Science.gov

Sample records for galactic star clusters

  1. Super Star Clusters: the Engines of Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly; Lu, Jessica R.; Kewley, Lisa; Kudritzki, Rolf; Barnes, Joshua Edward

    2015-08-01

    Winds in starburst galaxies are ubiquitous; however, we still do not understand how winds from individual star clusters unite into a large-scale galactic outflow. Recent work suggests that radiation pressure from young (<7 Myr) massive super star clusters (SSCs) may be a necessary first step in launching global starburst winds. We have begun a program using integral field spectroscopy with Keck/OSIRIS to investigate the winds from these very young clusters, and how energy is transferred from the stellar population to the surrounding medium to launch galactic-scale outflows. We present preliminary work on a sample of young massive clusters from the Antennae.

  2. HUBBLE SPIES GIANT STAR CLUSTERS NEAR GALACTIC CENTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of a pair of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster clusters are ten times larger than typical young star clusters scattered throughout our Milky Way. Both clusters are destined to be ripped apart in just a few million years by gravitational tidal forces in the Galaxy's core. But in the brief time they are around, they shine more brightly than any other star cluster in the Galaxy. Arches cluster (left): The more compact Arches cluster is so dense, over 100,000 of its stars would fill a spherical region in space whose radius is the distance between the Sun and its nearest neighbor, the star Alpha Centauri, 4.3 light-years away. At least 150 of its stars are among the brightest ever seen in the Galaxy. Quintuplet cluster (right): This 4-million-year-old cluster is more dispersed than the Arches cluster. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the Galaxy, called the Pistol star. Both pictures were taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The clusters are hidden from direct view behind black dust clouds in the constellation Sagittarius. If the clusters could be seen from Earth they would appear to the naked eye as a pair of third magnitude 'stars,' 1/6th of a full moon's diameter apart. Credit: Don Figer (Space Telescope Science Institute) and NASA

  3. Giant Star Clusters Near Galactic Core

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A video sequence of still images goes deep into the Milky Way galaxy to the Arches Cluster. Hubble, penetrating through dust and clouds, peers into the core where two giant clusters shine more brightly than any other clusters in the galaxy. Footage shows the following still images: (1) wide view of Sagittarius constellation; (2) the Palomar Observatory's 2 micron all-sky survey; and (3) an image of the Arches Cluster taken with the Hubble Space Telescope NICMOS instrument. Dr. Don Figer of the Space Telescope Science Institute discusses the significance of the observations and relates his first reaction to the images.

  4. Clues on the Galactic evolution of sulphur from star clusters

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Monaco, L.; Spite, M.; Bonifacio, P.; Carraro, G.; Ludwig, H.-G.; Villanova, S.; Beletsky, Y.; Sbordone, L.

    2014-08-01

    Context. The abundances of α-elements are a powerful diagnostic of the star formation history and chemical evolution of a galaxy. Sulphur, being moderately volatile, can be reliably measured in the interstellar medium (ISM) of damped Ly-α galaxies and extragalactic H ii regions. Measurements in stars of different metallicity in our Galaxy can then be readily compared to the abundances in external galaxies. Such a comparison is not possible for Si or Ca that suffer depletion onto dust in the ISM. Furthermore, studying sulphur is interesting because it probes nucleosynthetic conditions that are very different from those of O or Mg. In this context measurements in star clusters are a reliable tracers of the Galactic evolution of sulphur. Aims: The aim of this paper is to determine sulphur abundances in several Galactic clusters that span a metallicity range -1.5 < [Fe/H] < 0.0. Methods: We use a standard abundance analysis, based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and literature corrections for non-LTE (NLTE), as well as 3D corrections based on hydrodynamical model atmospheres, to derive sulphur abundances in a sample of stars in the globular cluster M 4, and the open clusters Trumpler 5, NGC 2477, and NGC 5822. Results: We find ⟨ A(S) ⟩ NLTE = 6.11 ± 0.04 for M 4, ⟨ A(S) ⟩ NLTE = 7.17 ± 0.02 for NGC 2477, and ⟨ A(S) ⟩ NLTE = 7.13 ± 0.06 for NGC 5822. For the only star studied in Trumpler 5 we find A(S)NLTE = 6.43 ± 0.03 and A(S)LTE = 6.94 ± 0.05. Conclusions: Our measurements show that, by and large, the S abundances in Galactic clusters trace reliably those in field stars. The only possible exception is Trumpler 5, for which the NLTE sulphur abundance implies an [S/Fe] ratio lower by roughly 0.4 dex than observed in field stars of comparable metallicity, even though its LTE sulphur abundance is in line with abundances of field stars. Moreover the LTE sulphur abundance is consistent only with the abundance of another

  5. Blue straggler stars in Galactic open clusters and the effect of field star contamination

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Vázquez, R. A.; Moitinho, A.

    2008-05-01

    Context: We investigate the distribution of blue straggler stars in the field of three open star clusters. Aims: The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the color magnitude diagram as blue straggler stars. Methods: We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in blue straggler stars, which are projected in the direction of the Perseus arm, and study their spatial distribution and the color magnitude diagram. Results: As expected, we find that a large portion of the blue straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of blue straggler stars in different population environments: open clusters, globular clusters, or dwarf galaxies. Conclusions: As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the blue straggler population in star clusters to theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure and they require further consideration.

  6. POST T-Tauri Stars in Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Haro, G.

    1983-08-01

    spectral type and luminosity: the earlier the spectral type, the shorter the vanishing effect. Therefore, if we look for weakened T Tauri features in stellar aggregates of various ages from which the typical and extreme T Tauri stars have already disappeared, we find that the older the aggregate, the later the spectral type in which the last prominent features are detectable. Everything seems to suggest that it is within these possible evolved T Tauri objects that we can find the so-called post-T Tauri stars, and that a good number of flare stars detected in galactic clusters are among them. These clusters are: the Orion stellar aggregate, NOC 2264, the Pleiades, and possibly the flare stars in stellar aggregates of ages equal or superior to 108 years. As I have in the past, I would like to place special emphasis on the genetic relationship between certain flare stars and their T Tauri ancestors, based not only on the very rapid outbursts of the former but also, and primarily, on the fact that these flare stars show spectroscopic characteristics reminiscent of the T Tauri original stars. In other words, the simple fact that a star presents the "flare" phenomenon does not constitute necessary and sufficient proof that it should be regarded as an evolutionary product of a T Tauri star: in addition to the flare-up the spectral types of the investigated objects must present -during maximum and minimum light- clear and reminiscent spectroscopic evidences of the original T Tauri objects; that is, spectral types as late or later than G and some emission lines, at least in H and Call. There are some flare stars in Orion and NGC 2264 which, even during minimum light, can be classified spectroscopically as typical T Tauri stars. In the case of the Pleiades, where undoubtedly there are no T Tauri stars, many of the flare stars show spectral emission lines (H and Call) of great intensity during maximum and of detectable intensity in slit spectrograms of not high dispersion, during

  7. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-01-01

    The enormous velocities of the so called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of hypervelocity stars as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  8. Southern near-infrared photometric monitoring of Galactic young star clusters (NIP of Stars)

    NASA Astrophysics Data System (ADS)

    Barbá, R.; Morrell, N. I.; Gunthardt, G.; Torres Robledo, S.; Jaque, M.; Soto, M.; Ferrero, G.; Arias, J. I.; Roman-Lopes, A.; Gamen, R. C.; Astudillo Hormazabal, J.

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as NIP of Stars, be- tween the years 2009-2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera. The primary objective of the campaign is to perform a census of photometric variability of such clus- ters and to discover massive eclipsing binary stars. In this work, we describe the general idea, the implementation of the survey, and the first preliminary results of some of the observed clusters. This monitoring program is com- plementary to the Vista Variables in the Vía Láctea (VVV), as the brightest sources observed in NIP of Stars are saturated in VVV.

  9. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  10. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  11. Massive Star Clusters and the high-mass population in the Galactic center

    NASA Astrophysics Data System (ADS)

    Stolte, A.

    2013-06-01

    With a star formation rate of 10% of the SFR in the Milky Way disc, the Galactic center is the most active star-forming environment in the Milky Way today. The small volume of the central molecular zone (CMZ), spanning a diameter of merely 400 pc, appears to foster especially the formation of high-mass stars. The CMZ is host to three of the most massive, young star clusters and a quarter of the known Wolf-Rayet population in the Galaxy. In this review, I will present the census of high-mass star formation that emerged from the recent Galactic center surveys, and will summarise the properties of the starburst clusters as the most productive sites of high-mass star formation.

  12. The dynamical fate of binary star clusters in the Galactic tidal field

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Kouwenhoven, M. B. N.; Arifyanto, M. I.; Wulandari, H. R. T.; Siregar, S.

    2016-04-01

    Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out N-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass-loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model, we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. N-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, global cluster rotation, evaporation rates, and the cluster merger process. We find that the initial orientation of a binary star cluster with respect to the Galactic field, and also the initial orbital phase, is crucial for its fate. Depending on these properties, the binaries may experience orbital reversal, spiral-in, or vertical oscillation about the Galactic plane before they actually merge at t ≈ 100 Myr, and produce rotating star clusters with slightly higher evaporation rates. The merger process of a binary cluster induces an outburst that ejects ˜10 per cent of the stellar members into the Galactic field.

  13. THE FRACTION OF GLOBULAR CLUSTER SECOND-GENERATION STARS IN THE GALACTIC HALO

    SciTech Connect

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2010-08-01

    Many observational studies have revealed the presence of multiple stellar generations in Galactic globular clusters. These studies suggest that second-generation stars make up a significant fraction of the current mass of globular clusters, with the second-generation mass fraction ranging from {approx}50% to 80% in individual clusters. In this Letter, we carry out hydrodynamical simulations to explore the dependence of the mass of second-generation stars on the initial mass and structural parameters and stellar initial mass function (IMF) of the parent cluster. We then use the results of these simulations to estimate the fraction f{sub SG,H} of the mass of the Galactic stellar halo composed of second-generation stars that originated in globular clusters. We study the dependence of f{sub SG,H} on the parameters of the IMF of the Galactic globular cluster system. For a broad range of initial conditions, we find that the fraction of mass of the Galactic stellar halo in second-generation stars is always small, f{sub SG,H} < 4%-6% for a Kroupa-1993 IMF and f{sub SG,H} < 7%-9% for a Kroupa-2001 IMF.

  14. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    SciTech Connect

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-09-15

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 {+-} 0.4 kpc, has an age of around 4 Myr, and a physical size of {approx}6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  15. Herbig Ae/Be Candidate Stars in the Innermost Galactic Disk: Quartet Cluster

    NASA Astrophysics Data System (ADS)

    Yasui, Chikako; Kobayashi, Naoto; Hamano, Satoshi; Kondo, Sohei; Izumi, Natsuko; Saito, Masao; Tokunaga, Alan T.

    2016-02-01

    In order to investigate the Galactic-scale environmental effects on the evolution of protoplanetary disks, we explored the near-infrared (NIR) disk fraction of the Quartet cluster, which is a young cluster in the innermost Galactic disk at the Galactocentric radius {R}g˜ 4 {{kpc}}. Because this cluster has a typical cluster mass of ˜103 {M}⊙ as opposed to very massive clusters, which have been observed in previous studies (>104 {M}⊙ ), we can avoid intra-cluster effects such as strong UV field from OB stars. Although the age of the Quartet is previously estimated to be 3-8 Myr old, we find that it is most likely ˜3-4.5 Myr old. In moderately deep JHK images from the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we found eight HAeBe candidates in the cluster, and performed K-band medium-resolution (R\\equiv {{Δ }}λ /λ ˜ 800) spectroscopy for three of them with the Subaru 8.2 m telescope. These are found to have both Brγ absorption lines as well as CO bandhead emission, suggesting that they are HAeBe stars with protoplanetary disks. We estimated the intermediate-mass disk fraction (IMDF) to be ˜25% for the cluster, suggesting slightly higher IMDF compared to those for young clusters in the solar neighborhood with similar cluster age, although such a conclusion should await future spectroscopic study of all candidates of cluster members.

  16. X-ray Emission from the Star Clusters Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Law, C.; Fruscione, A.

    2001-09-01

    The detection of two thermal X-ray sources from an extraordinarily compact massive star cluster, the Arches cluster (G0.12-0.02), is reported. This cluster is embedded within a bath of diffuse X-ray emission extending beyond the edge of the cluster to at least 90''×60'' (3.6 pc × 2.4 pc). The diffuse emission beyond the boundary of the cluster is discussed in the context of combined shocked stellar winds escaping from the cluster. The presence of such a high velocity wind flow has implications for other dense systems of mass-losing hot stars such as the IRS 16 at the Galactic center. IRS 16 consists of a number of hot mass-losing stars which could produce an X-ray emitting high cluster wind flow with a velocity of ≈1000 km s-1 as predicted by Canto et al. and detected in the Arches cluster. The interaction of such a hot cluster wind flow with Sgr A* may affect the mass accretion rate. We also present the distribution of the 6.4 keV emission from the Arches cluster as well as discuss the relationship between the X-ray filaments at the edge of the nonthermal radio filaments of the Arc.

  17. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  18. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    SciTech Connect

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-09-10

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H{alpha} excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H{alpha} excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  19. A DEEP UBVRI CCD PHOTOMETRY OF SIX OPEN STAR CLUSTERS IN THE GALACTIC ANTICENTER REGION

    SciTech Connect

    Lata, Sneh; Pandey, Anil K.; Kumar, Brijesh; Bhatt, Himali; Pace, Giancarlo; Sharma, Saurabh

    2010-02-15

    We present deep UBVRI CCD photometry of six open star clusters situated in the Galactic anticenter region (l{approx} 120-200 deg.). The sample includes three unstudied (Be 6, Be 77, King 17) and three partly studied open clusters (Be 9, NGC 2186, and NGC 2304). The fundamental parameters have been determined by comparing color-color and color-magnitude diagrams with the theoretical models. The structural parameters and morphology of the clusters were discussed on the basis of radial density profiles and isodensity contours, respectively. The isodensity contours show that all the clusters have asymmetric shapes. An investigation of structural parameters indicates that the evolution of core and corona of the clusters is mainly controlled by internal relaxation processes.

  20. Mining the UKIDSS Galactic Plane Survey: star formation and embedded clusters

    NASA Astrophysics Data System (ADS)

    Solin, O.; Ukkonen, E.; Haikala, L.

    2012-06-01

    Context. Data mining techniques must be developed and applied to analyse the large public data bases containing hundreds to thousands of millions entries. Aims: We develop methods for locating previously unknown stellar clusters from the UKIDSS Galactic Plane Survey (GPS) catalogue data. Methods: The cluster candidates are computationally searched from pre-filtered catalogue data using a method that fits a mixture model of Gaussian densities and background noise using the expectation maximization algorithm. The catalogue data contains a significant number of false sources clustered around bright stars. A large fraction of these artefacts were automatically filtered out before or during the cluster search. The UKIDSS data reduction pipeline tends to classify marginally resolved stellar pairs and objects seen against variable surface brightness as extended objects (or "galaxies" in the archive parlance). 10% or 66 × 106 of the sources in the UKIDSS GPS catalogue brighter than 17m in the K band are classified as "galaxies". Young embedded clusters create variable NIR surface brightness because the gas/dust clouds in which they were formed scatters the light from the cluster members. Such clusters appear therefore as clusters of "galaxies" in the catalogue and can be found using only a subset of the catalogue data. The detected "galaxy clusters" were finally screened visually to eliminate the remaining false detections due to data artefacts. Besides the embedded clusters the search also located locations of non clustered embedded star formation. Results: The search covered an area of 1302 deg2 and 137 previously unknown cluster candidates and 30 previously unknown sites of star formation were found. Appendices A-C are available in electronic form at http://www.anda.org

  1. A Luminous Yellow Post-AGB Star in the Galactic Globular Cluster M79

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Siegel, Michael H.

    2016-02-01

    We report the discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and {M}V=-3.46, this “yellow” PAGB star is by a small margin the visually brightest star known in any GC. It was identified using CCD observations in the uBVI photometric system, which is optimized to detect stars with large Balmer discontinuities, indicative of very low surface gravities. Follow-up observations with the SMARTS 1.3 and 1.5 m telescopes show that the star is not variable in light or radial velocity, and that its velocity is consistent with cluster membership. Near- and mid-infrared observations with 2MASS and WISE show no evidence for circumstellar dust. We argue that a sharp upper limit to the luminosity function exists for yellow PAGB stars in old populations, making them excellent candidates for Population II standard candles, which are four magnitudes brighter than RR Lyrae variables. Their luminosities are consistent with the stars being in a PAGB evolutionary phase, with core masses of ˜ 0.53 {M}⊙ . We also detected four very hot stars lying above the horizontal branch (“AGB-manqué” stars); along with the PAGB star, they are the brightest objects in M79 in the near-ultraviolet. In the Appendix, we give periods and light curves for five variables in M79: three RR Lyrae stars, a Type II Cepheid, and a semiregular variable. Based in part on observations with the 1.3 and 1.5 m telescopes operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  2. Extinction in the Star Cluster SAI 113 and Galactic Structure in Carina

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Turner, David G.; Majaess, Daniel J.; Baume, Gustavo L.; Gamen, Roberto; Molina Lera, José A.

    2017-04-01

    Photometric CCD UB VI C photometry obtained for 4860 stars surrounding the embedded southern cluster SAI 113 (Skiff 8) is used to examine the reddening in the field and derive the distance to the cluster and nearby van Genderen 1. Spectroscopic color excesses for bright cluster stars, photometric reddenings for A3 dwarfs, and dereddening of cluster stars imply that the reddening and extinction laws match results derived for other young clusters in Carina: {E}U-B/{E}B-V≃ 0.64 and {R}V≃ 4. SAI 113 displays features that may be linked to a history of dynamical interactions among member stars: possible circumstellar reddening and rapid rotation of late B-type members, ringlike features in star density, and a compact core, with most stars distributed randomly across the field. The group van Genderen 1 resembles a stellar asterism, with potential members distributed randomly across the field. Distances of 3.90 ± 0.19 kpc and 2.49 ± 0.09 kpc are derived for SAI 113 and van Genderen 1, respectively, with variable reddenings {E}B-V ranging from 0.84 to 1.29 and 0.23 to 1.28. The SRC variables CK Car and EV Car may be outlying members of van Genderen 1, thereby of use for calibrating the period–luminosity relation for pulsating M supergiants. More importantly, the anomalous reddening and extinction evident in Carina and nearby regions of the Galactic plane in the fourth quadrant impact the mapping of spiral structure from young open clusters. The distribution of spiral arms in the fourth quadrant may be significantly different from how it is often portrayed.

  3. Erratum: Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo

    NASA Astrophysics Data System (ADS)

    Capriotti, E. R.; Hawley, S. L.

    1997-07-01

    In § 2 of the recent paper ``Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo'' by E. R. Capriotti and S. L. Hawley (ApJ, 464, 765 [1996]), equation (1) contains a misprint. It should read rt=2r/3 [(Mc)/(AMH(r))]1/3/[1-r/(AMH(r)) (dMH(r))/dr]1/3 , (1)where the difference from the published version is that an A replaces the 3 in the denominator of the last term. The authors regret the error.

  4. Searching for IMBHs in Galactic globular clusters through radial velocities of individual stars

    NASA Astrophysics Data System (ADS)

    Lanzoni, Barbara

    2016-02-01

    I present an overview of our ongoing project aimed at building a new generation of velocity dispersion profiles ad rotation curves for a representative sample of Galactic globular clusters, from the the radial velocity of hundreds of individual stars distributed at different distances from the cluster center. The innermost portion of the profiles will be used to constrain the possible presence of intermediate-mass black holes. The adopted methodology consists of combining spectroscopic observations acquired with three different instruments at the ESO-VLT: the adaptive-optics assisted, integral field unit (IFU) spectrograph SINFONI for the innermost and highly crowded cluster cores, the multi-IFU spectrograph KMOS for the intermediate regions, and the multi-fiber instrument FLAMES/GIRAFFE-MEDUSA for the outskirts. The case of NGC 6388, representing the pilot project that motivated the entire program, is described in some details.

  5. AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lane, R. R.; Kiss, L. L.; Lewis, G. F.; Ibata, R. A.; Siebert, A.; Bedding, T. R.; Székely, P.; Szabó, G. M.

    2011-06-01

    Galactic globular clusters have been pivotal in our understanding of many astrophysical phenomena. Here we publish the extracted stellar parameters from a recent large spectroscopic survey of ten globular clusters. A brief review of the project is also presented. Stellar parameters have been extracted from individual stellar spectra using both a modified version of the RAdial Velocity Experiment (RAVE) pipeline and a pipeline based on the parameter estimation method of RAVE. We publish here all parameters extracted from both pipelines. We calibrate the metallicity and convert this to [Fe/H] for each star and, furthermore, we compare the velocities and velocity dispersions of the Galactic stars in each field to the Besançon Galaxy model. We find that the model does not correspond well with the data, indicating that the model is probably of little use for comparisons with pencil beam survey data such as this. The data described in Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A31

  6. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  7. Testing multimass dynamical models of star clusters with real data: mass segregation in three Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Dalessandro, E.; Beccari, G.; Pallanca, C.

    2017-02-01

    We present the results of the analysis of deep photometric data for a sample of three Galactic globular clusters (NGC5466, NGC6218 and NGC 6981) with the aim of estimating their degree of mass segregation and testing the predictions of analytic dynamical models. The adopted data set, composed of both Hubble Space Telescope and ground-based data, reaches the low-mass end of the mass functions of these clusters from the centre up to their tidal radii allowing us to derive the radial distribution of stars with different masses. All the analysed clusters show evidence of mass segregation with the most massive stars being more concentrated than the low-mass ones. The structures of NGC5466 and NGC6981 are well reproduced by multimass dynamical models adopting a lowered Maxwellian distribution function and the prescription for mass segregation given by Gunn & Griffin. Instead, NGC6218 appears to be more mass segregated than model predictions. By applying the same technique to mock observations derived from snapshots selected from suitable N-body simulations, we show that the deviation from the behaviour predicted by these models depends on the particular stage of dynamical evolution regardless of initial conditions.

  8. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  9. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  10. Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-07-01

    Context. Galactic globular clusters (GC) are known to have multiple stellar populations and be characterised by similar chemical features, e.g. O-Na anti-correlation. While second-population stars, identified by their Na overabundance, have been found from the main sequence turn-off up to the tip of the red giant branch (RGB) in various Galactic GCs, asymptotic giant branch (AGB) stars have rarely been targeted. The recent finding that NGC 6752 lacks an Na-rich AGB star has thus triggered new studies on AGB stars in GCs, since this result questions our basic understanding of GC formation and stellar evolution theory. Aims: We aim to compare the Na abundance distributions of AGB and RGB stars in Galactic GCs and investigate whether the presence of Na-rich stars on the AGB is metallicity-dependent. Methods: With high-resolution spectra obtained with the multi-object high-resolution spectrograph FLAMES on ESO/VLT, we derived accurate Na abundances for 31 AGB and 40 RGB stars in the Galactic GC NGC 2808. Results: We find that NGC 2808 has a mean metallicity of -1.11 ± 0.08 dex, in good agreement with earlier analyses. Comparable Na abundance dispersions are derived for our AGB and RGB samples, with the AGB stars being slightly more concentrated than the RGB stars. The ratios of Na-poor first-population to Na-rich second-population stars are 45:55 in the AGB sample and 48:52 in the RGB sample. Conclusions: NGC 2808 has Na-rich second-population AGB stars, which turn out to be even more numerous - in relative terms - than their Na-poor AGB counterparts and the Na-rich stars on the RGB. Our findings are well reproduced by the fast rotating massive stars scenario and they do not contradict the recent results that there is not an Na-rich AGB star in NGC 6752. NGC 2808 thus joins the larger group of Galactic GCs for which Na-rich second-population stars on the AGB have recently been found. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  11. APOGEE Chemical Tagging Constraint on the Maximum Star Cluster Mass in the Alpha-enhanced Galactic Disk

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-01-01

    Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance space. Chemical tagging requires large samples of stars with precise abundances for many individual elements. With uncertainties of {σ }[X/{{Fe}]} and {σ }[{Fe/{{H}}]}≃ 0.05 for 10 elements measured for \\gt {10}4 stars, the APOGEE DR12 spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer only ˜500 independent volume elements in the 10-dimensional abundance space, when we focus on the α-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a dominant background. By injecting star clusters into the APOGEE data set, we show that chemically homogeneous clusters with masses ≳ 3× {10}7 {M}⊙ would be easily detectable and yet no such signal is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the old disk stars in the Milky Way.

  12. Bolometric correction and spectral energy distribution of cool stars in Galactic clusters

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Patelli, L.; Bellazzini, M.; Pecci, F. Fusi; Oliva, E.

    2010-04-01

    We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic observations, along the 3500 Å ==> 2.5μm wavelength range, for a grid of 92 red giant stars in five (three globular + two open) Galactic clusters, along the full metallicity range covered by the bulk of the stars, -2.2 <= [Fe/H] <= +0.4. Synthetic BVRCIC JHK photometry from the derived spectral energy distributions allowed us to obtain robust temperature (Teff) estimates for each star, within +/-100K or less. According to the appropriate temperature estimate, blackbody extrapolation of the observed spectral energy distribution allowed us to assess the unsampled flux beyond the wavelength limits of our survey. For the bulk of our red giants, this fraction amounted to 15 per cent of the total bolometric luminosity, a figure that raises up to 30 per cent for the coolest targets (Teff <~ 3500K). Overall, we obtain stellar Mbol values with an internal accuracy of a few percentages. Even neglecting any correction for lost luminosity etc., we would be overestimating Mbol by <~0.3mag, in the worst cases. Making use of our new data base, we provide a set of fitting functions for the V and K BC versus Teff and versus (B - V) and (V - K) broad-band colours, valid over the interval 3300 <= Teff <= 5000K, especially suited for red giants. The analysis of the BCV and BCK estimates along the wide range of metallicity spanned by our stellar sample shows no evident drift with [Fe/H]. Things may be different for the B-band correction, where the blanketing effects are more and more severe. A drift of Δ(B - V) versus [Fe/H] is in fact clearly evident from our data, with metal-poor stars displaying a `bluer' (B - V) with respect to the metal-rich sample, for fixed Teff. Our empirical bolometric corrections are in good overall agreement with

  13. Phase mixing due to the Galactic potential: steps in the position and velocity distributions of popped star clusters

    NASA Astrophysics Data System (ADS)

    Candlish, G. N.; Smith, R.; Fellhauer, M.; Gibson, B. K.; Kroupa, P.; Assmann, P.

    2014-02-01

    As star clusters are expected to form with low star formation efficiencies, the gas in the cluster is expelled quickly and early in their development: the star cluster `pops'. This leads to an unbound stellar system, evolving in the Galactic potential. Previous N-body simulations have demonstrated the existence of a stepped number density distribution of cluster stars after popping, both in vertical position and vertical velocity, with a passing resemblance to a Christmas tree. Using numerical and analytical methods, we investigate the source of this structure, which arises due to the phase mixing of the out-of-equilibrium stellar system, determined entirely by the background analytic potential. Considering only the vertical motions, we construct a theoretical model to describe the time evolution of the phase space distribution of stars in a Miyamoto-Nagai disc potential and a full Milky Way-type potential comprising bulge, halo and disc components, which is then compared with N-body simulations. Using our theoretical model, we investigate the possible observational signatures and the feasibility of detection.

  14. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  15. New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Chené, A.-N.; Ramírez Alegría, S.; Sharma, S.; Clarke, J. R. A.; Kurtev, R.; Negueruela, I.; Marco, A.; Amigo, P.; Minniti, D.; Bica, E.; Bonatto, C.; Catelan, M.; Fierro, C.; Geisler, D.; Gromadzki, M.; Hempel, M.; Hanson, M. M.; Ivanov, V. D.; Lucas, P.; Majaess, D.; Moni Bidin, C.; Popescu, B.; Saito, R. K.

    2014-09-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. Aims: The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Methods: Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKS color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and point spread function photometry of 10 × 10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. Results: We report the discovery of 58 new infrared cluster candidates. Fundamental parameters such as age, distance, and metallicity were determined for 20 of the most populous clusters. Based on observations gathered as part of observing programs: 179.B-2002,VIRCAM, VISTA at ESO, Paranal Observatory; NTT at ESO, La Silla Observatory (programs 087.D-0490A and 089.D-0462A) and with the SOAR telescope at the NOAO (program CN2012A-045).

  16. Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Korotin, S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H.-G.; Royer, F.; Prakapavičius, D.

    2014-05-01

    Context. The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations. Aims: We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. Methods: We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2 m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Results: Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. At the same time, we find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, ⟨A(Li)3D NLTE⟩ = 1.78 ± 0.18 dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. Conclusions: The correlations/anti-correlations among light element abundances confirm that chemical enrichment history of 47 Tuc was similar to that of other globular clusters, despite the higher metallicity of 47 Tuc. The lithium

  17. Star cluster evolution with primordial binaries. 3: Effect of the Galactic tidal field

    NASA Technical Reports Server (NTRS)

    Mcmillan, Steve; Hut, Piet

    1994-01-01

    We present the results of N-body simulations of tidally limited star clusters with an initial population of 0%-20% binaries. We find that (1) if enough binaries are initially present, the binary fraction may fall to a minimum value, then increase at late times; (2) the cluster evaporation timescale is quite insensitive to the details of the initial binary distribution; (3) the cluster core radius stabilizes at a few percent of the half-mass radius when binaries are present, just as in the case of isolated clusters; and (4) there may be a marked difference between the spatial distribution of low-energy and high-energy binaries as the cluster evolves. Specifically, the spatial distribution of the lower energy systems is often substantially more extended than that of the more tightly bound pairs. At no time are our simulated clusters well described by simple dynamical models that neglect the close coupling between the binding energies and the center-of-mass energies of the binaries they contain.

  18. Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Variable star searches and new discoveries

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jørgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K. B. W.; Haugbølle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-04-01

    Aims: We aim to obtain time-series photometry of the very crowded central regions of Galactic globular clusters; to obtain better angular resolution thanhas been previously achieved with conventional CCDs on ground-based telescopes; and to complete, or improve, the census of the variable star population in those stellar systems. Methods: Images were taken using the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile. The telescope was equipped with an electron-multiplying CCD, and the short-exposure-time images obtained (ten images per second) were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). Photometry was performed via difference image analysis. Automatic detection of variable stars in the field was attempted. Results: The light curves of 12 541 stars in the cores of ten globular clusters were statistically analysed to automatically extract the variable stars. We obtained light curves for 31 previously known variable stars (3 long-period irregular, 2 semi-regular, 20 RR Lyrae, 1 SX Phoenicis, 3 cataclysmic variables, 1 W Ursae Majoris-type and 1 unclassified) and we discovered 30 new variables (16 long-period irregular, 7 semi-regular, 4 RR Lyrae, 1 SX Phoenicis and 2 unclassified). Fluxes and photometric measurements for these stars are available in electronic form through the Strasbourg astronomical Data Center. Based on data collected by the MiNDSTEp team with the Danish 1.54m telescope at ESO's La Silla observatory in Chile.Full Table 1 is only available at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A128

  19. Hierarchical Star Formation Across Galactic Disks

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios

    2016-09-01

    Most stars form in clusters. This fact has emerged from the finding that "embedded clusters account for the 70 - 90% fraction of all stars formed in Giant Molecular Clouds (GMCs)." While this is the case at scales of few 10 parsecs, typical for GMCs, a look at star-forming galaxies in the Local Group (LG) shows significant populations of enormous loose complexes of early-type stars extending at scales from few 100 to few 1000 parsecs. The fact that these stellar complexes host extremely large numbers of loosely distributed massive blue stars implies either that stars form also in an unbound fashion or they are immediately dislocated from their original compact birthplaces or both. The Legacy Extra-Galactic UV Survey (LEGUS) has produced remarkable collections of resolved early-type stars in 50 star-forming LG galaxies, suited for testing ideas about recent star formation. I will present results from our ongoing project on star formation across LEGUS disk galaxies. We characterize the global clustering behavior of the massive young stars in order to understand the morphology of star formation over galactic scales. This morphology appears to be self-similar with fractal dimensions comparable to those of the molecular interstellar medium, apparently driven by large-scale turbulence. Our clustering analysis reveals compact stellar systems nested in larger looser concentrations, which themselves are the dense parts of unbound complexes and super-structures, giving evidence of hierarchical star formation up to galactic scales. We investigate the structural and star formation parameters demographics of the star-forming complexes revealed at various levels of compactness. I will discuss the outcome of our correlation and regression analyses on these parameters in an attempt to understand the link between galactic disk dynamics and morphological structure in spiral and ring galaxies of the local universe.

  20. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  1. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  2. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  3. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex

  4. DIRECT NUMERICAL SIMULATION OF RADIATION PRESSURE-DRIVEN TURBULENCE AND WINDS IN STAR CLUSTERS AND GALACTIC DISKS

    SciTech Connect

    Krumholz, Mark R.; Thompson, Todd A. E-mail: thompson@astronomy.ohio-state.edu

    2012-12-01

    The pressure exerted by the radiation of young stars may be an important feedback mechanism that drives turbulence and winds in forming star clusters and the disks of starburst galaxies. However, there is great uncertainty in how efficiently radiation couples to matter in these high optical depth environments. In particular, it is unclear what levels of turbulence the radiation can produce, and whether the infrared radiation trapped by the dust opacity can give rise to heavily mass-loaded winds. In this paper, we report a series of two-dimensional flux-limited diffusion radiation-hydrodynamics calculations performed with the code ORION in which we drive strong radiation fluxes through columns of dusty matter confined by gravity in order to answer these questions. We consider both systems where the radiation flux is sub-Eddington throughout the gas column, and those where it is super-Eddington at the midplane but sub-Eddington in the atmosphere. In the latter, we find that the radiation-matter interaction gives rise to radiation-driven Rayleigh-Taylor instability, which drives supersonic turbulence at a level sufficient to fully explain the turbulence seen in Galactic protocluster gas clouds, and to make a non-trivial contribution to the turbulence observed in starburst galaxy disks. However, the instability also produces a channel structure in which the radiation-matter interaction is reduced compared to time-steady analytic models because the radiation field is not fully trapped. For astrophysical parameters relevant to forming star clusters and starburst galaxies, we find that this effect reduces the net momentum deposition rate in the dusty gas by a factor of {approx}2-6 compared to simple analytic estimates, and that in steady state the Eddington ratio reaches unity and there are no strong winds. We provide an approximation formula, appropriate for implementation in analytic models and non-radiative simulations, for the force exerted by the infrared radiation

  5. IC 1257: A New Globular Cluster in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Harris, W. E.; Phelps, R. L.; Madore, B. F.; Pevunova, O.; Skiff, B. A.; Crute, C.; Wilson, B.

    1996-01-01

    New CCD photometry of the faint, compact star cluster IC 1257 (L = 17? = +/- 15?obtained with the Palomar 5m telescope, reveals that it is a highly reddened globular cluster well beyond the Galactic center.

