, Antonio; Rosenberg, Alfred

    2005-07-01

    We present accurate relative ages for a sample of 55 Galactic globular clusters. The ages have been obtained by measuring the difference between the horizontal branch and the turnoff in two internally photometrically homogeneous databases. The mutual consistency of the two data sets has been assessed by comparing the ages of 16 globular clusters in common between the two databases. We have also investigated the consistency of our relative age determination within the recent stellar model framework. All clusters with [Fe/H]<-1.7 are found to be old and coeval, with the possible exception of two objects, which are marginally younger. The age dispersion for the metal-poor clusters is 0.6 Gyr (rms), consistent with a null age dispersion. Intermediate-metallicity clusters (-1.7<[Fe/H]<-0.8) are on average 1.5 Gyr younger than the metal-poor ones, with an age dispersion of 1.0 Gyr (rms) and a total age range of ~3 Gyr. About 15% of the intermediate-metallicity clusters are coeval with the oldest clusters. All the clusters with [Fe/H]>-0.8 are ~1 Gyr younger than the most metal-poor ones, with a relatively small age dispersion, although the metal-rich sample is still too small to allow firmer conclusions. There is no correlation of the cluster age with the galactocentric distance. We briefly discuss the implication of these observational results for the formation history of the Galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and on observations made at the European Southern Observatory, La Silla, Chile, and with the Isaac Newton Group Telescopes.

  19. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  20. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Maccarone, T.; Steeghs, D.; Greiss, S.; Heinke, C.; Bassa, C. G.; Collazzi, A.; Villar, A.; Gabb, M.; Gossen, L.

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ~2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  1. Very fast optical flaring from a possible new Galactic magnetar.

    PubMed

    Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G

    2008-09-25

    Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.

  2. LINE DERIVED INFRARED EXTINCTION TOWARD THE GALACTIC CENTER

    SciTech Connect

    Fritz, T. K.; Gillessen, S.; Dodds-Eden, K.; Lutz, D.; Genzel, R.; Raab, W.; Ott, T.; Pfuhl, O.; Eisenhauer, F.; Yusef-Zadeh, F.

    2011-08-20

    We derive the extinction curve toward the Galactic center (GC) from 1 to 19 {mu}m. We use hydrogen emission lines of the minispiral observed by ISO-SWS and SINFONI. The extinction-free flux reference is the 2 cm continuum emission observed by the Very Large Array. Toward the inner 14'' x 20'', we find an extinction of A{sub 2.166{mu}m} = 2.62 {+-} 0.11, with a power-law slope of {alpha} = -2.11 {+-} 0.06 shortward of 2.8 {mu}m, consistent with the average near-infrared slope from the recent literature. At longer wavelengths, however, we find that the extinction is grayer than shortward of 2.8 {mu}m. We find that it is not possible to fit the observed extinction curve with a dust model consisting of pure carbonaceous and silicate grains only, and the addition of composite particles, including ices, is needed to explain the observations. Combining a distance-dependent extinction with our distance-independent extinction, we derive the distance to the GC to be R{sub 0} = 7.94 {+-} 0.65 kpc. Toward Sgr A* (r < 0.''5), we obtain A{sub H} = 4.21 {+-} 0.10, A{sub Ks} = 2.42 {+-} 0.10, and A{sub L'} = 1.09 {+-} 0.13.

  3. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    SciTech Connect

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L.; Jonker, P. G.; Torres, M. A. P.; Nelemans, G.; Maccarone, T.; Steeghs, D.; Greiss, S.; Heinke, C.; Bassa, C. G.; Villar, A.; Gabb, M.

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  4. The FLAMINGOS-2 Galactic Center Survey

    NASA Astrophysics Data System (ADS)

    Raines, Steven N.; Flamingos-2 Galactic Center Survey Team

    2010-03-01

    The FLAMINGOS-2 instrument achieved high-quality first-light observations on the Gemini South telescope in September 2009 and is undergoing further testing and scientific commissioning into early 2010. Based on the results so far, FLAMINGOS-2 (F2) on the Gemini 8-meter telescope is an extremely powerful wide-field near-infrared imager and multi-object spectrograph. In order to take best advantage of the strengths of F2 early in its life cycle, we propose to use 21 nights of Gemini guaranteed time in 3 surveys - the FLAMINGOS-2 Early Science Surveys (F2ESS). The F2ESS will encompass 3 corresponding scientific themes - the Galactic Center, extragalactic astronomy, and star formation. In particular, the Galactic Center Survey will identify the IR couterparts to several hundred new X-ray binaries in the Galactic Center. This will allow us to identify the nature of the mysterious Chandra source population in the Galactic Center and provide tremendous opportunities for multi-wavelength follow-up observations. In addition, the "by-catch" of this survey will be a catalog of several thousand red giant branch stars with accurate spectroscopy -- these can be used to measure the star formation history of the Galactic Center and thus constrain the mass evolution history of the supermassive black hole in Sgr A*. In this poster, I review the plans for carrying out this survey with F2, data analysis plans and software, and the expected scientific impact from this powerful new observational tool.

  5. Flux Calibration for LAMOST Spectroscopic Survey of the Galactic Anti-center

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Yuan, H.-B.; Zheng, Y.; Huo, Z.-Y.; Huang, Y.

    2014-01-01

    Unknown extinction of Galactic disk stars makes it difficult to select flux standards based on colors alone for the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC; Liu et al., this volume). To solve this problem, for each spectrograph of an LSS-GAC plate, 5 - 10 F-type stars are selected from spectroscopy-based stellar parameters (T eff, log g, [Fe/H]) and adopted as flux standards, and an iterative approach is adopted to calibrate spectra. From spectra processed with nominal response curves, stellar parameters are derived with the PKU stellar parameter pipeline, LSP3 (Liu et al., this volume). More realistic response curves are then derived by comparing the observed spectra with synthetic spectra (Munari et al. 2005). The later is reddened assuming a R=3.1 Fitzpatrick (1999) reddening law using E (B-V) obtained by comparing photometric and synthetic colors. New stellar parameters are derived from spectra reprocessed using the new response curves, iteratively. Comparison of LSS-GAC spectral colors with photometric ones yields differences on average 0.01+/-0.06 and -0.06+/-0.04 mag in g-r and r-i, respectively. The relatively large difference in r-i is caused by the fact that the current pipeline has opted to not to correct for the telluric absorption, most notably in the i-band. Comparison of multi-epoch LSS-GAC spectra indicates < 8% uncertainties in the spectral shape from 4000 to 9000 Å. The LSS-GAC seems to yields spectra of more realistic SEDs than the SDSS (DR7) at low Galactic latitudes (Fig. 1). The shape of LAMOST response curves may vary by up to 20% in a given night, and even larger for different nights, indicating that flux calibration plate by plate is essential.

  6. Clockwise Stellar Disk and the Dark Mass in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.; Levin, Yuri; Eisenhauer, Frank; Genzel, Reinhard; Paumard, Thibaut; Gillessen, Stefan; Ott, Thomas

    2006-09-01

    Two disks of young stars have recently been discovered in the Galactic center. The disks are rotating in the gravitational field of the central black hole at radii r~0.1-0.3 pc and thus open a new opportunity to measure the central mass. We find that the observed motion of stars in the clockwise disk implies the mass within -0.1 pc M=(4.3+/-0.5)×106 Msolar for the fiducial distance to the Galactic center R0=8 kpc, and we derive the scaling of M with R0. As a tool for our estimate we use orbital roulette, a recently developed method. The method reconstructs the three-dimensional orbits of the disk stars and checks the randomness of their orbital phases. We also estimate the three-dimensional positions and orbital eccentricities of the clockwise-disk stars.

  7. Simultaneous Analysis of Recurrent Jovian Electron Increases and Galactic Cosmic Ray Decreases

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Dresing, N.; Dunzlaff, P.; Fichtner, H.; Gieseler, J.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Kleimann, J.; Kopp, A.; Potgieter, M.; Scherer, K.; Strauss, R. D.

    The transport environment for particles in the heliosphere, e.g. galactic cosmic rays (GCRs) and MeV electrons (including those originating from Jupiters magnetosphere), is defined by the solar wind flow and the structure of the embedded heliospheric magnetic field. Solar wind structures, such as co-rotating interaction regions (CIR), can result in periodically modulation of both particles species. A detailed analysis of this recurrent Jovian electron events and galactic cosmic ray decreases measured by SOHO EPHIN is presented here, showing clearly a change of phase between both phenomena during the cause of the years 2007 and 2008. This effect can be explained by the change of difference in heliolongitude between the Earth and Jupiter, which is of central importance for the propagation of Jovian electrons. Furthermore, the data can be ordered such that the 27-day Jovian electron variation vanishes in the sector which does not connect the Earth with Jupiter magnetically using observed solar wind speeds.

  8. Inflow of halo gas from the direction of the Galactic north pole

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1984-01-01

    A far-UV echelle spectrum has been obtained of the UV-bright star vZ1128 in the globular cluster M3. This cluster lies in a direction 11 deg off the Galactic north pole at a distance of about 10 kpc. Only the usually strong interstellar lines are recognizable in the faint spectrum, and they show absorption at velocities from near +40 km/s to -100 km/s. Since in the direction observed the line-of-sight component of the Milky Way rotation is negligible, the detected velocities demonstrate for this direction the motion of gas from the Milky Way halo toward the disk. Gas returning to the disk in a galactic fountainlike flow may explain the observations.