  6. Stellar populations in star clusters

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Yuan; de Grijs, Richard; Deng, Li-Cai

    2016-12-01

    Stellar populations contain the most important information about star cluster formation and evolution. Until several decades ago, star clusters were believed to be ideal laboratories for studies of simple stellar populations (SSPs). However, discoveries of multiple stellar populations in Galactic globular clusters have expanded our view on stellar populations in star clusters. They have simultaneously generated a number of controversies, particularly as to whether young star clusters may have the same origin as old globular clusters. In addition, extensive studies have revealed that the SSP scenario does not seem to hold for some intermediate-age and young star clusters either, thus making the origin of multiple stellar populations in star clusters even more complicated. Stellar population anomalies in numerous star clusters are well-documented, implying that the notion of star clusters as true SSPs faces serious challenges. In this review, we focus on stellar populations in massive clusters with different ages. We present the history and progress of research in this active field, as well as some of the most recent improvements, including observational results and scenarios that have been proposed to explain the observations. Although our current ability to determine the origin of multiple stellar populations in star clusters is unsatisfactory, we propose a number of promising projects that may contribute to a significantly improved understanding of this subject.

  7. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; De Marco, Orsola; Davies, James; Lotarevich, I.; Bond, Howard E.; Harrington, J. Patrick; Lanz, Thierry

    2017-02-01

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M ⊙ for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M ⊙) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and Hα emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained [from the Data Archive] at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11558.

  8. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals

  9. SiO and H2O Maser Observations of Red Supergiants in Star Clusters Embedded in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Deguchi, Shuji; Nakashima, Jun-Ichi; Zhang, Yong; Chong, Selina S. N.; Koike, Kazutaka; Kwok, Sun

    2010-04-01

    We present the results of radio observations of red supergiants in a star cluster, Stephenson (1990, AJ, 99, 1867)'s #2, and of candidates for red supergiants in three star clusters, Mercer et al. (2005, ApJ, 635, 560)'s #4, #8, and #13, in the SiO and H2O maser lines. The Stephenson's #2 cluster and nearby aggregation at the southwest contain more than 15 red supergiants. We detected one red supergiant at the center of Stephenson's #2 and three in a southwest aggregation in the SiO maser line; three out of these four were also detected in the H2O maser line. The average radial velocity of the four detected objects is 97 km s-1, giving a kinematic distance of 5.5 kpc, which locates this cluster near the base of the Scutum-Crux spiral arm. We also detected six SiO emitting objects associated with other star clusters. In addition, mapping observations in the CO J = 1-0 line toward these clusters revealed that an appreciable amount of molecular gas still remains around the Stephenson's #2 cluster in contrast to the prototypical red-supergiant cluster, Bica et al. (2003, A&A, 404, 223)'s #122. This indicates that the time scale of gas expulsion differs considerably in individual clusters.

  10. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  11. SIZES OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Van den Bergh, Sidney

    2012-02-20

    A study is made of deviations from the mean power-law relationship between the Galactocentric distances and the half-light radii of Galactic globular clusters. Surprisingly, deviations from the mean R{sub h} versus R{sub gc} relationship do not appear to correlate with cluster luminosity, cluster metallicity, or horizontal-branch morphology. Differences in orbit shape are found to contribute to the scatter in the R{sub h} versus R{sub gc} relationship of Galactic globular clusters.

  12. Blue straggler star populations in globular clusters - II. Proper-motion cleaned HST catalogues of BSSs in 38 Galactic GCs

    NASA Astrophysics Data System (ADS)

    Simunovic, Mirko; Puzia, Thomas H.

    2016-11-01

    We present new blue straggler star (BSS) catalogues in 38 Milky Way globular clusters (GCs) based on multipassband and multi-epoch treasury survey data from the Hubble Space Telescope. We measure precise astrometry and relative proper motions of stars in all target clusters and performed a subsequent cluster membership selection. We study the accuracy of our proper-motion measurements using estimates of central velocity dispersions and find very good agreement with previous studies in the literature. Finally, we present a homogeneous BSS selection method, that expands the classic BSS selection parameter space to more evolved BSS evolutionary stages. We apply this method to the proper-motion cleaned GC star catalogues in order to define proper-motion cleaned BSS catalogues in all 38 GCs, which we make publicly available to enable further study and follow-up observations.

  13. Active galactic nuclei. IV - Supplying black hole clusters by tidal disruption and by tidal capture of stars

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.

    1992-01-01

    The extent to which individual holes in a cluster of black holes with a mass spectrum can liberate and accrete the resulting material by tidally disrupting stars they encounter, or by capturing stars as binary companions is studied. It is found that the smaller black holes in 'the halo' of such clusters can adequately supply themselves to the level M-dot sub h or greater than 0.0001(M-dot sub h) sub crit, and up to 0.05(M-dot sub h)sub crit for the smallest holes, by tidal disruption, as long as the cluster is embedded in a distribution of stars of relatively high density (not less than 0.1M sub cl/cu pc), and as long as the entire cluster of stars is not too compact (not less than 0.5 pc). Consideration is given to modifications this 'internal' mode of supply introduces in the spectrum emitted by such black hole clusters, and to the current status of their viability as models for AGN and QSOs in light of dynamical studies by Quinlan and Shapiro (1987, 1989).

  14. The role of massive stars in the turbulent infancy of Galactic globular clusters: feedback on the intracluster medium, and detailed timeline

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Krause, M.; Decressin, T.; Prantzos, N.; Meynet, G.

    A major paradigm shift has recently revolutionized our picture of globular clusters (GC) that were long thought to be simple systems of coeval stars born out of homogeneous material. Indeed, detailed abundance studies of GC long-lived low-mass stars performed with 8-10m class telescopes, together with high-precision photometry of Galactic GCs obtained with HST, have brought compelling clues on the presence of multiple stellar populations in individual GCs. These stellar subgroups can be recognized thanks to their different chemical properties (more precisely by abundance differences in light elements from carbon to aluminium; see Bragaglia, this volume) and by the appearance of multimodal sequences in the colour-magnitude diagrams (see Piotto, this volume). This has a severe impact on our understanding of the early evolution of GCs, and in particular of the possible role that massive stars played in shaping the intra-cluster medium (ICM) and in inducing secondary star formation. Here we summarize the detailed timeline we have recently proposed for the first 40 Myrs in the lifetime of a typical GC following the general ideas of our so-called "Fast Rotating Massive stars scenario" (FRMS, Decressin et al. 2007b) and taking into account the dynamics of interstellar bubbles produced by stellar winds and supernovae. More details can be found in Krause et al. (2012, 2013).

  15. Chemical evolution of star clusters.

    PubMed

    van Loon, Jacco Th

    2010-02-28

    I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.

  16. Lithium and beryllium depletion by rotation-induced mixing in the Sun and in galactic cluster stars

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Vauclair, S.; Maeder, A.; Meynet, G.; Schaller, G.

    1994-03-01

    Lithium and beryllium depletion by rotation-induced mixing in Population I G and F stars is investigated under the scope of recent strides of the theory of rotational mixing and of the observational constraints on rotational velocities. Following Zahn (1992) who proposed a consistent picture of the interaction between meridional circulation and turbulence induced by rotation in stars, we calculate the effect of the resulting mixing on the lithium and beryllium depletion in low mass stars. We restrict our study to the case where the stars are submitted to a moderate wind which obeys Skumanich's (1972) spindown relation. Stellar models are computed with the new OPAL opacities, and adjustable stellar parameters are calibrated using the Sun. The results of our numerical simulations are precisely compared with lithium and beryllium abundances observed in seven galactic lusters. The red side of the lithium dip is well explained by rotation-induced mixing and a beryllium dip consistent with observations is predicted. The rotation velocity dispersion in the Hyades accounts for the lithium abundance dispersion.

  17. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. IV. Kinematic Profiles and Average Masses of Blue Straggler Stars

    NASA Astrophysics Data System (ADS)

    Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.

    2016-08-01

    We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  18. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  19. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  20. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  1. Peculiarities of α-element abundances in Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval', V. V.; Shpigel', L. V.

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion ( Z max 2 + 4 e 2)1/2 > 0.40 and in field stars of the Galactic thin disk ( Z max is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in

  2. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  3. THREE-DIMENSIONAL STELLAR KINEMATICS AT THE GALACTIC CENTER: MEASURING THE NUCLEAR STAR CLUSTER SPATIAL DENSITY PROFILE, BLACK HOLE MASS, AND DISTANCE

    SciTech Connect

    Do, T.; Martinez, G. D.; Bullock, J.; Kaplinghat, M.; Peter, A. H. G.; Yelda, S.; Ghez, A.; Phifer, K.; Lu, J. R.

    2013-12-10

    We present three-dimensional (3D) kinematic observations of stars within the central 0.5 pc of the Milky Way (MW) nuclear star cluster (NSC) using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true 3D profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain, for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass (M {sub BH}), and distance to the Galactic center (R {sub 0}) simultaneously. We find that the inner stellar density profile of the late-type stars, ρ(r)∝r {sup –γ}, have a power law slope γ=0.05{sub −0.60}{sup +0.29}, much more shallow than the frequently assumed Bahcall-Wolf slope of γ = 7/4. The measured slope will significantly affect dynamical predictions involving the cluster, such as the dynamical friction time scale. The cluster core must be larger than 0.5 pc, which disfavors some scenarios for its origin. Our measurement of M{sub BH}=5.76{sub −1.26}{sup +1.76}×10{sup 6} M {sub ☉} and R{sub 0}=8.92{sub −0.55}{sup +0.58} kpc is consistent with that derived from stellar orbits within 1'' of Sgr A*. When combined with the orbit of S0-2, the uncertainty on R {sub 0} is reduced by 30% (8.46{sub −0.38}{sup +0.42} kpc). We suggest that the MW NSC can be used in the future in combination with stellar orbits to significantly improve constraints on R {sub 0}.

  4. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  5. Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Neumayer, Nadine

    2017-03-01

    The centers of galaxies host two distinct, compact components: massive black holes and nuclear star clusters. Nuclear star clusters are the densest stellar systems in the universe, with masses of ~ 107M⊙ and sizes of ~ 5pc. They are almost ubiquitous at the centres of nearby galaxies with masses similar to, or lower than the Milky Way. Their occurrence both in spirals and dwarf elliptical galaxies appears to be a strong function of total galaxy light or mass. Nucleation fractions are up to 100% for total galaxy magnitudes of M B = -19mag or total galaxy luminosities of about L B = 1010 L ⊙ and falling nucleation fractions for both smaller and higher galaxy masses. Although nuclear star clusters are so common, their formation mechanisms are still under debate. The two main formation scenarios proposed are the infall and subsequent merging of star clusters and the in-situ formation of stars at the center of a galaxy. Here, I review the state-of-the-art of nuclear star cluster observations concerning their structure, stellar populations and kinematics. These observations are used to constrain the proposed formation scenarios for nuclear star clusters. Constraints from observations show, that likely both cluster infall and in-situ star formation are at work. The relative importance of these two mechanisms is still subject of investigation.

  6. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  7. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  8. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2012-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of 40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of 150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses {late B-type}. Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  9. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2014-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of ~40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of ~150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses (late B-type). Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  10. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  11. Search for variables in six Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Paunzen, Ernst; Handler, Gerald; Lendl, Monika; Baumann, Bernhard; Rab, Christian; Meingast, Stefan; Rode-Paunzen, Monika; Netopil, Martin; Antoci, Victoria; Zhu, Liying; Zejda, Miloslav; Božić, Hrvoje

    2017-04-01

    Variables in open cluster (known distance, age, and metallicity) fields play an important role in stellar astrophysics because they allow to investigate the interior of stars. Therefore, six Galactic open clusters were selected to search for new variables and to complement data for already known variables. As five of these clusters are younger than 40 Myr, we aim at finding variable high-mass stars such as β Cephei and Slowly Pulsating B-type stars as well as classical pulsating stars within the instability strip. About 26 000 images (312 h) photometric images were taken at the 0.8 m (Vienna, Austria) and 1.0 m (Hvar, Croatia) telescope using V and I filters. The differential light curves were analyzed with standard time series analysis methods. In total, 11 variables were found in all investigated clusters. For nine of them, we were able to determine their nature and period. In addition, the membership probabilities from the literature were analyzed.

  12. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  13. THE SIZE SCALE OF STAR CLUSTERS

    SciTech Connect

    Madrid, Juan P.; Hurley, Jarrod R.; Sippel, Anna C.

    2012-09-10

    Direct N-body simulations of star clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6. Based on these simulations, a new relationship between scale size and galactocentric distance is derived: the scale size of star clusters is proportional to the hyperbolic tangent of the galactocentric distance. The half-mass radius of star clusters increases systematically with galactocentric distance but levels off when star clusters orbit the galaxy beyond {approx}40 kpc. These simulations show that the half-mass radius of individual star clusters varies significantly as they evolve over a Hubble time, more so for clusters with shorter relaxation times, and remains constant through several relaxation times only in certain situations when expansion driven by the internal dynamics of the star cluster and the influence of the host galaxy tidal field balance each other. Indeed, the radius of a star cluster evolving within the inner 20 kpc of a realistic galactic gravitational potential is severely truncated by tidal interactions and does not remain constant over a Hubble time. Furthermore, the half-mass radius of star clusters measured with present-day observations bears no memory of the original cluster size. Stellar evolution and tidal stripping are the two competing physical mechanisms that determine the present-day size of globular clusters. These simulations also show that extended star clusters can form at large galactocentric distances while remaining fully bound to the host galaxy. There is thus no need to invoke accretion from an external galaxy to explain the presence of extended clusters at large galactocentric distances in a Milky-Way-type galaxy.

  14. Red horizontal-branch stars in the galactic disk

    NASA Astrophysics Data System (ADS)

    Rose, J. A.

    1985-05-01

    A class of red horizontal-branch (RHB) stars, similar to those in the "metal-rich" globular cluster M71, has been identified in the Galactic disk, using a quantitative three-dimensional spectral classification system developed earlier (Rose 1984) that uses 2.5-Å resolution spectra in the blue. A prototype for this class is the G5 III star HD 79452, which has been found by Helfer and Wallerstein (1968) to have [Fe/H] = -0.85 and MV = +1. The RHB stars are shown to be evolved stars on the basis of the strength of their Sr II λ4077 line, and are distinguished from post-main-sequence stars evolving through the same region of the HR diagram because of the unique appearance of their CN λ3883 and λ4216 bands. A preliminary estimate has been made of their space density, scale height perpendicular to the Galactic plane, and kinematics by surveying G5 - G7 stars in the Upgren (1962) North Galactic Pole survey.

  15. Study of Stellar Clusters Containing Massive Stars

    NASA Astrophysics Data System (ADS)

    Costado, Teresa; Alfaro, E. J.; Delgado, A. J.; Djupvik, A. A.; Maíz Apellániz, J.

    2013-06-01

    Most stars form in clusters, but the percentage of stars born in dense stellar systems is currently matter of controversy and depends very much on the own definition of cluster. The cluster definition and hence the morphologies of individual clusters appear to vary significantly from region to region, as well as with age, which suggests that either, star formation in clusters is not universal and may depend on the local environment, or that all clusters form with the same morphology but early dynamical evolution quickly modifies the structure of the phase space distribution. In addition, young populated clusters containing massive stars are excellent labs for the study of the formation of the massive stellar component of the Galactic disk. Three main scenarios have been proposed for the formation of high-mass stars (M > 7-8 M_{⊙}): a) monolithic collapse of proto-stellar nuclei; b) competitive accretion inside the proto-cluster molecular cloud; and c) coalescence of proto-stellar nuclei and low-mass stars in very dense atmospheres. Both scientific questions: a) cluster formation and b) formation of high mass stars in clusters are intimately connected via the structural description of the phase space distribution of cluster stars and their Mass Function (MF). Models of static clusters with different initial spatial and kinematic distributions show how the spatial distribution dynamically evolves with time, allowing a characterization of their dynamical state from snapshots of their spatial distribution. Four are the main variables (and their distribution with mass and position) needed for a reliable characterization of the cluster dynamical state: a) Mass segregation parameter; b) Mapping of surface density for different ranges of masses; c) Q morphological parameter based on the minimum spanning tree graph and its variation with mass and cluster age, and d) MF of the cluster members. Two years ago, the Stellar System Group of IAA has begun an observational

  16. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  17. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

  18. CLUSTERED CEPHEID VARIABLES 90 KILOPARSECS FROM THE GALACTIC CENTER

    SciTech Connect

    Chakrabarti, Sukanya; Saito, Roberto; Gran, Felipe; Klein, Christopher; Blitz, Leo

    2015-03-20

    Distant regions close to the plane of our Galaxy are largely unexplored by optical surveys as they are hidden by dust. We have used near-infrared data (which minimizes dust obscuration) from the ESO Public survey VISTA Variables of the Via Lactea to search for distant stars at low latitudes. We have discovered four Cepheid variables within an angular extent of 1° centered at a Galactic longitude of l = −27.°4 and a Galactic latitude of b = −1.°08. We use the tightly constrained period–luminosity relationship that these pulsating stars obey to derive distances. We infer an average distance to these Cepheid variables of 90 kpc. The Cepheid variables are highly clustered in angle (within 1°) and in distance (the standard deviation of the distances is 12 kpc). These young (∼100 Myr old), pulsating stars are unexpected at such large distances from the Galactic disk, which terminates at ∼15 kpc. The highly clustered nature in distance and angle of the Cepheid variables suggests that the stars may be associated with a dwarf galaxy; its location and mass were earlier predicted by a dynamical analysis. The Cepheids are at an average distance of ∼2 kpc from the plane and their maximum projected separation is ∼1 kpc.

  19. Applying Machine Learning to Star Cluster Classification

    NASA Astrophysics Data System (ADS)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  20. Searching for and Characterization of Galactic Open Clusters toward the Galactic Anti-Center with Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Cheng; Chen, Wen-Ping; Hou, Jinliang; Chen, Li; Shao, Zhengyi

    2015-08-01

    Hundreds of thousands star clusters were suggested to exist in the Galactic disk, but so far only a few thousands had been catalogued, all in the solar neighborhood (less than 2 kpc). We therefore aim to use Pan-STARRS1 3π data with its wide-field sky and sensitive camera to search for and to characterize star clusters. We used a star-counting algorithm to identify stellar density enhancements toward the Galactic anti-center. The detection rate of known star clusters in this region with radii less than 10' from the algorithm used was approximately 83%. In the field of 400 square degrees, we identified 491 stellar cluster candidates, 50 of which were matched with known star cluster catalog. The remaining 441 candidates were characterized with radius, reddening, distance, age, and lowest mass members, along with PPMXL proper motions and 2MASS and Pan-STARRS1 multi-band photometry. The revised star cluster sample was estimated to be complete up to a heliocentric distance of 5 kpc toward the Galactic anti-center. Moreover, this sample allowed us to estimate the separation between Sagittarius and Perseus arms was about 3.2 kpc with 0.2 kpc uncertainty and the widths of the nearby spiral arms---Sagittarius, Orion, and Perseus---with the full-width-half-maximum to be 1.4±0.1, 1.6±0.1, and 3.3±0.2 kpc, respectively.

  1. Metallicity in the Galactic Center: The Arches Cluster

    NASA Astrophysics Data System (ADS)

    Najarro, Francisco; Figer, Donald F.; Hillier, D. John; Kudritzki, Rolf P.

    2004-04-01

    We present a quantitative spectral analysis of five very massive stars in the Arches cluster, located near the Galactic center, to determine stellar parameters, stellar wind properties, and, most importantly, metallicity content. The analysis uses a new technique, presented here for the first time, and uses line-blanketed non-LTE wind/atmosphere models fitted to high-resolution near-infrared spectra of late-type nitrogen-rich Wolf-Rayet stars and OfI+ stars in the cluster. It relies on the fact that massive stars reach a maximum nitrogen abundance that is related to initial metallicity when they are in the WNL phase. We determine the present-day nitrogen abundance of the WNL stars in the Arches cluster to be 1.6% (mass fraction) and constrain the stellar metallicity in the cluster to be solar. This result is invariant to assumptions about the mass-luminosity relationship, the mass-loss rates, and rotation speeds. In addition, from this analysis, we find the age of the Arches cluster to be 2-2.5 Myr, assuming coeval formation.

  2. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Torres, Guillermo

    2005-08-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. To date, this paper has resulted in 86 citations in the refereed literature. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=98) as well as make a first high-resolution inspection of the additional O stars (N=62) in the recent Galactic O Star Catalog of Maiz-Apellaniz & Walborn (2004). In addition, we propose to investigate several additional samples of interesting objects, including 10 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars, we have only twelve mass determinations), 92 members of the Hyades and Pleiades clusters to complement RV studies of these clusters, and 197 Hyades & Pleiades stars, reobserved from the 1991 lists (Mason et al. 1993a,b).

  3. The Assembly History of the Milky Way Nuclear Star Cluster

    NASA Astrophysics Data System (ADS)

    Feldmeier-Krause, A.; Neumayer, N.; Schödel, R.; Seth, A.; de Zeeuw, P. T.; Walcher, C. J.; Lützgendorf, N.; Kissler-Patig, M.; Hilker, M.; Kuntschner, H.

    2017-03-01

    Within the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster. This cluster forms a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ~ 75% of nearby galaxies. It is, however, not fully understood how nuclear star clusters form. The Milky Way nuclear star cluster is the closest of its kind. At a distance of only 8 kpc we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster the perfect local reference object for understanding the structure and assembly history of nuclear star clusters in general. There are of the order of 107 stars within the central 10 pc of the Galactic center. Most of these stars are several Gyr old late-type stars. However, there are also more than 100 hot early-type stars in the central parsec of the Milky Way, with ages of only a few Myr. Beyond a projected distance of 0.5 pc of the Galactic center, the density of young stars was largely unknown, since only very few spectroscopic observations existed so far. We covered the central >4 pc2 (0.75 sq.arcmin) of the Galactic center using the integral-field spectrograph KMOS (VLT). We extracted more than 1,000 spectra from individual stars and identified >20 new early-type stars based on their spectra. We studied the spatial distribution of the different populations and their kinematics to put constraints on the assembly history of the Milky Way nuclear star cluster.

  4. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  5. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  6. Old open clusters in the outer Galactic disk

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Geisler, D.; Villanova, S.; Frinchaboy, P. M.; Majewski, S. R.

    2007-12-01

    Context: The outer parts of the Milky Way disk are believed to be one of the main arenas where the accretion of external material in the form of dwarf galaxies and subsequent formation of streams is taking place. The Monoceros stream and the Canis Major and Argo over-densities are notorious examples. Understanding whether what we detect is the signature of accretion or, more conservatively, simply the intrinsic nature of the disk, represents one of the major goals of modern Galactic astronomy. Aims: We try to shed more light on the properties of the outer disk by exploring the properties of distant anti-center old open clusters. We want to verify whether distant clusters follow the chemical and dynamical behavior of the solar vicinity disk, or whether their properties can be better explained in terms of an extra-galactic population. Methods: VLT high resolution spectra have been acquired for five distant open clusters: Ruprecht 4, Ruprecht 7, Berkeley 25, Berkeley 73 and Berkeley 75. We derive accurate radial velocities to distinguish field interlopers and cluster members. For the latter we perform a detailed abundance analysis and derive the iron abundance [Fe/H] and the abundance ratios of several α elements. Results: Our analysis confirms previous indications that the radial abundance gradient in the outer Galactic disk does not follow the expectations extrapolated from the solar vicinity, but exhibits a shallower slope. By combining the metallicity of the five program clusters with eight more clusters for which high resolution spectroscopy is available, we find that the mean metallicity in the outer disk between 12 and 21 kpc from the Galactic center is [Fe/H] ≈ -0.35, with only marginal indications for a radial variation. In addition, all the program clusters exhibit solar scaled or slightly enhanced α elements, similar to open clusters in the solar vicinity and thin disk stars. Conclusions: We investigate whether this outer disk cluster sample might

  7. Runaway Stars in the Galactic Halo: Their Origin and Kinematics

    NASA Astrophysics Data System (ADS)

    Duarte de Vasconcelos Silva, Manuel

    2012-03-01

    Star formation in the Milky Way is confined to star-forming regions (OB associ- ation, HII regions, and open clusters) in the Galactic plane. It is usually assumed that these regions are found preferably along spiral arms, as is observed in other spiral galaxies. However, young early-type stars are often found at high Galactic latitudes, far away from their birthplaces in the Galactic disc. These stars are called runaway stars, and it is believed that they were ejected from their birth- places early in their lifetimes by one of two mechanisms: ejection from a binary system following the destruction of the massive companion in a supernova type II event (the binary ejection mechanism), or ejection from a dense cluster following a close gravitational encounter between two close binaries (the dynamical ejection mechanism). The aims of our study were: to improve the current understanding of the nature of high Galactic latitude runaway stars, in particular by investigating whether the theoretical ejection mechanisms could explain the more extreme cases; to show the feasibility of using high Galactic latitude stars as tracers of the spiral arms. The main technique used in this investigation was the tracing of stellar orbits back in time, given their present positions and velocities in 3D space. This technique allowed the determination of the ejection velocities, flight times and birthplaces of a sample of runaway stars. In order to obtain reasonable velocity estimates several recent catalogues of proper motion data were used. We found that the evolutionary ages of the vast majority of runaway stars is consistent with the disc ejection scenario. However, we identified three outliers which would need flight times much larger then their estimated ages in order to reach their present positions in the sky. Moreover, the ejection velocity distribution appears to be bimodal, showing evidence for two populations of runaway stars: a "low" velocity population (89 per cent of the

  8. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  9. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  10. YSO Clusters on Galactic Infrared Loops

    NASA Astrophysics Data System (ADS)

    Marton, Gábor; Kiss, Zoltán Tamás; Tóth, L. Viktor; Zahorecz, Sarolta; Pásztor, László; Ueno, Munateka; Kitamura, Yoshimi; Tamura, Motohide; Kawamura, Akiko; Onishi, Toshikazu

    The AKARI all sky survey (Murakami et al. Publ. Astron. Soc. Jpn. 59:369, 2007) was investigated for YSO candidates. Distribution of candidate sources have been analysed and compared to that of galactic CO and medium scale structures. Clustering and other inhomogenities have been found.

  11. Star Formation and Dynamics in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela; Gualandris, Alessia

    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ˜ 0.04 pc, while the S-stars, i.e. the ˜ 30 stars closest to the SMBH ( lesssim 0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.

  12. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  13. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    SciTech Connect

    Meidt, Sharon E.

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  14. Sketching Star Clusters

    NASA Astrophysics Data System (ADS)

    Perez, Jeremy

    The next time you plan a quiet evening under a salted sky, with hopes of bathing your eyes in the ancient light of a majestic star cluster, be sure that your sketching kit comes with you! A casual glance at these celestial marvels will not give you a decent appreciation for an object whose history and character are as unique as the fingerprints you should be pressing into the side of your trusty pencil. I can think of no better way to connect with these stellar ballets, to understand their intricacies, and to recall your view later than to spend time sketching the soft glow or blazing pinpricks you see through the eyepiece.

  15. Co-evolution of galactic nuclei and globular cluster systems

    SciTech Connect

    Gnedin, Oleg Y.; Ostriker, Jeremiah P.; Tremaine, Scott

    2014-04-10

    We revisit the hypothesis that dense galactic nuclei are formed from inspiraling globular clusters. Recent advances in the understanding of the continuous formation of globular clusters over cosmic time and the concurrent evolution of the galaxy stellar distribution allow us to construct a simple model that matches the observed spatial and mass distributions of clusters in the Galaxy and the giant elliptical galaxy M87. In order to compare with observations, we model the effects of dynamical friction and dynamical evolution, including stellar mass loss, tidal stripping of stars, and tidal disruption of clusters by the growing galactic nucleus. We find that inspiraling globular clusters form a dense central structure, with mass and radius comparable to the typical values in observed nuclear star clusters (NSCs) in late-type and low-mass early-type galaxies. The density contrast associated with the NSC is less pronounced in giant elliptical galaxies. Our results indicate that the NSC mass as a fraction of mass of the galaxy stellar spheroid scales as M{sub NSC}/M{sub ∗}≈0.0025 M{sub ∗,11}{sup −0.5}. Thus disrupted globular clusters could contribute most of the mass of NSCs in galaxies with stellar mass below 10{sup 11} M {sub ☉}. The inner part of the accumulated cluster may seed the growth of a central black hole via stellar dynamical core collapse, thereby relieving the problem of how to form luminous quasars at high redshift. The seed black hole may reach ∼10{sup 5} M {sub ☉} within ≲ 1 Gyr of the beginning of globular cluster formation.

  16. Integrated spectral properties of 7 galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Piatti, A. E.

    2000-01-01

    This paper presents flux-calibrated integrated spectra in the range 3600-9000 Ä for 7 concentrated, relatively populous Galactic open clusters. We perform simultaneous estimates of age and foreground interstellar reddening by comparing the continuum distribution and line strengths of the cluster spectra with those of template cluster spectra with known parameters. For five clusters these two parameters have been determined for the first time (Ruprecht 144, BH 132, Pismis 21, Lyng\\aa 11 and BH 217), while the results here derived for the remaining two clusters (Hogg 15 and Melotte 105) show very good agreement with previous studies based mainly on colour-magnitude diagrams. We also provide metallicity estimates for six clusters from the equivalent widths of CaII triplet and TiO features. The present cluster sample improves the age resolution around solar metal content in the cluster spectral library for population synthesis. We compare the properties of the present sample with those of clusters in similar directions. Hogg 15 and Pismis 21 are among the most reddened clusters in sectors centered at l = 270o and l = 0o, respectively. Besides, the present results would favour an important dissolution rate of star clusters in these zones. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  17. The Dynamics Of Galactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Ding, Chen

    2008-10-01

    We have used the Hubble Space Telescope (HST) to measure proper motion of the globular cluster NGC 6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. With the space velocity of (Π, Θ, W) = (184±3, 209±14, 132±15) km s-1, we also calculate the orbit of the cluster. The central velocity dispersion in both components of the proper motion of cluster stars is 16.99 km s-1. We derive the mass-to-ration (M/L)˜1.7 which is relatively higher than the past works.

  18. KMOS view of the Galactic Centre - II. Metallicity distribution of late-type stars

    NASA Astrophysics Data System (ADS)

    Feldmeier-Krause, A.; Kerzendorf, W.; Neumayer, N.; Schödel, R.; Nogueras-Lara, F.; Do, T.; de Zeeuw, P. T.; Kuntschner, H.

    2017-01-01

    Knowing the metallicity distribution of stars in the Galactic Centre has important implications for the formation history of the Milky Way nuclear star cluster. However, this distribution is not well known, and is currently based on a small sample of fewer than 100 stars. We obtained near-infrared K-band spectra of more than 700 late-type stars in the central 4 pc2 of the Milky Way nuclear star cluster with the integral-field spectrograph KMOS (VLT). We analyse the medium-resolution spectra using a full-spectral fitting method employing the Göttingen spectral library of synthetic PHOENIX spectra. The derived stellar metallicities range from metal-rich [M/H] > +0.3 dex to metal-poor [M/H] <-1.0 dex, with a fraction of 5.2^{+6.0}_{-3.1} per cent metal-poor ([M/H] ≤ -0.5 dex) stars. The metal-poor stars are distributed over the entire observed field. The origin of metal-poor stars remains unclear. They could originate from infalling globular clusters. For the metal-rich stellar population ([M/H] > 0 dex), a globular cluster origin can be ruled out. As there is only a very low fraction of metal-poor stars in the central 4 pc2 of the Galactic Centre, we believe that our data can discard a scenario in which the Milky Way nuclear star cluster is purely formed from infalling globular clusters.

  19. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  20. Star Formation at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  1. Galactic flows and the formation of stellar clusters

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2017-03-01

    We investigate the formation of stellar clusters from a Galactic scale SPH simulation. The simulation traces star formation over a 5.6 Myr timescale, with local gravitational instabilities resulting in ~ 105 solar masses of star formation in the form of sink particles. We investigate the time evolution of the physical properties of the forming clusters including their half-mass radii, their energies and the depletion time of the gas. Star formation is driven by the large scale flows which compress the gas to higher densities where self gravity takes over and collapse occurs. We show that the more massive clusters (up to ~ 2 × 104 solar masses) gather their material from of order 10 pc due to these large scale motions associated with the spiral arm passage and shock. The bulk of the gas becomes gravitationally bound near 1-2 Myr before sink formation, and in the absence of feedback, significant accretion ongoing on longer timescales. We trace the hierarchical merging process of cluster formation which naturally results in age spreads of order the crossing time of the original region which provides the gas reservoir for the cluster.

  2. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  3. Spectral Types of Field and Cluster O-Type Stars

    NASA Astrophysics Data System (ADS)

    van den Bergh, Sidney

    2004-10-01

    The recent catalog of spectral types of Galactic O-type stars by Maíz-Apellániz et al. is used to study the differences between the frequencies of various subtypes of O-type stars in the field, in OB associations, and among runaway stars. At a high level of statistical significance, the data show that O stars in clusters and associations have earlier types (and, hence, presumably larger masses or younger ages) than those that are situated in the general field. Furthermore, it is found that the distribution of spectral subtypes among runaway O stars is indistinguishable from that among field stars and differs significantly from that of the O-type stars that are situated in clusters and associations. The difference is in the sense that runaway O stars, on average, have later subtypes than do those that are still located in clusters and associations.

  4. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  5. Gravothermal Star Clusters - Theory and Computer Modelling

    NASA Astrophysics Data System (ADS)

    Spurzem, Rainer

    2010-11-01

    In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.

  6. Red giants in the vicinity of open clusters. Field stars

    NASA Astrophysics Data System (ADS)

    Pakhomov, Yu. V.; Antipova, L. I.; Boyarchuk, A. A.; Zhao, G.; Liang, Ya.

    2009-08-01

    We present a comparative analysis of the atmospheric abundances of red giants in the vicinity of open clusters. The atmospheric parameters, atmospheric abundances, masses, ages, Galactic velocities, and elements of the Galactic orbits are derived for all the studied stars. We have discovered high metal abundances (close to 0.3dex) for five stars, which we classify as super-metal-rich stars. Several stars have lower [Na/Fe] than normal red giants with similar atmospheric parameters. The kinematic characteristics of these stars are somewhat different from those for objects in the Galactic thin disk. We suggest that the observed effect can be explained by inhomogeneity of the chemical composition of gas-dust clouds, which could be due to different rates of SNe II supernovae in different regions of the Galaxy.

  7. YOUNG RADIO PULSARS IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Boyles, J.; Lorimer, D. R.; Turk, P. J.; Mnatsakanov, R.; Lynch, R. S.; Ransom, S. M.; Freire, P. C.; Belczynski, K.

    2011-11-20

    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters (GCs). As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in GCs and find the number of potentially observable non-recycled radio pulsars present in all clusters to be <3600. Accounting for beaming and retention considerations, the implied birthrate for any formation scenario for all 97 clusters is <0.25 pulsars century{sup -1} assuming a Maxwellian distribution of velocities with a dispersion of 10 km s{sup -1}. The implied birthrates for higher velocity dispersions are substantially higher than inferred for such pulsars in the Galactic disk. This suggests that the velocity dispersion of young pulsars in GCs is significantly lower than those of disk pulsars. These numbers may be substantial overestimates due to the fact that the currently known sample of young pulsars is observed only in metal-rich clusters. We propose that young pulsars may only be formed in GCs with metallicities with log[Fe/H] > - 0.6. In this case, the potentially observable population of such young pulsars is 447{sup +1420}{sub -399} (the error bars give a 95% confidence interval) and their birthrate is 0.012{sup +0.037}{sub -0.010} pulsars century{sup -1}. The most likely creation scenario to explain these pulsars is the electron capture supernova of an OMgNe white dwarf.

  8. White dwarf stars and the age of the Galactic disk

    NASA Technical Reports Server (NTRS)

    Wood, M. A.

    1990-01-01

    The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.

  9. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%-8% for young, 10-100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  10. Exploring the total Galactic extinction with SDSS BHB stars

    NASA Astrophysics Data System (ADS)

    Tian, Hai-Jun; Liu, Chao; Hu, Jing-Yao; Xu, Yang; Chen, Xue-Lei

    2014-01-01

    Aims: We used 12 530 photometrically-selected blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey (SDSS) to estimate the total extinction of the Milky Way at the high Galactic latitudes, RV and AV in each line of sight. Methods: A Bayesian method was developed to estimate the reddening values in the given lines of sight. Based on the most likely values of reddening in multiple colors, we were able to derive the values of RV and AV. Results: We selected 94 zero-reddened BHB stars from seven globular clusters as the template. The reddening in the four SDSS colors for the northern Galactic cap were estimated by comparing the field BHB stars with the template stars. The accuracy of this estimation is around 0.01 mag for most lines of sight. We also obtained ⟨ RV ⟩ to be around 2.40 ± 1.05 and AV map within an uncertainty of 0.1 mag. The results, including reddening values in the four SDSS colors, AV, and RV in each line of sight, are released on line. In this work, we employ an up-to-date parallel technique on GPU card to overcome time-consuming computations. We plan to release online the C++ CUDA code used for this analysis. Conclusions: The extinction map derived from BHB stars is highly consistent with that from Schlegel et al. (1998, ApJ, 500, 525). The derived RV is around 2.40 ± 1.05. The contamination probably makes the RV be larger. Tables 1-4 (excerpt) are available in electronic form at http://www.aanda.orgFull Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A142

  11. ORIGIN OF THE GALACTIC CENTER S-STARS

    SciTech Connect

    Griv, Evgeny

    2009-09-01

    The supermassive black hole at the Galactic center is surrounded by a parsec-scale star disk, with about a hundred massive young stars that move in approximately circular Keplerian orbits. Another group of roughly 20 young stars ('S-stars') follow eccentric, randomly oriented orbits well inside the disk stars. A model is proposed to explain the S-stars. Accordingly, the stars formed originally in the parsec-scale disk through gravitational fragmentation of gas. The newly formed S-stars then migrated inward via the gravitational torques exerted by a Lin-Shu-type spiral density wave on the stars at an inner Lindblad resonance.

  12. Spectroscopic Monitoring of Southern Galactic O and WN Stars

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Barbá, R. H.; Morrell, N. I.; Arias, J.; Maíz Apellániz, J.

    2008-08-01

    We are conducting a spectroscopic monitoring of O- and WN-type stars for which there is no indication of multiplicity in the Galactic O-Stars Catalog (Maíz-Apellániz et al. 2004) or in the VIIth Catalog of Galactic Wolf-Rayet Stars (van der Hucht 2001). We search for radial-velocity (RV) variations indicative of orbital motion.

  13. Galactic globular cluster 47 Tucanae: new ties between the chemical and dynamical evolution of globular clusters?

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Bonifacio, P.

    2014-08-01

    Context. It is generally accepted today that Galactic globular clusters (GGCs) consist of at least two generations of stars that are different in their chemical composition and perhaps age. However, knowledge about the kinematical properties of these stellar generations, which may provide important information for constraining evolutionary scenarios of the GGCs, is still limited. Aims: We study the connections between chemical and kinematical properties of different stellar generations in the Galactic globular cluster 47 Tuc. Methods: To achieve this goal, we used abundances of Li, O, and Na determined in 101 main sequence turn-off (TO) stars with the aid of 3D hydrodynamical model atmospheres and NLTE abundance analysis methodology. We divided our sample TO stars into three groups according to their position in the [Li/Na] - [Na/O] plane to study their spatial distribution and kinematical properties. Results: We find that there are statistically significant radial dependencies of lithium and oxygen abundances, A(Li) and A(O), as well as that of [Li/Na] abundance ratio. Our results show that first-generation stars are less centrally concentrated and dynamically hotter than stars belonging to subsequent generations. We also find a significant correlation between the velocity dispersion and O and Na abundance, and between the velocity dispersion and the [Na/O] abundance ratio.

  14. UV Spectroscopic Indices of Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Morales-Hernández, J.; Chávez, M.; Bertone, E.; Buzzoni, A.; Bressan, A.

    2009-03-01

    We present the calculation of a set of 12 mid-ultraviolet (1900-3200 Å) spectroscopic indices for a sample of 15 galactic globular clusters (GGC) observed with the International Ultraviolet Explorer (IUE). We explore the dependence of the indices on age and metal abundance. We found that five indices (BL 2538, Fe II 2609, Mg II 2800, Mg I 2852 and Mg Wide) display a remarkably good correlation with [Fe/H]. With respect to age, only one index (BL 2740) shows a good correlation. Results from theoretical simple stellar populations well reproduce the global trends of indices vs. [Fe/H].

  15. The impact of galaxy geometry and mass evolution on the survival of star clusters

    SciTech Connect

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

  16. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  17. Initial Dynamical Evolution of Star Clusters with Tidal Field

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2017-03-01

    Observations have been suggested that star clusters could form from the rapid collapse and violent relaxation of substructured distributions. We investigate the collapse of fractal stellar distributions in no, weak, and very strong tidal fields. We find that the rapid collapse of substructure into spherical clusters happens quickly with no or a weak tidal field, but very strong tidal fields prevent a cluster forming. However, we also find that dense Plummer spheres are also rapidly destroyed in strong tidal fields. We suggest that this is why the low-mass star clusters cannot survive near the galactic centre which has strong tidal field.

  18. Galactic evolution of sulphur as traced by globular clusters

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.

    2015-05-01

    Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required. Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 < [Fe/H] < -1.2): M 4 (NGC 6121), M 22 (NGC 6656), and M 30 (NGC 7099). The halo field stars show a large scatter in the [S/Fe] ratio in this metallicity span, which is inconsistent with canonical chemical evolution models. To date, very few measurements of [S/Fe] exist for stars in GCs, which are good tracers of the chemical enrichment of their environment. However, some light and α elements show star-to-star variations within individual GCs, and it is as yet unclear whether the α element sulphur also varies between GC stars. Methods: We used the infrared spectrograph CRIRES to obtain high-resolution (R ~ 50 000), high signal-to-noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M

  19. Evolution of Star Clusters in Time-variable Tidal Fields

    NASA Astrophysics Data System (ADS)

    Mamikonyan, Ernest N.; McMillan, Stephen L. W.; Vesperini, Enrico; Mac Low, Mordecai-Mark

    2017-03-01

    Strong tidal forces can dominate star cluster evolution in merging galaxies, determining their mass-loss rates and lifetimes. In order to model this evolution, we have developed a second-order accurate numerical method for integrating a star cluster in an arbitrary time-variable tidal field. We extend the Kira N-body integrator to handle these external fields. We obtain realistic tidal histories from a galaxy merger simulation including sink particles, which we interpret as young star clusters. Coupling these tidal accelerations to N-body models of isolated clusters, we perform detailed dynamical studies. This generalizes the formalism previously used to explore the dynamical effects of the galactic tidal field on clusters in circular orbits. We find that, in contrast to previous studies that considered only stellar and dark matter dynamics, tidal interactions between clusters and dense gas in the galactic disk can significantly influence cluster mass loss and lifetimes. Using our models, we develop an effective semianalytic model that can be used for fast estimation of cluster mass loss in a galactic tidal field and to study the evolution of the globular cluster mass function in isolated and merging galaxies.

  20. Did globular clusters contribute to the stellar population of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Krause, Martin

    2016-08-01

    The origin of Galactic halo stars and the contribution of globular clusters (GC) to this stellar population have long been (and still are) debated. The discovery of multiple stellar populations with peculiar chemical properties in GCs both in the Milky Way and in Local Group galaxies recently brought a renewal on these questions. Indeed most of the scenarios that compete to reproduce the present-day GC characteristics call for fast expulsion of both gas and low-mass stars from these clusters in their early infancy. In this framework, the initial masses of GCs could have been 8 to 25 times higher than their present-day stellar mass, and they could have contributed to 5 to 20 % of the low-mass stars in the Galactic halo. Here we revisit these conclusions, which are in tension with observations of dwarf galaxies and of young massive star clusters in the Local Group. We come back in particular on the paradigm of gas expulsion from massive star clusters, and propose an alternative interpretation of the GC abundance properties. We conclude by proposing a major revision of the current concepts regarding the role massive star clusters play in the assembly of galactic haloes.

  1. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  2. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    Open clusters (OCs) are routinely used as reliable tracers of the properties and evolution of the galactic disk, as they can be found at all galactocentric distances and span a wide range of ages. More than 3000 OCs are listed in catalogues, although few have been studied in details. The goal of this work is to study the properties of open clusters. This work was conducted in the framework of the Gaia-ESO Survey (GES). GES is an observational campaign targeting more than 100,000 stars in all major components of the Milky Way, including stars in a hundred open clusters. It uses the FLAMES instrument at the VLT to produce high and medium-resolution spectra, which provide accurate radial velocities and individual elemental abundances. In this framework, the goals of the Thesis are: * to study the properties of OCs and of their stars from photometry and spectroscopy to derive their age, the extinction and the chemical composition of the stars, to begin to build a homogeneous data base. Looking at literature data it is clear that different authors derive substantially different chemical compositions, and in general OC parameters. * the study of OCs and their chemical homogeneity (or inhomogeneity) can cast light on what is still an open issue: the presence of multiple populations in clusters. While multiple generations of stars are now ubiquitously found in globular clusters in the Milky Way and in the Magellanic Clouds, they have not been yet detected in open clusters. What is the main driver of the self-pollution process? * to study the cluster formation process. All, or at least a significant fraction of stars form in clusters. Young clusters (a few Myr) can retain some of the properties of the molecular cloud they originate from and give us insight about the cluster assembly process. The first GES data release contains data for the young OC Gamma Velorum, in which two (dynamically different) subpopulations have been identified. This cluster can serve as a test case

  3. New Star Clusters Discovered in the GLIMPSE Survey

    NASA Astrophysics Data System (ADS)

    Mercer, E. P.; Clemens, D. P.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Whitney, B. A.; Watson, C.; Wolfire, M. G.; Wolff, M. J.; Bania, T. M.; Benjamin, R. A.; Cohen, M.; Dickey, J. M.; Jackson, J. M.; Kobulnicky, H. A.; Mathis, J. S.; Stauffer, J. R.; Stolovy, S. R.; Uzpen, B.; Churchwell, E. B.

    2005-12-01

    A systematic and automated search of the extensive GLIMPSE mid-infrared survey data of the inner Galaxy was carried out to uncover new star clusters. This search has yielded 59 new clusters. Using our automated search algorithm, these clusters were identified as significant localized overdensities in the GLIMPSE point-source catalog (GLMC) and archive (GLMA). Subsequent visual inspection of the GLIMPSE image mosaics confirmed the existence of these clusters plus an additional 33 heavily embedded clusters missed by our detection algorithm, for a total of 92 newly discovered clusters. These previously uncataloged clusters range in type from heavily embedded to fully exposed clusters. More than half of the clusters have memberships exceeding 35 stars, and nearly all the clusters have diameters of 3' or less. The Galactic latitude distribution of the clusters reveals that the majority are concentrated toward the Galactic midplane. There is an asymmetry in the number of clusters located above and below the midplane, with more clusters detected below the midplane. We also observe an asymmetry in the number of clusters detected in the northern and southern halves of the Galaxy, with more than twice as many clusters detected in the south.

  4. The complex stellar populations in the background of open clusters in the third Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Seleznev, Anton F.; Baume, Gustavo; Turner, David. G.

    2016-02-01

    Multicolour photometry of the stellar populations in five fields in the third Galactic quadrant centred on the clusters NGC 2215, NGC 2354, Haffner 22, Ruprecht 11, and ESO489 SC01 is interpreted in terms of a warped and flared Galactic disc, without resort to an external entity such as the popular Monoceros or Canis Major overdensities. Except for NGC 2215, the clusters are poorly or unstudied previously. The data generate basic parameters for each cluster, including the distribution of stars along the line of sight. We use star counts and photometric analysis, without recourse to Galactic-model-based predictions or interpretations, and confirms earlier results for NGC 2215 and NGC 2354. ESO489 SC01 is not a real cluster, while Haffner 22 is an overlooked cluster aged ˜2.5 Gyr. Conclusions for Ruprecht 11 are preliminary, evidence for a cluster being marginal. Fields surrounding the clusters show signatures of young and intermediate-age stellar populations. The young population background to NGC 2354 and Ruprecht 11 lies ˜8-9 kpc from the Sun and ˜1 kpc below the formal Galactic plane, tracing a portion of the Norma-Cygnus arm, challenging Galactic models that adopt a sharp cut-off of the disc 12-14 kpc from the Galactic Centre. The old population is metal-poor with an age of ˜2-3 Gyr, resembling star clusters like Tombaugh 2 or NGC 2158. It has a large colour spread and is difficult to locate precisely. Young and old populations follow a pattern that depends critically on the vertical location of the thin and/or thick disc, and whether or not a particular line of sight intersects one, both, or none.

  5. A New Insight to the Galactic O Vz Stars

    NASA Astrophysics Data System (ADS)

    Arias, J. I.; Simón-Díaz, S.; Barbá, R.; Maíz Apellániz, J.; Walborn, N. R.; Sota, A.; Morrell, N.; Gamen, R.; Alfaro, E.; Sabín-Sanjulián, C.; Herrero, A.

    2014-10-01

    Based on a large sample of spectra from the Galactic O-Star Spectroscopic Survey (GOSSS, Maíz Apellániz et al. 2011) a systematic study of the Galactic O dwarfs belonging to the luminosity subclass Vz is being performed. Preliminary results suggest a redefinition of the quantitative criterion to assign the ``z'' qualifier to the spectra.

  6. OPEN CLUSTERS AS PROBES OF THE GALACTIC MAGNETIC FIELD. I. CLUSTER PROPERTIES

    SciTech Connect

    Hoq, Sadia; Clemens, D. P. E-mail: clemens@bu.edu

    2015-10-15

    Stars in open clusters are powerful probes of the intervening Galactic magnetic field via background starlight polarimetry because they provide constraints on the magnetic field distances. We use 2MASS photometric data for a sample of 31 clusters in the outer Galaxy for which near-IR polarimetric data were obtained to determine the cluster distances, ages, and reddenings via fitting theoretical isochrones to cluster color–magnitude diagrams. The fitting approach uses an objective χ{sup 2} minimization technique to derive the cluster properties and their uncertainties. We found the ages, distances, and reddenings for 24 of the clusters, and the distances and reddenings for 6 additional clusters that were either sparse or faint in the near-IR. The derived ranges of log(age), distance, and E(B−V) were 7.25–9.63, ∼670–6160 pc, and 0.02–1.46 mag, respectively. The distance uncertainties ranged from ∼8% to 20%. The derived parameters were compared to previous studies, and most cluster parameters agree within our uncertainties. To test the accuracy of the fitting technique, synthetic clusters with 50, 100, or 200 cluster members and a wide range of ages were fit. These tests recovered the input parameters within their uncertainties for more than 90% of the individual synthetic cluster parameters. These results indicate that the fitting technique likely provides reliable estimates of cluster properties. The distances derived will be used in an upcoming study of the Galactic magnetic field in the outer Galaxy.

  7. N-body simulations of star clusters

    NASA Astrophysics Data System (ADS)

    Engle, Kimberly Anne

    1999-10-01

    We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.

  8. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  9. The Milky Way's nuclear star cluster and massive black hole

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2016-02-01

    Because of its nearness to Earth, the centre of the Milky Way is the only galaxy nucleus in which we can study the characteristics, distribution, kinematics, and dynamics of the stars on milli-parsec scales. We have accurate and precise measurements of the Galactic centre's central black hole, Sagittarius A*, and can study its interaction with the surrounding nuclear star cluster in detail. This contribution aims at providing a concise overview of our current knowledge about the Milky Way's central black hole and nuclear star cluster, at highlighting the observational challenges and limitations, and at discussing some of the current key areas of investigation.

  10. Stellar and Binary Evolution in Star Clusters

    NASA Technical Reports Server (NTRS)

    McMillan, Stephen L. W.

    2001-01-01

    This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.

  11. Photoelectric UBVRI sequences in the Galactic globular clusters NGC 6752 and NGC 6864

    SciTech Connect

    Alvarado, F.; Wenderoth, E.; Alcaino, G.; Liller, W. )

    1990-05-01

    UBVRI photoelectric sequences for the Galactic globular clusters NGC 6752 and NGC 6864 are presented. Both of them include fields suitable for CCD exposures. From five UBV sequences in NGC 6572, only five stars are in common with the previous works. 15 refs.

  12. Astrochemical studies of galactic star formation

    NASA Astrophysics Data System (ADS)

    Shah, Ronak Yogendra

    2000-08-01

    This thesis characterizes and quantifies a key part of the chemical evolution associated with star formation towards nearby molecular clouds by analyzing the radiation from abundant molecules and their deuterium- substituted counterparts, or deuterated molecules. As clouds evolve to form stars, molecular spectra probe the dynamics. Deuterium fractionation ratios sample the variations in temperature, density and activity of protostellar systems and offer clues into their dynamics. We present three projects to examine the scope and scale of deuterium fractionation of ammonia, NH3, and formylium, HCO+, in low mass star forming regions. Analysis of single aperture NH2D and NH3 spectra from prestellar and protostellar cores indicates the predominance of gas-phase reactions in the production of these species. Our survey suggests that these species deplete onto grain surfaces at late times in the evolution of molecular cores into protostars. Since the collapse of protostars is rapid, deuterium fractionation of ammonia is not likely to be affected substantially by grain chemistry. This should be the case for even more massive molecular clouds such as Orion Molecular Cloud I or Sgr B2. Thus, observed NH2D/NH3 values probe the cold gas-phase evolution of molecular clouds. The relationship between gas dynamics and star formation are explored in our survey of DCO+ and H13CO+. We extend previous analyses of the DCO+HCO+ as a measure of the ionization fraction and magnetic field-neutral coupling of molecular clouds by examining high energy transitions. This method traces warmer, denser gas associated with near-protostellar regions and clustered star formation. Although we find that most DCO+HCO + values are consistent with previous studies, we also discover regions where DCO+HCO+ is larger than predicted by the paradigm of ambipolar diffusion-regulated star formation. Single aperture surveys examine the ambient gas on ~105 AU scales. However, only aperture synthesis studies

  13. NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster

    NASA Astrophysics Data System (ADS)

    Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.

    2016-09-01

    NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.

  14. Probing the link between dynamics and stellar evolution: Blue Straggler Stars in Globular clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Lanzoni, B.

    2009-11-01

    In this contribution we review the main observational properties of Blue Straggler Stars (BSS) in Galactic Globular Clusters. A flower of results on the BSS frequency, radial distribution, and chemical composition are presented and discussed.

  15. Star Cluster Mass Functions and Hierarchical Clustering: Learning from Koposov 1 and 2

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel; Wilson, Danielle; van Belle, Gerard

    2017-01-01

    We present photometry of two halo star clusters, Koposov 1 and 2. Found as over-densities in the Sloan Digital Sky Survey, these clusters were intially believed to be heavily stripped globular clusters, given the small number of stars per cluster. In this work, we have used isochrone fitting to determine the age, distance, and metallicity of the clusters. These results confirm tha tthe clusters are in the halo but also reveal surprisingly young ages and high metallicities. Investigation of the cluster mass functions reveals a steep negatively-sloped present day mass function in contrast to the flatish positively-sloped mass functions seen in heavily stripped Galactic globular clusters. The mass function slope, proximity to the Sagittarius stream, and common metallicity with M54, which is related to the Sagittarius dwarf, leads to a very interesting conclusion: Koposov 1 and 2 are open clusters removed from the Sagittarius dwarf through tidal stripping.

  16. Hot stars in globular clusters.

    NASA Astrophysics Data System (ADS)

    Moehler, S.

    Globular clusters are ideal laboratories to study the evolution of low-mass stars. In this review, I shall concentrate on two types of hot stars observed in globular clusters: horizontal branch stars and UV bright stars. The third type, the white dwarfs, are covered by Bono in this volume. While the morphology of the horizontal branch correlates strongly with metallicity, it has been known for a long time that one parameter is not sufficient to describe the diversity of observed horizontal branch morphologies. A veritable zoo of candidates for this elusive ``2{nd} parameter'' has been suggested over the past decades, and the most prominent ones will be briefly discussed here. Adding to the complications, diffusion is active in the atmospheres of hot horizontal branch stars, which makes their analysis much more diffcult. The latest twist along the horizontal branch was added by the recent discovery of an extension to hotter temperatures and fainter magnitudes, the so-called ``blue hook''. The evolutionary origin of these stars is still under debate. I shall also give a brief overview of our current knowledge about hot UV bright stars and use them to illustrate the adverse effects of selection bias.

  17. Variable stars in the bulge globular cluster NGC 6401

    NASA Astrophysics Data System (ADS)

    Tsapras, Y.; Arellano Ferro, A.; Bramich, D. M.; Jaimes, R. Figuera; Kains, N.; Street, R.; Hundertmark, M.; Horne, K.; Dominik, M.; Snodgrass, C.

    2017-02-01

    We present a study of variable stars in globular cluster NGC 6401. The cluster is only 5.3° away from the Galactic Centre and suffers from strong differential reddening. The photometric precision afforded us by difference image analysis resulted in improved sensitivity to variability in formerly inaccessible interior regions of the cluster. We find 23 RRab and 11 RRc stars within one cluster radius (2.4 arcmin), for which we provide coordinates, finder-charts and time series photometry. Through Fourier decomposition of the RR Lyrae star light curves we derive a mean metallicity of [Fe/H]UVES = -1.13 ± 0.06 ([Fe/H]ZW = -1.25 ± 0.06), and a distance of d ≈ 6.35 ± 0.81 kpc. Using the RR Lyrae population, we also determine that NGC 6401 is an Oosterhoff type I cluster.

  18. The era of star formation in galaxy clusters

    SciTech Connect

    Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Mancone, C. L.; Gettings, D. P.; Zeimann, G. R.; Snyder, G. F.; Ashby, M. L. N.; Pope, A.; Alberts, S.; Eisenhardt, P. R.; Stern, D.; Moustakas, L. A.; Brown, M. J. I.; Chary, R.-R.; Dey, Arjun; Galametz, A.; Jannuzi, B. T.; Miller, E. D.; Moustakas, J.

    2013-12-20

    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 < z < 1.5 from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at z > 1.35. Using infrared luminosities measured with deep Spitzer/Multiband Imaging Photometer for Spitzer observations at 24 μm, along with robust optical + IRAC photometric redshifts and spectral-energy-distribution-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates, and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ∼ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift, the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environment-dependent quenching had not yet been established in ISCS clusters. By combining these observations with complementary studies showing a rapid increase in the active galactic nucleus (AGN) fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGNs. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.

  19. Planetary systems in star clusters .

    NASA Astrophysics Data System (ADS)

    Kouwenhoven, M. B. N.; Shu, Qi; Cai, Maxwell Xu; Spurzem, Rainer

    Thousands of confirmed and candidate exoplanets have been identified in recent years. Consequently, theoretical research on the formation and dynamical evolution of planetary systems has seen a boost, and the processes of planet-planet scattering, secular evolution, and interaction between planets and gas/debris disks have been well-studied. Almost all of this work has focused on the formation and evolution of isolated planetary systems, and neglect the effect of external influences, such as the gravitational interaction with neighbouring stars. Most stars, however, form in clustered environments that either quickly disperse, or evolve into open clusters. Under these conditions, young planetary systems experience frequent close encounters with other stars, at least during the first 106-107 years, which affects planets orbiting at any period range, as well as their debris structures.

  20. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  1. Bayesian Analysis of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Sarajedini, Ata; von Hippel, Ted; Stenning, David; Piotto, Giampaolo; Milone, Antonino; van Dyk, David A.; Robinson, Elliot; Stein, Nathan

    2016-01-01

    We use GO 13297 Cycle 21 Hubble Space Telescope (HST) observations and archival GO 10775 Cycle 14 HST ACS Treasury observations of Galactic Globular Clusters to find and characterize multiple stellar populations. Determining how globular clusters are able to create and retain enriched material to produce several generations of stars is key to understanding how these objects formed and how they have affected the structural, kinematic, and chemical evolution of the Milky Way. We employ a sophisticated Bayesian technique with an adaptive MCMC algorithm to simultaneously fit the age, distance, absorption, and metallicity for each cluster. At the same time, we also fit unique helium values to two distinct populations of the cluster and determine the relative proportions of those populations. Our unique numerical approach allows objective and precise analysis of these complicated clusters, providing posterior distribution functions for each parameter of interest. We use these results to gain a better understanding of multiple populations in these clusters and their role in the history of the Milky Way.Support for this work was provided by NASA through grant numbers HST-GO-10775 and HST-GO-13297 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX11AF34G issued through the Office of Space Science. This project was supported by the National Aeronautics & Space Administration through the University of Central Florida's NASA Florida Space Grant Consortium.

  2. Evidence for recent star formation in the galactic halo

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.

    1986-09-01

    Observational data for PHL 346 obtained with the 2.5 m Issac Newton telescope on August 1985 are studied. Measured stellar Stromgren colors, hydrogen-line profiles, and helium and metal-line equivalent widths are compared with those predicted by local thermodynamic equilibrium model-atmosphere calculations. Effective temperature, surface gravity, microturbulent velocity, and helium and metal abundances for the star are derived. A mass of 13 + or - 2 solar masses, a lifetime of 11 x 10 to the 6th yr, a distance from the galactic plane of 8.7 + or - 1.5 kpc, and a velocity in the z direction of +56 + or - 10 km/s are calculated for the star. The data reveal that the star was not ejected from the galactic plane, but that it formed out of galactic fountain gas at about 6 kpc from the disc.

  3. DISRUPTED GLOBULAR CLUSTERS CAN EXPLAIN THE GALACTIC CENTER GAMMA-RAY EXCESS

    SciTech Connect

    Brandt, Timothy D.; Kocsis, Bence

    2015-10-10

    The Fermi satellite has recently detected gamma-ray emission from the central regions of our Galaxy. This may be evidence for dark matter particles, a major component of the standard cosmological model, annihilating to produce high-energy photons. We show that the observed signal may instead be generated by millisecond pulsars that formed in dense star clusters in the Galactic halo. Most of these clusters were ultimately disrupted by evaporation and gravitational tides, contributing to a spherical bulge of stars and stellar remnants. The gamma-ray amplitude, angular distribution, and spectral signatures of this source may be predicted without free parameters, and are in remarkable agreement with the observations. These gamma-rays are from fossil remains of dispersed clusters, telling the history of the Galactic bulge.

  4. Young star clusters in the circumnuclear region of NGC 2110

    SciTech Connect

    Durré, Mark; Mould, Jeremy

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (He I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.

  5. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  6. Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the

  7. Origin of the Galactic Center S-Stars: Gravitational Torques from Lin-Shu-Type Spiral Density Waves

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny

    2010-02-01

    The supermassive ~4 × 106 M sun black hole at the Galactic center is surrounded by a parsec-scale star disk, with several thousands of dynamically relaxed, evolved, late-type CO absorption line stars and a small ~100 population of luminous O and Wolf-Rayet stars which move in approximately circular Keplerian orbits. These bluish in color massive O and Wolf-Rayet stars are very young with an estimated age of 6 ± 2 Myr. Another small group of roughly 20 young (<10 Myr) blue B stars with the orbital periods as short as 15 years ("S-stars") follow eccentric, randomly oriented orbits well inside the disk stars. A model is proposed to explain the S-stars. Accordingly, the stars formed originally in the parsec-scale disk through Jeans' gravitational fragmentation of gas. The newly formed S-stars then migrated inward to the Galactic center via the torques exerted by Lin-Shu-type spiral density waves on the stars at an inner Lindblad resonance. The model explains both the number of observed S-stars orbiting the Galactic black hole within the nuclear (<0.05 pc) star cluster and the key property of the S-star orbits, namely, their high eccentricities.

  8. ORIGIN OF THE GALACTIC CENTER S-STARS: GRAVITATIONAL TORQUES FROM LIN-SHU-TYPE SPIRAL DENSITY WAVES

    SciTech Connect

    Griv, Evgeny

    2010-02-01

    The supermassive approx4 x 10{sup 6} M{sub sun} black hole at the Galactic center is surrounded by a parsec-scale star disk, with several thousands of dynamically relaxed, evolved, late-type CO absorption line stars and a small approx100 population of luminous O and Wolf-Rayet stars which move in approximately circular Keplerian orbits. These bluish in color massive O and Wolf-Rayet stars are very young with an estimated age of 6 +- 2 Myr. Another small group of roughly 20 young (<10 Myr) blue B stars with the orbital periods as short as 15 years ('S-stars') follow eccentric, randomly oriented orbits well inside the disk stars. A model is proposed to explain the S-stars. Accordingly, the stars formed originally in the parsec-scale disk through Jeans' gravitational fragmentation of gas. The newly formed S-stars then migrated inward to the Galactic center via the torques exerted by Lin-Shu-type spiral density waves on the stars at an inner Lindblad resonance. The model explains both the number of observed S-stars orbiting the Galactic black hole within the nuclear (<0.05 pc) star cluster and the key property of the S-star orbits, namely, their high eccentricities.

  9. The Be Population in 10 Galactic Open Clusters From the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Chia Thao, Pa; Richardson, Noel; Gerhartz, Cody; Bjorkman, Karen S.; Bjorkman, Jon Eric; Wisniewski, John P.; Burrow, Anthony; Lomax, Jamie R.; Covey, Kevin R.

    2017-01-01

    As part of a multi-site, multi-epoch campaign to study the time-scales of disk growth and dissipation for classical Be stars, we have studied ten Galactic open clusters with multi-color photometry (Johnson BVRIJK and narrow band H-alpha and an adjacent continuum filter). We have created color-color diagrams to isolate the Be stars in the targeted clusters. These clusters have previously been determined to contain multiple Be stars. From our early analysis of the clusters we have found a number of new candidate Be stars, as well as a few stars in each cluster that appear to have lost their gaseous disks. Such studies of clusters will provide a statistical basis for understanding the evolution of the disks around these stars and may provide insights into the formation processes for the Be stars. We are grateful for support of the NSF REU program at the University of Toledo through NSF grant 1262810, as well as for support from NSF AST 1411563, 1412110, and 1412135.

  10. Ultraviolet Properties of Galactic Globular Clusters with GALEX. I. The Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.; Dalessandro, Emanuele; Sohn, Sangmo T.; Rood, Robert T.; O'Connell, Robert W.; Ferraro, Francesco R.; Lanzoni, Barbara; Beccari, Giacomo; Rey, Soo-Chang; Rhee, Jaehyon; Rich, R. Michael; Yoon, Suk-Jin; Lee, Young-Wook

    2012-05-01

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manqué, post early-AGB, and post-AGB stars within our cluster sample. The authors dedicate this paper to the memory of co-author Bob Rood, a pioneer in the theory of the evolution of low-mass stars, and a friend, who sadly passed away on 2011 November 2.

  11. STAR cluster-finder ASIC

    SciTech Connect

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.

    1997-12-31

    The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. We describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  12. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    NASA Technical Reports Server (NTRS)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  13. The relation between the most-massive star and its parental star cluster mass

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Bonnell, I. A. D.

    2010-01-01

    We present a thorough literature study of the most-massive star, mmax, in several young star clusters in order to assess whether or not star clusters are populated from the stellar initial mass function (IMF) by random sampling over the mass range 0.01 <= m <= 150Msolar without being constrained by the cluster mass, Mecl. The data reveal a partition of the sample into lowest mass objects (Mecl <= 102Msolar), moderate mass clusters (102Msolar < Mecl <= 103Msolar) and rich clusters above 103Msolar. Additionally, there is a plateau of a constant maximal star mass (mmax ~ 25Msolar) for clusters with masses between 103Msolar and 4 × 103Msolar. Statistical tests of this data set reveal that the hypothesis of random sampling from the IMF between 0.01 and 150Msolar is highly unlikely for star clusters more massive than 102Msolar with a probability of p ~ 2 × 10-7 for the objects with Mecl between 102 and 103Msolar and p ~ 3 × 10-9 for the more massive star clusters. Also, the spread of mmax values at a given Mecl is smaller than expected from random sampling. We suggest that the basic physical process able to explain this dependence of stellar inventory of a star cluster on its mass may be the interplay between stellar feedback and the binding energy of the cluster-forming molecular cloud core. Given these results, it would follow that an integrated galactic IMF (IGIMF) sampled from such clusters would automatically be steeper in comparison to the IMF within individual star clusters.

  14. Galactic Internet made possible by star gravitational lensing

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2013-02-01

    In this paper we study how to create a radio bridge between the Sun and any other star made up by both the gravitational lenses of the Sun and that star. The alignment for this radio bridge to work is very strict, but the power-saving is enormous, due to the huge contributions of the two stars' lenses to the overall antenna gain of the system. In particular, we study in detail: The Sun-Alpha Centauri A radio bridge. The Sun-Barnard's star radio bridge. The Sun-Sirius A radio bridge. The radio bridge between the Sun and any Sun-like star located in the Galactic Bulge. The radio bridge between the Sun and a similar Sun-like star located inside the Andromeda galaxy (M31). Finally, we find the information channel capacity for each of the above radio bridges, putting thus a physical constraint to the maximum information transfer that will be enabled even by exploiting the stars as gravitational lenses. The conclusion is that a Galactic Internet is indeed physically possible. May be the Galactic Internet already is in existence, and was created long ago by civilizations more advanced than ours. But the potential for creating such a system has only recently been realized by Humans.

  15. How a Star Cluster Ruled Out MACHOs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Are massive black holes hiding in the halos of galaxies, making up the majority of the universes mysterious dark matter? This possibility may have been ruled out by a star cluster in a small galaxy recently discovered orbiting the Milky Way.Dark Matter CandidatesThe relative amounts of the different constituents of the universe. Dark matter makes up ~27%. [ESA/Planck]Roughly 27% of the mass and energy in the observable universe is made up of dark matter matter invisible to us, which is neither accounted for by observable baryonic matter nor dark energy.What makes up this dark matter? Among the many proposed candidates, one of the least exotic is that of massive compact halo objects, or MACHOs. MACHOs are hypothesized to be black holes that formed in the early universe and now hide in galactic halos. We cant detect light from these objects but their mass adds to the gravitational pull of galaxies.So far, MACHOs prospects arent looking great. They have not been detected in gravitational lensing surveys, ruling out MACHOs between 10-7 and 30 solar masses as the dominant component of dark matter in our galaxy. MACHOs over 100 solar masses have also been ruled out, due to the existence of fragile wide halo binaries that would have been disrupted by the presence of such large black holes.But what about MACHOs between 30 and 100 solar masses? In a new study, Timothy Brandt (NASA Sagan Postdoctoral Fellow at the Institute for Advanced Study, in Princeton, NJ) uses a recently discovered faint galaxy, Eridanus II, to place constraints on MACHOs in this mass range.MACHO constraints from the survival of a star cluster in Eri II, assuming a cluster age of 3 Gyr (a lower bound; constraints increase when assuming an age of 12 Gyr). [Adapted from Brandt 2016]A Star Cluster in Eri IIEridanus II is an ultra-faint dwarf galaxy that lies roughly 1.2 million light-years away from us. This dim object is a satellite galaxy of the Milky Way, discovered as part of the Dark Energy Survey

  16. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    SciTech Connect

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  17. Messier's nebulae and star clusters.

    NASA Astrophysics Data System (ADS)

    Jones, K. G.