  9. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  10. Langevin Equation on Fractal Curves

    NASA Astrophysics Data System (ADS)

    Satin, Seema; Gangal, A. D.

    2016-07-01

    We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.

  11. Comparison of the Galactic coordinate frames realized by the PPMXL and UCAC4 catalogues

    NASA Astrophysics Data System (ADS)

    Vityazev, V. V.; Tsvetkov, A. S.

    2016-09-01

    We present a method of comparing the Galactic systems realized by two astrometric catalogues. The systematic differences between positions and proper motions are represented by vector spherical harmonics. To extract the signal from the noise, we use a statistical criterion adapted to using HEALPIX data pixelization to determine the significance of all the accessible harmonics. We also use a new analytical method that includes the magnitude equation in the vector spherical harmonics technique. The influence of the magnitude equation on the determination of the mutual orientation and rotation of the PPMXL and UCAC4 Galactic reference frames has been found in the range of J magnitudes from 10.25 to 15.75 mag. The angles of mutual orientation and the rates of mutual rotation of the Galactic frames under consideration depend on magnitude and can reach the level of 10 mas in orientation and 0.7 mas yr-1 for spin. We make a kinematic study of the low degree harmonics in the representation of the systematic differences between the Galactic proper motions. We have found that, averaged over the magnitude range, the biases of the Oort constants due to systematic differences of proper motions between the two catalogues, which are as large as <ΔA> = 1.60 ± 0.41 and <ΔB> = -1.91 ± 0.32 km s-1 kpc-1, are greater than the standard errors of their evaluation in the systems of these catalogues. The theoretical equations used in this paper are based on real vector harmonics. We present a set of formulae to convert them into the complex function formalism.

  12. The dynamical fate of binary star clusters in the Galactic tidal field

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Kouwenhoven, M. B. N.; Arifyanto, M. I.; Wulandari, H. R. T.; Siregar, S.

    2016-04-01

    Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out N-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass-loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model, we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. N-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, global cluster rotation, evaporation rates, and the cluster merger process. We find that the initial orientation of a binary star cluster with respect to the Galactic field, and also the initial orbital phase, is crucial for its fate. Depending on these properties, the binaries may experience orbital reversal, spiral-in, or vertical oscillation about the Galactic plane before they actually merge at t ≈ 100 Myr, and produce rotating star clusters with slightly higher evaporation rates. The merger process of a binary cluster induces an outburst that ejects ˜10 per cent of the stellar members into the Galactic field.

  13. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  14. FIRE simulations: galactic outflows and their consequences

    NASA Astrophysics Data System (ADS)

    Keres, Dusan; FIRE team

    2016-06-01

    We study gaseous outflows and their consequences in high-resolution galaxy formation simulations with explicit stellar feedback from the Feedback in Realistic Environments project. Collective, galaxy scale, effect of stellar feedback results in episodic ejections of large amount of gas and heavy elements into the circum-galactic medium. Gas ejection episodes follow strong bursts of star formation. Properties of galactic star formation and ejection episodes depend on galaxy mass and redshift and, together with gas infall and recycling, shape the evolution of the circum-galactic medium and galaxies. As a consequence, our simulated galaxies have masses, star formation histories and heavy element content in good agreement with the observed population of galaxies.

  15. Einstein observations of the galactic centre

    NASA Technical Reports Server (NTRS)

    Watson, M. G.; Willingale, R.; Hertz, P.; Grindlay, J. E.

    1981-01-01

    A description is presented of the X-ray observations made with the Einstein Observatory Imaging Proportional Counter of a 1 x 1 degree field centered near the galactic nucleus. In the direction of the galactic center the interstellar medium is generally opaque to all radiation between the visual and extreme ultraviolet due to the large column density of the intervening gas and dust. The importance of this X-ray study lies in the fact that it opens up a new window in which the central regions of the Milky Way Galaxy can be observed. The X-ray image is clearly dominated by a bright, central region of emission elongated along the galactic plane. Also presented are a number of unresolved sources.

  16. The Galactic Center region imaged by VERITAS

    NASA Astrophysics Data System (ADS)

    Beilicke, M.; VERITAS Collaboration

    2012-11-01

    The Galactic Center has long been a region of interest for high-energy and very-high-energy observations. Many potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the black hole, cosmic rays from a nearby supernova remnant, or the annihilation of dark matter particles. The Galactic Center has been detected at MeV/GeV energies by EGRET and recently by Fermi/LAT. At GeV/TeV energies, the Galactic Center was detected by different ground-based Cherenkov telescopes such as CANGAROO, Whipple 10 m, HESS, and MAGIC. We present the results from 15 h of VERITAS observations conducted at large zenith angles, resulting in a >10 standard deviation detection. The combined Fermi/VERITAS results are compared to astrophysical models.

  17. Nonthermal galactic emission below 10 MHz

    NASA Technical Reports Server (NTRS)

    Novaco, J. C.; Brown, L. W.

    1977-01-01

    The Radio Astronomy Explorer-2 (RAE-2) satellite has provided new measurements of the nonthermal galactic radio emission at frequencies below 10 MHz. Measurements of the emission spectra are presented for the center, anticenter, north polar, and south polar directions at 22 frequencies between 0.25 and 9.18 MHz. Survey maps of the spatial distribution of the observed low frequency galactic emission at 1.31, 2.20, 3.93, 4.70, 6.55, and 9.18 MHz are presented. The observations were obtained with the 229-meter traveling-wave V-antenna on this lunar orbiting spacecraft. The improved frequency coverage offers additional insights into structure of the local galactic neighborhood.

  18. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  19. The distances of the Galactic novae

    NASA Astrophysics Data System (ADS)

    Özdönmez, Aykut; Güver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-09-01

    Utilizing the unique location of red clump giants on colour-magnitude diagrams obtained from various near-infrared surveys, we derived specific reddening-distance relations towards 119 Galactic novae for which independent reddening measurements are available. Using the derived distance-extinction relation and the independent measurements of reddening we calculated the most likely distances for each system. We present the details of our distance measurement technique and the results of this analysis, which yielded the distances of 73 Galactic novae and allowed us to set lower limits on the distances of 46 systems. We also present the reddening-distance relations derived for each nova, which may be useful to analyse the different Galactic components present in the line of sight.

  20. SAS-2 gamma-ray results from the galactic plane and their implications for galactic structure and galactic cosmic-ray dynamics

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1977-01-01

    The final SAS-2 results related to high energy galactic gamma-ray emission show a strong correlation with galactic structural features seen at other wavelenghts, when the known gamma-ray sources are subtracted. Theoretical considerations and analysis of the gamma-ray data suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density is enhanced where the matter density is greatest on the scale of the galactic arms. This concept has been explored in a galactic model that assumes: (1) cosmic rays are galactic and not universal; (2)on the scale of the galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3)the cosmic ray scale height is significantly larger than the scale height to the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of over 2:1.

  1. The diffuse galactic far-ultraviolet sky

    SciTech Connect

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  2. Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Fielding, Drummond; Faucher-Giguère, Claude-André; Quataert, Eliot

    2016-07-01

    We use local Cartesian simulations with a vertical gravitational potential to study how supernova (SN) feedback in stratified galactic discs drives turbulence and launches galactic winds. Our analysis includes three disc models with gas surface densities ranging from Milky Way-like galaxies to gas-rich ultraluminous infrared galaxies (ULIRGs), and two different SN driving schemes (random and correlated with local gas density). In order to isolate the physics of SN feedback, we do not include additional feedback processes. We find that, in these local box calculations, SN feedback excites relatively low mass-weighted gas turbulent velocity dispersions ≈3-7 km s-1 and low wind mass loading factors η ≲ 1 in all the cases we study. The low turbulent velocities and wind mass loading factors predicted by our local box calculations are significantly below those suggested by observations of gas-rich and rapidly star-forming galaxies; they are also in tension with global simulations of disc galaxies regulated by stellar feedback. Using a combination of numerical tests and analytic arguments, we argue that local Cartesian boxes cannot predict the properties of galactic winds because they do not capture the correct global geometry and gravitational potential of galaxies. The wind mass loading factors are in fact not well defined in local simulations because they decline significantly with increasing box height. More physically realistic calculations (e.g. including a global galactic potential and disc rotation) will likely be needed to fully understand disc turbulence and galactic outflows, even for the idealized case of feedback by SNe alone.

  3. KINEMATICAL AND CHEMICAL VERTICAL STRUCTURE OF THE GALACTIC THICK DISK. I. THICK DISK KINEMATICS ,

    SciTech Connect

    Moni Bidin, C.; Carraro, G.; Mendez, R. A.

    2012-03-10

    The variation of the kinematical properties of the Galactic thick disk with Galactic height Z is studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z| = 3 kpc, and the proposed inward motion of the local standard of rest alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km s{sup -1} kpc{sup -1}, but the data are better represented by a power law with index 1.25, similar to that proposed from the analysis of Sloan Digital Sky Survey data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio {sigma}{sub U}/{sigma}{sub W} = 2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching {approx}20 Degree-Sign at |Z| = 3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z| = 2 kpc coincides with the expectations of MOdified Newtonian Dynamics, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present.

  4. Kinematical and Chemical Vertical Structure of the Galactic Thick Disk. I. Thick Disk Kinematics

    NASA Astrophysics Data System (ADS)

    Moni Bidin, C.; Carraro, G.; Méndez, R. A.