    Charles Messier's Catalogue of nebulae and star clusters, published in 1784, marked the start of a new era of deep sky astronomy. Today, this tradition of observing galaxies and clusters is kept alive by serious amateur astronomers who study the objects of the deep sky. Nearly all the objects are visible in a small telescope. The author has revised his definitive version of Messier's Catalogue. His own observations and drawings, together with maps and diagrams, make this a valuable introduction to deep sky observing. Historical and astrophysical notes bring the science of these nebulae right up to date.

  18. Bayesian analysis of two stellar populations in Galactic globular clusters- III. Analysis of 30 clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; Stenning, D. C.; Sarajedini, A.; von Hippel, T.; van Dyk, D. A.; Robinson, E.; Stein, N.; Jefferys, W. H.

    2016-12-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic globular clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ˜0.04 to 0.11. Because adequate models varying in carbon, nitrogen, and oxygen are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and we also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed globular cluster formation scenarios. Additionally, we leverage our Bayesian technique to shed light on the inconsistencies between the theoretical models and the observed data.

  19. NEW UBVRI PHOTOMETRY OF 234 M33 STAR CLUSTERS

    SciTech Connect

    Ma Jun

    2013-04-15

    This is the second paper of our series. In this paper, we present UBVRI photometry for 234 star clusters in the field of M33. For most of these star clusters, there is photometry in only two bands in previous studies. The photometry of these star clusters is performed using archival images from the Local Group Galaxies Survey, which covers 0.8 deg{sup 2} along the major axis of M33. Detailed comparisons show that, in general, our photometry is consistent with previous measurements, and in particular that our photometry is in good agreement with that of Zloczewski and Kaluzny. Combined with star cluster photometry in previous studies, we present some results: none of the M33 youngest clusters ({approx}10{sup 7} yr) have masses approaching 10{sup 5} M{sub Sun }, and comparisons with models of simple stellar populations suggest a large range of ages for M33 star clusters and some as old as the Galactic globular clusters.

  20. Two New Ultra-Faint Star Clusters in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2016-08-01

    Kim 1 & 2 are two new star clusters discovered in the Stromlo Missing Satellite Survey. Kim 1, located at a heliocentric distance of 19.8 +/- 0.9 kpc, features an extremely low total luminosity (M V = 0.3 +/- 0.5 mag) and low star concentration. Together with the large ellipticity (ɛ = 0.42 +/- 0.10) and irregular isophotes, these properties suggest that Kim 1 is an intermediate mass star cluster being stripped by the Galactic tidal field. Kim 2 is a rare ultra-faint outer halo globular cluster located at a heliocentric distance of 104.7 +/- 4.1 kpc. The cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. Kim 2 is likely to follow an orbit confined to the peripheral region of the Galactic halo, and/or to have formed in a dwarf galaxy that was later accreted into the Galactic halo.

  1. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  2. Star formation scales and efficiency in Galactic spiral arms

    NASA Astrophysics Data System (ADS)

    Eden, D. J.; Moore, T. J. T.; Urquhart, J. S.; Elia, D.; Plume, R.; Rigby, A. J.; Thompson, M. A.

    2015-09-01

    We positionally match a sample of infrared-selected young stellar objects, identified by combining the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Wide-field Infrared Survey Explorer and Herschel Space Observatory Herschel infrared Galactic Plane Survey, to the dense clumps identified in the millimetre continuum by the Bolocam Galactic Plane Survey in two Galactic lines of sight centred towards l = 30° and 40°. We calculate the ratio of infrared luminosity, LIR, to the mass of the clump, Mclump, in a variety of Galactic environments and find it to be somewhat enhanced in spiral arms compared to the interarm regions when averaged over kiloparsec scales. We find no compelling evidence that these changes are due to the mechanical influence of the spiral arm on the star formation efficiency rather than, e.g. different gradients in the star formation rate due to patchy or intermittent star formation, or local variations that are not averaged out due to small source samples. The largest variation in LIR/Mclump is found in individual clump values, which follow a lognormal distribution and have a range of over three orders of magnitude. This spread is intrinsic as no dependence of LIR/Mclump with Mclump was found. No difference was found in the luminosity distribution of sources in the arm and interarm samples and a strong linear correlation was found between LIR and Mclump.

  3. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  4. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. EFFECTS OF ENVIRONMENT ON GLOBULAR CLUSTER GLOBAL MASS FUNCTIONS

    SciTech Connect

    Paust, Nathaniel E. Q.; Reid, I. Neill; Anderson, Jay E-mail: inr@stsci.edu

    2010-02-15

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, {approx}0.8 M {sub sun}, to 0.2-0.3 M {sub sun} on the lower main sequence. The slopes of those power-law fits, {alpha}, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between {alpha} and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, {mu} {sub V}, and inferred central density, {rho}{sub 0}. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining {alpha}. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  5. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk.

  6. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  7. The Role of Radiation Pressure in Assembling Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Tsz-Ho Tsang, Benny; Milosavljevic, Milos

    2016-06-01

    Super star clusters are the most extreme star-forming regions of the Universe - they occupy the most massive end of the Kennicutt-Schmidt relation, forming stars at exceptionally high rates and gas surface densities. The radiation feedback from the dense population of massive stars is expected to play a dynamic role during the assembly of the clusters, and represents a potential mechanism for launching large-scale galactic outflows. Observationally, large distances and dust obscuration have been withholding clues about the early stages of massive cluster formation; theoretically, the lack of accurate and efficient radiation transfer schemes in multi-dimensional hydrodynamic simulations has been deterring our understanding of radiative feedback. By extending the adaptive mesh refinement code FLASH with a closure-free, Monte Carlo radiation transport scheme, we perform 3D radiation hydrodynamical simulations of super star cluster formation from the collapse of turbulent molecular clouds. Our simulations probe the star formation in densities typical for starbursts, with both non-ionizing UV and dust-reprocessed IR radiation treated self-consistently. We aim to determine the role of radiation pressure in regulating star formation, and its capacity in driving intense outflows.

  8. ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. I. THE COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Schiavon, Ricardo P.; Rhee, Jaehyon; Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara E-mail: emanuele.dalessandr2@unibo.it E-mail: barbara.lanzoni@unibo.it; and others

    2012-05-15

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manque, post early-AGB, and post-AGB stars within our cluster sample.

  9. Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S., III

    2014-09-01

    The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.

  10. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  11. DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES

    SciTech Connect

    Benedict, G. Fritz; McArthur, Barbara E.; Barnes, Thomas G.; Feast, Michael W.; Harrison, Thomas E.; Bean, Jacob L.; Kolenberg, Katrien; Menzies, John W.; Laney, C. D.; Chaboyer, Brian; Fossati, Luca; Nesvacil, Nicole; Smith, Horace A.; Kochukhov, Oleg; Nelan, Edmund P.; Taylor, Denise; Shulyak, D. V.; Freedman, Wendy L.

    2011-12-15

    We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars-five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and {kappa} Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 {+-} 0.16 mas; XZ Cyg, 1.67 {+-} 0.17 mas; SU Dra, 1.42 {+-} 0.16 mas; RR Lyr, 3.77 {+-} 0.13 mas; UV Oct, 1.71 {+-} 0.10 mas; VY Pyx, 6.44 {+-} 0.23 mas; and {kappa} Pav, 5.57 {+-} 0.28 mas; an average {sigma}{sub {pi}}/{pi} = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for M{sub V} -[Fe/H] and M{sub K} -[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.

  12. The Extinction Toward the Galactic Bulge from RR Lyrae Stars

    SciTech Connect

    Kunder, A; Popowski, P; Cook, K; Chaboyer, B

    2007-11-07

    The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3

  13. Ba STARS AND OTHER BINARIES IN FIRST AND SECOND GENERATION STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    D'Orazi, Valentina; Gratton, Raffaele; Lucatello, Sara; Carretta, Eugenio; Bragaglia, Angela; Marino, Anna F.

    2010-08-20

    The determination of the Ba abundance in globular cluster (GC) stars is a very powerful test to address several issues in the framework of multiple population scenarios. We measured the Ba content for a sample of more than 1200 stars in 15 Galactic GCs, using high-resolution FLAMES/Giraffe spectra. We found no variation in [Ba/Fe] ratios for different stellar populations within each cluster; this means that low-mass asymptotic giant branch stars do not significantly contribute to the intracluster pollution. Very interestingly, we found that the fraction of Ba stars in first generation (FG) stars is close to the values derived for field stars ({approx}2%); on the other hand, second generation (SG) stars present a significantly lower fraction. An independent and successful test, based on radial velocity variations among giant stars in NGC 6121, confirms our finding: the binary fraction among FG stars is about {approx}12%, to be compared with {approx}1% of SG stars. This is an evidence that SG stars formed in a denser environment, where infant mortality of binary systems was particularly efficient.

  14. The Shape Evolution of Galactic Open Clusters from Observations Under Galactic External Forces

    NASA Astrophysics Data System (ADS)

    Zhai, Meng; Abt, Helmut; Zhao, Gang; Li, Chengdong

    2017-02-01

    We present the Galactic characteristics of 154 open clusters using the stellar statistics method with data from the WEBDA database. We find that all clusters in our sample are elongated in shape, which indicates that the spherical clusters are stretched out to be ellipsoid as a function of age ({log}({age}/{year})=6.64{--}9.7). By dividing a cluster into a central core and an outer part, we have computed the apparent ellipticities of these two parts respectively. The scale relations between ellipticities and age indicate that the outer parts of open clusters become more elliptical while the central cores remain circular. We suppose that the outer parts become more elliptical because they are more subjected to the external forces, e.g., Galactic differential rotation, while the central cores form a circular shape under the domination of stellar dynamics. We have also performed an analysis of the crucial influence of cluster mass and location on its shape.

  15. Stellar Dynamical Processes in Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Eyer, L.

    2009-01-01

    We study how high precision astrometric measurements by SIM and GAIA of stars involved in dynamical ejection events from star clusters can constrain theories of massive star and star cluster formation. We focus on the Orion Nebula Cluster (ONC). First, we investigate the scientific potential associated with an accurate measurement of the distance and proper motion of Theta 1 Ori C, which is the most massive star in the cluster and was recently involved (about 4000 years ago) in the ejection of a B star: the Becklin-Neugebauer (BN) star. The motion of the BN star has taken it close to a massive protostar, known as source I, where it appears to have influenced the accretion and outflow activity, most likely by a tidal interaction with the accretion disk. An accurate proper motion measurement of Theta 1 Ori C will constrain BN's initial motion, allowing us to search for deflections caused by the gravitational potential of the massive protostar. Second, we search the Hipparcos catalog for candidate runaway stars, i.e. that have been dynamically ejected from the cluster over the course of the last several Myr. SIM and GAIA observations of these stars will be needed to confirm their origin from the ONC. The results of this study will constrain the star cluster formation timescale and the statistics of the population of ejected stars. JCT acknowledges support from from NSF CAREER grant AST-0645412 and a grant from NASA for SIM Science Studies.

  16. Galactic kinematics from a sample of young massive stars

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2013-08-01

    Based on published sources, we have created a kinematic database on 220 massive (> 10 M ⊙) young Galactic star systems located within ≤3 kpc of the Sun. Out of them, ≈100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10%. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at R 0 = 8kpc, V 0 = 259±16 km s-1, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f R = -10.8 ± 1.2 km s-1 and f θ = 7.9 ± 1.3 km s-1, respectively; the pitch angle for a two-armed spiral pattern i = -6.0° ± 0.4°, with the wavelength of the spiral density wave near the Sun being λ = 2.6 ± 0.2 kpc; and the radial phase of the Sun in χ ⊙ = -120° ± 4°. We show that such peculiarities of the Gould Belt as the local expansion of the system, the velocity ellipsoid vertex deviation, and the significant additional rotation can be explained in terms of the density wave theory. All these effects decrease noticeably once the influence of the spiral density wave on the velocities of nearby stars has been taken into account. The influence of Gould Belt stars on the Galactic parameter estimates has also been revealed. Eliminating them from the kinematic equations has led to the following new values of the spiral density wave parameters: f θ = 2.9 ± 2.1 km s-1 and χ ⊙ = -104° ± 6°.

  17. The life and death of star clusters

    NASA Astrophysics Data System (ADS)

    Whitmore, B. C.

    It is generally believed that most stars are born in groups and clusters, rather than in the field. In recent years it has been demonstrated that merging galaxies produce large numbers of young massive star clusters, sometimes called super star clusters. Understanding what triggers the formation of these young massive clusters provides important information about the formation of stars in general. In recent years it has also become apparent that most clusters do not survive more than ~ 10 Myr (i.e., "infant mortality"). Hence, it is just as important to understand the disruption of star clusters as it is to to understand their formation if we want to understand the demographics of both star clusters and field stars. This talk will first discuss what triggers star cluster formation in merging galaxies (primarily in the Antennae galaxies) and will then outline a general framework designed to empirically fit observations of both star clusters and field stars in a wide variety of galaxies from mergers to quiescent spirals.

  18. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  19. Dynamics of the coronas of open star clusters

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.; Seleznev, A. F.

    2014-12-01

    A method for distinguishing coronas in models of open star clusters is proposed. The method uses trajectories of stars that do not leave the coronas over time intervals t comparable to the mean lifetime τ of the clusters. Corona models are constructed for six numerical cluster models, and the direction and character of the dynamical evolution of the coronas are determined. Retrograde stellar motions are dominant in the coronas. In spite of some signs of dynamical instability of the coronas (small densities compared to the critical density and accelerated expansion of the coronas), the formation of close-toequilibrium density and phase-density distributions at distances from one to three cluster tidal radii from the cluster center can be seen. Approximations are constructed for the corona and cluster phase density using distributions that depend on three parameters (the parameters of the stellar motion in the Lindblad rotating coordinate system). This temporary equilibrium of the corona is due to balance in the number of starsmoving from the central areas of the cluster to the corona, and from the corona to the corona periphery or beyond. Evidence that corona stars can be gravitationally bound at distances out to four tidal radii from the cluster center is found: the presence of nearly periodic retrograde mean motions of a large number of corona stars in the Galactic plane; 91-99% of corona stars satisfy the gravitational binding criterion of Ross, Mennim and Heggie over time intervals that are close to the mean cluster lifetime. The escape rate from the corona is estimated for t ≥ τ, and found to be from 0.03 to 0.23 of the number of corona stars per violent relaxation time.

  20. Burst of Star Formation Drives Galactic Bubble

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Hubble Space Telescope (HST) captures a lumpy bubble of hot gas rising from a cauldron of glowing matter in Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major. Astronomers suspect the bubble is being blown by 'winds' or high speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc that whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them, and form a new generation of stars.

  1. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  2. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  3. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai; Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco; Wang, Chuchu; Bekki, Kenji; For, Bi-Qing; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; Groenewegen, Martin A. T.; Guandalini, Roald; Marconi, Marcella; Ripepi, Vincenzo; Piatti, Andrés E.; Van Loon, Jacco Th. E-mail: grijs@pku.edu.cn

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  4. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  5. STAR FORMATION IN HIGH-REDSHIFT CLUSTER ELLIPTICALS

    SciTech Connect

    Wagner, Cory R.; Brodwin, Mark; Snyder, Gregory F.; Gonzalez, Anthony H.; Mancone, Conor L.; Stanford, S. A.; Alberts, Stacey; Pope, Alexandra; Stern, Daniel; Eisenhardt, Peter R. M.; Zeimann, Gregory R.; Chary, Ranga-Ram; Dey, Arjun; Moustakas, John

    2015-02-20

    We measure the star formation rates (SFRs) of massive (M {sub *} > 10{sup 10.1} M {sub ☉}) early-type galaxies (ETGs) in a sample of 11 high-redshift (1.0 < z < 1.5) galaxy clusters drawn from the IRAC Shallow Cluster Survey (ISCS). We identify ETGs visually from Hubble Space Telescope imaging and select likely cluster members as having either an appropriate spectroscopic redshift or red-sequence color. Mid-infrared SFRs are measured using Spitzer 24 μm data for isolated cluster galaxies for which contamination by neighbors, and active galactic nuclei, can be ruled out. Cluster ETGs show enhanced specific star formation rates (sSFRs) compared to cluster galaxies in the local universe, but have sSFRs more than four times lower than that of field ETGs at 1 < z < 1.5. Relative to the late-type cluster population, isolated ETGs show substantially quenched mean SFRs, yet still contribute 12% of the overall star formation activity measured in 1 < z < 1.5 clusters. We find that new ETGs are likely being formed in ISCS clusters; the fraction of cluster galaxies identified as ETGs increases from 34% to 56% from z ∼ 1.5 → 1.25. While the fraction of cluster ETGs that are highly star-forming (SFR ≥ 26 M {sub ☉} yr{sup –1}) drops from 27% to 10% over the same period, their sSFRs are roughly constant. All these factors taken together suggest that, particularly at z ≳ 1.25, the events that created these distant cluster ETGs—likely mergers, at least among the most massive—were both recent and gas-rich.

  6. From the sun to the Galactic Center: dust, stars and black hole(s)

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  7. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  8. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    SciTech Connect

    Li Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer; Chen Xian E-mail: fkliu@bac.pku.edu.cn

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  9. VizieR Online Data Catalog: Northern Galactic OB stars vsini (Simon-Diaz+, 2014)

    NASA Astrophysics Data System (ADS)

    Simon-Diaz, S.; Herrero, A.

    2014-04-01

    The spectroscopic observations considered for this study are part of the IACOB spectroscopic database of northern Galactic OB stars (last described in Simon-Diaz et al., 2011, Bull. Soc. Roy. Sci. Liege, 80, 514 and Stellar Clusters and Associations: Proc. A RIA Workshop on Gaia, eds. E. J. Alfaro Navarro, A. T. Gallego Calvente, & M. R. Zapatero Osorio, 255). This unique high-quality spectroscopic database has been compiled in the framework of the IACOB project. To date, the IACOB database comprises 1250 spectra of 153 and 97 Galactic O- and early B-type stars, respectively, observable from the Roque de los Muchachos observatory in La Palma (Spain). The spectra have a resolving power of 46000 and 23000, a typical signal-to-noise ratio (S/N) above 150, and were compiled between November 2008 and January 2013 with the high-resolution FIbre-fed Echelle Spectrograph (FIES) attached to the Nordic Optical Telescope (NOT). The IACOB database has a multi-epoch character that enables investigations of the binary/multiple nature of considered stars and the temporal variations in individual objects with at least three spectra per observed target. In this study, we only used a subsample of the spectra, discarding all stars with signatures of multiplicity (which means that we only considered apparently single and SB1 stars), and only considering the spectrum with the highest S/N ratio per star. (5 data files).

  10. The Origin Billions Star Survey: Galactic Explorer

    DTIC Science & Technology

    2006-10-18

    orbital distances of the satellites vary with the general location of the asteroid in the solar system (near- Earth, main belt , or Kuiper Belt ...not necessarily have the same kinematics. 3.2.7. The Gould Belt The Gould Belt is a disk-shaped structure that includes most of the stars younger than...the Pleiades within ∼700 pc of the Sun, which is situated inside the belt . The Gould Belt is de- lineated on the sky by major concentrations of

  11. Super massive black hole in galactic nuclei with tidal disruption of stars

    SciTech Connect

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-10

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  12. Star Factory Near Galactic Center Bathed In High-Energy X-Rays

    NASA Astrophysics Data System (ADS)

    2001-06-01

    X-ray Image The Arches Cluster X-ray Image Credit: NASA/CXC/Northwestern/ F.Zadeh et al. Starburst galaxies are known for creating huge hot bubbles of gas that escape from the galaxy. In a similar way, Chandra observations of the Arches clusters may provide clues to the origin of a much larger cloud of hot gas known to exist in the center of the galaxy. "Our data suggest that the gas within the Arches cluster may get so hot that it escapes from the cluster," said Cornelia Lang of the University of Massachusetts. "The Arches and other clusters like it may contribute to the reservoir of mysterious hot gas long observed near the Milky Way." Zadeh and collaborators intend to search for X-ray emission from other clusters of stars near the Galactic center and compare this to newer, longer Chandra observations of the Arches cluster. Chandra observed Arches cluster region with its Advanced CCD Imaging Spectrometer (ACIS). The research team for this investigation also included Casey Law and Antonella Fruscione from the Harvard-Smithsonian Center for Astrophysics; Cornelia Lang and Daniel Wang from University of Massachusetts; Mark Wardle of the University of Sydney, Australia; and Angela Cotera from University of Arizona. The ACIS X-ray camera was developed for NASA by Penn State and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  13. An HST/WFPC2 Survey for Nearby Companions of Galactic Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.

    2003-12-01

    Wolf-Rayet (WR) stars provide key insights about the final evolutionary phase of the most massive stars. I present here the results of a new, high angular resolution, imaging survey of 61 Galactic WR stars, which was designed to detect new companions, clusters, and/or associations surrounding these stars. High resolution observations are essential to provide a true census of the number and astrophysical parameters of massive stars, to understand the effects of nearby companions on their evolutionary paths, and to understand the effects of these companions on the stellar environment. The survey is based on images of each WR target made with the Planetary Camera of the Hubble Space Telescope WFPC2 instrument (usually through the F336W, F439W, and F555W filters, which are near counterparts of the Johnson UBV filters). I measured astrometric positions and photometric magnitudes on the HST synthetic system for all the stars found within 15 arcsec of each WR star. I present results on new companions for 23 (38%) of the 61 WR stars in the survey sample. Three WR stars (WR 86, WR 146, and WR 147) are resolved as close colliding-wind binary systems. Another three WR stars (WR 98a, WR 104, and WR 112) are dusty WC9 type stars in hierarchical multiple systems. Six WR stars are members of previously unrecognized stellar groups. Finally, for thirteen WR stars, I determine new stellar parameters based on an analysis of the color-color and color-magnitude diagrams of the nearby cluster/association main sequence stars. My WR sample breaks down into 57% cluster/association members, 33% field stars, and 10% runaways. This agrees reasonably well with the fractions determined by Mason et al. (1998) of 72%, 20%, and 8% for the same categories among the O stars. I find the same trend that the binary fraction decreases from cluster/association to field and to runaway groups in accordance with our expectation that many of the latter were originally binary members that were ejected by

  14. Tracing the Galactic spiral structure with embedded clusters

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bonatto, C.; Bica, E.

    2015-07-01

    In this work, we investigate the properties of 18 embedded clusters (ECs). The sample includes 11 previously known clusters and we report the discovery of seven ECs on WISE images, thus complementing our recent list of 437 new clusters. The main goal is to use such clusters to shed new light on the Galactic structure by tracing the spiral arms with cluster distances. Our results favour a four-armed spiral pattern tracing three arms, Sagitarius-Carina, Perseus, and the Outer arm. The Sagitarius-Carina spiral arm is probed in the borderline of the third and fourth quadrants at a distance from the Galactic Centre of d1 ˜ 6.4 kpc adopting R⊙ = 7.2 kpc, or d2 ˜ 7.2 kpc for R⊙ = 8.0 kpc. Most ECs in our sample are located in the Perseus arm that is traced in the second and third quadrants and appear to be at Galactocentric distances in the range d1 = 9-10.5 kpc or d2 = 9.8-11.3 kpc. Dolidze 25, Bochum 2, and Camargo 445 are located in the Outer arm that extends along the second and third Galactic quadrants with a distance from the Galactic Centre in the range of d1 = 12.5-14.5 kpc or d2 = 13.5-15.5 kpc. We find further evidence that in the Galaxy ECs are predominantly located within the thin disc and along spiral arms. They are excellent tools for tracing these Galactic features and therefore new searches for ECs can contribute to a better understanding of the Galactic structure. We also report an EC aggregate located in key italicthe Perseus arm.

  15. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  16. Kinematic structure in the Galactic halo at the North Galactic Pole: RR Lyrae and blue horizontal branch stars show different kinematics

    NASA Astrophysics Data System (ADS)

    Kinman, T. D.; Cacciari, C.; Bragaglia, A.; Buzzoni, A.; Spagna, A.

    2007-03-01

    Radial velocities and proper motions (derived from the GSC-II data base) are given for 38 RR Lyrae (RRL) stars and 79 blue horizontal branch (BHB) stars in a ~200 deg2 area around the North Galactic Pole (NGP). Both heliocentric (UVW) and galactocentric (VR, Vφ, Vz) space motions are derived for these stars using a homogeneous distance scale consistent with (m - M)0 = 18.52 for the Large Magellanic Cloud (LMC). An analysis of the 26 RRL and 52 BHB stars whose height (Z) above the plane is less than 8 kpc shows that this halo sample is not homogeneous. Our BHB sample (like that of Sirko et al.) has a zero galactic rotation (Vφ) and roughly isotropic velocity dispersions. The RRL sample shows a definite retrograde rotation (Vφ = -95 +/- 29 kms-1) and non-isotropic velocity dispersions. The combined BHB and RRL sample has a retrograde galactic rotation (V) that is similar to that found by Majewski for his sample of subdwarfs in Selected Area (SA) 57. The velocity dispersion of the RRL stars that have a positive W motion is significantly smaller than the dispersion of those `streaming down' with a negative W. Also, the ratio of RRL to BHB stars is smaller for the sample that has positive W. Our halo sample occupies 10.4 kpc3 at a mean height of 5 kpc above the Galactic plane. In this volume, one component (rich in RRL stars) shows retrograde rotation and the streaming motion that we associate with the accretion process. The other component (traced by the BHB stars) shows essentially no rotation and less evidence of streaming. These two components have horizontal branch (HB) morphologies that suggest that they may be the field star equivalents of the young and old halo globular clusters, respectively. Clearly, it is quite desirable to use more than one tracer in any kinematic analysis of the halo.

  17. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  18. Unveiling the Role of Galactic Rotation on Star Formation

    NASA Astrophysics Data System (ADS)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  19. Calcium triplet metallicity calibration for stars in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Vásquez, S.; Zoccali, M.; Hill, V.; Gonzalez, O. A.; Saviane, I.; Rejkuba, M.; Battaglia, G.

    2015-08-01

    Aims: We present a new calibration of the calcium II triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and is in general especially well suited for solar and supersolar metallicity giants, which are typical of external massive galaxies. Methods: About 150 bulge K giants were observed with the GIRAFFE spectrograph at the VLT with a resolution of R ~ 20 000 and at R ~ 6000. In the first case, the spectra allowed us to directly determine the Fe abundances from several unblended Fe lines, deriving what we call here high-resolution [Fe/H] measurements. The low-resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near-infrared calcium II triplet at 8542 and 8662 Å. Results: By comparing the two measurements, we derived a relation between calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, - 1 < [Fe/H] < +0.7. By adding a small second-order correction based on literature globular cluster data, we derived the unique calibration equation [Fe/H] CaT = -3.150 + 0.432W' + 0.006W'2, with an rms dispersion of 0.197 dex, valid across the whole metallicity range -2.3 < [Fe/H] < +0.7. Based on observations taken with ESO telescopes at the La Silla Paranal Observatory under programme ID 385.B-0735(B).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A121

  20. Distance Scale Zero Points from Galactic RR Lyrae Star Parallaxes

    NASA Astrophysics Data System (ADS)

    Benedict, G. Fritz; McArthur, Barbara E.; Feast, Michael W.; Barnes, Thomas G.; Harrison, Thomas E.; Bean, Jacob L.; Menzies, John W.; Chaboyer, Brian; Fossati, Luca; Nesvacil, Nicole; Smith, Horace A.; Kolenberg, Katrien; Laney, C. D.; Kochukhov, Oleg; Nelan, Edmund P.; Shulyak, D. V.; Taylor, Denise; Freedman, Wendy L.

    2011-12-01

    We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars—five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and κ Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 ± 0.16 mas XZ Cyg, 1.67 ± 0.17 mas SU Dra, 1.42 ± 0.16 mas RR Lyr, 3.77 ± 0.13 mas UV Oct, 1.71 ± 0.10 mas VY Pyx, 6.44 ± 0.23 mas and κ Pav, 5.57 ± 0.28 mas an average σπ/π = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for MV -[Fe/H] and MK -[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  1. RADIAL VELOCITIES OF GALACTIC HALO STARS IN VIRGO

    SciTech Connect

    Brink, Thomas G.; Mateo, Mario; Martinez-Delgado, David E-mail: mmateo@umich.ed

    2010-11-15

    We present multi-slit radial velocity measurements for 111 stars in the direction of the Virgo Stellar Stream (VSS). The stars were photometrically selected to be probable main-sequence stars in the Galactic halo. When compared with the radial velocity distribution expected for the halo of the Milky Way, as well as the distribution seen in a control field, we observe a significant excess of negative velocity stars in the field, which can likely be attributed to the presence of a stellar stream. This kinematic excess peaks at a Galactic standard of rest radial velocity of -75 km s{sup -1}. A rough distance estimate suggests that this feature extends from {approx}15 kpc out to, and possibly beyond, the {approx}30 kpc limit of the study. The mean velocity of these stars is incompatible with those of the VSS itself (V{sub gsr} {approx} 130 km s{sup -1}), which we weakly detect, but it is consistent with radial velocity measurements of nearby 2MASS M-giants and SDSS+SEGUE K/M-giants and blue horizontal branch stars that constitute the leading tidal tail of the Sagittarius dwarf spheroidal galaxy. Some oblate models for the shape of the Milky Way's dark matter halo predict that the leading arm of the Sagittarius Stream should pass through this volume, and have highly negative (V{sub gsr} {approx}< -200 km s{sup -1}) radial velocities, as it descends down from the northern Galactic hemisphere toward the Galactic plane. The kinematic feature observed in this study, if it is in fact Sagittarius debris, is not consistent with these predictions, and instead, like other leading stream radial velocity measurements, is consistent with a recently published triaxial halo model, or, if axisymmetry is imposed, favors a prolate shape for the Galactic halo potential. However, a rough distance estimate to the observed kinematic feature places it somewhat closer (D {approx} 15-30 kpc) than the Sagittarius models predict (D {approx} 35-45 kpc).

  2. STATISTICAL PROPERTIES OF GALACTIC {delta} SCUTI STARS: REVISITED

    SciTech Connect

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P. E-mail: kim@mpia-hd.mpg.de

    2013-05-15

    We present statistical characteristics of 1578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodriguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of {delta} Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodriguez's work. All the {delta} Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing {delta} Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  3. Statistical Properties of Galactic δ Scuti Stars: Revisited

    NASA Astrophysics Data System (ADS)

    Chang, S.-W.; Protopapas, P.; Kim, D.-W.; Byun, Y.-I.

    2013-05-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  4. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  5. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  6. Investigation of the open star cluster NGC 6800

    NASA Astrophysics Data System (ADS)

    Ananjevskaja, Yu. K.; Frolov, V. N.; Polyakov, E. V.

    2015-07-01

    The results of a comprehensive study of the Galactic open cluster NGC 6800 are presented. The positions of stars to a limiting magnitude B ≃ 16{./ m }5 in an 80' × 80' field centered at the cluster were measured on eight plates from the Pulkovo normal astrograph with a maximum epoch difference of 57 years. The measurements were performed with the Pulkovo "Fantasy" automated measuring system. The corresponding field from the 2MASS catalogue was used as an additional plate. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 3.0 mas yr-1. A catalogue of BV and JHK magnitudes for objects in the investigated region was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. An individual cluster membership probability of a star P ≥ 60% served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ~ B - V, J ~ J - K s ) diagrams was considered as the second selection criterion. On the basis of these criteria, it was established that 109 stars are members of NGC 6800, These data were used to refine the physical parameters of the cluster: the mean reddening E( B - V) = 0 m . 40, the true distance modulus ( V - M V )0 = 10{./ m }05, and the cluster age ~250 Myr. The luminosity and mass functions were constructed. The position of the center of the cluster NGC 6800 was improved: α = 19h27m11{./s}2 and δ = +25°07'24〃(2000). The catalogue of relative proper motions for stars in the field is available in electronic form only.

  7. Catalogue of Galactic globular-cluster surface-brightness profiles

    NASA Technical Reports Server (NTRS)

    Trager, S. C.; King, Ivan R.; Djorgovski, S.

    1995-01-01

    We present a catalogue of surface-brightness profiles (SBPs) of 125 Galactic globular clusters, the largest such collection ever gathered. The SPBs are constructed from generally inhomogeneous data, but are based heavily on the Berkeley Global Cluster Survey of Djorgovski & King. All but four of the SBPs have photometric zero points. We derive central surface brightness, King-model concentrations, core radii, half-light, and other fraction-of-light radii where data permit, and we briefly discuss their use.

  8. Star clusters as simple stellar populations.

    PubMed

    Bruzual A, Gustavo

    2010-02-28

    In this paper, I review to what extent we can understand the photometric properties of star clusters, and of low-mass, unresolved galaxies, in terms of population-synthesis models designed to describe 'simple stellar populations' (SSPs), i.e. groups of stars born at the same time, in the same volume of space and from a gas cloud of homogeneous chemical composition. The photometric properties predicted by these models do not readily match the observations of most star clusters, unless we properly take into account the expected variation in the number of stars occupying sparsely populated evolutionary stages, owing to stochastic fluctuations in the stellar initial mass function. In this case, population-synthesis models reproduce remarkably well the full ranges of observed integrated colours and absolute magnitudes of star clusters of various ages and metallicities. The disagreement between the model predictions and observations of cluster colours and magnitudes may indicate problems with or deficiencies in the modelling, and does not necessarily tell us that star clusters do not behave like SSPs. Matching the photometric properties of star clusters using SSP models is a necessary (but not sufficient) condition for clusters to be considered SSPs. Composite models, characterized by complex star-formation histories, also match the observed cluster colours.

  9. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    SciTech Connect

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-03-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M {sub ☉} are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars.

  10. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  11. HOPS + MALT90 + Hi-GAL: Probing star formation on a Galactic scale through mm molecular line and far-IR continuum Galactic plane surveys

    NASA Astrophysics Data System (ADS)

    Longmore, Steven N.; Rathborne, Jill; Bastian, Nate; Alves, Joao; Ascenso, Joana; Bally, John; Testi, Leonardo; Longmore, Andy; Battersby, Cara; Bressert, Eli; Purcell, Cormac; Walsh, Andrew; Jackson, James; Foster, Jonathan; Molinari, Sergio; Meingast, Stefan; Amorim, A.; Lima, J.; Marques, R.; Moitinho, A.; Pinhao, J.; Rebordao, J.; Santos, F. D.

    2012-03-01

    With the HOPS and MALT90 Galactic plane surveys we are mapping a significant fraction of the dense molecular gas in the Galaxy in over 20 dense-gas-tracing transitions (e.g. from H2O, NH3, HC3N, HC5N, N2H+, HCN, HNC, HCO+, CH3CN, SiO, C2H, ...). Combining this with the far-IR continuum emission from Hi-GAL we can derive the physical/chemical/kinematic properties and evolutionary state of much of the molecular gas in the Galaxy destined to form stars. I will present results from three science projects based on this combined dataset, namely: i) looking for variations in the star formation rate across the Galaxy as a function of environment, in particular, comparing the CMZ with the rest of the Galactic disk -- we find the rate of star formation per unit mass of dense gas in the CMZ may be an order of magnitude lower than that in the disk; ii) seeing if Galactic dense molecular clouds follow the empirical relations observed in extragalactic systems (e.g. the Kennicutt-Schmidt and Gao & Solomon relations) and what this implies for interpretating the extragalactic relations; iii) searching for molecular cloud progenitors of the most extreme (massive and dense) stellar clusters. I will present one cloud we have studied as part of project iii) which lies close to the Galactic center and which is clearly extreme compared to the rest of the Galactic molecular cloud population. With a mass of 10^5 Msun, a radius of only ~3pc and almost no signs of star formation it appears to be the progenitor of an Arches-like stellar cluster. As such, we speculate this molecular cloud may be a local-universe-analogue of the initial conditions of a super star cluster or potentially even a small globular cluster. From our Galactic plane survey data this object appears to be unique in the Galaxy, making it extremely important for testing massive cluster formation models. We have been awarded 6 hours of ALMA Cycle 0 observing time to study this object in detail and I hope to show preliminary

  12. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  13. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  14. New orbital analysis of stars at the Galactic center using speckle holography and orbital priors

    NASA Astrophysics Data System (ADS)

    Boehle, Anna; Schödel, Rainer; Meyer, Leo; Ghez, Andrea M.