    2012-03-01

    The variation of the kinematical properties of the Galactic thick disk with Galactic height Z is studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z| = 3 kpc, and the proposed inward motion of the local standard of rest alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km s-1 kpc-1, but the data are better represented by a power law with index 1.25, similar to that proposed from the analysis of Sloan Digital Sky Survey data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio σU/σW = 2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching ~20° at |Z| = 3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z| = 2 kpc coincides with the expectations of MOdified Newtonian Dynamics, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (proposal IDs 075.B-0459(A), 077.B-0348(A)). This paper includes data gathered with the 6.5 m Magellan and the duPont Telescopes, located at Las Campanas Observatory, Chile.

  5. Numerical modeling of the interstellar medium in galactic disks

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Bregman, J. N.; Norman, Michael L.

    1993-01-01

    We have been developing detailed hydrodynamic models of the global interstellar medium in the hope of understanding the mass and volume occupied by various phases, as well as their structure and kinematics. In our model, the gas is modeled by one fluid while representative Pop 1 stars are modeled by a second fluid. The two fluids are coupled in that the gas forms into stars at a rate given by a Schmidt law while stellar mass loss returns matter into the gas phase (on a time scale of 100 Myr). Also, the stars heat the gas through stellar winds and the gas cools through optically thin radiation. The time behavior of these two fluids is studied in two spatial dimensions with the Eulerian finite difference numerical hydrodynamic code Zen. The two spatial dimensions are along the plane of a disk (x, total length of 2 kpc) and perpendicular to the disk (z, total height of +/- 15 kpc) and a galactic gravitational field in the z direction, typical of that at the solar circle, is imposed upon the simulation; self-gravity and rotation are absent. For the boundary conditions, outflow is permitted at the top and bottom of the grid (z = +/- 15 kpc) while periodic boundary conditions are imposed upon left and right sides of the grid. As initial conditions, we assumed a gaseous distribution like that seen for the H1 by earlier researchers, although the results are insensitive to the initial conditions. We have run simulations in which the heating due to stars, parameterized as a stellar wind velocity, a, is varied from low (a = 150 km/s), to intermediate (a = 300 km/s), to high (a = 600 km/s). Since the intermediate case is roughly equivalent to the Galactic energy injection rate from supernovae, this summary will concentrate on results from this simulation.

  6. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  7. The Mysterious Galactic Center Radio Source N3

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic; Lang, Cornelia C.; Morris, Mark; Lucien Mutel, Robert; Mills, Elisabeth A. C.; Toomey, James E.; Ott, Juergen

    2016-06-01

    Here we report on new, multi-wavelength radio observations of the mysterious point source "N3" that appears to be located in the vicinity of the Galactic Center. VLA observations between 2 and 50 GHz reveal that N3 is a compact and bright non-thermal source (56 mJy at 10 GHz) which is superimposed upon the non-thermal radio filaments (NTFs) of the Radio Arc. Our highest frequency observations place a strict upper limit of 65x28 milli-arcseconds on the size of this source. We compare our observations to those of Yusef-Zadeh (1987) and Lang (1997) and conclude that N3 is variable over long time scales. Additionally, we present the detection of a compact molecular cloud located adjacent to N3 in projection. CH3CN, CH3OH, CS, HC3N, HNCO, SiO, SO, and NH3 are detected in the cloud and most transitions have FWHM line widths of ~20 km s-1. The rotational temperature determined from the metastable NH3 transitions ranges from 79 K to 183 K depending on the transitions used and the location in the cloud. We present evidence that this molecular cloud is interacting with N3. After exploring the relationship between the NTFs, molecular cloud, and N3, we conclude that N3 likely lies within the Galactic Center. While we are able to rule out many possible physical counterparts, including an active star, HII region, young supernova, AGN, and microquasar, further observations will be required to determine the true nature of this mysterious source.

  8. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Stars: Rotation and Nitrogen Enrichment as the Key to Understanding Massive Star Evolution'', I.Hunter, I.Brott, D.J. Lennon, N. Langer, C. Trundle, A. de Koter, C.J. Evans and R.S.I. Ryans The Astrophysical Journal, 2008, 676, L29-L32 Ch. 4: ``The VLT-FLAMES Survey of Massive Stars: Constraints on Stellar Evolution from the Chemical Compositions of Rapidly Rotating Galactic and Magellanic Cloud B-type Stars '', I. Hunter, I. Brott, N. Langer, D.J. Lennon, P.L. Dufton, I.D. Howarth R.S.I. Ryan, C. Trundle, C. Evans, A. de Koter and S.J. Smartt Published in Astronomy & Astropysics, 2009, 496, 841- 853 Ch. 5: ``Rotating Massive Main-Sequence Stars II: Simulating a Population of LMC early B-type Stars as a Test of Rotational Mixing '', I. Brott, C. J. Evans, I. Hunter, A. de Koter, N. Langer, P. L. Dufton, M. Cantiello, C. Trundle, D. J. Lennon, S.E. de Mink, S.-C. Yoon, P. Anders submitted to Astronomy & Astrophysics Ch 6: ``The Nature of B Supergiants: Clues From a Steep Drop in Rotation Rates at 22 000 K - The possibility of Bi-stability braking'', Jorick S. Vink, I. Brott, G. Graefener, N. Langer, A. de Koter, D.J. Lennon Astronomy & Astrophysics, 2010, 512, L7

  9. Emission from Pair Instability Supernovae with Rotation

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Emmanouil; Van Rossum, Daniel R; Whalen, Daniel J.

    2014-08-01

    Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, like SN 2007bi, and can also be one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating therefore exhibiting a differentevolutionary path due to the effects of rotationally-induced mixing and mass-loss.Proper identification of such events requires rigorous radiation hydrodynamics and non-localthermal equilibrium calculations that capture not only the behavior of the light curve but also the spectral evolution of these events accurately. We present radiation hydrodynamics and local and non-local thermal equilibrium radiation transport calculations for 90-140 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We find that for a variety of progenitor masses these events are too dim and too red in color to account for so far observed super-luminous supernovae and do not seem to matchother known events, in terms of spectral appearance. We discuss the qualitative differences between different radiation transport treatments and compare our results with previous results from non-rotating pair-instability supernovae.

  10. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    SciTech Connect

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  11. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  12. Relativity and the Galactic-center stars

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Angélil, R.

    2011-05-01

    Galactic-center stars such as S2 reach speeds of a few percent of light at closest approach to the black hole. Hence relativistic effects are potentially observable. The redshift of a star during pericenter passage is especially sensitive to relativity. The same applies to pulsar timing, if a pulsar in that region is discovered. In this work we explain how the equivalence principle, space curvature and frame dragging in principle reveal themselves through the redshift, and discuss possible strategies for disentangling these from the Newtonian perturbations of other mass in the Galactic-center region.

  13. The Gaia-ESO Survey: Kinematics of seven Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Pancino, E.; Bellazzini, M.; Bragaglia, A.; Donati, P.; Gilmore, G.; Randich, S.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Flaccomio, E.; Koposov, S. E.; Recio-Blanco, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Hourihane, A.; Jofré, P.; de Laverny, P.; Marconi, G.; Masseron, T.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.

    2015-01-01

    The Gaia-ESO survey is a large public spectroscopic survey aimed at investigating the origin and formation history of our Galaxy by collecting spectroscopy of representative samples (about 105 Milky Way stars) of all Galactic stellar populations, in the field and in clusters. The survey uses globular clusters as intra- and inter-survey calibrators, deriving stellar atmospheric parameters and abundances of a significant number of stars in clusters, along with radial velocity determinations. We used precise radial velocities of a large number of stars in seven globular clusters (NGC 1851, NGC 2808, NGC 4372, NGC 4833, NGC 5927, NGC 6752, and NGC 7078) to validate pipeline results and to preliminarily investigate the cluster internal kinematics. Radial velocity measurements were extracted from FLAMES/GIRAFFE spectra processed by the survey pipeline as part of the second internal data release of data products to ESO. We complemented our sample with ESO archival data obtained with different instrument configurations. Reliable radial velocity measurements for 1513 bona fide cluster star members were obtained in total. We measured systemic rotation, estimated central velocity dispersions, and present velocity dispersion profiles of all the selected clusters, providing the first velocity dispersion curve and the first estimate of the central velocitydispersion for the cluster NGC 5927. Finally, we explore the possible link between cluster kinematics and other physical parameters. The analysis we present here demonstrates that Gaia-ESO survey data are sufficiently accurate to be used in studies of kinematics of stellar systems and stellar populations in the Milky Way. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A115Based on data products from observations made with ESO telescopes at the La Silla Paranal Observatory under programme 188.B-3002 (the

  14. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  15. Asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Harris, A. W.; Murray, C. D.

    1984-01-01

    A trend of increasing mean rotational frequency with increasing diameter is noted in asteroids with diameters greater than 120 km, irrespective of M-, S-, and C-type asteroid subset and family or nonfamily membership. This trend cannot be accounted for by observational selection. For asteroids with diameters smaller than 120 km mean rotational frequency increases with decreasing diameter, but within this group there is a subset with exceptionally long rotational periods. This marked change in the distribution at 120-km diameter could separate primordial asteroids from their collision products. It is also noted that, for asteroids of a given diameter, M asteroids rotate faster than S asteroids, which in turn rotate faster than C asteroids. For all types, family members rotate faster than nonfamily members.

  16. Simulated square kilometre array maps from Galactic 3D-emission models

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2009-11-01

    Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths

  17. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  18. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  19. Chaotic Rotation of Nix and Hydra

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.