    2014-05-01

    We present initial results of a study that has more than doubled the time baseline for astrometric measurements of faint stars orbiting the supermassive black hole (SMBH) at the Galactic center. The advent of adaptive optics has enabled stars as faint as K = 19 mag to be tracked at 50 mas resolution for the last decade. While similar resolution images exist from the prior decade, they were obtained from speckle imaging data analyzed with the technique of shift-and-add, which limited detections to stars brighter than K = 16 mag. By improving the speckle data analysis technique with speckle holography and using prior orbital knowledge, we are now able to track stars as faint as ˜18 mag at 50 mas resolution through the early Keck speckle data sets (1995-2005). This methodology has already led to the detection of two short-period stars never previously seen in speckle images, such that our data now spans their full orbits. We can now better constrain the orbital parameters of all stars in the intriguing "S-star cluster," which will ultimately give us insight into the origin of these stars and be used to probe the curvature of space-time in the unexplored regime near a SMBH.

  15. The Galactic Starburst Region NGC 3603 : exciting new insights on the formation of high mass stars

    NASA Astrophysics Data System (ADS)

    Nürnberger, D. E. A.

    2004-10-01

    powerful stellar winds which evaporate and disperse the surrounding interstellar medium, thus "lifting the courtains" around nearby young stars at a relatively early evolutionary stage. Such premises are given in the Galactic starburst region NGC 3603. Nevertheless, a large observational effort with different telescopes and instruments -- in particular, taking advantage of the high angular resolution and high sensitivity of near and mid IR instruments available at ESO -- was necessary to achieve the goals of my study. After a basic introduction on the topic of (high mass) star formation in Chapter 1, a short overview of the investigated region NGC 3603 and its importance for both galactic and extragalactic star formation studies is given in Chapter 2. Then, in Chapter 3, I report on a comprehensive investigation of the distribution and kinematics of the molecular gas and dust associated with the NGC 3603 region. In Chapter 4 I thoroughly address the radial extent of the NGC 3603 OB cluster and the spatial distribution of the cluster members. Together with deep Ks band imaging data, a detailed survey of NGC 3603 at mid IR wavelengths allows to search the neighbourhood of the cold molecular gas and dust for sources with intrinsic mid IR excess (Chapter 5). In Chapter 6 I characterize the most prominent sources of NGC 3603 IRS 9 and show that these sources are bona-fide candidates for high mass protostars. Finally, a concise summary as well as an outlook on future prospects in high mass star formation research is given in Chapter 7.

  16. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  17. Population III star clusters in the reionized Universe

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.

    2010-05-01

    In reionized regions of the Universe, gas can only collapse to form stars in dark matter (DM) haloes which grow to be sufficiently massive. If star formation is prevented in the minihalo progenitors of such DM haloes at redshifts z >~ 20, then these haloes will not be self-enriched with metals and so may host Population (Pop) III star formation. We estimate an upper limit for the abundance of Pop III star clusters which thus form in the reionized Universe, as a function of redshift. Depending on the minimum DM halo mass for star formation, between of the order of 1 and of the order of 1000, Pop III star clusters per square degree may be observable at 2 <~ z <~ 7. Thus, there may be a sufficient number density of Pop III star clusters for detection in surveys such as the Deep-Wide Survey (DWS) to be conducted by the James Webb Space Telescope. We predict that Pop III clusters formed after reionization are most likely to be found at z >~ 3 and within ~40arcsec (~1Mpc comoving) of DM haloes with masses of ~1011Msolar, the descendants of the haloes at z ~ 20 which host the first galaxies that begin reionization. However, if star formation is inefficient in the haloes hosting Pop III clusters due to the photoionizing background radiation, these clusters may not be bright enough for detection by the Near-Infrared Camera which will conduct the DWS. None the less, if the stellar initial mass function (IMF) is top-heavy the clusters may have sufficiently high luminosities in both Lyα and HeII λ1640 to be detected and for constraints to be placed on the Pop III IMF. While a small fraction of DM haloes with masses as high as ~109Msolar at redshifts z <~ 4 are not enriched due to star formation in their progenitors, external metal enrichment due to galactic winds is likely to preclude Pop III star formation in a large fraction of otherwise unenriched haloes, perhaps even preventing star formation in pristine haloes altogether after reionization is complete at z ~ 6.

  18. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  19. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  20. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  1. Reddening and age for 13 southern Galactic open clusters determined from integrated spectra

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.; Torres, M. C.

    2001-10-01

    In this study we present flux-calibrated integrated spectra in the range 3800-6800 Å for 13 concentrated open clusters with Galactic longitudes between 219deg and 316deg, nine of which have not been previously studied. Using the equivalent widths of the Balmer lines and comparing the cluster spectra with template spectra of Magellanic Clouds and Galactic star clusters with known parameters, we derive both foreground interstellar reddening values and age. For nine clusters these two parameters have been determined for the first time, while for the rest of the sample the results show good agreement with previous studies. The present analysis indicates four very young (Hogg 11, NGC 5606, vdB-RN 80 and Pismis 17), seven moderately young (ESO 429-SC13, Hogg 3, Hogg 12, Haffner 7, BH 87, NGC 2368 and Bochum 12) and two intermediate-age (Berkeley 75 and NGC 2635) open clusters. The derived foreground interstellar reddening values are in the range 0.00 <= E(B-V) <= 0.38. The age and reddening distributions of the present sample of relatively faint open clusters match those of open clusters with known parameters in a 90deg sector centered at l = 270deg. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  2. Intrinsic integrated UBVRI colors of Galactic globular clusters

    NASA Technical Reports Server (NTRS)

    Reed, B. Cameron; Hesser, James E.; Shawl, Stephen J.

    1988-01-01

    Published observational data on 50 Galactic globular clusters, including spectral classifications, homogenized colors, and color excesses, are compiled in extensive tables, graphs, and diagrams and analyzed to determine the intrinsic-color/integrated-spectral-type relationship in the UBVRI system. These relationships are found to exhibit significant slopes, although the RI colors do not contribute substantially to the intrinsic-color determination. The values of a(B-V) for the northern and southern Galactic hemispheres are found to be 0.068 + or - 0.006 and 0.039 + or - 0.003 mag, respectively.

  3. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    SciTech Connect

    Geller, Aaron M.; Leigh, Nathan W. C. E-mail: nleigh@amnh.org

    2015-07-20

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binary scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.

  4. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  5. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  6. On the observability of bow shocks of Galactic runaway OB stars

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; van Marle, A.-J.; Kuiper, R.; Kley, W.

    2016-06-01

    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow-shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from nISM = 0.01 up to 10.0 cm- 3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyse them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass ( ≈ 40 M⊙) runaway stars yield H α fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow-shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at H α by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 M⊙. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 ≤ λ ≤ 50 μm which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 M⊙.

  7. Tidal evolution of globular clusters. II - The effects of Galactic tidal field and diffusion

    NASA Technical Reports Server (NTRS)

    Oh, K. S.; Lin, D. N. C.

    1992-01-01

    The tidal evolution of globular clusters subject to various degrees of the internal diffusion process is investigated. In cases of negligible diffusion, clusters are found to be tidally truncated to the theoretical tidal radius at perigalacticon. There is no apparent orbital phase dependence of the tidal radius for clusters with eccentric orbits. In clusters with moderately short two-body relaxation time scales, diffusion processes significantly modify the structure of the outer regions in such a way that the limiting radius may be comparable to the tidal radius at apogalacticon. The Galactical tidal torque induces isotropy in the velocity dispersion of the outer regions of the cluster. For relaxed clusters, the velocity dispersion may be isotropic in the core, anisotropic in the envelope and isotropic near the limiting radius. Disk shocking is also very efficient for isotropizing the orbits of stars in the outer cluster regions. Stars with direct orbits are less stable, so that prolonged tidal interaction can lead to apparent retrograde rotation in the outer regions of the cluster.

  8. Environmental regulation of cloud and star formation in galactic bars

    NASA Astrophysics Data System (ADS)

    Renaud, F.; Bournaud, F.; Emsellem, E.; Agertz, O.; Athanassoula, E.; Combes, F.; Elmegreen, B.; Kraljic, K.; Motte, F.; Teyssier, R.

    2015-12-01

    The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find that such events increase the Mach number of the cloud, leading to an enhanced star formation efficiency and finally the formation of massive stellar associations, in a fashion similar to galaxy-galaxy interactions. We highlight the role of bar dynamics in decoupling young stars from the clouds in which they form, and discuss the implications on the injection of feedback into the interstellar medium (ISM), in particular in the context of galaxy formation.

  9. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  10. Planet host stars in open clusters

    NASA Astrophysics Data System (ADS)

    Yang, XiaoLing; Chen, YuQin; Zhao, Gang

    2015-03-01

    We have compiled a list of all planet host star candidates reported in the literature, which are likely to be cluster members, and we checked their memberships by the spatial location, radial velocity, proper motion and photometric criteria. We found that only six stars, BD-13 2130, HD 28305, Kepler-66, Kepler-67, Pr0201 and Pr0211, are planet orbiting stars in open clusters to date. Two stars, HD 70573 and HD 89744, belong to moving groups and one star, TYC 8975-2606-1, may not be a planet host star, while three stars, HD 16175, HD 46375 and HD 108874 are not members of open clusters. We note that all these six planetary systems in the stellar cluster environment are younger than ˜1 Gyr, which might indicate that the planetary system in open cluster can not survive for a long time, and we speculate that close stellar encounters between member stars in open cluster can potentially destroy, or at least strongly affect, the presence of planetary systems.

  11. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  12. Establishing binarity amongst Galactic RV Tauri stars with a disc⋆

    NASA Astrophysics Data System (ADS)

    Manick, Rajeev; Van Winckel, Hans; Kamath, Devika; Hillen, Michel; Escorza, Ana

    2017-01-01

    Context. Over the last few decades it has become more evident that binarity is a prevalent phenomenon amongst RV Tauri stars with a disc. This study is a contribution to comprehend the role of binarity upon late stages of stellar evolution. Aims: In this paper we determine the binary status of six Galactic RV Tauri stars, namely DY Ori, EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933, and TW Cam, which are surrounded by a dusty disc. The radial velocities are contaminated by high-amplitude pulsations. We disentangle the pulsations from the orbital signal in order to determine accurate orbital parameters. We also place them on the HR diagram, thereby establishing their evolutionary nature. Methods: We used high-resolution spectroscopic time series obtained from the HERMES and CORALIE spectrographs mounted on the Flemish Mercator and Swiss Leonhard Euler Telescopes, respectively. An updated ASAS/AAVSO photometric time series is analysed to complement the spectroscopic pulsation search and to clean the radial velocities from the pulsations. The pulsation-cleaned orbits are fitted with a Keplerian model to determine the spectroscopic orbital parameters. We also calibrated a PLC relationship using type II cepheids in the LMC and apply the relation to our Galactic sample to obtain accurate distances and hence luminosities. Results: All six of the Galactic RV Tauri stars included in this study are binaries with orbital periods ranging between 650 and 1700 days and with eccentricities between 0.2 and 0.6. The mass functions range between 0.08 to 0.55 M⊙ which points to an unevolved low-mass companion. In the photometric time series we detect a long-term variation on the timescale of the orbital period for IRAS 17038-4815, IRAS 09144-4933, and TW Cam. Our derived stellar luminosities indicate that all except DY Ori and EP Lyr are post-AGB stars. DY Ori and EP Lyr are likely examples of the recently discovered dusty post-RGB stars. Conclusions: The orbital parameters

  13. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  14. A flux-limited sample of Galactic carbon stars

    NASA Technical Reports Server (NTRS)

    Claussen, M. J.; Kleinmann, S. G.; Joyce, R. R.; Jura, M.

    1987-01-01

    Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implying a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs.

  15. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Tokovinin, Andrei A.

    2006-02-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=195). Improvements in detector technology will allow for the detection of companions missed before as well as systems which may have been closer than the resolution limit in 1994. We will also make a first high-resolution inspection of the additional O stars (N=108) in the recent Galactic O Star Catalog of Maiz- Apellaniz & Walborn (2004). Further, we propose to investigate several additional samples of interesting objects, including 15 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars masses are presently known for only twelve pairs), and 56 multiple stars for a study of their co- planarity statistics.

  16. The chemical composition of young galactic clusters and associations

    NASA Astrophysics Data System (ADS)

    Brown, P. J. F.

    1986-09-01

    Spectroscopic and photometric data for main-sequence stars in the southern clusters NGC 2362, 3293, 4755, 6611, 6231, 6531, IC 2944, the Northern Hemisphere clusters h and Chi Per, Cep OBIII, Be 94, and a loose association obtained between April 1984-September 1985 using the South African Astronomical Observatory, Anglo-Australian, and Issac Newton telescopes are analyzed. The observed line strength and photometric data are compared with predictions derived using local thermodynamic equilibrium radiative-transfer codes. It is observed that, except for the stars of NGC 6611, the effective temperatures and gravities correlate well. Mean abundances for the southern clusters are derived and compared with the data of Lynga (1981); the good agreement between the average abundance for each cluster and those for normal objects indicate that the stars in this region formed from relatively homogeneous interstellar material.

  17. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  18. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    SciTech Connect

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C. E-mail: ndario@ufl.edu

    2015-01-10

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ{sub ADP,} {sub N}. We find statistically significant correlation between δ{sub ADP,} {sub N} and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  19. Tidal Densities of Globular Clusters and the Galactic Mass Distribution

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok

    1990-12-01

    The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink(1985), we find that such reduction from observed values would make the tidal density(the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

  20. PROJECTED ROTATIONAL VELOCITIES AND STELLAR CHARACTERIZATION OF 350 B STARS IN THE NEARBY GALACTIC DISK

    SciTech Connect

    Braganca, G. A.; Daflon, S.; Cunha, K.; Bensby, T.; Oey, M. S.; Walth, G.

    2012-11-01

    Projected rotational velocities (v sin i) are presented for a sample of 350 early B-type main-sequence stars in the nearby Galactic disk. The stars are located within {approx}1.5 kpc from the Sun, and the great majority within 700 pc. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5 m telescope at the Las Campanas Observatory in Chile. Spectral types were estimated based on relative intensities of some key line absorption ratios and comparisons to synthetic spectra. Effective temperatures were estimated from the reddening-free Q index, and projected rotational velocities were then determined via interpolation on a published grid that correlates the synthetic FWHM of the He I lines at 4026, 4388 and 4471 A with v sin i. As the sample has been selected solely on the basis of spectral types, it contains a selection of B stars in the field, in clusters, and in OB associations. The v sin i distribution obtained for the entire sample is found to be essentially flat for v sin i values between 0 and 150 km s{sup -1}, with only a modest peak at low projected rotational velocities. Considering subsamples of stars, there appears to be a gradation in the v sin i distribution with the field stars presenting a larger fraction of the slow rotators and the cluster stars distribution showing an excess of stars with v sin i between 70 and 130 km s{sup -1}. Furthermore, for a subsample of potential runaway stars we find that the v sin i distribution resembles the distribution seen in denser environments, which could suggest that these runaway stars have been subject to dynamical ejection mechanisms.

  1. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids

    NASA Astrophysics Data System (ADS)

    Yong, David; Carney, Bruce W.; Teixera de Almeida, Maria Luísa; Pohl, Brian L.

    2006-04-01

    We present metallicities, [Fe/H], and elemental abundance ratios, [X/Fe], for a sample of 24 Cepheids in the outer Galactic disk based on high-resolution echelle spectra. The sample members have galactocentric distances covering 12 kpc<=RGC<=17.2 kpc, making them the most distant Galactic Cepheids upon which detailed abundance analyses have been performed. We find subsolar ratios of [Fe/H] and overabundances of [α/Fe], [La/Fe], and [Eu/Fe] in the program stars. All abundance ratios exhibit a dispersion that exceeds the measurement uncertainties. As seen in our previous studies of old open clusters and field giants, enhanced ratios of [α/Fe] and [Eu/Fe] reveal that recent star formation has taken place in the outer disk with Type II supernovae preferentially contributing ejecta to the interstellar medium and with Type Ia supernovae playing only a minor role. The enhancements for La suggest that asymptotic giant branch stars have contributed to the chemical evolution of the outer Galactic disk. Some of the young Cepheids are more metal-poor than the older open clusters and field stars at comparable galactocentric distances. This demonstrates that the outer disk is not the end result of the isolated evolution of an ensemble of gas and stars. We showed previously that the older open clusters and field stars reached a basement metallicity at about 10-11 kpc. The younger Cepheids reach the same metallicity but at larger galactocentric distances, roughly 14 kpc. This suggests that the Galactic disk has been growing with time, as predicted from numerical simulations. The outer disk Cepheids appear to exhibit a bimodal distribution for [Fe/H] and [α/Fe]. Most of the Cepheids continue the trends with galactocentric distance exhibited by S. M. Andrievsky's larger Cepheid sample, and we refer to these stars as the ``Galactic Cepheids.'' A minority of the Cepheids show considerably lower [Fe/H] and higher [α/Fe], and we refer to these stars as the ``Merger Cepheids.'' One

  2. Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Benedict, G. Fritz; McArthur, B. E.

    2011-04-01

    We present new absolute trigonometric parallaxes and proper motions for seven Pop II variable stars: the five RR Lyr stars; RZ Cep, XZ Cyg, SU Dra, RR Lyr, UV Oct; and two W Vir Pop II Cepheids; VY Pyx and kappa Pav. We obtain these results with astrometric data from Fine Guidance Sensor 1r, a white-light interferometer on Hubble Space Telescope. We measure absolute parallaxes with an average precision, 6.6%. Using these parallaxes we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Considering only the RR Lyr stars, we use these absolute magnitudes to construct a K-band Leavitt Law (Period-Luminosity relation) and a Galactic Mv-[Fe/H] relation. We employ these relations to determine independent distances to the LMC and several globular clusters. For the LMC our K-band distance modulus from RR Lyr stars agrees within the errors with a previous value derived by us from Galactic Cepheids, uncorrected for metallicity. These results are based on observations made through grants GO-11211 and GO-11789 administered through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  3. Galactic bulge X-ray burst sources from disrupted globular clusters?

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.

    1985-01-01

    The origin of the bright galactic bulge X-ray sources, or GX sources, is unclear despite intensive study for the past 15 years. It is suggested that the fact that many (or most) of the GX sources are X-ray burst sources (GXRBS) and are otherwise apparently identical to the luminous X-ray sources found in globular cluster cores implies that they too may have a globular cluster origin. The possibility that the compact X-ray binaries found in globulars are ejected is constrained by observations of CVs in and out of clusters. The GXRBS are instead hypothesized to have been formed by capture processes in globular clusters which have now largely been disrupted by repeated tidal stripping and shocking in the galactic plane. A statistical analysis of the 12 GXRBS which have precise positions from Einstein and/or optical (or radio) observations indicate that it is probably significant that a bright, of less than about 19, G or K star is found within the error circle (3 arcmin radius) in four cases. These may be surviving giants in a disrupted globular cluster core. Implications for globular cluster evolution and the GXRBS themselves are discussed.

  4. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon

  5. The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    SciTech Connect

    Lee, Y.S.; Beers, T.C.; Sivarani, T.; Johnson, J.A.; An, D.; Wilhelm, R.; Prieto, C.Allende; Koesterke, L.; Re Fiorentin, P.; Bailer-Jones, C.A.L.; Norris, J.E.

    2007-10-01

    The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.

  6. Variable Circumstellar Disks of Classical Be Stars in Clusters

    NASA Astrophysics Data System (ADS)

    Gerhartz, C.; Bjorkman, K. S.; Bjorkman, J. E.; Wisniewski, J. P.

    2016-11-01

    Circumstellar disks are common among many stars, at most spectral types, and at different stages of their lifetimes. Among the near-main-sequence classical Be stars, there is growing evidence that these disks form, dissipate, and reform on timescales that differ from star to star. Using data obtained with the Large Monolithic Imager (LMI) at the Lowell Observatory Discovery Channel Telescope (DCT), along with additional complementary data obtained at the University of Toledo Ritter Observatory (RO), we have begun a long-term monitoring project of a well-studied set of galactic star clusters that are known to contain Be stars. Our goal is to develop a statistically significant sample of variable circumstellar disk systems over multiple timescales. With a robust multi-epoch study we can determine the relative fraction of Be stars that exhibit disk-loss or disk-renewal phases, and investigate the range of timescales over which these events occur. A larger sample will improve our understanding of the prevalence and nature of the disk variability, and may provide insight about underlying physical mechanisms.

  7. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Van Loon, J. Th.

    2011-04-01

    Dust production among post-main-sequence stars is investigated in the Galactic globular cluster 47 Tucanae (NGC 104) based on infrared photometry and spectroscopy. We identify metallic iron grains as the probable dominant opacity source in these winds. Typical evolutionary timescales of asymptotic giant branch stars suggest the mass-loss rates we report are too high. We suggest that this is because the iron grains are small or elongated and/or that iron condenses more efficiently than at solar metallicity. Comparison to other works suggests metallic iron is observed to be more prevalent toward lower metallicities. The reasons for this are explored, but remain unclear. Meanwhile, the luminosity at which dusty mass loss begins is largely invariant with metallicity, but its presence correlates strongly with long-period variability. This suggests that the winds of low-mass stars have a significant driver that is not radiation pressure, but may be acoustic driving by pulsations.

  8. Bayesian Analysis and Characterization of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Stenning, David; Sarajedini, Ata; von Hippel, Ted; van Dyk, David A.; Robinson, Elliot; Stein, Nathan; Jefferys, William H.; BASE-9, HST UVIS Globular Cluster Treasury Program

    2017-01-01

    Globular clusters have long been important tools to unlock the early history of galaxies. Thus, it is crucial we understand the formation and characteristics of the globular clusters (GCs) themselves. Historically, GCs were thought to be simple and largely homogeneous populations, formed via collapse of a single molecular cloud. However, this classical view has been overwhelmingly invalidated by recent work. It is now clear that the vast majority of globular clusters in our Galaxy host two or more chemically distinct populations of stars, with variations in helium and light elements at discrete abundance levels. No coherent story has arisen that is able to fully explain the formation of multiple populations in globular clusters nor the mechanisms that drive stochastic variations from cluster to cluster.We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of 0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster. We also find that the proportion of the first population of stars increases with mass. Our results are examined in the context of proposed globular cluster formation scenarios.

  9. Manganese Abundances in Globular Cluster and Halo Field Stars

    NASA Astrophysics Data System (ADS)

    Sobeck, J. S.; Simmerer, J. A.; Fulbright, J. P.; Sneden, C.; Kraft, R. P.; Ivans, I. I.

    2004-05-01

    We have derived Mn abundances for more than 100 stars in nine Galactic globular clusters: M3, M4, M5, M10, M13, M15, M71, Pal5 and NGC 7006. In addition, Mn abundance determinations have been made for a comparable number of halo field stars possessing an overlapping range of metallicities and stellar parameters. The spectra of the cluster giants were obtained as a part of the Lick-Texas investigations into globular cluster chemistry. The spectra of the field stars are a part of a large study by Simmerer et al. (2004, ApJ, submitted). Data were collected at the McDonald, Lick ,and Keck Observatories and were analyzed using the synthetic spectra of the 6000 Å Mn I triplet. Hyperfine structure parameters were included in the synthetic spectra computations. It is well known that metal-poor field stars possess [Mn/Fe] ratios approximately a factor of two lower than solar values (Wallerstein et al. 1963, Gratton et al.1989, McWilliam et al. 1997). Our analysis shows that for the metallicity range -0.5 > [Fe/H] > -2.8 field stars have a mean relative abundance of <[Mn/Fe]> = -0.28±0.01 (sigma = 0.08), a value esssentially identical to that of the nine globular clusters: <[Mn/Fe]> = -0.28±0.01 (sigma = 0.12). It is evident that [Mn/Fe] ratios of metal-poor stars do not depend upon their environment. Our Mn abundance results viewed in conjunction with the globular cluster Cu abundances of Simmerer et al. (2003) suggest the following possibilities: one, the production of these elements is extremely metallicity-dependent or two, these elements were manufactured in the Galactic halo prior to cluster formation. Ongoing support from NSF, currently through grants AST-0307495 to CS and AST-0098453 to RPK, is gratefully acknowledged. Research for III is currently supported by NASA through Hubble Fellowship grant HST-HF-01151.01-A from the Space Telescope Science Institute.

  10. F Turnoff Distribution in the Galactic Halo Using Globular Clusters as Proxies

    NASA Astrophysics Data System (ADS)

    Newby, Matthew; Newberg, H. J.; Simones, J.; Monaco, M.; Cole, N.

    2012-01-01

    F turnoff stars are important tools for studying Galactic halo substructure because they are plentiful, luminous, and can be easily selected by their photometric colors from large surveys such as the Sloan Digital Sky Survey (SDSS). We describe the absolute magnitude distribution of color-selected F turnoff stars, as measured from SDSS data, for eleven globular clusters in the Milky Way halo. We find that the absolute magnitude distribution of turnoff stars is intrinsically the same for all clusters studied, and is well fit by two half Gaussian functions, centered at μ = 4.18, with a bright-side σ = 0.36, and with a faint-side σ = 0.76. However, the color errors and detection efficiencies cause the observed σ of the faint-side Gaussian to change with magnitude due to contamination from redder main sequence stars (40% at 21st magnitude). We present a function that will correct for this magnitude-dependent change in selected stellar populations, when calculating stellar density from color-selected turnoff stars. We also present a consistent set of distances, ages and metallicities for eleven clusters in the SDSS Data Release 7. We calculate a linear correction function to Padova isochrones so that they are consistent with SDSS globular cluster data from previous papers. We show that our cluster population falls along the theoretical Age-Metallicity Relationship (AMR), and further find that isochrones for stellar populations on the AMR have very similar turnoffs; increasing metallicity and decreasing age conspire to produce similar turnoff magnitudes and colors for all old clusters that lie on the AMR. This research was supported by NSF grant AST 10-09670 and the NASA/NY Space Grant.

  11. The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge.

    PubMed

    Ferraro, F R; Dalessandro, E; Mucciarelli, A; Beccari, G; Rich, R M; Origlia, L; Lanzoni, B; Rood, R T; Valenti, E; Bellazzini, M; Ransom, S M; Cocozza, G

    2009-11-26

    Globular star clusters are compact and massive stellar systems old enough to have witnessed the entire history of our Galaxy, the Milky Way. Although recent results suggest that their formation may have been more complex than previously thought, they still are the best approximation to a stellar population formed over a relatively short timescale (less than 1 Gyr) and with virtually no dispersion in the iron content. Indeed, only one cluster-like system (omega Centauri) in the Galactic halo is known to have multiple stellar populations with a significant spread in iron abundance and age. Similar findings in the Galactic bulge have been hampered by the obscuration arising from thick and varying layers of interstellar dust. Here we report that Terzan 5, a globular-cluster-like system in the Galactic bulge, has two stellar populations with different iron contents and ages. Terzan 5 could be the surviving remnant of one of the primordial building blocks that are thought to merge and form galaxy bulges.

  12. Proper Motions and Structural Parameters of the Galactic Globular Cluster M71

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Dalessandro, E.; Ferraro, F. R.; Miocchi, P.; Lanzoni, B.; Pallanca, C.; Massari, D.

    2017-02-01

    By exploiting two ACS/HST data sets separated by a temporal baseline of ∼7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources. Based on observations collected with the NASA/ESA HST (GO10775, GO12932), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  13. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  14. A comparison of evolutionary tracks for single Galactic massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Palacios, A.

    2013-12-01

    Context. The evolution of massive stars is not fully understood. The relation between different types of evolved massive stars is not clear, and the role of factors such as binarity, rotation or magnetism needs to be quantified. Aims: Several groups make available the results of 1D single stellar evolution calculations in the form of evolutionary tracks and isochrones. They use different stellar evolution codes for which the input physics and its implementation varies. In this paper, we aim at comparing the currently available evolutionary tracks for massive stars. We focus on calculations aiming at reproducing the evolution of Galactic stars. Our main goal is to highlight the uncertainties on the predicted evolutionary paths. Methods: We compute stellar evolution models with the codes MESA and STAREVOL. We compare our results with those of four published grids of massive stellar evolution models (Geneva, STERN, Padova and FRANEC codes). We first investigate the effects of overshooting, mass loss, metallicity, chemical composition. We subsequently focus on rotation. Finally, we compare the predictions of published evolutionary models with the observed properties of a large sample of Galactic stars. Results: We find that all models agree well for the main sequence evolution. Large differences in luminosity and temperatures appear for the post main sequence evolution, especially in the cool part of the Hertzsprung-Russell (HR) diagram. Depending on the physical ingredients, tracks of different initial masses can overlap, rendering any mass estimate doubtful. For masses between 7 and 20 M⊙, we find that the main sequence width is slightly too narrow in the Geneva models including rotation. It is (much) too wide for the (STERN) FRANEC models. This conclusion is reached from the investigation of the HR diagram and from the evolution of the surface velocity as a function of surface gravity. An overshooting parameter α between 0.1 and 0.2 in models with rotation is

  15. Probing the Birth of Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2009-05-01

    Super star clusters are among the most extreme star formation environments known; they have incredible stellar densities, and each can harbor thousands of massive stars within radii of only a few parsecs. The most robust of these clusters may even be precursors to the ancient globular clusters ubiquitous around massive galaxies in the local universe today. Understanding the formation and feedback of super star clusters has the potential to provide us with insight into the evolution of starburst episodes throughout the universe. At present the relationship between the local physical conditions and the voracity of star formation is not well-constrained. Some progress has been made: over the last decade, a number of natal super star clusters have been discovered, providing us with a glimpse into their early evolution. However, the set of existing observations is anemic, and our current physical model for these natal clusters in simplistic. I will overview what we think we know about these objects based on existing observations and outline some of the most significant gaps in our current understanding.

  16. Variable stars in the VVV globular clusters. I. 2MASS-GC 02 and Terzan 10

    SciTech Connect

    Alonso-García, Javier; Dékány, István; Catelan, Márcio; Ramos, Rodrigo Contreras; Gran, Felipe; Leyton, Paul; Minniti, Dante; Amigo, Pía E-mail: idekany@astro.puc.cl E-mail: rcontrer@astro.puc.cl E-mail: pia.amigo@uv.cl E-mail: dante@astrofisica.cl

    2015-03-01

    The VISTA Variables in the Vía Láctea (VVV) ESO Public Survey is opening a new window to study inner Galactic globular clusters (GCs) using their variable stars. These GCs have been neglected in the past due to the difficulties caused by the presence of elevated extinction and high field stellar densities in their lines of sight. However, the discovery and study of any present variables in these clusters, especially RR Lyrae stars, can help to greatly improve the accuracy of their physical parameters. It can also help to shed some light on the questions raised by the intriguing Oosterhoff dichotomy in the Galactic GC system. In a series of papers we plan to explore variable stars in the GCs falling inside the field of the VVV survey. In this first paper, we search for and study the variables present in two highly reddened, moderately metal-poor, faint, inner Galactic GCs: 2MASS-GC 02 and Terzan 10. We report the discovery of sizable populations of RR Lyrae stars in both GCs. We use near-infrared period–luminosity relations to determine the color excess of each RR Lyrae star, from which we obtain both accurate distances to the GCs and the ratios of the selective-to-total extinction in their directions. We find the extinction toward both clusters to be elevated, non-standard, and highly differential. We also find both clusters to be closer to the Galactic center than previously thought, with Terzan 10 being on the far side of the Galactic bulge. Finally, we discuss their Oosterhoff properties, and conclude that both clusters stand out from the dichotomy followed by most Galactic GCs.

  17. Open cluster Dolidze 25: Stellar parameters and the metallicity in the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Simón-Díaz, S.; Lorenzo, J.; Castro, N.; Herrero, A.

    2015-12-01

    Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between -0.5 and -0.7 dex below solar. Aims: We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods: We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results: We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions: The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity. Based on observations made with the Nordic Optical Telescope, the Mercator Telescope, and the telescopes of the Isaac Newton Group.

  18. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  19. Integrated spectral properties of 22 small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.

    2007-10-01

    Aims:Flux-calibrated integrated spectra of a sample of 22 Galactic open clusters of small angular diameter are presented. With one exception (ESO 429-SC2), all objects have Galactic longitudes in the range 208° < l < 33°. The spectra cover the range ≈3600-6800 Å, with a resolution of ≈14 Å. The properties of the present cluster sample are compared with those of well-studied clusters located in two 90° sectors, centred at l = 257° and l = 347°. The dissolution rate of Galactic open clusters in these two sectors is examined. Methods: Using the equivalent widths of the Balmer lines and comparing line intensities and continuum distribution of the cluster spectra with those of template cluster spectra with known properties, we derive both foreground reddening values and ages. Thus, we provide information independent of that determined through colour-magnitude diagrams. Results: The derived E(B-V) values for the whole sample vary from 0.0 in ESO 445-SC74 to 1.90 in Pismis 24, while the ages range from ~3 Myr (NGC 6604 and BH 151) to ~3.5 Gyr (Ruprecht 2). For six clusters (Dolidze 34, ESO 429-SC2, ESO 445-SC74, Ruprecht 2, BH 151 and Hogg 9) the foreground E(B-V) colour excesses and ages are determined for the first time. The results obtained for the remaining clusters show, in general terms, good agreement with previous photometric results. Conclusions: The age and reddening distributions of the present sample match those of known clusters in the two selected Galactic sectors. The present results would favour a major dissolution rate of star clusters in these two sectors. Two new solar-metallicity templates are defined corresponding to the age groups of (4-5) Myr and 30 Myr among those of Piatti et al. (2002, MNRAS, 335, 233). The Piatti et al. templates of 20 Myr and (3-4) Gyr are here redefined. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y T

  20. UBVR POLARIMETRY OF EVOLVED CARBON STARS NEAR THE GALACTIC EQUATOR

    SciTech Connect

    Lopez, J. M.; Hiriart, D. E-mail: hiriart@astrosen.unam.mx

    2011-07-15

    We present polarimetry and photometry in the UBVR bands of nine low Galactic latitude carbon stars (|b{sup II} | {<=} 15{sup 0}) over a period of one year: V384 Per, ST Cam, S Aur, CL Mon, HV Cas, Y Tau, TT Cyg, U Cyg, and V1426 Cyg. We have corrected the observed values for the effects of extinction and polarization by the interstellar medium to obtain the intrinsic polarization and photometry of the stars. All the observed objects present polarization in at least two bands. There is a statistical correlation between the temporal mean polarization (p) at each filter band and the IR color K - [12] with the redder stars tending to be more polarized. A related trend is found between polarization and mass-loss rate in gas. The degree of polarization increases with the mass-loss rate at around M-dot{sub gas}{approx}3.6x10{sup -7} M{sub sun} yr{sup -1}. We found two stars-TT Cyg and ST Cam-that increase polarization with decreasing mass-loss rate below this value. Multiple observations of TT Cyg, U Cyg, and V1426 Cyg during the campaign show no correlation between polarization and luminosity in any of the UBVR bands. Therefore, the distribution of the scatterers shall vary with time in a very irregular way.