    2014-05-01

    Disk-integrated photometry of Hydra and Nix from HST during 2010-2012 show large variations, which can be attributed to a combination of the phase function and the rotational light curves of the moons. After dividing out a model phase curve, variations by more than a factor of two remain, indicating that both Nix and Hydra are distinctly irregular in shape. Unexpectedly, Nix and Hydra's variations show no correlation with orbital longitude, as one would expect for bodies in synchronous rotation. In fact, Fourier analysis of the measurements does not reveal any fixed rotation periods compatible with the data. Compounding the mystery, Nix increased in absolute brightness by about 30% between 2010 and 2012, whereas Hydra was stable.I have developed a numeric integrator that tracks the position, velocity, orientation and rotation state of a moon as it orbits the Pluto-Charon "binary planet". The moons are represented by triaxial ellipsoids with arbitrary axial ratios. Pluto and Charon follow circular orbits about their common barycenter. I have run simulations for periods of up to 1000 years and for a variety of axial ratios and starting conditions. If an object is started in synchronous rotation with its long axis pointed toward the system barycenter, then it remains synchronously locked for the duration of the integrations. However, other initial conditions commonly lead to chaotic rotation, with Lyupanov times as brief as 30 days. Moons will sometimes temporarily lock into a nearly fixed rotation state, but commonly break out again within ~ 500 days. Depending on the axial ratios, polar flips are also commonly observed; this polar wander provides a plausible explanation for the year-by-year change in the observed brightness of Nix.Chaotic rotation is rare in the solar system, having previously been noted only for Hyperion and possibly Nereid. However, both photometry and dynamical simulations support the notion that chaotic rotation is a natural state for

  20. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    SciTech Connect

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Poleski, R.; Ulaczyk, K.; Skowron, J.; Mróz, P.; Pawlak, M.; Kozłowski, S.

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.

  1. M giants at high galactic latitudes: an old metal-rich population?

    NASA Astrophysics Data System (ADS)

    Sharples, R. M.; Whitelock, P. A.; Feast, M. W.

    1995-01-01

    Spectroscopic and photometric observations are presented for a sample of 227 late-M giants in the extended solar neighbourhood, catalogued by Stephenson using objective prism plates. The kinematics and scaleheight of these stars suggest that they belong to a mixed population, extending from the old thin disc to the thick disc. They show evidence of the differential galactic rotation predicted theoretically. Metallicities have been determined from a comparison of TiO band strengths and infrared colours with model atmospheres for late-type stars, and suggest a mean metallicity close to solar.

  2. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  3. RR Lyrae to understand the Galactic halo

    NASA Astrophysics Data System (ADS)

    Fiorentino, Giuliana

    2016-08-01

    We present recent results obtained using old variable RR Lyrae stars on the Galactic halo structure and its connection with nearby dwarf galaxies. We compare the period and period-amplitude distributions for a sizeable sample of fundamental mode RR Lyrae stars (RRab) in dwarf spheroidals (~1300 stars) with those in the Galactic halo (~16'000 stars) and globular clusters (~1000 stars). RRab in dwarfs -as observed today- do not appear to follow the pulsation properties shown by those in the Galactic halo, nor they have the same properties as RRab in globulars. Thanks to the OGLE experiment we extended our comparison to massive metal-rich satellites like the dwarf irregular Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf spheroidal. These massive and more metal-rich stellar systems likely have contributed to the Galactic halo formation more than classical dwarf spheroidals. Finally, exploiting the intrinsic nature of RR Lyrae as distance indicators we were able to study the period and period amplitude distributions of RRab within the Halo. It turned out that the inner and the outer Halo do show a difference that may suggest a different formation scenario (in situ vs accreted).

  4. The European Galactic Plane Surveys: EGAPS

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Drew, J.; Greimel, R.; Gaensicke, B.; Knigge, C.; Irwin, M.; Mampaso, A.; Augusteijn, T.; Morales-Rueda, L.; Barlow, M.; Iphas Collaboration; Uvex Collaboration; Vphas+ Collaboration

    2006-08-01

    Introduction: The European Galactic Plane Surveys (EGAPS) will for the first time ever map the complete galactic plane (10x360 degrees) down to 21st magnitude in u', g', r', i' and H-alpha and partly in He I 5875. It will complete a database of ~1 billion objects. The aim of EGAPS is to study populations of short-lived stellar and binary phases in our Galaxy and combine these population studies with stellar and binary evolutionary codes to vastly improve our understanding of crucial phases of stellar evolution. Target populations include Wolf-Rayet stars, planetary nebulae, white dwarfs (in binaries), cataclysmic variables and other mass-transferring binaries. Methods: EGAPS is using the INT+WFC on La Palma for the Northern Hemisphere and will use the VST+Omegacam in the Southern Hemisphere. Results: The Northern red survey (IPHAS, using r', i', and Halpha) has started in 2003 and is currently 70% complete. The northern blue survey (UVEX; u',g',r' and HeI) has started in June 2006. Results include the detection of a number of rare planetary nebulae, cataclysmic variables, red-dwarf white dwarf binaries in clusters, a possible AM CVn candidate, and a deep photometric and spectroscopic investigation of the Cyg X region. Discussion: EGAPS will revolutionize the field of galactic stellar astrophysics by completing the first ever digital, multicolour survey of the Galactic Plane.

  5. YSO Clusters on Galactic Infrared Loops

    NASA Astrophysics Data System (ADS)

    Marton, Gábor; Kiss, Zoltán Tamás; Tóth, L. Viktor; Zahorecz, Sarolta; Pásztor, László; Ueno, Munateka; Kitamura, Yoshimi; Tamura, Motohide; Kawamura, Akiko; Onishi, Toshikazu

    The AKARI all sky survey (Murakami et al. Publ. Astron. Soc. Jpn. 59:369, 2007) was investigated for YSO candidates. Distribution of candidate sources have been analysed and compared to that of galactic CO and medium scale structures. Clustering and other inhomogenities have been found.

  6. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  7. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  8. Galactic Archaeology: Current Surveys and Instrumentation

    NASA Astrophysics Data System (ADS)

    Wyse, R. F. G.

    2016-10-01

    I present an overview of the science goals and achievements of ongoing spectroscopic surveys of individual stars in the nearby Universe. I include a brief discussion of the development of the field of Galactic Archaeology - using the fossil record in old stars nearby to infer how our Galaxy evolved and place the Milky Way in cosmological context.

  9. Young Massive Clusters in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Figer, D. F.

    2004-12-01

    The three young clusters in the Galactic Center represent the closest examples of massive starbursts and they define the upper mass limit of the Galactic cluster mass functions. In this review, I describe the characteristics and content of the Arches, Quintuplet, and Central clusters. They each are more massive than any other cluster in the Galaxy, and the Arches cluster, in particular, has a mass and age that make it ideal for studies of massive stellar evolution and dense stellar systems. A preliminary measurement indicates that the initial mass function in the Galactic center is top-heavy, suggesting an environmental effect that has otherwise been absent in similar observations for Galactic clusters. Given the relatively more evolved nature of the Quintuplet and Central clusters, these clusters contain stars in a wide range of evolutionary states, including Luminous Blue Variables and Wolf-Rayet stars. The Quintuplet cluster provides a particularly interesting view of the most massive stars that are known, the Pistol Star and FMM362. An analysis of the mass spectrum in the Arches cluster suggests an upper mass cutoff of ˜150-200 M⊙.

  10. Galactic Archeology - Requirements on Survey Spectrographs

    NASA Astrophysics Data System (ADS)

    Feltzing, S.

    2016-10-01

    Galactic Archeology is about exploring the Milky Way as a galaxy by, mainly, using its (old) stars as tracers of past events and thus to figure out the formation and evolution of our Galaxy. I will briefly outline some of the key scientific aspects of Galactic Archeology and then discuss the associated instrumentation. Gaia will forever change the way we approach this subject. However, Gaia on its own is not enough. Ground-based complementary spectroscopy is necessary to obtain full phase-space information and elemental abundances for stars fainter than the top few percent of the bright part of the Gaia catalog. I will review the requirement on instrumentation for Gaia follow-up that Galactic Archeology sets. In particular, I will discuss the requirements on radial velocity and elemental abundance determination, including a brief look at potential pitfalls in the abundance analysis (e.g., NLTE, atomic diffusion). This contribution also provides a non-exhaustive comparison of the various current and future spectrographs for Galactic Archeology. Finally, I will discuss the needs for astrophysical calibrations for the surveys and inter-survey calibrations.

  11. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  12. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  13. On some fundamental concepts of galactic dynamics

    NASA Astrophysics Data System (ADS)

    Ossipkov, L. P.

    2013-10-01

    We discuss the following fundamental concepts of galactic dynamics: (a) regular (smoothed) and irregular (random) forces, (b) truncation of the impact parameter, (c) the invariance of the Maxwellian velocity distribution, and (d) the Jeans theorem. Dedicated to Felix Alexandrovich Tsitsin (1931-2005)

  14. Structure and Evolution of Interstellar Gas in Flattened, Rotating Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Brighenti, Fabrizio; Mathews, William G.

    1996-10-01

    We study the time-dependent evolution of interstellar gas in a family of elliptical galaxies having identical masses and central densities but various ellipticities and total angular momenta. Dark halos are assumed to be flattened in the same manner as the stars. Normal mass loss from evolving galactic stars is sufficient to account for the amount of hot interstellar gas observed. Gas ejected from stars shares the random motions of the stars and the bulk stellar velocity relative to the local interstellar medium; the ejected gas thermalizes to a temperature similar to the virial temperature of the stellar system. The random stellar motions and galactic rotation are found by solving Jeans's equations in cylindrical geometry. For a sequence of galaxies differing only in degree of flattening-E0, E2, and E4-we find that the X-ray images and luminosities are not very different. As the hot interstellar gas loses energy by radiation, it cools to the very center of these nonrotating galaxies regardless of flattening. The X-ray surface brightness is generally slightly steeper than the optical surface brightness of starlight. However, when a small but typical galactic rotation is introduced, the evolution of the interstellar medium is radically altered. The average X- ray surface brightness {SIGMA}_X_ is lower in the galactic center compared to nonrotating galaxies. This lower {SIGMA}_X_ can be achieved without invoking an ad hoc mass dropout from the hot gas. As the gas cools in rotating galaxies, it is deposited in a large disk comparable in size to the effective radius. Alter evolving for several gigayears, most of the new gas in the cooling flow is constrained by angular momentum conservation to arrive at the outer edge of the disk, Causing a local enhancement in the X-ray surface brightness. This results in flattened inner X-ray surface brightness contours that have peanut shapes when viewed nearly perpendicular to the axis of galactic rotation. As gas approaches the

  15. Apsidal rotation in the eclipsing binary AG Persei

    NASA Technical Reports Server (NTRS)

    Koch, Robert H.; Woodward, Edith J.

    1987-01-01

    New three-filter light curves of AG Per are given. These yield times of minimum light in accord with the known rate of apsidal rotation but do not improve that rate. These light curves and all other published historical ones have been treated with the code EBOP and are shown to give largely consistent geometric and photometric parameters no matter which orientation of the orbit is displayed to the observer.

  16. Automated generation of curved planar reformations from MR images of the spine

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Ourselin, Sébastien; Gomes, Lavier; Likar, Boštjan; Pernuš, Franjo

    2007-05-01

    A novel method for automated curved planar reformation (CPR) of magnetic resonance (MR) images of the spine is presented. The CPR images, generated by a transformation from image-based to spine-based coordinate system, follow the structural shape of the spine and allow the whole course of the curved anatomy to be viewed in individual cross-sections. The three-dimensional (3D) spine curve and the axial vertebral rotation, which determine the transformation, are described by polynomial functions. The 3D spine curve passes through the centres of vertebral bodies, while the axial vertebral rotation determines the rotation of vertebrae around the axis of the spinal column. The optimal polynomial parameters are obtained by a robust refinement of the initial estimates of the centres of vertebral bodies and axial vertebral rotation. The optimization framework is based on the automatic image analysis of MR spine images that exploits some basic anatomical properties of the spine. The method was evaluated on 21 MR images from 12 patients and the results provided a good description of spine anatomy, with mean errors of 2.5 mm and 1.7° for the position of the 3D spine curve and axial rotation of vertebrae, respectively. The generated CPR images are independent of the position of the patient in the scanner while comprising both anatomical and geometrical properties of the spine.

  17. DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS

    SciTech Connect

    Koll, Daniel D. B.; Abbot, Dorian S.

    2015-03-20

    Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.

  18. Veggie Light Curve Teacher Prep

    NASA Video Gallery

    In this activity, students will observe the surface of rotating potatoes to help them understand how astronomers can sometimes determine the shape of asteroids from variations in reflective brightn...

  19. The nature of parallax microlensing events towards the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.; Belokurov, Vasily; Evans, N. Wyn; Mao, Shude; An, Jin H.

    2005-07-01

    Perhaps as many as 30 parallax microlensing events are known, thanks to the efforts of the Massive Compact Halo Object (MACHO), Optical Gravitational Lensing Experiment (OGLE), Experience pour la Recherche d'Objets Sombres (EROS) and Microlensing Observations in Astrophysics (MOA) experiments monitoring the bulge. Using Galactic models, we construct mock catalogues of microlensing light curves towards the bulge, allowing for the uneven sampling and observational error bars of the OGLE-II experiment. As a working definition of a parallax event, we require the improvement Δχ2 on incorporating parallax effects in the microlensing light curve to exceed 50. This enables us to carry out a fair comparison between our theoretical predictions and the observations. The fraction of parallax events in the OGLE-II data base is ~1 per cent, though higher fractions are reported by some other surveys. This is in accord with expectations from standard Galactic models. The fraction of parallax events depends strongly on the Einstein crossing time tE, being less than 5 per cent at tE~ 50 d but rising to 50 per cent at tE>~ 1 yr. We find that the existence of parallax signatures is essentially controlled by the acceleration of the observer normalized to the projected Einstein radius on the observer plane divided by t2E. The properties of the parallax events - time-scales, projected velocities, source and lens locations - in our mock catalogues are analysed. Typically, ~38 per cent of parallax events are caused by a disc star microlensing a bulge source, while ~33 per cent are caused by a disc star microlensing a disc source (of these disc sources, one sixth are at a distance of 5 kpc or less). There is a significant shift in mean time-scale from 32 d for all events to ~130 d for our parallax events. There are corresponding shifts for other parameters, such as the lens-source velocity projected on to the observer plane (~1110 km s-1 for all events versus ~80 km s-1 for parallax

  20. New Galactic Planetary Nebulae and the role of Central Star Binarity

    NASA Astrophysics Data System (ADS)

    Miszalski, B.

    2009-09-01

    : (i) The kinematics of the bulge, and (ii) The role of binary central stars of PNe. Radial velocities of hundreds of PNe towards the bulge were measured from ANU 2.3-m longslit spectroscopy and from deep spectroscopy conducted with the AAT 2dF AAOmega and VLT FLAMES multi-object spectroscopy facilities. Multiple measurements were recorded for many PNe resulting in a more accurate catalogue of "1200 PNe within the |l| <= 30 degree region reaching a very high completeness of 95%. The kinematic study enabled a slope of 104 km/s/kpc to be measured for the rotation curve of the bulge that is in excellent agreement with 100 km/s/kpc determined from M-giants. General kinematic profiles were calculated and compared well with other tracer populations to bring new constraints on an existing dynamical model of the bulge. A completely new and powerful approach is conceived to discover large numbers of binary CSPN. The concept was employed to analyse the time-series photometry of nearly 300 Galactic bulge PNe from the OGLE-III microlensing survey. A total of 21 periodic binary CSPN candidates were found after careful elimination of 27 PN mimics identified using deep spectroscopy. The orbital period distribution is dominated by periods less than one day which indicates these binaries must have been produced via the commonenvelope (CE) phase of binary stellar evolution. These discoveries have effectively doubled the population of close binary CSPN whose potential in advancing our knowledge of CE evolution has yet to be realised. Gemini GMOS spectroscopy of 14 members of the OGLE sample produces 10 bona fide binary CSPN, 2 likely binary CSPN and 2 unlikely associations. There remains three candidates in the centre of small nebulae which leave little doubt of their bona fide status pending future spectroscopy, while four other candidates lie in larger nebulae awaiting confirmation. Cool giant companions are revealed in at least two binary CSPN and in one instance UV photometry proves

  1. Joint representation of translational and rotational components of optic flow in parietal cortex.

    PubMed

    Sunkara, Adhira; DeAngelis, Gregory C; Angelaki, Dora E

    2016-05-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  2. Vaporization of comet nuclei - Light curves and life times

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1979-01-01

    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  3. Poiseuille flow in curved spaces.

    PubMed

    Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J

    2016-04-01

    We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

  4. Magnetic Curves in Cosymplectic Manifolds

    NASA Astrophysics Data System (ADS)

    Druţă-Romaniuc, Simona-Luiza; Inoguchi, Jun-ichi; Munteanu, Marian Ioan; Nistor, Ana Irina

    2016-08-01

    In this paper we classify the magnetic trajectories with respect to contact magnetic fields in cosymplectic manifolds of arbitrary dimension. We classify Killing magnetic curves in product spaces M2 × R , recalling also explicit description of magnetic curves in E3 , S2 × R and H2 × R . Finally, we prove a reduction theorem for magnetic curves in the cosymplectic space form M bar 2 n(k) × R , in order to show that the (2n+1)-dimensional case reduces to the 3-dimensional one.

  5. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  6. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  7. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  8. The Weighted Oblimin Rotation.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2000-01-01

    Demonstrates that the weighting procedure proposed by E. Cureton and S. Mulaik (1975) can be applied to the Direct Oblimin approach of D. Clarkson and R. Jennrich (1988) to provide good results. The rotation method obtained is called Weighted Oblimin. Compared this method to other rotation methods with favorable results. (SLD)

  9. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  10. Serious rotator cuff injuries.

    PubMed

    Jobe, F W

    1983-07-01

    Usually, serious rotator cuff injuries can be operated upon and a high level of performance can be achieved afer surgery. This is not so for the substantial tears seen in baseball pitchers. However, a damaged rotator cuff can be rehabilitated and can recover from the threatened tear without surgery if detected early enough and given the proper treatment.

  11. Using Spitzer Data To Obtain Dust Distribution Arounfd The Active Galactic Nucleus NGC 4051

    NASA Astrophysics Data System (ADS)

    Pereira, Vincent; Burrell, A.; Chavez, O.; Fawcett, E.; Elias, R.; Lugo, T.; Morillo, E.; Purpura, M.; Sorokin, S.; Gorjian, V.; Adkins, J.; Borders, K.; Kelly, S.; Martin, C.; Mendez, B.; Paradis, J.; Pittman, P.; Sepulveda, B.