  1. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  2. THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER

    SciTech Connect

    Pfuhl, O.; Fritz, T. K.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Ott, T.; Dodds-Eden, K.; Zilka, M.; Sternberg, A.; Maness, H.

    2011-11-10

    We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1 pc from Sgr A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic center (GC) so far, probing the number of B9/A0 main-sequence stars (2.2-2.8 M{sub sun}) in two deep fields. From spectrophotometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find (1) that the average nuclear star formation rate dropped from an initial maximum {approx}10 Gyr ago to a deep minimum 1-2 Gyr ago and increased again during the last few hundred Myrs, (2) that roughly 80% of the stellar mass formed more than 5 Gyr ago, and (3) that mass estimates within R {approx} 1 pc from Sgr A* favor a dominant star formation mode with a 'normal' Chabrier/Kroupa initial mass function for the majority of the past star formation in the GC. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence were much smaller than today.

  3. Radial variation in the stellar mass functions of star clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2016-12-01

    A number of recent observational studies of Galactic globular clusters have measured the variation in the slope of a cluster's stellar mass function α with clustercentric distance r. In order to gather a deeper understanding of the information contained in such observations, we have explored the evolution of α(r) for star clusters with a variety of initial conditions using a large suite of N-body simulations. We have specifically studied how the time evolution of α(r) is affected by initial size, mass, binary fraction, primordial mass segregation, black hole retention, an external tidal field, and the initial mass function itself. Previous studies have shown that the evolution of αG is closely related to the amount of mass-loss suffered by a cluster. Hence, for each simulation, we have also followed the evolution of the slope of the cluster's global stellar mass function, αG, and have shown that clusters follow a well-defined track in the αG-dα(r)/d(ln(r/rm)) plane. The location of a cluster on the αG-dα(r)/d(ln(r/rm)) plane can therefore constrain its dynamical history and, in particular, constrain possible variations in the stellar initial mass function. The αG-dα(r)/d(ln(r/rm)) plane thus serves as a key tool for fully exploiting the information contained in wide-field studies of cluster stellar mass functions.

  4. Open and Globular Cluster Distances for Extragalactic, Galactic, and Stellar Astrophysics

    NASA Technical Reports Server (NTRS)

    Worthey, Guy S.

    2004-01-01

    One of the hallmarks of SIM's few-milliarcsecond astrometric precision is its ability to obtain accurate parallax measurements across more than half of the Galaxy. The "open and globular" project obtains parallax distances to a set of star clusters. One important, goal is to pinpoint the zeropoint of the distance scale for main-sequence fitting. Another goal is to improve stellar evolutionary isochrones and integrated light models. Another goal is to use the clusters themselves to address unsolved problems of late-stage stellar evolution and Galactic and extragalactic chemical evolution. The clusters to be observed are chosen to span the widest possible range of abundance and age, to be as rich as possible, and to be as well-studied as possible.

  5. Towards Realistic Modeling of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  6. Structural and Dynamical Properties of 29 Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Jong; Chun, Mun-Suk; Yim, Hong-Suh; Byun, Yong-Ik

    1997-12-01

    We use B band CCD images to investigate the surface brightness distributions and dynamical properties of 29 Galactic globular clusters. Model fits suggest that 22 clusters show King type surface brightness profiles, while 7 clusters are characterized by power law cusp profiles. For the King type clusters, concentration parameters (c = log(rt =rc)) range from 1.20 to 2.10, and core radii are 0.4 to 1.9 pc. The mean value of power law slopes of 7 cuspy clusters was estimated as ¥á = 1.011 +/- 0.065. Total masses of King type globular clusters are in the range of 1.7 x 104M to 1.0 x 106M with a mean of 1.7 x 105M . A significant positive correlation between mass and mass-to-light ratio of King type globular clusters has been confirmed with a Pearson's correlation coefficient r = 0.52 and a confidence level of 99%. Our data also confirm a linear relation between total mass and absolute magnitude of King type globular clusters.

  7. Evolution of star cluster systems in isolated galaxies: first results from direct N-body simulations

    NASA Astrophysics Data System (ADS)

    Rossi, L. J.; Bekki, K.; Hurley, J. R.

    2016-11-01

    The evolution of star clusters is largely affected by the tidal field generated by the host galaxy. It is thus in principle expected that under the assumption of a `universal' initial cluster mass function the properties of the evolved present-day mass function of star cluster systems should show a dependence on the properties of the galactic environment in which they evolve. To explore this expectation, a sophisticated model of the tidal field is required in order to study the evolution of star cluster systems in realistic galaxies. Along these lines, in this work we first describe a method developed for coupling N-body simulations of galaxies and star clusters. We then generate a data base of galaxy models along the Hubble sequence and calibrate evolutionary equations to the results of direct N-body simulations of star clusters in order to predict the clusters' mass evolution as function of the galactic environment. We finally apply our methods to explore the properties of evolved `universal' initial cluster mass functions and any dependence on the host galaxy morphology and mass distribution. The preliminary results show that an initial power-law distribution of the masses `universally' evolves into a lognormal distribution, with the properties correlated with the stellar mass and stellar mass density of the host galaxy.

  8. Near-infrared spectroscopy of candidate red supergiant stars in clusters

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Zhu, Qingfeng; Ivanov, Valentin D.; Figer, Donald F.; Davies, Ben; Menten, Karl M.; Kudritzki, Rolf P.; Chen, C.-H. Rosie

    2014-11-01

    Context. Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. Aims: We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. Methods: We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks< 7 mag) in GLIMPSE and 2MASS images. Results: A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 M⊙ to 15 M⊙. Two red supergiants are located at Galactic coordinates (l,b) = (16.°7, -0.°63) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b) = (49.°3, + 0.°72) and at a distance of ~7.0 kpc. Conclusions: Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps. Based on observations collected at the European Southern Observatory (ESO Programme 60.A-9700(E), and 089.D-0876), and on observations collected at the UKIRT telescope (programme ID H243NS).MM is currently employed by the MPIfR. Part of this work was performed at RIT (2009), at ESA (2010), and at the MPIfR.Tables 3, 4, and 6 are available in electronic form at http://www.aanda.org

  9. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - IX. The Atlas of multiple stellar populations

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Piotto, G.; Renzini, A.; Marino, A. F.; Bedin, L. R.; Vesperini, E.; D'Antona, F.; Nardiello, D.; Anderson, J.; King, I. R.; Yong, D.; Bellini, A.; Aparicio, A.; Barbuy, B.; Brown, T. M.; Cassisi, S.; Ortolani, S.; Salaris, M.; Sarajedini, A.; van der Marel, R. P.

    2017-01-01

    We use high-precision photometry of red-giant-branch (RGB) stars in 57 Galactic globular clusters (GCs), mostly from the `Hubble Space Telescope (HST) UV Legacy Survey of Galactic GCs', to identify and characterize their multiple stellar populations. For each cluster the pseudo-two-colour diagram (or `chromosome map') is presented, built with a suitable combination of stellar magnitudes in the F275W, F336W, F438W, and F814W filters that maximizes the separation between multiple populations. In the chromosome map of most GCs (type-I clusters), stars separate in two distinct groups that we identify with the first (1G) and the second generation (2G). This identification is further supported by noticing that 1G stars have primordial (oxygen-rich, sodium-poor) chemical composition, whereas 2G stars are enhanced in sodium and depleted in oxygen. This 1G-2G separation is not possible for a few GCs where the two sequences have apparently merged into an extended, continuous sequence. In some GCs (type-II clusters) the 1G and/or the 2G sequences appear to be split, hence displaying more complex chromosome maps. These clusters exhibit multiple subgiant branches (SGBs) also in purely optical colour-magnitude diagrams, with the fainter SGB joining into a red RGB which is populated by stars with enhanced heavy-element abundance. We measure the RGB width by using appropriate colours and pseudo-colours. When the metallicity dependence is removed, the RGB width correlates with the cluster mass. The fraction of 1G stars ranges from ˜8 per cent to ˜67 per cent and anticorrelates with the cluster mass, indicating that incidence and complexity of the multiple population phenomenon both increase with cluster mass.

  10. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  11. Ruprecht 3: An old star cluster remnant?

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2003-02-01

    2MASS J and H photometry and integrated spectroscopy are employed to study the nature of the poorly populated compact concentration of stars Ruprecht 3, which was previously catalogued as an open cluster. The integrated spectrum remarkably resembles that of a moderately metal-rich globular cluster. The distribution of the object stars in the colour-magnitude diagram is compatible with that of a 1.5 +/- 0.5 Gyr open cluster or older, depending on whether the bluer stars are interpreted as turnoff stars or blue stragglers, respectively. We derive for the object a distance from the Sun dsun = 0.72 +0.04-0.03 kpc and a colour excess E(B-V) = 0.04. Although a globular cluster remnant cannot be ruled out, the integrated spectrum resemblance to that of a globular cluster probably reflects a stochastic effect owing to the few brighter stars. The structural and photometric properties of Ruprecht 3 are compatible with what would be expected for an intermediate-age open cluster remnant. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  12. Chemical Compositions of Stars in Globular Cluster NGC 2419

    NASA Astrophysics Data System (ADS)

    Kadakia, Shimonee; Smecker-Hane, T.; Bosler, T.

    2007-05-01

    We determine the chemical abundances of 19 red giant branch stars in the Galactic globular cluster NGC 2419. Lying at a distance of 84.2 kpc and a galactocentric distance of 91.5 kpc, NGC 2419 is the fourth brightest globular cluster in the Milky Way with a total magnitude of M_V = -9.6 mag, which is significantly brighter than M_V = -7.5 mag, the typical peak of the globular cluster luminosity functions in external galaxies. Our results will give an insight of whether NGC 2419 is in fact a globular cluster or a core of a disrupted galaxy that merged with the Milky Way. We have used IRAF to reduce spectra we have taken with the DEIMOS spectrograph on the the Keck I 10-meter telescope. Using the strengths of the Ca II triplet absorption lines at approximately 8600 Angstrom, we will determine the chemical abundance of each star. If the chemical abundances differ by significantly more than the observational errors would predict then we can conclude the cluster is a remnant of the core of a galaxy that merged with the Milky Way and not a normal globular cluster, because most globular clusters formed quickly from a well mixed gas cloud, and thus their stars have nearly identical ages and chemical compositions. We gratefully acknowledge financial support from a UROP grant to SK and NSF grant AST-0307863 to TSH. These data were obtained at the Keck Observatory, operated by the California Inst. of Technology, Univ. of California and NASA and made possible by generous financial support from the W.M. Keck Foundation.

  13. On the rotation of nuclear star clusters formed by cluster inspirals

    NASA Astrophysics Data System (ADS)

    Tsatsi, Athanasia; Mastrobuono-Battisti, Alessandra; van de Ven, Glenn; Perets, Hagai B.; Bianchini, Paolo; Neumayer, Nadine

    2017-01-01

    Nuclear star clusters (NSCs) are commonly observed in the centres of most galactic nuclei, including our own Milky Way (MW). While their study can reveal important information about the build-up of the innermost regions of galaxies, the physical processes that regulate their formation are still poorly understood. NSCs might have been formed through gas infall and subsequent in situ star formation, and/or through the infall and merging of multiple star clusters into the centre of the galaxy. Here, we investigate the viability of the latter, by studying direct N-body simulations of inspiralling clusters to the centre of an MW-like nuclear bulge that hosts a massive black hole. We find that the NSC formed through this process can show both morphological and kinematical properties that make it comparable with observations of the MW NSC, including significant rotation - a fact that has so far been attributed mainly to gas infall. We explore its kinematic evolution to see if and how the merger history can imprint fossil records on its dynamical structure. Moreover, we study the effect of stellar foreground contamination in the line-of-sight kinematics of the NSC. Our study shows that no fine tuning of the orientation of the infalling globular clusters is necessary to result in a rotating NSC. We suggest that cluster inspiral is a viable mechanism for the formation of rotating NSCs.

  14. Li abundances in F stars: planets, rotation, and Galactic evolution

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Bertrán de Lis, S.; Adibekyan, V. Zh.; Sousa, S. G.; Figueira, P.; Mortier, A.; González Hernández, J. I.; Tsantaki, M.; Israelian, G.; Santos, N. C.

    2015-04-01

    explored the Li evolution with [Fe/H] taking advantage of the metal-rich stars included in our sample. We find that Li abundance reaches its maximum around solar metallicity, but decreases in the most metal-rich stars, as predicted by some models of Li Galactic production. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES and SARG spectrographs at the 2.5 m NOT and the 3.6 m TNG, respectively, both at La Palma (Canary Islands, Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  15. Symbiotic stars and other Hα emission-line stars towards the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Miszalski, Brent; Mikołajewska, Joanna; Udalski, Andrzej

    2013-07-01

    Symbiotic stars are interacting binaries with the longest orbital periods, and their multicomponent structure makes them rich astrophysical laboratories. The accretion of a high-mass-loss-rate red giant wind on to a white dwarf (WD) makes them promising Type Ia supernova (SN Ia) progenitors. Systematic surveys for new Galactic symbiotic stars are critical to identify new promising SN Ia progenitors (e.g. RS Oph) and to better estimate the total population size to compare against SN Ia rates. Central to the latter objective is building a complete census of symbiotic stars towards the Galactic bulge. Here we report on the results of a systematic survey of Hα emission-line stars covering 35 deg2. It is distinguished by the combination of deep optical spectroscopy and long-term light curves that improve the certainty of our classifications. A total of 20 bona fide symbiotic stars are found (13 S-types, 6 D-types and 1 D'-type), 35 per cent of which show the symbiotic specific Raman-scattered O VI emission bands, as well as 15 possible symbiotic stars that require further study (six S-types and nine D-types). Light curves show a diverse range of variability including stellar pulsations (semi-regular and Mira), orbital variations and slow changes due to dust. Orbital periods are determined for five S-types and Mira pulsation periods for three D-types. The most significant D-type found is H1-45 and its carbon Mira with a pulsation period of 408.6 d, corresponding to an estimated period-luminosity relation distance of ˜6.2 ± 1.4 kpc and MK = -8.06 ± 0.12 mag. If H1-45 belongs to the Galactic bulge, then it would be the first bona fide luminous carbon star to be identified in the Galactic bulge population. The lack of luminous carbon stars in the bulge is a longstanding unsolved problem. A possible explanation for H1-45 may be that the carbon enhancement was accreted from the progenitor of the WD companion. A wide variety of unusual emission-line stars were also

  16. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  17. The Stellar Cusp in the Galactic Center: Three-Dimensional Orbits of Stars

    NASA Astrophysics Data System (ADS)

    Chappell, Samantha; Ghez, Andrea M.; Boehle, Anna; Yelda, Sylvana; Sitarski, Breann; Witzel, Gunther; Do, Tuan; Lu, Jessica R.; Morris, Mark; Becklin, Eric E.

    2015-01-01

    We present new findings from our long term study of the nuclear star cluster around the Galaxy's central supermassive blackhole (SMBH). Measurements where made using speckle and laser guided adaptive optics imaging and integral field spectroscopy on the Keck telescopes. We report 13 new measurable accelerating sources around the SMBH, down to ~17 mag in K band, only 4 of which are known to be young stars, the rest are either known to be old stars or have yet to be spectral typed. Thus we more than double the number of measured accelerations for the known old stars and unknown spectral type population (increasing the number from 6 to 15). Previous observations suggest a flat density profile of late-type stars, contrary to the theorized Bahcall-Wolf cusp (Bahcall & Wolf 1976, 1977; Buchholz et al. 2009; Do et al. 2009; Bartko et al. 2010). With three-dimensional orbits of significantly accelerating sources, we will be able to better characterize the stellar cusp in the Galactic center, including the slope of the stellar density profile.

  18. CHEMICAL ABUNDANCE ANTICORRELATIONS IN GLOBULAR CLUSTER STARS: THE EFFECT ON CLUSTER INTEGRATED SPECTRA

    SciTech Connect

    Coelho, P.; Percival, S. M.; Salaris, M. E-mail: smp@astro.livjm.ac.uk

    2011-06-10

    It is widely accepted that individual Galactic globular clusters harbor two coeval generations of stars, the first one born with the 'standard' {alpha}-enhanced metal mixture observed in field halo objects and the second one characterized by an anticorrelated CNONa abundance pattern overimposed on the first generation, {alpha}-enhanced metal mixture. We have investigated with appropriate stellar population synthesis models how this second generation of stars affects the integrated spectrum of a typical metal-rich Galactic globular cluster, like 47 Tuc, focusing our analysis on the widely used Lick-type indices. We find that the only indices appreciably affected by the abundance anticorrelations are Ca4227, G4300, CN{sub 1}, CN{sub 2}, and NaD. The age-sensitive Balmer line, Fe line, and the [MgFe] indices widely used to determine age, Fe, and total metallicity of extragalactic systems are largely insensitive to the second generation population. Enhanced He in second generation stars affects also the Balmer line indices of the integrated spectra, through the change of the turnoff temperature and-with the assumption that the mass-loss history of both stellar generations is the same-the horizontal branch morphology of the underlying isochrones.

  19. Binary Black Holes from Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  20. A star cluster at the edge of the Galaxy

    NASA Astrophysics Data System (ADS)

    Brand, J.; Wouterloot, J. G. A.

    2007-03-01

    Context: This paper is part of our ongoing study of star formation in the (far-) outer Galaxy. Aims: Our goal in this paper is to study stars and molecular gas in the direction of IRAS 06145+1455 (WB89-789). The kinematic distance of the associated molecular cloud is 11.9 kpc. With a galactocentric distance of ~ 20.2 kpc, this object is at the edge of the (molecular) disk of the Galaxy. Methods: We use near-IR (J, H, K), molecular line-, and dust continuum observations. Results: The near-IR data show the presence of an (embedded) cluster of about 60 stars, with a radius ˜ 1.3 pc and an average stellar surface density ~ 12 pc-2. We find at least 14 stars with NIR-excess, 3 of which are possibly Class I objects. The cluster is embedded in a ˜ 1000 M⊙ molecular/dust core, from which a molecular outflow originates. The temperature of most of the outflowing gas is ⪉ 40 K, and the total mass of the swept-up material is ⪉ 10 M⊙. Near the center of the flow, indications of much higher temperatures are found, probably due to shocks. A spectrum taken of one of the probable cluster members shows a tentative likeness to that of a K3 III-star (with an age of at least 20 Myr). If correct, this would confirm the kinematic distance. Conclusions: .This cluster is the furthest one from the Galactic center yet detected. The combination of old and recent activity implies that star formation has been going on for at least 20 Myr, which is difficult to understand considering the location of this object, where external triggers are either absent or weak, compared to the inner Galaxy. This suggests that once star formation is occurring, later generations of stars may form through the effect of the first generation of stars on the (remnants of) the original molecular cloud. Partly based on observations collected at the European Southern Observatory, Chile. Table 4 is only available in electronic form at http://www.aanda.org

  1. Young star clusters in circumnuclear starburst rings

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Ma, Chao; Jia, Siyao; Ho, Luis C.; Anders, Peter

    2017-03-01

    We analyse the cluster luminosity functions (CLFs) of the youngest star clusters in two galaxies exhibiting prominent circumnuclear starburst rings. We focus specifically on NGC 1512 and NGC 6951, for which we have access to Hα data that allow us to unambiguously identify the youngest sample clusters. To place our results on a firm statistical footing, we first explore in detail a number of important technical issues affecting the process from converting the observational data into the spectral energy distributions of the objects in our final catalogues. The CLFs of the young clusters in both galaxies exhibit approximate power-law behaviour down to the 90 per cent observational completeness limits, thus showing that star cluster formation in the violent environments of starburst rings appears to proceed similarly as that elsewhere in the local Universe. We discuss this result in the context of the density of the interstellar medium in our starburst-ring galaxies.

  2. SETI in star clusters: a theoretical approach

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, R.; de La Fuente Marcos, C.

    2003-05-01

    For several decades, the search for extraterrestrial intelligence (SETI) has proceeded using advanced astronomical techniques. Different strategies have been proposed for target selection for targeted searches with goals of improving the chances of successful detection of signals from technological civilizations that may inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. In this paper we demonstrate that these goals are best achieved by observing star clusters. We show that standard open clusters are not appropriate for SETI scans because their disruption time scale is shorter than the characteristic time scale for the development of a protective atmospheric layer on a habitable planet. However, the old open clusters, those older than some Gy are optimal candidates for SETI surveys as their ages are older than the likely time for intelligent civilizations to emerge and the probability of catastrophic orbital modification as a result of close encounters with other cluster stars is, in general, rather negligible. The final performance of the proposed survey can be significantly increased by using initially a radio telescope beam larger than the cluster apparent size so that the entire cluster can be observed simultaneously. Globular clusters are also good candidates from the statistical point of view but only if hypothetical civilizations located in these clusters have been able to develop astronomical engineering technologies or have been involved in (rather speculative) cosmic colonization.

  3. The Evolutionary Status of Be Stars: Results from a Photometric Study of Southern Open Clusters

    NASA Astrophysics Data System (ADS)

    McSwain, M. Virginia; Gies, Douglas R.

    2005-11-01

    Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density.

  4. The Galactic O-Star Spectroscopic Survey (GOSSS): new results from the southern stars

    NASA Astrophysics Data System (ADS)

    Sota, A.; Maíz Apellániz, J.; Barbá, R. H.; Walborn, N. R.; Alfaro, E. J.; Gamen, R. C.; Morrell, N. I.; Arias, J. I.; Penadés Ordaz, M.

    2013-05-01

    The Galactic O-Star Spectroscopic Survey (GOSSS) is a project that will observe all known Galactic O stars with B < 14 in the blue-violet part of the spectrum with R ˜ 3000. It is based on v2.0 of the the most complete Galactic O star catalog with accurate spectral types (Maíz Apellániz et al. 2004, ApJS, 151, 103; Sota et al. 2008, RevMexAA Conf. Series, 33, 55) that we have recently compiled. We have completed the first part of the main project and recently published the first articles (Walborn et al. 2010, ApJ, 711, 143; Walborn et al. 2011, AJ, 142, 150; Sota et al. 2011, ApJS, 193, 24). GOSSS is part of a bigger project with the next companion surveys: High resolution spectroscopic surveys: OWN, IACOB, IACOB-sweG, NoMaDS, CAFÉ-BEANS High resolution imaging surveys: Astralux, Astralux Sur.

  5. Would a Galactic bar destroy the globular cluster system?

    NASA Technical Reports Server (NTRS)

    Long, Kevin; Ostriker, Jeremiah P.; Aguilar, Luis

    1992-01-01

    Five different dynamical Galaxy models are presented for the Galactic potential which satisfy the observed rotation curve but contain a central bar so that the 3-kpc nonintersecting streamlines have a radial velocity of 50 km/s when viewed at 45 deg to the bar axis. The effect of the central bars on the destruction rates of globular clusters in the Galaxy is investigated. The method of Aguilar et al. (1988) is applied to these barred Galaxy models. The unknown tangential velocity components of each observed cluster are drawn randomly from an assumed distribution function. The cluster's orbit is integrated, and the bulge shocking rate is calculated. The median destruction rate of the cluster is computed by sampling a large number of such orbits. The addition of the rotating bar does not strongly affect the destruction rates of globular clusters. There is a small increase in the destruction rate for those clusters within about 2.5 kpc. Thus it is not possible to rule out the existence of a rotating bar on these grounds.

  6. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  7. Scaling Relations of Galactic Winds with Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    The galactic scale outflows generated by nuclear starbursts consist of a multiphase medium where each phase has a distinct velocity depending on the characteristics of the starburst. Using synthetic absorption lines generated from 3D hydrodynamical simulations we probe the outflow velocity of the hot, warm, and neutral gas entrained in a galactic wind. By varying the star formation rate (SFR) in our simulations, we find no correlation between the outflow velocity of the hot gas with the SFR, but we do find a correlation between the outflow velocity of both warm and neutral gas with the SFR. The scaling relation between outflow velocity and SFR only holds for low SFR until the scaling relation abruptly flattens at a SFR determined by the mass loading of the starburst. The outflow velocity of the hot gas only depends on the mass loading of the starburst and not the SFR. For low SFRs the difference between the velocity of cold gas, as measured by absorption lines of neutral or low ionized gas, may be 5-7 times lower than the velocity of the hot, highly ionized gas. The difference in velocity between the cold and hot gas for higher SFRs depends on the mass loading factor of the starburst. Thus the measured velocities of neutral or low ionized gas cannot be used to estimate the outflow velocity of the hot gas without determining the mass loading of the starburst.

  8. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  9. The dearth of nuclear star clusters in bright galaxies

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.; Spera, M.

    2016-03-01

    We investigate the interaction of a massive globular cluster (GC) with a super massive black hole (SMBH), located at the centre of its host galaxy, by means of direct N-body simulations. The results show that tidal distortions induced by the stellar background and the SMBH act on a time shorter than that of dynamical friction decay for a 106 M⊙ GC whenever the SMBH mass exceeds ˜108 M⊙. This implies an almost complete dissolution of the infalling GC before it reaches the inner region (≲5 pc) of the parent galaxy. The generalization of this result to a larger sample of infalling GCs shows that such destructive process may prevent the formation and growth of a bright galactic nucleus. Another interesting, serendipitous, result we obtained is that the close interaction between the SMBH and the GC produces a `wave' of stars that escape from the cluster and, in a fraction, even from the whole galaxy.

  10. CN and CH Abundance Analysis in a Sample of Eight Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Smolinski, Jason P.; Lee, Y.; Beers, T. C.; Martell, S. L.; An, D.; Sivarani, T.

    2011-01-01

    Galactic globular clusters exhibit star-to-star variations in their light element abundances that are not predicted by formation and evolution models involving single stellar generations. Recently it has been suggested that internal pollution from early supernovae and AGB winds may have played important roles in forming a second generation of enriched stars. We present updated results of a CN and CH abundance analysis of stars from the base to the tip of the red giant branch, and in some cases down onto the main sequence, for eight globular clusters with available photometric and spectroscopic data from SDSS-I and SDSS-II/SEGUE. These results include a discussion of the radial distribution of CN enrichment and how this may impact the current paradigm. Funding for SDSS-I and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. This work was supported in part by grants PHY 02-16783 and PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation.

  11. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  12. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  13. A prescription and fast code for the long-term evolution of star clusters - III. Unequal masses and stellar evolution

    NASA Astrophysics Data System (ADS)

    Alexander, Poul E. R.; Gieles, Mark; Lamers, Henny J. G. L. M.; Baumgardt, Holger

    2014-08-01

    We present a new version of the fast star cluster evolution code EVOLVE ME A CLUSTER OF STARS (EMACSS). While previous versions of EMACSS reproduced clusters of single-mass stars, this version models clusters with an evolving stellar content. Stellar evolution dominates early evolution, and leads to: (1) reduction of the mean mass of stars due to the mass loss of high-mass stars; (2) expansion of the half-mass radius; (3) for (nearly) Roche Volume filling clusters, the induced escape of stars. Once sufficient relaxation has occurred (≃10 relaxation times-scales), clusters reach a second, `balanced' state whereby the core releases energy as required by the cluster as a whole. In this state: (1) stars escape due to tidal effects faster than before balanced evolution; (2) the half-mass radius expands or contracts depending on the Roche volume filling factor; and (3) the mean mass of stars increases due to the preferential ejection of low-mass stars. We compare the EMACSS results of several cluster properties against N-body simulations of clusters spanning a range of initial number of stars, mass, half-mass radius, and tidal environments, and show that our prescription accurately predicts cluster evolution for this data base. Finally, we consider applications for EMACSS, such as studies of galactic globular cluster populations in cosmological simulations.

  14. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  15. COCOA: Simulating Observations of Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-03-01

    COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

  16. Ancient Black Hole Speeds Through Sun's Galactic Neighborhood, Devouring Companion Star

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found an ancient black hole speeding through the Sun's Galactic neighborhood, devouring a small companion star as the pair travels in an eccentric orbit looping to the outer reaches of our Milky Way Galaxy. The scientists believe the black hole is the remnant of a massive star that lived out its brief life billions of years ago and later was gravitationally kicked from its home star cluster to wander the Galaxy with its companion. "This discovery is the first step toward filling in a missing chapter in the history of our Galaxy," said Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission. "We believe that hundreds of thousands of very massive stars formed early in the history of our Galaxy, but this is the first black hole remnant of one of those huge primeval stars that we've found." "This also is the first time that a black hole's motion through space has been measured," Mirabel added. A black hole is a dense concentration of mass with a gravitational pull so strong that not even light can escape it. The research is reported in the Sept. 13 issue of the scientific journal Nature. XTE J1118+480 The object is called XTE J1118+480 and was discovered by the Rossi X-Ray satellite on March 29, 2000. Later observations with optical and radio telescopes showed that it is about 6,000 light-years from Earth and that it is a "microquasar" in which material sucked by the black hole from its companion star forms a hot, spinning disk that spits out "jets" of subatomic particles that emit radio waves. Most of the stars in our Milky Way Galaxy are within a thin disk, called the plane of the Galaxy. However, there also are globular clusters, each containing hundreds of thousands of the oldest stars in the Galaxy which orbit the Galaxy's center in paths that take them far from the Galaxy's plane. XTE J

  17. UV-bright stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.

    1994-01-01

    This paper highlights globular cluster studies with Ultraviolet Imaging Telescope (UIT) in three areas: the discrepancy between observed ultraviolet HB magnitudes and predictions of theoretical HB models; the discovery of two hot subdwarfs in NGC 1851, a globular not previously known to contain such stars; and spectroscopic follow up of newly identified UV-bright stars in M79 and w Cen. I also present results of a recent observation of NGC 6397 with the Voyager ultraviolet spectrometer.

  18. A NEW LOOK AT THE OLD STAR CLUSTER NGC 6791

    SciTech Connect

    Platais, I.; Cudworth, K. M.; Kozhurina-Platais, V.; McLaughlin, D. E.; Meibom, S.; Veillet, C.

    2011-05-20

    We present comprehensive cluster membership and g'r' photometry of the prototypical old, metal-rich Galactic star cluster NGC 6791. The proper-motion catalog contains 58,901 objects down to g'{approx} 24, limited to a circular area of radius 30'. The highest precision of the proper motions is 0.08 mas yr{sup -1}. Our proper motions confirm cluster membership of all main and also some rare constituents of NGC 6791. The total number of probable cluster members down to g' = 22 (M{sub V} {approx} +8) is {approx}4800, corresponding to M{sub tot} {approx} 5000 M{sub sun}. New findings include an extended horizontal branch in this cluster. The angular radius of NGC 6791 is at least 15' (the effective radius is R{sub h} {approx_equal} 4.'4 while the tidal radius is r{sub t} {approx_equal} 23'). The luminosity function of the cluster peaks at M{sub g}{sup '}{approx}+4.5 and then steadily declines toward fainter magnitudes. Our data provide evidence that differential reddening may not be ignored in NGC 6791.

  19. Phase Mixing of Popped Star Clusters

    NASA Astrophysics Data System (ADS)

    Candlish, G. N.; Smith, R.; Fellhauer, M.; Gibson, B. K.; Kroupa, P.; Assmann, P.

    2014-10-01

    As star clusters are expected to form with low star formation efficiencies, the gas in the cluster is expelled quickly and early in their development: the star cluster pops. This leads to an unbound stellar system. Previous N-body simulations have demonstrated the existence of a stepped number density distribution of cluster stars after popping, both in vertical position and vertical velocity, with a passing resemblance to a Christmas tree. Using numerical and analytical methods, we investigate the source of this structure, which arises due to the phase mixing of the out-of-equilibrium stellar system as it evolves in a background analytical potential. Considering only the vertical motions, we construct a theoretical model to describe the time evolution of the phase space distribution of stars in a Miyamoto-Nagai disk potential and a full Milky-Way type potential comprising bulge, halo and disk components, which is then compared with N- body simulations. Using our theoretical model, we investigate the possible observational signatures and the feasibility of detection.

  20. A Multi-Wavelength View of the Environments of Extreme Clustered Star Formation

    NASA Astrophysics Data System (ADS)

    De Buizer, James M.

    2017-01-01

    It is believed that the vast majority of, if not all, stars form within OB clusters. Most theories of star formation assume a star forms in isolation and ignore the fact that the cluster environment and, especially, the presence of extremely energetic and high mass young stellar objects nearby, may have a profound impact on the formation process of a typical cluster member. Giant HII (GHII) regions are Galactic analogs to starburst regions seen in external galaxies, hosting the most active areas of clustered star formation. As such, GHII regions represent a population of objects that can reveal a wealth of information on the environment of the earliest stages of clustered star formation and how it is affected by feedback from the most massive cluster members. This study employs new mid-infrared imaging data obtained from the airborne observatory, SOFIA, as well as archival imaging data from the near-infrared to cm radio wavelengths to create a rich multi-wavelength dataset of a dozen galactic GHII regions. These data allow quantification of the detailed physical conditions within GHII regions individually and as a population on both global and small scales.

  1. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    SciTech Connect

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 1043 ergs s-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.1cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ~8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z>0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  2. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2017-03-01

    The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s-1 in non-central, host galaxies with luminosity greater than 0.5L* from a total sample of 432 clusters in the redshift range of 0.1 < z < 0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ∼8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6σ. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  3. Clustering Properties of Far-infrared Sources in the Herschel infrared GALactic Survey (Hi-Gal) Science Demonstration Phase Fields.

    NASA Astrophysics Data System (ADS)

    Billot, Nicolas; Schisano, E.; Molinari, S.; Pestalozzi, M.; Hi-GAL Team

    2011-01-01

    While the study of star forming activity usually relies on fitting spectral energy distributions to probe the physical properties of forming stars, we explore an alternative method to complement this multi-wavelength strategy: we use a Minimum Spanning Tree (MST) algorithm to characterize the spatial distribution of Galactic Far-IR sources and derive their clustering properties. We aim at revealing the spatial imprint of different types of star forming processes, e.g. isolated spontaneous fragmentation of dense molecular clouds, or events of triggered star formation around Hii regions, and evidence global properties of star formation in the Galaxy. We plan on exploiting the entire HiGAL survey of the inner Galactic plane (270 square degrees observed in 5 bands between 70 and 500 microns, P.I. Sergio Molinari) to gather significant statistics on the clustering properties of star forming regions, and to look for possible correlations with source properties such as mass, temperature or evolutionary stage. In this poster we present a pilot study of our project on two 2×2 square degrees fields centered at longitudes l=30 and 59 degrees obtained during the Science Demonstration Phase (SDP) of the Herschel mission.

  4. Discovery of two low-luminosity star clusters in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2015-08-01

    Star clusters in the halo of the Milky Way (MW) hold important clues to the formation and structure of their host galaxy. In the talk, I present the discovery of two new low-luminosity star clusters in the inner and outer halo of the Milky Way. These two star clusters, named as Kim 1 and Kim 2, were first detected in the Sloan Digital Sky Survey and our independent 500 sqr degree survey using the Dark Energy Survey camera (DECam) at the 4m Blanco telescope at CTIO repectively. Their true identies were confirmed by deep follow-up imaging using DECam and Gemini-South 8-m telescope. Kim 1 and Kim 2 both exhibit unsual physical properties compared to other classically known star clusters. Kim 1, located at a heliocentric distance of 17 kpc, features extremely low luminosity (Mv~0.3 mag) and low star concentration. Together with the high ellipticity (e ~ 0.4) and irregular isophotes, these properties suggest that we are seeing an intermediate mass star cluster being stripped by the Galactic tidal field. In the case of Kim 2, ~ 104 kpc away from the sun, is the faintest globular cluster ever found in the outer halo of the Milky Way. The globular cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. The observed properties of the new star cluster also raise the question about how such a low luminosity star cluster could have survived until today. One possible scenario is that Kim 2 is a star cluster originally located in a satellite dwarf galaxy and was accreted into the Milky Way's halo.