    2010-01-01

    We have used the Rees'model of Seyfert I galaxies to make detailed calculations of dust distribution as a function of the slope of the spectral intensity versus frequency curve in the infra-red. From these results and our observations of the active galactic nucleus NGC 4051 with the Spitzer Space Telescope Infrared Array Camera (IRAC) we obtain the dust distribution function for this nucleus. We feel that this research project with its underlying physical concepts serves as a good introduction to the physics of Seyfert galaxies for high school students.

  12. Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model

    NASA Astrophysics Data System (ADS)

    Anders, F.; Chiappini, C.; Rodrigues, T. S.; Piffl, T.; Mosser, B.; Miglio, A.; Montalbán, J.; Girardi, L.; Minchev, I.; Valentini, M.; Steinmetz, M.

    2016-09-01

    In a companion paper, we have presented the combined asteroseismic-spectroscopic dataset obtained from CoRoT light curves and APOGEE infra-red spectra for 606 solar-like oscillating red giants in two fields of the Galactic disc (CoRoGEE). We have measured chemical abundance patterns, distances, and ages of these field stars which are spread over a large radial range of the Milky Way's disc. Here we show how to simulate this dataset using a chemodynamical Galaxy model. We also demonstrate how the observation procedure influences the accuracy of our estimated ages.

  13. Observational limits on the contribution of sub-stellar and stellar objects to the galactic halo.

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Cavalier, F.; Moniez, M.; Aubourg, E.; Bareyre, P.; Brehin, S.; Gros, M.; Lachieze-Rey, M.; Laurent, B.; Lesquoy, E.; Magneville, C.; Milsztajn, A.; Moscoso, L.; Queinnec, F.; Renault, C.; Rich, J.; Spiro, M.; Vigroux, L.; Zylberajch, S.; Beaulieu, J.-P.; Ferlet, R.; Grison, P.; Vidal-Madjar, A.; Guibert, J.; Moreau, O.; Tajahmady, F.; Maurice, E.; Prevot, L.; Gry, C.

    1996-10-01

    EROS (Experience de Recherche d'Objets Sombres) has been monitoring the luminosity of 4 million stars in the Large Magellanic Cloud in order to search for gravitational microlensing by unseen objects in the galactic halo. We present here the results from 3 years of EROS Schmidt plates data. Two stars exhibit light curves that are consistent with a sizeable microlensing effect. CCD data obtained later on revealed that one of these stars is an eclipsing binary system. Combining Schmidt plates data and the published results from our 16 CCD camera, we set upper limits on the number of unseen objects in the halo in the mass range [10^-7^,1]Msun_.

  14. On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    SciTech Connect

    Pruet, J; Surman, R; McLaughlin, G C

    2004-01-23

    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of {sup 42}Ca, {sup 45}Sc, {sup 46}Ti, {sup 49}Ti, {sup 63}Cu, and may be an important site for the production of {sup 64}Zn.

  15. SWIFT J195509.6+261406 / GRB 070610: A Potential Galactic Transient

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Pagani, C.; Evans, P.; Gavriil, F. P.; Kennea, J. A.; Krimm, H. A.; Landsman, W.; Marshall, F. E.

    2007-06-01

    On 06 June 2007 20:52:26 UTC, the Swift BAT instrument detected a transient outburst of gamma-rays (originally designated GRB 070610; Pagani et al. GCN #6489), which may in fact be a galactic X-ray transient. The source, now also designated SWIFT J195509.6+261406, has the potential to be similar to the supergiant fast X-ray transient V4641 Sgr. The gamma-ray light curve had a single "FRED"-like profile, lasting about 8 seconds total, which is common for gamma-ray bursts.

  16. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  17. Cosmological Parameters from Type IA Supernova Multicolor Light Curve Shapes

    NASA Astrophysics Data System (ADS)

    Riess, A. G.; Press, W. H.; Kirshner, R. P.

    1995-12-01

    We present an empirical method that uses blue, visual, red, and infrared multicolor light curve shapes (MLCS) to estimate the luminosity, distance, and total line-of-sight absorption of Type Ia supernovae (SN Ia's). This method is first applied to a ``training set'' of eight SN Ia light curves with independent distance estimates to derive the correlation between the LCS and the luminosity. We employ a linear estimation algorithm of the type developed by Rybicki and Press. Some of the results are similar to those obtained by Hamuy et al. with the advantage that MLCS measures interstellar extinction and produces quantitative error estimates for the distance. The light curves for 20 SN Ia's (10 of which are from the CTIO/Calan Search) are used to determine the MLCS distances of these supernovae. The Hubble diagram constructed using these LCS distances has a remarkably small dispersion of sigma_ {B,V,R}=0.15 mag. We use the light curves of SN 1972E and SN 1981B and the Cepheid distance to NGC 5253 and NGC 4536 to derive 66 +/- 6 km s(-1) Mpc(-1) for the Hubble constant. We then measure the Local Group motion relative to these SN Ia's by analyzing the distribution on the sky of velocity residuals from a pure Hubble flow. The solution is consistent with the rest frame of the cosmic microwave background as determined by the COBE measurement of the dipole temperature anisotropy, and also with many plausible bulk flows expected to accompany observed density variations. It is inconsistent with the velocity observed by Lauer and Postman. We also find that the properties of dust in distant galaxies hosting SN Ia's are consistent with those of Galactic dust as measured by the interstellar extinction curve.

  18. A degeneracy in DRW modelling of AGN light curves

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-07-01

    Individual light curves of active galactic nuclei (AGNs) are nowadays successfully modelled with the damped random walk (DRW) stochastic process, characterized by the power exponential covariance matrix of the signal, with the power β = 1. By Monte Carlo simulation means, we generate mock AGN light curves described by non-DRW stochastic processes (0.5 ≤ β ≤ 1.5 and β ≠ 1) and show they can be successfully and well modelled as a single DRW process, obtaining comparable goodness of fits. A good DRW fit, in fact, may not mean that DRW is the true underlying process leading to variability and it cannot be used as a proof for it. When comparing the input (non-DRW) and measured (DRW) process parameters, the recovered time-scale (amplitude) increases (decreases) with the increasing input β. In practice, this means that the recovered DRW parameters may lead to biased (or even non-existing) correlations of the variability and physical parameters of AGNs if the true AGN variability is caused by non-DRW stochastic processes. The proper way of identifying the processes leading to variability are model-independent structure functions and/or power spectral densities and then using such information on the covariance matrix of the signal in light-curve modelling.

  19. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  20. Parabolic curves in Lie groups

    SciTech Connect

    Pauley, Michael

    2010-05-15

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  1. Flow over riblet curved surfaces

    NASA Astrophysics Data System (ADS)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  2. Highly ionized interstellar gas located in the Galactic disk and halo

    SciTech Connect

    Savage, B.D.; Massa, D.

    1987-03-01

    High-resolution IUE absorption line spectra have been obtained for 40 distant stars in order to study the distribution of interstellar H I, Si IV, C IV, and N V in the Galactic disk and lower halo. Respective midplane densities of 2 x 10 to the -9th, 7 x 10 to the -9th, and 3 x 10 to the -9th are found for Si IV, C IV, and Ni V. Both column density and velocity data indicate that the highly ionized gas (HIG) is considerably more extended in directions away from the Galactic plane than is H I or Si II. The absorption-line velocities for the halo HIG are consistent with the notion that halo gas in the inner Galaxy rotates more slowly than gas in the underlying disk. The derived column densities suggest an exponential scale height for the HIG of about 3 kpc; however, a simple exponential distribution is a poor representation of the distribution of the gas. It is concluded that a full explanation of the origin of the halo HIG will probably require a blending of ideas from the Galactic fountain and the photoionized halo models. 75 references.

  3. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  4. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    SciTech Connect

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-11-20

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  5. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    SciTech Connect

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  6. On the Galactic Spin of Barred Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Cervantes-Sodi, Bernardo; Li, Cheng; Park, Changbom; Wang, Lixin

    2013-09-01

    We present a study of the connection between the galactic spin parameter (λ d ) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ d values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ d values for the case of long bars, while the maximum for short bars is at high λ d . This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ d , within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  7. ON THE GALACTIC SPIN OF BARRED DISK GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Li, Cheng; Wang, Lixin; Park, Changbom

    2013-09-20

    We present a study of the connection between the galactic spin parameter (λ{sub d}) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ{sub d} values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ{sub d} values for the case of long bars, while the maximum for short bars is at high λ{sub d}. This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ{sub d}, within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  8. Physical conditions in photodissociation regions: Application to galactic nuclei

    NASA Technical Reports Server (NTRS)

    Wolfire, M. G.; Tielens, A. G. G. M.; Hollenbach, David J.

    1990-01-01

    Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T.

  9. Very fast optical flaring from a possible new Galactic magnetar

    SciTech Connect

    Stefanescu, A.; Kanbach, G.; Greiner, J.; Slowikowska, A.; McBreen, S.; Sala, G.