  5. The Distance to the Galactic Globular Cluster, 47 Tuc

    NASA Astrophysics Data System (ADS)

    Woodley, Kristin; Goldsbury, R.; Kalirai, J.; Richer, H.; Tremblay, P.; Anderson, J.; Bergeron, P.; Dotter, A.; Esteves, L.; Fahlman, G.; Hansen, B.; Heyl, J.; Hurley, J.; Rich, R.; Shara, M.; Stetson, P.

    2012-01-01

    We present a new distance determination to the Galactic globular cluster 47 Tucanae by fitting the spectral energy distributions of its white dwarfs to pure hydrogen atmosphere white dwarf models. Our photometric data set is obtained from a 121 orbit Hubble Space Telescope program using the Wide Field Camera 3 UVIS/IR channels, capturing F390W, F606W, F110W, and F160W images. These images cover more than 60 arcmin2 and extend over a radial range of 5-13.7 arcmin (6.5-17.9 pc) within the globular cluster. Here, we present our best fitting distance modulus using a likelihood analysis. We also search the white dwarf photometry for infrared excess in the F160W filter, indicative of protoplanetary disks or low mass companions, and find no convincing cases within our sample.

  6. Thermodynamics and galactic clustering with a modified gravitational potential

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2017-02-01

    Based on thermodynamics, we study the galactic clustering of an expanding Universe by considering the logarithmic and volume (quantum) corrections to Newton's law along with the repulsive effect of a harmonic force induced by the cosmological constant (Λ ) in the formation of the large scale structure of the Universe. We derive the N -body partition function for extended-mass galaxies (galaxies with halos) analytically. For this partition function, we compute the exact equations of states, which exhibit the logarithmic, volume, and cosmological constant corrections. In this setting, a modified correlation (clustering) parameter (due to these corrections) emerges naturally from the exact equations of state. We compute a corrected grand canonical distribution function for this system. Furthermore, we obtain a deviation in differential forms of the two-point correlation functions for both the point-mass and extended-mass cases. The consequences of these deviations on the correlation function's power law are also discussed.

  7. The STAR cluster-finder ASIC

    SciTech Connect

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.; Schulz, M.W.; Short, P.; Woods, J.; Crosetto, D.

    1997-12-01

    STAR is a large TPC-based experiment at RHIC, the relativistic heavy ion collider at Brookhaven National Laboratory. The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. The authors describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  8. The sub-galactic and nuclear main sequences for local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2017-04-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate (SFR) surface density (ΣSFR) and stellar mass density (Σ⋆) for distinct regions within star-forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the 'Star Formation Reference Survey and demonstrate that the SGMS holds down to ∼1 kpc scales with a slope of α = 0.91 and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated SFRs and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc-Irr) having α = 0.97 and early-type spirals (Sa-Sbc) having α = 0.81. The SGMS constructed from subregions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other subregions. Sampling a limited range of SFR-M⋆ space may produce either sublinearity or superlinearity of the SGMS slope. For nearly all galaxies, both SFR and stellar mass peak in the nucleus, indicating that circumnuclear clusters are among the most actively star-forming regions in the galaxy and the most massive. The nuclear SFR also correlates with total galaxy mass, forming a distinct sequence from the standard MS of star formation. The nuclear MS will be useful for studying bulge growth and for characterizing feedback processes connecting AGN and star formation.

  9. Blue straggler stars: lessons from open clusters.

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.

    Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.

  10. VizieR Online Data Catalog: RR Lyrae in 15 Galactic globular clusters (Dambis+, 2014)

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Rastorguev, A. S.; Zabolotskikh, M. V.

    2014-11-01

    Last year, the WISE All-Sky Data Release (Cutri et al., 2012, Cat. II/328) was made public, mapping the entire sky in four mid-infrared bands W1, W2, W3 and W4 with the effective wavelengths of 3.368, 4.618, 12.082 and 22.194um, respectively. We cross-correlated the WISE single-exposure data base with the Catalogue of Galactic globular-cluster variables by Clement et al. (2001AJ....122.2587C), the Catalogue of Accurate Equatorial Coordinates for Variable Stars in Globular Clusters by Samus et al. (2009PASP..121.1378S, Cat. J/PASP/121/1378) and the catalogue of Sawyer Hogg (1973PDDO....3....6S, Cat. V/97) (for ω Cen, NGC 6723 and NGC 6934) to compute (via Fourier fits) the intensity-mean average W1- and W2-band magnitudes, and , for a total of 357 and 272 RR Lyrae type variables in 15 and 9 Galactic globular clusters, respectively. (1 data file).

  11. Modeling mergers of known galactic systems of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Feo, Alessandra; De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2017-02-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906  +  0746, B1534  +  12, J0453  +  1559 and B1913  +  16. We follow the dynamics of the merger from the late stage of the inspiral process up to  ∼20ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems (q  =  0.75, J0453  +  1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.

  12. A Survey of Localized Star Clusters in NGC 1427A

    NASA Astrophysics Data System (ADS)

    Weaver, John R.; Gregg, Michael

    2016-01-01

    It is well established that galactic clusters provide dynamic environments in which to examine galaxy evolution. The starbursting dwarf irregular NGC 1427A presents an interesting case as it is being pulled into the nearby Fornax cluster at supersonic speeds, producing a visibly exceptional star formation rate and notably blue colors. It has been suggested that the highly deformed structure of NGC 1427A is due to ram pressure stripping as a result of interacting with a super-heated ICM provided by several nearby elliptical galaxies. The gas density profile of its leading edge is similar to a "bow-shock", containing several dozen super-star clusters (SSCs) and thousands of smaller star forming clusters. It is clearly evident that the properties of NGC 1427A change rapidly over relatively short distances. Using dithered HST/ACS images in Sloan equivalent g' r' i' z' and Hα filters, we present a morphological and photometric study of NGC 1427A using a novel approach in which stellar properties are measured from sources grouped within localized regions. Apertures are fitted for ~5000 sources at 4σ using a filter-combined master image. Four characteristic regions are chosen to study stellar properties, selected interactively through DS9. We then introduce COMET, a specially-designed source catalog handler for producing graphical figures of each region, cropping both spatially and photometrically. These are then batch-reviewed and analyzed using synthetic isochrones corresponding of each region. Hα bright sources are indicated to illustrate the significance of SSCs. Secondary analysis is carried out using smoothed color maps of source-subtracted diffuse light, yielding penetrative mapping of underlying stellar populations. We show for the first time how the dynamical stellar populations of NGC 1427A differ as a function of position across the surface of the galaxy, ultimately furthering our understanding of cluster interactions and the evolution of irregular galaxies

  13. The Galactic O-Star Spectral Survey (GOSSS) Project status and first results

    NASA Astrophysics Data System (ADS)

    Sota, Alfredo; Maíz Apellániz, Jesús; Barbá, Rodolfo H.; Walborn, Nolan R.; Alfaro, Emilio J.; Gamen, Roberto C.; Morrell, Nidia I.; Arias, Julia I.; Penadés Ordaz, Miguel

    2011-01-01

    The Galactic O-Star Spectroscopic Survey (GOSSS) is a project that is observing all known Galactic O stars with B < 13 (˜2000 objects) in the blue-violet part of the spectrum with R˜2500. It also includes two companion surveys (a spectroscopic one at R˜1500 and a high resolution imaging one). It is based on v2.0 of the Galactic O star catalog (v1, Maíz-Apellániz et al. 2004; v2, Sota et al. 2008). We have completed the first part of the main project. Here we present results on the first 400 objects of the sample.

  14. Bibliographic compilation of NIR spectroscopy for stars in the Galactic O-Star Catalog

    NASA Astrophysics Data System (ADS)

    Torres Robledo, S.; Barbá, R.; Arias, J. I.; Morrell, N. I.

    We are carrying out a bibliographic compilation of near-infrared (NIR) (0.7 - 5.0 μm) spectroscopic studies available for stars in the Galactic O Star Catalog (GOSC, Maíz Apellániz et al. 2004). This compilation al- lows us to quantify the precise degree of knowledge about NIR spectral information for GOSC sources, such as band coverage, spectral resolution, equivalent-width measurements, etc. This bibliographic compilation has a clear next step toward the development of a new catalog of O-type stars observed only in the NIR, which will be annexed to the GOSC. In this poster paper we present preliminary results derived from a set of different attributes extracted from the retrieved papers.

  15. The luminosity of Population III star clusters

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2015-06-01

    We analyse the time evolution of the luminosity of a cluster of Population III protostars formed in the early Universe. We argue from the Jeans criterion that primordial gas can collapse to form a cluster of first stars that evolve relatively independently of one another (i.e. with negligible gravitational interaction). We model the collapse of individual protostellar clumps using non-axisymmetric numerical hydrodynamics simulations. Each collapse produces a protostar surrounded by a massive disc (i.e. Mdisc /M* ≳ 0.1), whose evolution we follow for a further 30-40 kyr. Gravitational instabilities result in the fragmentation and the formation of gravitationally bound clumps within the disc. The accretion of these fragments by the host protostar produces accretion and luminosity bursts on the order of 106 L⊙. Within the cluster, we show that a simultaneity of such events across several protostellar cluster members can elevate the cluster luminosity to 5-10 times greater than expected, and that the cluster spends ˜15 per cent of its star-forming history at these levels. This enhanced luminosity effect is particularly enabled in clusters of modest size with ≃10-20 members. In one such instance, we identify a confluence of burst events that raise the luminosity to nearly 1000 times greater than the cluster mean luminosity, resulting in L > 108 L⊙. This phenomenon arises solely through the gravitational-instability-driven episodic fragmentation and accretion that characterizes this early stage of protostellar evolution.

  16. Near-infrared photometry of globular clusters towards the Galactic bulge: observations and photometric metallicity indicators

    NASA Astrophysics Data System (ADS)

    Cohen, Roger E.; Moni Bidin, Christian; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2017-01-01

    We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.

  17. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  18. The Gaia-ESO Survey: Kinematics of seven Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Pancino, E.; Bellazzini, M.; Bragaglia, A.; Donati, P.; Gilmore, G.; Randich, S.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Flaccomio, E.; Koposov, S. E.; Recio-Blanco, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Hourihane, A.; Jofré, P.; de Laverny, P.; Marconi, G.; Masseron, T.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.

    2015-01-01

    The Gaia-ESO survey is a large public spectroscopic survey aimed at investigating the origin and formation history of our Galaxy by collecting spectroscopy of representative samples (about 105 Milky Way stars) of all Galactic stellar populations, in the field and in clusters. The survey uses globular clusters as intra- and inter-survey calibrators, deriving stellar atmospheric parameters and abundances of a significant number of stars in clusters, along with radial velocity determinations. We used precise radial velocities of a large number of stars in seven globular clusters (NGC 1851, NGC 2808, NGC 4372, NGC 4833, NGC 5927, NGC 6752, and NGC 7078) to validate pipeline results and to preliminarily investigate the cluster internal kinematics. Radial velocity measurements were extracted from FLAMES/GIRAFFE spectra processed by the survey pipeline as part of the second internal data release of data products to ESO. We complemented our sample with ESO archival data obtained with different instrument configurations. Reliable radial velocity measurements for 1513 bona fide cluster star members were obtained in total. We measured systemic rotation, estimated central velocity dispersions, and present velocity dispersion profiles of all the selected clusters, providing the first velocity dispersion curve and the first estimate of the central velocitydispersion for the cluster NGC 5927. Finally, we explore the possible link between cluster kinematics and other physical parameters. The analysis we present here demonstrates that Gaia-ESO survey data are sufficiently accurate to be used in studies of kinematics of stellar systems and stellar populations in the Milky Way. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A115Based on data products from observations made with ESO telescopes at the La Silla Paranal Observatory under programme 188.B-3002 (the

  19. VizieR Online Data Catalog: Southern Galactic Be star candidates (Sabogal+, 2014)

    NASA Astrophysics Data System (ADS)

    Sabogal, B. E.; Garcia-Varela, A.

    2014-04-01

    We present the result of a search for southern Galactic Be star candidates within the group of miscellaneous variables of the ASAS-2 catalog of variable stars, using statistical, morphological, photometric, and color criteria. This search lead us to obtain a catalog of 213 new Be star candidates. The I-band light curves of these candidates show outbursts (Type-1 stars) only in 9% of the sample, and stochastic variations (Type-4 stars) in 91% of the sample. We do not find stars showing clear high and low states (Type-2 stars) or showing outbursts and high and low states simultaneously (Type-1/Type-2 stars). Our sample of southern Galactic Be star candidates provide valuable new bright targets for high resolution spectroscopic studies with small/medium size telescopes. (1 data file).

  20. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  1. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  2. Far-UV Spectra of Solar Proxies in Young Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    1997-12-01

    Solar magnetic activity is of special interest to solar-system physicists who study its influence on planetary atmospheres, and to stellar astronomers who study its analogs on other stars. The stars, in particular, tell us what solar activity might have been like in the Sun's youth, or its distant future; and provide insights into the fundamental stellar parameters---and underlying physical mechanisms---that drive it. I describe recent HST GHRS low-resolution ( ~ 1 Angstroms) far-ultraviolet spectra, and archival ROSAT X-ray photometry, of two G-type dwarf stars in the young open cluster alpha Persei (t ~ 50 Myr), and of the Pleiades G dwarf H II 314 (t ~ 70 Myr). The young galactic cluster stars provide convenient surrogates for the hyperactive neonatal Sun, corresponding to the Hadean era when planetary surfaces were forming. I compare the new results with previous measurements of field and cluster stars of a range of activity levels, including earlier FOS spectra of alpha Per, Pleiades, and Hyades members. The solar-type stars follow a nonlinear (alpha =2 power law) relation in an X-ray/C IV flux-flux diagram, although the most active members of the sample fall away from the main trend, showing a saturation in X-rays. Stellar rotation is a key factor setting the activity level, presumably via the dynamo. The decline of rotation with advancing age in single stars (owing to wind-induced spindown) leads to the age--activity relation. The subcoronal f_C IV/f_bol flux ratio apparently follows a simple power law up to v_rot ~ 50 km s(-1) , and only the very fast rotating alpha Per star HE 699 appears to deviate. In contrast, saturation (away from the alpha ~ 3 power law) occurs in the X-ray diagram at only ~ 20 km s(-1) , affecting all of the alpha Per stars, and the Pleiad H II 314. Unlike the previous FOS measurements of H II 314, there did not appear to be any dramatic flare activity during the more recent GHRS exposures. This work was supported by grant GO-06795

  3. HUBBLE SPACE TELESCOPE Observations of Galactic Globular Cluster Cores. I. NGC 6362 and NGC 6934

    NASA Astrophysics Data System (ADS)

    Piotto, G.; Zoccali, M.; King, I. R.; Djorgovski, S. G.; Sosin, C.; Dorman, B.; Rich, R. M.; Meylan, G.

    1999-01-01

    We present observations of the centers of the Galactic globular clusters NGC 6362 and NGC 6934 obtained with the Hubble Space Telescope/Wide Field Planetary Camera 2 as part of the snapshot program GO-7470. The B, V color-magnitude diagrams (CMDs) are presented for 4104 stars in NGC 6362 and for 8187 stars in NGC 6934. From the CMDs, we obtain (m-M)_V=14.67+/-0.20 and E(B-V)=0.06+/-0.03 for NGC 6362 and (m-M)_V=16.37+/-0.20 and E(B-V)=0.05+/-0.02 for NGC 6934. Each cluster shows a well-defined sequence of blue stragglers. Both the CMD and the luminosity function (LF) of the blue stragglers differ in the two clusters, suggesting two different origins for these stars. NGC 6362 has a strikingly narrow blue straggler sequence. The data have also been used to derive a complete LF, which extends from the red giant branch tip to 2-3 mag below the turnoff. In the case of NGC 6362, which has the deepest LF, the theoretical LF cannot match both the evolved LF and that of the main sequence with any reasonable mass-function slope. The LF has also been used to estimate the ages of the two clusters. A comparison with the theoretical LF, the more classical isochrone fitting, and the DeltaV^TO_HB suggest an age between 13 and 16 Gyr for both clusters. No significant age difference between NGC 6362 and NGC 6934 is observed.

  4. Evidence for Warped Disks of Young Stars in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Bartko, H.; Martins, F.; Fritz, T. K.; Genzel, R.; Levin, Y.; Perets, H. B.; Paumard, T.; Nayakshin, S.; Gerhard, O.; Alexander, T.; Dodds-Eden, K.; Eisenhauer, F.; Gillessen, S.; Mascetti, L.; Ott, T.; Perrin, G.; Pfuhl, O.; Reid, M. J.; Rouan, D.; Sternberg, A.; Trippe, S.

    2009-06-01

    The central parsec around the supermassive black hole in the Galactic center (GC) hosts more than 100 young and massive stars. Outside the central cusp (R ~ 1'') the majority of these O and Wolf-Rayet (W-R) stars reside in a main clockwise system, plus a second, less prominent disk or streamer system at large angles with respect to the main system. Here we present the results from new observations of the GC with the AO-assisted near-infrared imager NACO and the integral field spectrograph SINFONI on the ESO/VLT. These include the detection of 27 new reliably measured W-R/O stars in the central 12'' and improved measurements of 63 previously detected stars, with proper motion uncertainties reduced by a factor of 4 compared to our earlier work. Based on the sample of 90 well measured W-R/O stars, we develop a detailed statistical analysis of their orbital properties and orientations. We show that half of the W-R/O stars are compatible with being members of a clockwise rotating system. The rotation axis of this system shows a strong transition from the inner to the outer regions as a function of the projected distance from Sgr A*. The main clockwise system either is either a strongly warped single disk with a thickness of about 10°, or consists of a series of streamers with significant radial variation in their orbital planes. Eleven out of 61 clockwise moving stars have an angular separation of more than 30° from the local angular momentum direction of the clockwise system. The mean eccentricity of the clockwise system is 0.36 ± 0.06. The distribution of the counterclockwise W-R/O star is not isotropic at the 98% confidence level. It is compatible with a coherent structure such as stellar filaments, streams, small clusters or possibly a disk in a dissolving state: 10 out of 29 counterclockwise moving W-R/O stars have an angular separation of more than 30° from the local angular momentum direction of the counterclockwise system. The observed disk warp and the

  5. ON THE TEMPORAL EVOLUTION OF THE STELLAR MASS FUNCTION IN GALACTIC CLUSTERS

    SciTech Connect

    De Marchi, Guido; Paresce, Francesco; Portegies Zwart, Simon E-mail: paresce@iasfbo.inaf.i

    2010-07-20

    We show that we can obtain a good fit to the present-day stellar mass functions (MFs) of a large sample of young and old Galactic clusters in the range 0.1-10 M{sub sun} with a tapered power-law distribution function with an exponential truncation of the form dN/dm{proportional_to}m{sup {alpha}} [1 -e{sup -}(m/m{sub c}){sup {beta}}]. The average value of the power-law index {alpha} is {approx}-2, that of {beta} is {approx}2.5, whereas the characteristic mass m{sub c} is in the range 0.1-0.8 M {sub sun} and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass, or central concentration. However, m{sub c} shows a remarkable correlation with the dynamical age of the cluster, namely, m{sub c} /M {sub sun} {approx_equal} 0.15 + 0.5 x {tau}{sup 3/4}{sub dyn}, where {tau}{sub dyn} is the dynamical age taken as the ratio of cluster age and dissolution time. The small scatter seen around this correlation is consistent with the uncertainties in the estimated value of {tau}{sub dyn}. We attribute the observed trend to the onset of mass segregation via two-body relaxation in a tidal environment, causing the preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass m{sub c} toward higher values. If dynamical evolution is indeed at the origin of the observed trend, it would seem plausible that high-concentration globular clusters, now with median m{sub c} {approx_equal} 0.33 M{sub sun}, were born with a stellar MF very similar to that measured today in the youngest Galactic clusters and with a value of m{sub c} {approx_equal} 0.15 M{sub sun}. This hypothesis is consistent with the absence of a turnover in the MF of the Galactic bulge down to the observational limit at {approx}0.2 M{sub sun} and, if correct, it would carry the implication that the characteristic mass is not set by the thermal Jeans mass of the cloud.

  6. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    SciTech Connect

    Dékány, I.; Palma, T.; Minniti, D.; Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M.; Gieren, W.; Majaess, D.

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  7. Evidence of AGB Pollution in Galactic Globular Clusters from the Mg-Al Anticorrelations Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Ventura, P.; García-Hernández, D. A.; Dell'Agli, F.; D'Antona, F.; Mészáros, Sz.; Lucatello, S.; Di Criscienzo, M.; Shetrone, M.; Tailo, M.; Tang, Baitian; Zamora, O.

    2016-11-01

    We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed so far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.

  8. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation.

  9. Radial velocities of stars in the globular cluster M4 and the cluster distance

    NASA Technical Reports Server (NTRS)

    Peterson, R. C.; Rees, Richard F.; Cudworth, Kyle M.

    1995-01-01

    The internal stellar velocity distribution of the globular cluster M4 is evaluated from nearly 200 new radial velocity measurements good to 1 km/s and a rederivation of existing proper motions. The mean radial velocity of the cluster is 70.9 +/- 0.6 km/s. The velocity dispersion is 3.5 +/- 0.3 km/s at the core, dropping marginally towards the outskirts. Such a low internal dispersion is somewhat at odds with the cluster's orbit, for which the perigalacticon is sufficiently close to the galactic center that the probability of cluster disruption is high; a tidal radius two-thirds the currently accepted value would eliminate the discrepancy. The cluster mass-to-light ratio is also small, M/L(sub V) = 1.0 +/- 0.4 in solar units. M4 thus joins M22 as a cluster of moderate and concentration with a mass-to-light ratio among the lowest known. The astrometric distance to the cluster is also smaller than expected, 1.72 +/- 0.14 kpc. This is only consistent with conventional estimates of the luminosity of horizontal branch stars provided an extinction law R = A(sub V)/E(B-V) approximately 4 is adopted, as has been suggested recently by several authors.

  10. Detailed Chemical Abundances of Four Stars in the Unusual Globular Cluster Palomar 1

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron

    2011-10-01

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R GC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  11. The Environmental Factor: Driving the Onset and Early Evolution of High-Mass Stars and Clusters

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, Alana; Marston, Anthony; Martin, Peter; Ristorcelli, Isabelle; Juvela, Mika

    2015-08-01

    While the process leading to the formation of low-mass stars is reasonably well established, the origin of their high-mass counterparts, and in particular, the link with the properties and evolution of the parental structures, remains poorly understood. The key role that high-mass stars and massive clusters play in driving the evolution of the ISM, from planetary to galactic scales, makes this study, however, particularly critical.Here we present the latest results from an ongoing Herschel-based project of high-mass star formation in the Outer Galaxy, and which aims to quantify the complex dependence between the final characteristics of young high-mass stars and the early evolution of their local environment.Datasets from the Herschel imaging survey of OB Young Stellar objects (HOBYS; PI. F. Motte) and the Herschel infrared Galactic Plane Survey (Hi-Gal; PI. S. Molinari) Key Programmes are used as a base to carry out an in-depth examination of the cloud physical characteristics, compact source population, and star formation history of those regions with the potential for (and on-going) high-mass star and cluster formation. Results from this study are compelling evidence for the requirement of local external processes, such as stellar feedback (e.g., Convergent Constructive Feedback model; Rivera-Ingraham et al. 2013), in order to counteract the limitations of gravity in the formation and evolution of dense and exotic environments. We will describe how such processes could drive the formation and evolution of the parental host, and therefore influence the final characteristics of the young high-mass stars and clusters (Rivera-Ingraham, et al. 2015a; 2015b, in prep). Our conclusions are further supported by an extensive independent analysis of filamentary properties as a function of Galactic environment (Rivera-Ingraham et al. 2015c; subm), and which we will present as part of the Galactic Cold Cores Key Programme (PI. M. Juvela).

  12. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  13. STELLAR COLLISIONS AND BLUE STRAGGLER STARS IN DENSE GLOBULAR CLUSTERS

    SciTech Connect

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-10

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ∼10{sup 3} M{sub ☉} pc{sup –3}, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized 'full mixing' prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (∼1 Gyr) BSSs.

  14. Stellar Collisions and Blue Straggler Stars in Dense Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-01

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ~103 M ⊙ pc-3, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized "full mixing" prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (~1 Gyr) BSSs.

  15. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    SciTech Connect

    Luo, Y. P.; Han, Z. W.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that all these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  16. CONSTRAINTS ON NATAL KICKS IN GALACTIC DOUBLE NEUTRON STAR SYSTEMS

    SciTech Connect

    Wong, Tsing-Wai; Willems, Bart; Kalogera, Vassiliki E-mail: b-willems@northwestern.ed

    2010-10-01

    Since the discovery of the first double neutron star (DNS) system in 1975 by Hulse and Taylor, there are currently eight confirmed DNS in our galaxy. For every system, the masses of both neutron stars, the orbital semimajor axis, and eccentricity are measured, and proper motion is known for half of the systems. Using the orbital parameters and kinematic information, if available, as constraints for all systems, we investigate the immediate progenitor mass of the second-born neutron star (NS2) and the magnitude of the supernova kick it received at birth, with the primary goal to understand the core-collapse mechanism leading to neutron star formation. Compared to earlier studies, we use a novel method to address the uncertainty related to the unknown radial velocity of the observed systems. For PSR B1534+12 and PSR B1913+16, the kick magnitudes are 150-270 km s{sup -1} and 190-450 km s{sup -1} (with 95% confidence), respectively, and the progenitor masses of the NS2 are 1.3-3.4 M{sub sun} and 1.4-5.0 M{sub sun} (95%), respectively. These suggest that the NS2 was formed by an iron core-collapse supernova in both systems. For PSR J0737 - 3039, on the other hand, the kick magnitude is only 5-120 km s{sup -1} (95%), and the progenitor mass of the NS2 is 1.3-1.9 M{sub sun} (95%). Because of the relatively low progenitor mass and kick magnitude, the formation of the NS2 in PSR J0737 - 3039 is potentially connected to an electron capture supernova of a massive O-Ne-Mg white dwarf. For the remaining five Galactic DNS, the kick magnitude ranges from several tens to several hundreds of km s{sup -1}, and the progenitor mass of the NS2 can be as low as {approx}1.5 M{sub sun} or as high as {approx}8 M{sub sun}. Therefore, in these systems it is not clear which type of supernova is more likely to form the NS2.

  17. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  18. First results on resolved stellar population in three Galactic globular cluster from LBC@LBT imaging.

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Ferraro, L. Pulone F. R.; Lanzoni, B.; Fusi Pecci, F.; Rood, R. T.; Giallongo, E.; Ragazzoni, R.; Grazian, A.; Baruffolo, A.; De Santis, C.; Diolaiti, E.; Di Paola, A.; Farinato, J.; Fontana, A.; Gallozzi, S.; Gasparo, F.; Gentile, G.; Green, R.; Hill, J.; Kuhn, O.; Menci, N.; Pasian, F.; Pedichini, F.; Smareglia, R.; Speziali, R.; Testa, V.; Thompson, D.; Vernet, E.; Wagner, R. M.

    We present first results on resolved stellar population by wide-field imaging obtained at the Large Binocular Telescope. The data presented were obtained through the blue channel of the Large Binocular Camera, during the commissioning and the science demonstration time of the camera. The scientific cases presented are deep multiband observations of three galactic globular clusters namely NGC5053 (M53), NGC6341 (M92) and NGC5466. The colour-magnitude diagrams of these clusters, spanning all the canonical sequences from the tip of the red giant brunch down to 4 magnitudes below the main sequence Turn Off, combined with high resolution ACS@HST archive images of the central region of the clusters, allow us to study the population radial distribution. In particular the population of blue stragglers stars in M53 and NGC5466 was found to have a bimodal radial distribution. Moreover we determined the binary frequency in the outer regions (r>200 arcsec ) of M53, finding that about 14% of the stars in these regions are in binary systems.

  19. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia M. L.; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-01-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity, and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron-capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  20. An X-ray and Infrared Hunt for New Candidate Galactic OB Stars

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Alexander, Michael J.; Busk, Heather; Hanes, Richard J.; Feigelson, Eric; McSwain, M. Virginia; Townsley, Leisa K.

    2016-01-01

    Most young, massive OB stars produce X-ray emission through a variety of wind-driven shock processes, and individual massive stars are detectable out to several kpc distances in the Galactic plane using high-resolution imaging observations from the Chandra X-ray Observatory. We have developed a technique to identify known and new candidate OB stars by fitting model stellar atmospheres to the broadband infrared spectral energy distributions of X-ray-identified stars. Using this technique, we identified 94 candidate O- and early B-type stars in the Carina Nebula and an additional 98 candidates in 11 other Galactic Massive Star-Forming Regions. Visible-light and near-infrared follow-up spectroscopy of these candidates is ongoing, and initial results indicate that a majority of candidate massive stars will be spectroscopically confirmed as OB stars.

  1. Ultraviolet properties of individual hot stars in globular cluster cores. 1: NGC 1904 (M 79)

    NASA Technical Reports Server (NTRS)

    Altner, Bruce; Matilsky, Terry A.

    1992-01-01

    As part of an observing program using the International Ultraviolet Explorer (IUE) satellite to investigate the ultraviolet properties of stars found within the cores of galactic globular clusters with blue horizontal branches (HBs), we obtained three spectra of the cluster NGC 1904 (M 79). All three were long integration-time, short-wavelength (SWP) spectra obtained at the so called 'center of light' and all three showed evidence of sources within the IUE large aperture (21.4 in. by 10 in.). In this paper we shall describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-HB stage of evolution.

  2. Galactic globular cluster NGC 6752 and its stellar population as inferred from multicolor photometry

    SciTech Connect

    Kravtsov, Valery; Alcaíno, Gonzalo; Marconi, Gianni; Alvarado, Franklin E-mail: inewton@terra.cl E-mail: gmarconi@eso.org

    2014-03-01

    This paper is devoted to photometric study of the Galactic globular cluster (GGC) NGC 6752 in UBVI, focusing on the multiplicity of its stellar population. We emphasize that our U passband is (1) narrower than the standard one due to its smaller extension blueward and (2) redshifted by ∼300 Å relative to its counterparts, such as the HST F336W filter. Accordingly, both the spectral features encompassed by it and photometric effects of the multiplicity revealed in our study are somewhat different than in recent studies of NGC 6752. Main sequence stars bluer in U – B are less centrally concentrated, as red giants are. We find a statistically significant increasing luminosity of the red giant branch (RGB) bump of ΔU ≈ 0.2 mag toward the cluster outskirts with no so obvious effect in V. The photometric results are correlated with spectroscopic data: the bluer RGB stars in U – B have lower nitrogen abundances. We draw attention to a larger width of the RGB than the blue horizontal branch (BHB) in U – B. This seems to agree with the effects predicted to be caused by molecular bands produced by nitrogen-containing molecules. We find that brighter BHB stars, especially the brightest ones, are more centrally concentrated. This implies that red giants that are redder in U – B, i.e., more nitrogen enriched and centrally concentrated, are the main progenitors of the brighter BHB stars. However, such a progenitor-progeny relationship disagrees with theoretical predictions and with the results on the elemental abundances in horizontal branch stars. We isolated the asymptotic giant branch clump and estimated the parameter ΔV{sub ZAHB}{sup clump} = 0.98 ± 0.12.

  3. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If

  4. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  5. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  6. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  7. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Cluster. II. Kinematic Profiles and Maps

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland P.; Bellini, Andrea; Anderson, Jay

    2015-04-01

    We present kinematical analyses of 22 Galactic globular clusters using the Hubble Space Telescope proper motion catalogs recently presented in Bellini et al. For most clusters, this is the first proper-motion study ever performed, and, for many, this is the most detailed kinematic study of any kind. We use cleaned samples of bright stars to determine binned velocity-dispersion and velocity-anisotropy radial profiles and two-dimensional velocity-dispersion spatial maps. Using these profiles, we search for correlations between cluster kinematics and structural properties. We find the following: (1) more centrally concentrated clusters have steeper radial velocity-dispersion profiles; (2) on average, at 1σ confidence in two dimensions, the photometric and kinematic centers of globular clusters agree to within ˜1″, with a cluster-to-cluster rms of 4″(including observational uncertainties); (3) on average, the cores of globular clusters have isotropic velocity distributions to within 1% ({{σ }t}/{{σ }r}=0.992+/- 0.005), with a cluster-to-cluster rms of 2% (including observational uncertainties); (4) clusters generally have mildly radially anisotropic velocity distributions ({{σ }t}/{{σ }r}≈ 0.8-1.0) near the half-mass-radius, with bigger deviations from isotropy for clusters with longer relaxation times; and (5) there is a relation between {{σ }minor}/{{σ }major} and ellipticity, such that the more flattened clusters in the sample tend to be more anisotropic, with {{σ }minor}/{{σ }major}≈ 0.9-1.0. Aside from these general results and correlations, the profiles and maps presented here can provide a basis for detailed dynamical modeling of individual globular clusters. Given the quality of the data, this is likely to provide new insights into a range of topics concerning globular cluster mass profiles, structure, and dynamics. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science

  8. The ACS Fornax Cluster Survey. XII. Diffuse Star Clusters in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Yiqing; Peng, Eric W.; Lim, Sungsoon; Jordán, Andrés; Blakeslee, John; Côté, Patrick; Ferrarese, Laura; Pattarakijwanich, Petchara

    2016-10-01

    Diffuse star clusters (DSCs) are old and dynamically hot stellar systems that have lower surface brightness and more extended morphology than globular clusters (GCs). Using the images from Hubble Space Telescope (HST)/ACS Fornax Cluster Survey, we find that 12 out of 43 early-type galaxies (ETGs) in the Fornax Cluster host significant numbers of DSCs. Together with literature data from the HST/ACS Virgo Cluster Survey, where 18 out of 100 ETGs were found to host DSCs, we systematically study the relationship of DSCs with GCs and their host galaxy environment. Two DSC hosts are post-merger galaxies, with most of the other hosts either having low mass or showing clear disk components. We find that while the number ratio of DSCs to GCs is nearly constant in massive galaxies, the DSC-to-GC ratio becomes systematically higher in lower-mass hosts. This suggests that DSCs may be more efficient at forming (or surviving) in low-density environments. DSC hosts are not special either in their position in the cluster or in the galactic color-magnitude diagram. Why some disk and low-mass galaxies host DSCs while others do not is still a puzzle, however. The mean ages of DSC hosts and nonhosts are similar at similar masses, implying that formation efficiency rather than survival is the reason behind different DSC number fractions in ETGs.

  9. Caloric curve of star clusters.

    PubMed

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.

  10. Caloric curve of star clusters

    NASA Astrophysics Data System (ADS)

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.

  11. Accelerating Star Formation in Clusters and Associations

    NASA Astrophysics Data System (ADS)

    Palla, Francesco; Stahler, Steven W.