    2009-05-25

    Rapid optical flaring of an unprecedented type was detected from a transient Galactic high-energy source, SWIFT J195509.6+261406[1]. On June 10, 2007, Swift-BAT triggered on GRB 070610, which turned out to be a previously unknown X-ray transient in the Galaxy. Optical emission following this transient was observed after only 421 s with the high-time-resolution single-photon counting photometer OPTIMA. Measurements continued for the following 5 nights.We detected very strong optical flares (>6 mag) with extremely short timescales: duration of individual flares 2-100 s, shortest variability timescales 0.4 s. The scale and magnitude of the observed variability combined with a distance estimate of 4-8 kpc indicate a non-thermal origin of the observed radiation. The morphology of the optical flares is reminiscent of X-ray outbursts of SGRs. The time resolution and high signal-to-noise ratio during the brightest optical outbursts allow to compute their Fourier power spectral density. Features similar to QPOs appear at periods of 6-8 seconds, typical rotational periods for magnetars. X-ray observations independent from our optical analysis show hints of periodicity at a coinciding frequency. We conclude that the timing properties of the fast, bright outbursts of SWIFT J1955 suggest a connection between this transient and magnetars flaring in the optical.

  10. H3+ towards and within the Galactic centre.

    PubMed

    Geballe, T R

    2006-11-15

    High-resolution spectroscopy of bright infrared sources in the centre of the Galaxy has resulted in the detection of H3+ in a remarkable array of dense and diffuse clouds along the 8000 parsec long line of sight, at a wide range of distances from the centre. Most prominent among these is a previously undetected, but very large amount of warm (T approximately 250 K) and diffuse (n approximately 100 cm2) gas within a few hundred parsecs of the centre. The key to understanding the environment of the H3+ in this region is an H3+ absorption line at 3.53 microm from the metastable (3,3) rotational level, which has not been detected in dense or diffuse clouds outside of the Galactic centre (GC). We have used spectroscopy of this line along with other lines of H3+ and CO to characterize all of the clouds along the line of sight to the GC. The high abundance of H3+ in the central few hundred parsecs implies an ionization rate there that is several times larger than estimated for diffuse clouds outside the GC, and nearly two orders of magnitude greater than originally predicted for diffuse clouds.

  11. Morphologies introduced by bistability in barred-spiral galactic potentials

    NASA Astrophysics Data System (ADS)

    Tsigaridi, L.; Patsis, P. A.

    2015-04-01

    We investigate the orbital dynamics of a barred-spiral model when the system is rotating slowly and corotation is located beyond the end of the spiral arms. In the characteristic of the central family of periodic orbits, we find a `bistable region'. In the response model, we observe a ring surrounding the bar and spiral arms starting tangential to the ring. This is a morphology resembling barred-spiral systems with inner rings. However, the dynamics associated with this structure in the case we study is different from that of a typical bar ending close to corotation. The ring of our model is round, or rather elongated perpendicular to the bar. It is associated with a folding (an `S'-shaped feature) of the characteristic of the central family, which is typical in bistable bifurcations. Along the `S' part of the characteristic, we have a change in the orientation of the periodic orbits from an x1-type to an x2-type morphology. The orbits populated in the response model change rather abruptly their orientation when reaching the lowest energy of the `S'. The spirals of the model follow a standard `precessing ellipses flow' and the orbits building them have energies beyond the `S' region. The bar is structured mainly by sticky orbits from regions around the stability islands of the central family. This leads to the appearance of X features in the bars on the galactic plane. Such a bar morphology appears in the unsharp-masked images of some moderately inclined galaxies.

  12. The effect of radial migration on galactic disks

    SciTech Connect

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-10-20

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  13. X-ray spectra of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The spectroscopic properties of the various classes of Galactic X-ray sources are discussed, with particular emphasis on binary sources containing an accreting compact object, where post-emission scattering in an accretion disk often prevents the initially produced X-radiation from being observed directly. Theoretical interpretations and X-ray observations are considered for the cataclysmic variables, binary systems with a white dwarf as the compact object and which suffer relatively less from Thomson scattering, and the similar phenomenological spectral characteristics of the bulge sources, including soft transients, bursters and steady X-ray sources with thermal spectra, thought to represent an accreting neutron star, are pointed out. The spectral characteristics of X-ray pulsars in accreting binary systems (rather than the Crab pulsar, which is losing rotational kinetic energy with time) are then presented and interpreted in terms of accretion in the polar regions, and mechanisms for the newly discovered X-ray emission from late-type RS CVn stars are considered.

  14. Nature of the wiggle instability of galactic spiral shocks

    SciTech Connect

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu E-mail: kimyh@astro.snu.ac.kr

    2014-07-01

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gas in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.

  15. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  16. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  17. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  18. The Masses of the B Stars in the High Galactic Latitude Eclipsing Binary IT Librae

    NASA Astrophysics Data System (ADS)

    Martin, John C.

    2003-01-01

    A number of blue stars that appear to be similar to Population I B stars in the star-forming regions of the Galactic disk are found more than 1 kpc from the Galactic plane. Uncertainties about the true distances and masses of these high-latitude B stars have fueled a debate as to their origin and evolutionary status. The eclipsing binary IT Lib is composed of two B stars, is approximately 1 kpc above the Galactic plane, and is moving back toward the plane. Observations of the light and velocity curves presented here lead to the conclusion that the B stars in this system are massive young main-sequence stars. While there are several possible explanations, it appears most plausible that the IT Lib system formed in the disk about 30 million years ago and was ejected on a trajectory taking it to its present position. Based on observations made at the 2.1 m Otto Struve Telescope of McDonald Observatory operated by the University of Texas at Austin and also at the 2.1 m telescope at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  19. COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE

    SciTech Connect

    Schaefer, Bradley E.

    2010-04-01

    I collect virtually all photometry of the 10 known galactic recurrent novae (RNe) and their 37 known eruptions. This consists of my modern measures of nearly all archival plates (providing the only data for half of 37 known eruptions), my own 10,000 CCD magnitudes from 1987 to present (providing virtually all of the magnitudes in quiescence for seven RNe), over 140,000 visual magnitude estimates recorded by amateur astronomers (who discovered half the known eruptions), and the small scattering of magnitudes from all the literature. From this, I produce various uniform products: (1) BVRIJHK comparison star magnitudes and BV comparison star sequences to cover the entire range of eruption; (2) complete light curves for all eruptions; (3) best-fit B and V light curve templates; (4) orbital periods for all but one RN; (5) exhaustive searches for all missed eruptions; (6) measured discovery efficiencies since 1890; (7) true recurrence time scales; (8) predicted next eruption dates; (9) variations on time scales of minutes, hours, days, months, years, decades, and century; (10) uniform distances and extinctions to all RNe; (11) BV colors at peak and UBVRIJHK colors at minimum, all with extinction corrections; and (12) the spectral energy distributions over UBVRIJHK. Highlights of this work include the discoveries of one new RN, six previously unknown eruptions, and the orbital periods for half the RNe. The goal of this work is to provide uniform demographics for answering questions like the 'What is the death rate of RNe in our Galaxy?' and 'Are the white dwarfs gaining or losing mass over each eruption cycle?.' An important use of this work is for the question of whether RNe can be the progenitors of Type Ia supernovae.

  20. Numerical and Experimental Investigations of a Rotating Heat Pipe

    SciTech Connect

    Jankowski, Todd A.

    2007-05-01

    Rotating and revolving heat pipes have been used in a variety of applications including heat pipe heat exchangers, cooling of rotating electrical machines, and heat removal in high speed cutting operations. The use of heat pipes in rotating environments has prompted many analytical, numerical, and experimental investigations of the heat transfer characteristics of these devices. Past investigations, however, have been restricted to the study of straight heat pipes. In this work, a curved rotating heat pipe is studied numerically and experimentally. In certain types of rotating machines, heat generating components, which must be cooled during normal operation, are located at some radial distance from the axis of rotation. The bent heat pipe studied here is shown to have advantages when compared to the conventional straight heat pipes in these off-axis cooling scenarios. The heat pipe studied here is built so that both the condenser and evaporator sections are parallel to the axis of rotation. The condenser section is concentric with the axis of rotation while the evaporator section can be placed in contact with off-axis heat sources in the rotating machine. The geometry is achieved by incorporating an S-shaped curve between the on-axis rotating condenser section and the off-axis revolving evaporator section. Furthermore, the heat pipe uses an annular gap wick structure. Incorporating an annular gap wick structure into the heat pipe allows for operation in a non-rotating environment. A numerical model of this rotating heat pipe is developed. The analysis is based on a two-dimensional finite-difference model of the liquid flow coupled to a one-dimensional model of the vapor flow. Although the numerical model incorporates many significant aspects of the fluid flow, the flow in the actual heat pipe is expected to be threedimensional. The rotating heat pipe with the S-shaped curve is also studied experimentally to determine how well the numerical model captures the key

  1. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  2. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  3. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  4. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  5. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  6. A PUZZLE INVOLVING GALACTIC BULGE MICROLENSING EVENTS

    SciTech Connect

    Cohen, Judith G.; Gould, Andrew; Johnson, Jennifer A.; Thompson, Ian B.; Feltzing, Sofia; Bensby, Thomas; Huang Wenjin; Melendez, Jorge; Lucatello, Sara; Asplund, Martin E-mail: gould@astronomy.ohio-state.edu E-mail: ian@obs.carnegiescience.edu E-mail: tbensby@eso.org E-mail: jorge@astro.up.pt E-mail: asplund@MPA-Garching.MPG.DE

    2010-03-01

    We study a sample of 16 microlensed Galactic bulge main-sequence turnoff region stars for which high-dispersion spectra have been obtained with detailed abundance analyses. We demonstrate that there is a very strong and highly statistically significant correlation between the maximum magnification of the microlensed bulge star and the value of the [Fe/H] deduced from the high resolution spectrum of each object. Physics demands that this correlation, assuming it to be real, be the result of some sample bias. We suggest several possible explanations, but are forced to reject them all, and are left puzzled. To obtain a reliable metallicity distribution in the Galactic bulge based on microlensed dwarf stars, it will be necessary to resolve this issue through the course of additional observations.

  7. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  8. On the biological hazard of galactic antinuclei

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.

    1986-01-01

    The interaction of antinuclei in the galactic cosmic-ray beam with biological systems is studied. A nuclei-antinuclei annihilation event observed in nuclear emulsion near the end of the slowing-down trajectories of singly charged particle is discussed. An annihilation event that occurred by capture of the antinucleus into an atomic orbital followed by cascade to or near the ground atomic state and subsequent annihilation with the nuclear material of the atom is described. Microdosimetric quantities relevant to potential biological hazards are estimated. The average linear-energy-transfer spectrum for galactic cosmic ray antinuclei annihilation events in tissues is presented. It is observed that the annihilation in tissues occurs mainly in O and the heavier elements around K.

  9. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  10. Galactic transients from the OGLE survey

    NASA Astrophysics Data System (ADS)

    Mroz, Przemek

    2016-07-01

    For many years, there were not any systematic, large-scale surveys for transients in the Milky Way and the Magellanic Clouds. This gap is being filled by discoveries from the OGLE survey, which has been regularly monitoring the densest sky regions (the Galactic bulge and disk, the Magellanic System) for over twenty years. The OGLE collection of Galactic transients contains several dozen classical novae and over a thousand other cataclysmic variables. I will tell how to select transients from billions of sources observed by the OGLE every night. I will show how the properties of classical novae depend on the underlying stellar population (and the star formation history). I will also discuss the preliminary results of the search for transients in the Milky Way disk from the OGLE-IV Galaxy Variability Survey. Finally, I will show some transients of yet unknown origin and present the OGLE-IV real time monitoring systems.

  11. The FLAMINGOS-2 Galactic Center Survey

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.

    2008-05-01

    Upon commissioning on Gemini South, FLAMINGOS-2 will be one of the most powerful wide-field near-infrared imagers and multi-object spectrographs ever built for use on 8-meter-class telescopes. In order to take best advantage of the strengths of FLAMINGOS-2 early in its life cycle, the instrument team has proposed to use 21 nights of Gemini guaranteed time in 3 surveys-the FLAMINGOS-2 Early Science Surveys (F2ESS). The F2ESS will encompass 3 corresponding science themes-the Galactic Center, galaxy evolution, and star formation. In this paper, I review the design performance and status of FLAMINGOS-2, and describe the planned FLAMINGOS-2 Galactic Center Survey.

  12. Ambartsumyan's concept of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.

    2010-01-01

    As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.

  13. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  14. Simultaneous orbit fitting of stellar streams: Constraining the galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    Willett, Benjamin Arthur

    2010-12-01

    The Milky Way Galaxy serves as a laboratory for testing models of galaxy formation. Discovering the nature of dark matter is often cited as the second most important problem in astrophysics, preceded only by dark energy. Mapping the structure and dynamics of the Milky Way Galaxy can tell us how galaxies form, and place constraints on the properties of dark matter. We can map the distribution of dark matter in the Milky Way using tidal streams, collections of stars that have been gravitationally stripped from satellite dwarf galaxies and globular clusters. By knowing the positions and velocities of these stars, and assuming they came from a compact source, we can follow them back in time and constrain the shape of the Milky Way dark matter halo. This Thesis presents a method that allows us to constrain the parameters of a static Galactic gravitational potential using the data from any number of tidal debris streams. The method is tested on simulated tidal streams, and successfully recovers the original model parameters in most cases. The importance of simultaneously fitting the measured rotation curve of the Milky Way is explored, and the strengths and weaknesses of the algorithm are discussed. The orbit fitting algorithm is applied independently to the Stream of Grillmair and Dionatos (GD-1), the Orphan Stream, and the Cetus Polar Stream (CPS). We show that no known globular cluster or dwarf galaxy in the Milky Way has kinematics consistent with being the progenitor of the GD-1 stream. The Orphan Stream constrains the Milky Way dark matter halo as having a mass at the low end of previous measurements, giving a best fit halo speed of vhalo = 73 +/- 24 km s-1, compared to typical values of vhalo ≈ 115 km s -1. A lower halo speed implies a less massive halo. The GD-1 and Orphan streams are then fit simultaneously with the Sagittarius Dwarf Tidal Stream (Sgr), within a triaxial dark matter halo. Results for restricted triaxial cases are shown to be consistent with

  15. The RMS survey. 13CO observations of candidate massive YSOs in the northern Galactic plane

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Busfield, A. L.; Hoare, M. G.; Lumsden, S. L.; Oudmaijer, R. D.; Moore, T. J. T.; Gibb, A. G.; Purcell, C. R.; Burton, M. G.; Maréchal, L. J. L.; Jiang, Z.; Wang, M.

    2008-08-01

    Context: The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, high-resolution mid-infrared colour-selected sample of massive young stellar objects (MYSOs). We have identified 2000 MYSO candidates located within our Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of our follow-up observations is to identify other objects with similar colours such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. Aims: A critical part of our follow-up programme is to conduct 13CO molecular line observations in order to determine kinematic distances to all of our MYSO candidates. These distances will be used in combination with far-IR and (sub)millimetre fluxes to determine bolometric luminosities which will allow us to identify and remove nearby low-mass YSOs. In addition these molecular line observations will help in identifying evolved stars which are weak CO emitters. Methods: We have used the 15 m James Clerk Maxwell Telescope (JCMT), the 13.7 m telescope of the Purple Mountain Observatory (PMO), the 20 m Onsala telescope and the 22 m Mopra telescope to conduct molecular line observations towards 508 MYSOs candidates located in the 1st and 2nd Quadrants. These observations have been made at the J=1-0 (Mopra, Onsala and PMO) and J=2-1 (JCMT) rotational transition frequency of 13CO molecules and have a spatial resolution of 20´´-55´´, a sensitivity of T{A}* ≃ 0.1 K and a velocity resolution of 0.2 km s-1. We complement these targeted observations with 13CO spectra extracted from the Galactic Ring Survey (GRS), which have a velocity resolution of 0.21 km s-1 and sensitivity T{A}* ≃ 0.13-0.2 K, towards a further 403 RMS sources. Results: In this paper we present the results and analysis of the 13CO spectra obtained towards 911 MYSO candidates. We detect 13CO emission towards 780

  16. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  17. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  18. A cool disk in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Meyer, F.; Meyer-Hofmeister, E.

    2004-07-01

    We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk near the gravitational capture distance left over from an earlier evolutionary stage, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. We study the interaction between the disk and the corona. Whether the cool disk can survive depends on the mass exchange between disk and corona which is determined by the energy and pressure balance. If evaporation is the dominant process and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk with little gas accreting towards the central black hole might survive in the Galactic Center. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (α=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (α ⪉ 0.07) we find condensation solutions. But detailed coronal structure computations show that in this case there is too much X-ray radiation from the corona to be in agreement with the observations. From this modeling we conclude that there should be no thin/inactive disk presently in the Galactic Center. However we do not exclude that the alternative non-radiative model of Nayakshin (\\cite{Nayakshin04}) might instead be realized in nature and shortly discuss this question.}

  19. Cold GMC cores in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Li, Y.; Dowell, C. D.; Menten, K. M.

    1999-03-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory in grating mode to map the far-infrared continuum emission (45-175 mic) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. These sources are observed in emission at far-infrared and submillimeter wavelengths (>100 mic). However, at mid-infrared wavelengths (<70 mic) they are seen in absorption against the general Galactic centre background. Gray-body fits to the observed far-infrared and submillimeter spectral energy distributions give low temperatures (about 13-20 K) for the bulk of the dust in all the sources. This indicates external heating of the dust by the diffuse ISRF and suggests that the cores do not harbor high-mass star-formation sites, in spite of their large molecular mass. In addition, the grain emissivity in these sources is a very steep function of frequency (β > 2.4). The high grain emissivity exponent is consistent with the presence of dust grains covered with thick ice mantles. Molecular line observations carried out with the Caltech Submillimeter Observatory (CSO) show a large velocity gradient across the most massive core, GCM0.25+0.11, indicative of streaming motions of the gas or of the presence of multiple, spatially overlapping velocity components. The observed gas kinematics may indicate that the GCM0.25+0.11 core is in an early stage of a cloud-cloud collision that may result in a future star formation episode. Recent MSX observations indicate that cold GMC cores similar to those studied with ISO are ubiquitous in the Galactic center and throughout the Galaxy. The observed intensities of the OI and CII fine structure lines imply a radiation field intensity of about 1000 times the standard ISRF intensity and a hydrogen density of about 1000 pccm\\ for the diffuse gas component in the Galactic center.

  20. Understanding active galactic nuclei: peeling the onion.

    NASA Astrophysics Data System (ADS)

    Krolik, J. H.

    A brief review is presented of selected current problems in understanding active galactic nuclei, with special emphasis on the contributions that X-ray observations can make. Questions having to do with: how the character of the host galaxy influences nuclear activity; emission line regions; the border between the nucleus and the stellar portion of the active galaxy; radiation of the nonthermal continuum; and the possible existence of an accretion disk are touched upon.