    2000-09-01

    We use our own, recently developed pre-main-sequence evolutionary tracks to investigate the star formation histories of relatively nearby associations and clusters. We first employ published luminosities and effective temperatures to place the known members of each region in the H-R diagram. We then construct age histograms detailing that region's history. The groups studied include Taurus-Auriga, Lupus, Chamaeleon, ρ Ophiuchi, Upper Scorpius, IC 348, and NGC 2264. This study is the first to analyze a large number of star-forming regions with the same set of theoretical tracks. Our investigation corroborates and extends our previous results on the Orion Nebula Cluster. In all cases, we find that star formation began at a relatively low level some 107 yr in the past and has more recently undergone a steep acceleration. This acceleration, which lasts several million years, is usually continuing through the present epoch. The one clear exception is the OB association Upper Scorpius, where the formation rate climbed upward, peaked, and has now died off. Significantly, this is also the only region of our list that has been largely stripped of molecular gas. The acceleration represents a true physical phenomenon that cannot be explained away by incompleteness of the samples; nor is the pattern of stellar births significantly affected by observational errors or the presence of unresolved binaries. We speculate that increasing star formation activity arises from contraction of the parent cloud. Despite the short timescale for acceleration, the cloud is likely to evolve quasi-statically. Star formation itself appears to be a critical phenomenon, occurring only in locations exceeding some threshold density. The cloud's contraction must reverse itself, and the remnant gas dissipate, in less than 107 yr, even for aggregates containing no massive stars. In this case, molecular outflows from the stars themselves presumably accomplish the task, but the actual dispersal mechanism

  12. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  13. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  14. On the physical nature of six galactic open cluster candidates

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    We present CCD UBVI_(KC) photometry in the fields of the unstudied open cluster (OC) candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4. Our analysis shows that none of these objects are genuine OCs since no clear main sequences or other typical features can be seen in their colour-magnitude and colour-colour diagrams. Star counts performed within and outside the OC candidate fields not only support these results but also suggest that these objects are not OC remnants. A detailed version of this work can be seen in New Astronomy, 16, 161 (2011).

  15. Discovery of Five New R. Coronae Borealis Stars in the MACHO Galactic Bulge Database

    SciTech Connect

    Zaniewshi, A; Clayton, G C; Welch, D; Gordon, K D; Minniti, D; Cook, K

    2005-06-16

    We have identified five new R Coronae Borealis (RCB) stars in the Galactic bulge using the MACHO Project photometry database, raising the total number of known Galactic RCB stars to about 40. We have obtained spectra to confirm the identifications. The fact that four out of the five newly identified RCB stars are ''cool'' (T{sub eff} < 6000 K) rather than ''warm'' (T{sub eff} > 6000 K) suggests that the preponderance of warm RCB stars among the existing sample is a selection bias. These cool RCB stars are redder and fainter than their warm counterparts and may have been missed in surveys done with blue plates. Based on the number of new RCB stars discovered in the MACHO bulge fields, there may be {approx}250 RCB stars in the reddened ''exclusion'' zone toward the bulge.

  16. Signatures of multiple stellar populations in unresolved extragalactic globular/young massive star clusters

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Finzell, Thomas

    2013-06-01

    We present an investigation of potential signatures of the formation of multiple stellar populations in recently formed extragalactic star clusters. All of the Galactic globular clusters for which good samples of individual stellar abundances are available show evidence for multiple populations. This appears to require that multiple episodes of star formation and light element enrichment are the norm in the history of a globular cluster. We show that there are detectable observational signatures of multiple formation events in the unresolved spectra of massive, young extragalactic star clusters. We present the results of a pilot program to search for one of the cleanest signatures that we identify—the combined presence of emission lines from a very recently formed population and absorption lines from a somewhat older population. A possible example of such a system is identified in the Antennae galaxies. This source's spectrum shows evidence of two stellar populations with ages of 8 Myr and 80 Myr. Further investigation shows that these populations are in fact physically separated, but only by a projected distance of 59 pc. We show that the clusters are consistent with being bound and discuss the possibility that their coalescence could result in a single globular cluster hosting multiple stellar populations. While not the prototypical system proposed by most theories of the formation of multiple populations in clusters, the detection of this system in a small sample is both encouraging and interesting. Our investigation suggests that expanded surveys of massive young star clusters should detect more clusters with such signatures.

  17. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. VIII. Preliminary Public Catalog Release

    NASA Astrophysics Data System (ADS)

    Soto, M.; Bellini, A.; Anderson, J.; Piotto, G.; Bedin, L. R.; van der Marel, R. P.; Milone, A. P.; Brown, T. M.; Cool, A. M.; King, I. R.; Sarajedini, A.; Granata, V.; Cassisi, S.; Aparicio, A.; Hidalgo, S.; Ortolani, S.; Nardiello, D.

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  18. On the subject of the Ba overabundance in the open clusters stars

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Korotin, S. A.; Carraro, G.; Kovtyukh, V. V.; Yegorova, I. A.

    2016-01-01

    For eight distant open clusters, namely Ruprecht 4, Ruprecht 7, Berkeley 25, Berkeley 73, Berkeley 75, NGC 6192, NGC 6404, and NGC 6583, we determined the yttrium and barium abundances using the UVES, VLT spectra (ESO, Chile). The stars of one young cluster (Ruprecht 7) demonstrate significant barium overabundance(∼0.55 dex) that can not be due to the determination error. We have considered the Ba abundance determination errors due to LTE approach, saturation of the lines, synthetic and observed barium line fitting, and the causes of the Ba overabundance associated with the Galactic disc enrichment or the origin of open clusters. Possible explanation for this overabundance can be the origin of n-capture elements enrichment of the clusters (galactic or extragalactic) or additional sources of the Ba production.

  19. Proper motions and CCD-photometry of stars in the region of the open cluster Trumpler 2

    NASA Astrophysics Data System (ADS)

    Frolov, V. N.; Ananjevskaja, J. K.; Jilinski, E. G.; Gorshanov, D. L.; Bronnikova, N. M.

    2006-06-01

    The results of a complex study of the galactic open cluster Trumpler 2 are presented. In order to obtain the proper motions, the positions of approximately 3000 stars up to the limit magnitude B˜16.25 mag in the area 80 arcmin×80 arcmin around the cluster were measured on 6 plates with a maximal epoch difference of 63 years. The root-mean error of the relative proper motions is 4.2 mas yr-1. The catalogue of {BV} magnitudes of all the stars in the investigated area was compiled. The selection of the cluster members within the region of R<16 arcmin from the center of the cluster was made. Altogether, 148 stars were considered to be cluster members by both astrometrical and photometrical criteria. We present the estimated age (8.91×107 yr) and physical parameters of the cluster and append the catalogues of the proper motions and of the photometry of the stars.

  20. Submillimeter View of Gas and Dust in the Forming Super Star Cluster in NGC 5253

    NASA Astrophysics Data System (ADS)

    Turner, Jean L.

    2015-08-01

    Measuring the molecular gas content of young super star clusters is necessary to assess the efficiency of the birth process. Submillimeter arrays allow the detection of individual giant molecular clouds (GMCs) in young massive clusters in nearby galaxies to constrain star formation efficiency and feedback. We have detected CO(3-2) and dust emission toward the super star cluster and supernebula in NGC 5253 with the Submillimeter Array. The GMC associated with the supernebula, “Cloud D”, is warm (T>200K), dense (log n~4.3) and optically thin in CO(3-2). We cannot get a mass from CO. Instead we estimate the molecular gas mass by subtracting the stellar mass from the gravitational mass of Cloud D; we find a star formation efficiency of over 60%. This cloud is extremely dusty; the gas-to-dust ratio is 50, half to one-third of the Galactic value and a tenth of the ~500-700 value scaled from the metallicity of NGC 5253. We propose that the dust mass is enhanced by mass loss from Wolf-Rayet stars within the cluster, which is consistent with STARBURST99 modeling of the cluster yields. Finally, the CO linewidth is sigma~9 km/s, not much broader than predicted for quiescent Galactic GMCs from the size-linewidth relation. There is little evidence for the effects of the roughly 7000 O stars embedded within Cloud D. We seem to be catching this cluster at a special time, at an age of 3.5 to 4 Myr, before its first supernova but after mass loss has begun from the O stars.

  1. Global survey of star clusters in the Milky Way. IV. 63 new open clusters detected by proper motions

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Röser, S.; Schilbach, E.

    2015-09-01

    Context. The global Milky Way Star Clusters (MWSC) survey provided new cluster membership lists and mean cluster parameters for nearly 80% of all previously known Galactic clusters. The MWSC data reduction pipeline involved the catalogue of positions and proper motions (PPMXL) on the International Celestial Reference System (ICRS) and near-infrared photometry from the Two Micron All Sky Survey (2MASS). Aims: In the first extension to the MWSC, photometric filters were applied to the 2MASS catalogue to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, particularly of nearby clusters, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. Methods: We first selected high-quality samples from the PPMXL and the Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±50 mas/yr, the sky outside a thin Galactic plane zone (| b | < 5°) was binned in small areas ("sky pixels") of 0.25 × 0.25 deg2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. The 692 compact cluster candidates detected above a threshold that was equivalent to a minimum of 12 to 130 cluster stars in dependence on the Galactic latitude were then cross-checked with known star clusters and clusters of galaxies. New candidates served as input for the MWSC pipeline. Results: About half of our candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our

  2. Exploring the UV excess in star clusters of different mass

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, Fabiola; Bruzual, Gustavo; Gladis, Magris C.

    2017-03-01

    We compute the expected spectral energy distribution of stellar populations of mass characteristic of star clusters taking into account stochastic fluctuations in the number of stars populating the IMF, and the presence of interacting binary stars in the cluster population. We evaluate under what circumstances the UV excess phenomenon is expected to appear in star clusters of different mass, and which is its most likely source: the stochastic fluctuations, the result of binary interactions, or a mixture of both.

  3. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  4. UVIS CTE Monitor: Star Clusters

    NASA Astrophysics Data System (ADS)

    Noeske, Kai

    2010-09-01

    *** NOTE 2: 2ND CHANGE MAR 26 2011: VISIT 13 HAD FAILED. APPROVED FOR REPETITION. ****** NEW VISIT 14 IS IDENTICAL TO FORMER VISIT 13, WITH EXCEPTIONS THAT SOME SUBEXPOSURES ARE REMOVED. ****** SEE OBSERVING DESCRIPTION FOR DETAILS. ****** NOTE: THIS IS A CHANGED PHASE II PROPOSAL AFTER VISITS 1,2,7 HAD BEEN EXECUTED ****** CHANGES BECAME NECESSARY AFTER ANALYSIS OF INCOMING CALIBRATION DATA FROM 12379 AND 12348 ****** THIS REVISED PHASE II {submission 14FEB2011} ADDS THE EVALUATION OF CHARGE INJECTION***The changes amount to:1} dropping the 3rd epoch {August 2011} of external CTE monitoring {3 orbits}2} simplifying the CTE monitor observations in the second epoch {March 2011}, freeing up 1 orbit3} using the freed up orbits from 1} and 2}, together with two additional external orbits that we were granted, to thoroughly assess the data quality of charge - injected data under realistic observing setups.These charge-injected observations will be obtained during the 2nd epoch of the CTE monitor program, in the March 2011 window.------ Original Text prior to 14 Feb 2011 below this line -----------This program extends the Cycle 17 external CTE calibration {CAL/WFC3 ID 11924} program for WFC3/UVIS over Cycle 18. Targets are {i} the sparse cluster NGC 6791 observed in Cycle 17, to continue a consistent set of observations that allows to isolate the time evolution of the CTE, and {ii} a denser field in 47 Tuc {NGC 104}. The latter will provide data to measure the dependence of the CTE on field crowding. It will also provide a consistent comparison between the CTE evolution of WFC3/UVIS and that of ACS/WFC at the same time into the flight {1 year}, because ACS/WFC CTE data were based on 47 Tuc observations. Additional observations of 47 Tuc in the CVZ will provide a wide range of background levels to measure the background dependence of the UVIS CTE.Goals are {i} the continued monitoring of the time evolution of the WFC3/UVIS CTE, {ii} establishing the detector X

  5. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  6. Spatial and kinematic segregation in star-cluster merger remnants

    NASA Astrophysics Data System (ADS)

    Cole, David R.; Debattista, Victor P.; Varri, Anna-Lisa; Adam, Markus; Seth, Anil C.

    2017-04-01

    Globular clusters that exhibit chemical and dynamical complexity have been suggested to be the stripped nuclei of dwarf galaxies(e.g. M54, ω Cen). We use N-body simulations of nuclear star clusters forming via the mergers of star clusters to explore the persistence of substructure in the phase space. We find that the observed level of differentiation is difficult to reconcile with the observed if nuclear clusters form wholly out of the mergers of star clusters. Only the star clusters that merged most recently retain sufficiently distinct density and kinematics to be distinguishable from the rest of the nuclear cluster. In situ star formation must therefore be included to explain the observed properties of nuclear star clusters, in good agreement with previous results.

  7. Photoelectric Photometry of Faint M-Type Stars in the Direction of the South Galactic Pole

    NASA Astrophysics Data System (ADS)

    Pesch, P.

    1982-04-01

    Photoelectric V (Johnson-Morgan UBV system) and (V I) (Kron-Mayall PVI system) photometry is presented for 54 faint M-type stars from Pesch and Sanduleak's catalog of probable dwarf stars of type M3 and later in the direction of the south galactic pole. The observations were made in November 1978 with the 1.5-m CTIO reflector.

  8. Physical characterization of Galactic O-type stars targeted by the IACOB and OWN surveys

    NASA Astrophysics Data System (ADS)

    Holgado, G.; Simón-Díaz, S.; Barbá, R.

    2017-03-01

    We present first results from the quantitative spectroscopic analysis of ˜ 270 Galactic O-type stars targeted by the IACOB and OWN surveys (implying the largest sample of stars of this type analyzed homogeneously). We also evaluate what is the present situation regarding available information about distances, as provided by the Hipparcos and Gaia missions

  9. The Distance to the Massive Galactic Cluster Westerlund 2 from a Spectroscopic and HST Photometric Study

    NASA Astrophysics Data System (ADS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-05-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters RV and AV for O-type stars in Wd2. We find average values langRV rang = 3.77 ± 0.09 and langAV rang = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance langdrang = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    SciTech Connect

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. E-mail: chipk@uwyo.edu E-mail: sheila@physics.unc.edu E-mail: rcool@obs.carnegiescience.edu

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  11. FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

    SciTech Connect

    Aharon, Danor; Perets, Hagai B.

    2015-02-01

    Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) buildup of NSCs from consecutive infall of stellar clusters and (2) continuous in situ star formation. Though the cluster infall scenario has been extensively studied, the in situ formation scenario has been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the buildup of NSCs and its implications for their long-term evolution and their resulting structure. We use the FP equation to describe the evolution of stellar populations and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star formation even 1-2 pc away from the MBH can lead to the buildup of an NSC with properties similar to those of the Milky Way NSC. We find that the structure of the old stellar population in the NSC with in situ star formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger populations do not yet achieve a steady state. In particular, formed/evolved NSCs with in situ star formation contain differential age-segregated stellar populations that are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure toward the NSC outskirts, while showing a core-like distribution inward, with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger stars, as observed in the Galactic center.

  12. Interrupted Binary Mass Transfer in Star Clusters

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Geller, Aaron M.; Toonen, Silvia

    2016-02-01

    Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics, including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable MT to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-mass clusters (≲ {10}4 {M}⊙ ), on the order of a few to a few tens of percent of binaries undergoing MT are expected to be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in more massive globular clusters we expect \\ll 1% to be interrupted. Furthermore, using numerical scattering experiments performed with the FEWBODY code, we show that the probability of interruption increases if perturbative fly-bys are considered as well, by a factor ˜2.

  13. ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS

    SciTech Connect

    Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara; Schiavon, Ricardo P.; Rood, Robert T.; O'Connell, Robert W.; Sohn, Sangmo T.

    2012-11-01

    We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This database is the largest homogeneous catalog of UV colors ever published for stellar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly used to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance, and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV - V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.

  14. Star Formation and Cloud Dynamics in the Galactic Bar Region

    NASA Astrophysics Data System (ADS)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  15. Investigation of Galactic open cluster remnants: the case of NGC 7193

    NASA Astrophysics Data System (ADS)

    de Souza Angelo, Mateus; Francisco Coelho dos Santos, João, Jr.; José Barbosa Corradi, Wagner; Ferreira de Souza Maia, Francisco; Piatti, Andrés Eduardo

    2017-01-01

    Galactic open clusters (OCs) that survive the early gas-expulsion phase are gradually destroyed over time by the action of disruptive dynamical processes. Their final evolutionary stages are characterized by a poorly populated concentration of stars called an open cluster remnant (OCR). This study is devoted to assessing the real physical nature of the OCR candidate NGC 7193. GMOS/Gemini spectroscopy of 53 stars in the inner target region were obtained to derive radial velocities and atmospheric parameters. We also employed photometric and proper motion data. The analysis method consists of the following steps: (i) analysis of the statistical resemblance between the cluster and a set of field samples with respect to the sequences defined in color-magnitude diagrams (CMDs); (ii) a 5-dimensional iterative exclusion routine was employed to identify outliers from kinematical and positional data; (iii) isochrone fitting to the Ks×(J-Ks) CMD of the remaining stars and the dispersion of spectral types along empirical sequences in the (J-H)×(H-Ks) diagram were checked. A group of stars was identified for which the mean heliocentric distance is compatible with that obtained via isochrone fitting and whose metallicities are compatible with each other. Fifteen of the member stars observed spectroscopically were identified together with another 19 probable members. Our results indicate that NGC 7193 is a genuine OCR, of a once very populous OC, for which the following parameters were derived: d = 501±46 pc, t=2.5+/-1.2 Gyr, < [Fe/H] >=-0.17+/-0.23 and E(B-V)=0.05+/-0.05. Its luminosity and mass functions show depletion of low mass stars, confirming the OCR is in a dynamically evolved state. Based on observations obtained at the Gemini Observatory, which is operated by the AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: NSF (United States), STFC (United Kingdom), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq (Brazil) and CONICET

  16. PG 0832 + 676 - An apparently normal B1 V star 18 kiloparsecs above the galactic plane

    SciTech Connect

    Brown, P.J.F.; Dufton, P.L.; Keenan, F.P.; Boksenberg, A.; King, D.L.

    1989-04-01

    Stellar equivalent widths and line profiles, measured from optical spectra obtained with the 5 m Hale telescope and the 2.5 m Isaac Newton telescope, are used in conjunction with model atmosphere calculations to determine the atmospheric parameters and chemical composition of the faint, blue, high-galactic latitude star PG 0832 + 676. The effective temperature (Teff = 25,000 K), surface gravity (log g = 3.9), and abundances of He, C, N, O, Mg, Al, and Si are similar to those of Population I OB-type stars, from which it is concluded that PG 0832 + 676 is a normal star at a distance from the galactic plane of about 18 kpc. The star's kinematics and evolutionary age suggest that it formed in the halo, possibly from galactic fountain material. 51 refs.

  17. Young and old massive star clusters: Theoretical challenges for the next decade

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Breakthrough results of high resolution observations both with HST and from the ground have revolutionized our view and our understanding of massive star clusters, young and old, in the Galaxy, in the Local Group, as well as in merging and interacting galaxies. This drastic paradigm shift has revealed the complexity of these systems and has raised a number of fundamental questions on the physical processes that drive the formation and evolution of massive star clusters in different environments, on the star cluster initial mass function, and on the contribution of these objects to the general galactic field stellar population. In this talk we review some of the main theoretical challenges that have to be faced in the field at the very same moment when we enter a golden age for observations and numerical multi-dimensional simulations.

  18. HUBBLE PROVIDES 'ONE-TWO PUNCH' TO SEE BIRTH OF STARS IN GALACTIC WRECKAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies. The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars. The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies. ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions. IRAS 19297-0406 is producing about 200 new Sun-like stars every year -- about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation. The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust. The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years. Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region. IRAS 19297-0406 may be

  19. Galactic clusters with associated Cepheid variables. 4: C2128+488 (Anon. Platais) and V1726 Cygni

    NASA Astrophysics Data System (ADS)

    Turner, David G.; Mandushev, Georgi I.; Forbes, Douglas

    1994-05-01

    New photoelectric UBV photometry of 32 stars, photographic UBV photometry of 120 stars, and spectroscopic observations of 8 stars are presented for C 2128+488 (Anon. Platais), the cluster associated with the 4d.237 s-Cepheid V1726 Cygni. The resulting photometry, spectral classifications, and radial velocities are used with spectroscopic and proper motion data previously published by Platais and others for the Cepheid and other stars in this field in a detailed cluster analysis. The newly obtained cluster distance modulus is Vzero - MV = 10.98 +/- 0.02s.e. (d = 1568 +/- 13 pc), and a value of R = AV/EV-V = 3.07 +/- 0.27 s.e. is found to describe the dust extinction in the field. A space reddening of EB-V = 0.43 +/- 0.02 is derived for V1726 Cyg from two late B-type companions which bracket the Cepheid, as well as from the reddenings of other stars in the field. Its resulting luminosity as a probable cluster member is (MV) = -3.42 +/- 0.07. A cluster radial velocity of -15.4 +/-0.2 km/sec and a cluster turnoff point at spectral type B7 are both consistent with the likely membership of V1726 Cyg, as are the available proper motion data. The small amplitude, sinusoidal light curve, and location of V1726 Cyg on the blue edge of the Cepheid instability strip are consistent with the properties expected for overtone pulsation, although such a possibility appears to imply an unrealistically small value (beta = 0.5 +/- 0.2) for the color coefficient in the PLC relation. A more reasonable value of beta = 2.1 +/- 0.2 is derived for the color term applicable to galactic cluster Cepheids in this program when V1726 Cyg is assumed to be pulsating in the fundamental mode.

  20. DYNAMICS OF PLANETARY SYSTEMS IN STAR CLUSTERS

    SciTech Connect

    Spurzem, R.; Giersz, M.; Heggie, D. C.; Lin, D. N. C.

    2009-05-20

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We show that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay

  1. New brown dwarfs in Upper Sco using UKIDSS Galactic Cluster Survey science verification data

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Hambly, N. C.; Jameson, R. F.; Hodgkin, S. T.; Carraro, G.; Kendall, T. R.

    2007-01-01

    We present first results from a deep (J = 18.7), wide-field (6.5deg2) infrared (ZY JHK) survey in the Upper Sco association conducted within the science verification phase of the United Kingdom Infrared Telescope Infrared Deep Sky Survey Galactic Cluster Survey (GCS). Cluster members define a sequence well separated from field stars in the (Z - J, Z) colour-magnitude diagram. We have selected a total of 164 candidates with J = 10.5-18.7 mag from the (Z - J, Z) and (Y - J, Y) diagrams. We further investigated the location of those candidates in the other colour-magnitude and colour-colour diagrams to weed out contaminants. The cross-correlation of the GCS catalogue with the Two-Micron All-Sky Survey data base confirms the membership of 116 photometric candidates down to 20 Jupiter masses as they lie within a 2σ circle centred on the association mean motion. The final list of cluster members contains 129 sources with masses between 0.3 and 0.007 Msolar. We extracted a dozen new low-mass brown dwarfs below 20 MJup, the limit of previous surveys in the region. Finally, we have derived the mass function in Upper Sco over the 0.3-0.01 Msolar mass range, best fit by a single segment with a slope of index α = 0.6 +/- 0.1, in agreement with previous determination in open clusters. Based on observations made with the United Kingdom Infrared Telescope, operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council. E-mail: nl41@star.le.ac.uk

  2. Evolution of star clusters in a cosmological tidal field

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; Ishiyama, Tomoaki; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L. W.; Portegies Zwart, Simon

    2013-12-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using AMUSE (Astrophysical Multipurpose Software Environment). We apply this method to star clusters embedded in the CosmoGrid dark matter only Lambda cold dark matter simulation. Our star clusters are born at z = 10 (corresponding to an age of the universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32 000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky Way size haloes with a different accretion history. The mass-loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass-loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass-loss rate from the embedded star clusters, even though the final masses of both haloes are similar. We identify two families of star clusters: native clusters, which become part of the main halo before its final major merger event, and the immigrant clusters, which are accreted upon or after this event; native clusters tend to evaporate more quickly than immigrant clusters. Accounting for the evolution of the dark matter halo causes immigrant star clusters to retain more mass than when the z = 0 tidal field is taken as a static potential. The reason for this is the weaker tidal field experienced by immigrant star clusters before merging with the larger dark matter halo.

  3. VizieR Online Data Catalog: Galactic O star catalog (Maiz-apellaniz+, 2004)

    NASA Astrophysics Data System (ADS)

    Maiz-Apellaniz, J.; Walborn, N. R.; Galue, H. A.; Wei, L. H.

    2004-04-01

    We have produced a catalog of 378 Galactic O stars with accurate spectral classifications that is complete for V<8 but includes many fainter stars. The catalog provides cross-identifications with other sources; coordinates (obtained in most cases from Tycho-2 data); astrometric distances for 24 of the nearest stars; optical (Tycho-2, Johnson, and Stroemgren) and NIR photometry; group membership, runaway character, and multiplicity information; and a Web-based version with links to on-line services. (9 data files).

  4. The location, clustering, and propagation of massive star formation in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Chastenet, Jeremy; Tielens, A. G. G. M.; Roman-Duval, Julia

    2017-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this talk, I will highlight results from a project utilizing data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (< 10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We have employed this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. The main results are as follows: (1) Massive stars do not typically form at the highest column densities nor centers of their parent GMCs. (2) Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. (3) The rate of massive star formation is significantly boosted in clouds near SCs. Yet, comparison of molecular clouds associated with SCs with those that are not reveals no significant difference in their global properties. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. I will compare our findings with Galactic studies and discuss this in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  5. The Location, Clustering, and Propagation of Massive Star Formation in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy; Tielens, Alexander G. G. M.; Roman-Duval, Julia

    2016-11-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  6. An analysis of star formation with Herschel in the Hi-GAL Survey. II. The tips of the Galactic bar

    NASA Astrophysics Data System (ADS)

    Veneziani, M.; Schisano, E.; Elia, D.; Noriega-Crespo, A.; Carey, S.; Di Giorgio, A.; Fukui, Y.; Maiolo, B. M. T.; Maruccia, Y.; Mizuno, A.; Mizuno, N.; Molinari, S.; Mottram, J. C.; Moore, T. J. T.; Onishi, T.; Paladini, R.; Paradis, D.; Pestalozzi, M.; Pezzuto, S.; Piacentini, F.; Plume, R.; Russeil, D.; Strafella, F.

    2017-02-01

    Context. We present the physical and evolutionary properties of prestellar and protostellar clumps in the Herschel Infrared GALactic plane survey (Hi-GAL) in two large areas centered in the Galactic plane and covering the tips of the long Galactic bar at the intersection with the spiral arms. The areas fall in the longitude ranges 19° <ℓ < 33° and 340° < ℓ < 350°, while latitude is -1° < b < 1°. Newly formed high mass stars and prestellar objects are identified and their properties derived and compared. A study is also presented on five giant molecular complexes at the further edge of the bar, identified through ancillary 12CO(1-0) data from the NANTEN observatory. Aims: One of the goals of this analysis is assessing the role of spiral arms in the star-formation processes in the Milky Way. It is, in fact, still a matter of debate if the particular configuration of the Galactic rotation and potential at the tips of the bar can trigger star formation. Methods: The star-formation rate was estimated from the quantity of proto-stars expected to form during the collapse of massive turbulent clumps into star clusters. The expected quantity of proto-stars was estimated by the possible final cluster configurations of a given initial turbulent clump. This new method was developed by applying a Monte Carlo procedure to an evolutionary model of turbulent cores and takes into account the wide multiplicity of sources produced during the collapse. Results: The star-formation rate density values at the tips are 1.2±0.3×10-3 M_⊙/{yr kpc^2} and 1.5±0.3×10-3 M_⊙/{yr kpc^2} in the first and fourth quadrant, respectively. The same values estimated on the entire field of view, that is including the tips of the bar and background and foreground regions, are 0.9±0.2×10-3 M_⊙/{yr kpc^2} and 0.8±0.2×10-3 M_⊙/{yr kpc^2}. The conversion efficiency indicates the percentage amount of material converted into stars and is approximately 0.8% in the first quadrant and 0

  7. THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS

    SciTech Connect

    Webb, Jeremy J.; Harris, William E.; Sills, Alison; Hurley, Jarrod R.

    2013-02-20

    We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.

  8. VizieR Online Data Catalog: Milky Way global survey of star clusters. V. (Kharchenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Roeser, S.; Scholz, R.-D.

    2015-11-01

    The catalogue presents integrated parameters in near-infrared (JHKs) passbands for 3208 Galactic star clusters. The integrated magnitudes are based on the most probable cluster members selected from the high-precision, homogeneous all-sky catalogue 2MAst that is constructed on the basis of catalogues PPMXL (Roeser et al., 2010, Cat. I/317) and 2MASS (Cutri et al., 2003, Cat. II/246). The integrated magnitudes are computed by adding the individual luminosities of the most secure cluster members. In order to put the computed magnitudes into a uniform and unbiased system they were corrected for the effect of unseen stars in the 2MAst. The clusters in the catalogue are sorted according to their numbers in the MWSC. (1 data file).

  9. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  10. Clustered star formation as a natural explanation for the Halpha cut-off in disk galaxies.

    PubMed

    Pflamm-Altenburg, Jan; Kroupa, Pavel

    2008-10-02

    The rate of star formation in a galaxy is often determined by the observation of emission in the Halpha line, which is related to the presence of short-lived massive stars. Disk galaxies show a strong cut-off in Halpha radiation at a certain galactocentric distance, which has led to the conclusion that star formation is suppressed in the outer regions of disk galaxies. This is seemingly in contradiction to recent observations in the ultraviolet which imply that disk galaxies have star formation beyond the Halpha cut-off, and that the star-formation-rate surface density is linearly related to the underlying gas surface density, which is a shallower relationship than that derived from Halpha luminosities. In a galaxy-wide formulation, the clustered nature of star formation has recently led to the insight that the total galactic Halpha luminosity is nonlinearly related to the galaxy-wide star formation rate. Here we show that a local formulation of the concept of clustered star formation naturally leads to a steeper radial decrease in the Halpha surface luminosity than in the star-formation-rate surface density, in quantitative agreement with the observations, and that the observed Halpha cut-off arises naturally.

  11. Lithopanspermia in star-forming clusters.

    PubMed

    Adams, Fred C; Spergel, David N

    2005-08-01

    This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime.

  12. Spin alignment of stars in old open clusters

    NASA Astrophysics Data System (ADS)

    Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme

    2017-03-01

    Stellar clusters form by gravitational collapse of turbulent molecular clouds, with up to several thousand stars per cluster1. They are thought to be the birthplace of most stars and therefore play an important role in our understanding of star formation, a fundamental problem in astrophysics2,3. The initial conditions of the molecular cloud establish its dynamical history until the stellar cluster is born. However, the evolution of the cloud's angular momentum during cluster formation is not well understood4. Current observations have suggested that turbulence scrambles the angular momentum of the cluster-forming cloud, preventing spin alignment among stars within a cluster5. Here we use asteroseismology6-8 to measure the inclination angles of spin axes in 48 stars from the two old open clusters NGC 6791 and NGC 6819. The stars within each cluster show strong alignment. Three-dimensional hydrodynamical simulations of proto-cluster formation show that at least 50% of the initial proto-cluster kinetic energy has to be rotational in order to obtain strong stellar-spin alignment within a cluster. Our result indicates that the global angular momentum of the cluster-forming clouds was efficiently transferred to each star and that its imprint has survived several gigayears since the clusters formed.

  13. Do open star clusters evolve towards energy equipartition?

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Mapelli, Michela; Jeffries, Robin D.

    2016-07-01

    We investigate whether open clusters (OCs) tend to energy equipartition, by means of direct N-body simulations with a broken power-law mass function. We find that the simulated OCs become strongly mass segregated, but the local velocity dispersion does not depend on the stellar mass for most of the mass range: the curve of the velocity dispersion as a function of mass is nearly flat even after several half-mass relaxation times, regardless of the adopted stellar evolution recipes and Galactic tidal field model. This result holds both if we start from virialized King models and if we use clumpy sub-virial initial conditions. The velocity dispersion of the most massive stars and stellar remnants tends to be higher than the velocity dispersion of the lighter stars. This trend is particularly evident in simulations without stellar evolution. We interpret this result as a consequence of the strong mass segregation, which leads to Spitzer's instability. Stellar winds delay the onset of the instability. Our simulations strongly support the result that OCs do not attain equipartition, for a wide range of initial conditions.

  14. PHL 346, a Beta Cephei star situated at more than 5 KPC from the Galactic plane?

    NASA Astrophysics Data System (ADS)

    Waelkens, C.; Rufener, F.

    1988-07-01

    The high-latitude early-B star PHL 346 is a pulsating variable with a period of 0.152 days. This period, the fact that color and brightness vary in phase, and the atmospheric parameters of PHL 346 suggest that it is a β Cephei variable. The star would then have a mass of about 10 solar masses and an age of about 107years. PHL 346 is faint (mv = 11.44) and is located at a high galactic latitude of -58°, so that it appears excluded that it originated in the galactic plane only 107yr ago. The pulsation of PHL 346 thus lends support to the idea that star formation far from the plane of the galaxy can occur. It is argued, more generally, that the study of the variability of high-latitude B stars provides a strong test for the nature of these stars.

  15. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2009-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  16. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2006-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  17. Variable Stars in the 50BiN Open Cluster Survey. I. NGC 2301

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deng, Licai; Zhang, Xiaobin; Xin, Yu; Yan, Zhengzhou; Tian, Jianfeng; Luo, Yangping; Luo, Changqing; Zhang, Chunguang; Peng, Yingjiang; Pan, Yang; Sun, Jinjiang; Luo, Zhiquan

    2015-11-01

    The current work is the first contribution from the 50 cm Binocular Network, whose primary goal is to systematically detect and characterize variable stars in Galactic open clusters. In this paper, we report the results of a search for variables in the open cluster NGC 2301. Eighteen variable stars including 12 new objects were detected in a 20‧ × 20‧ field around the cluster. The physical properties, classifications, and memberships are discussed using the behaviors of the light curves, the positions on the color-magnitude diagram, and the archival proper-motion data. Among the 12 new objects, 5 are low-amplitude δ Scuti stars, 4 of which are probable members of the cluster. One of them is discovered to be a δ Scuti star in an eclipsing binary system. One γ Doradus candidate is identified as a cluster member, but is apparently located very close to the blue edge of the γ Doradus instability strip and therefore can be used to pin down the blue edge of the instability strip. The remaining five new variables are classified as an EW-type eclipsing binary with an orbital period of 0.5785 days and four unknown type variable stars. In addition, revised basic data for the six known variables are given according to our observations.

  18. Using the multi-object adaptive optics demonstrator RAVEN to observe metal-poor stars in and towards the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Lamb, M.; Venn, K.; Andersen, D.; Oya, S.; Shetrone, M.; Fattahi, A.; Howes, L.; Asplund, M.; Lardière, O.; Akiyama, M.; Ono, Y.; Terada, H.; Hayano, Y.; Suzuki, G.; Blain, C.; Jackson, K.; Correia, C.; Youakim, K.; Bradley, C.

    2017-03-01

    The chemical abundances for five metal-poor stars in and towards the Galactic bulge have been determined from the H-band infrared spectroscopy taken with the RAVEN multi-object adaptive optics science demonstrator and the Infrared Camera and Spectrograph at the Subaru 8.2-m telescope. Three of these stars are in the Galactic bulge and have metallicities between -2.1 < [Fe/H] < -1.5, and high [α/Fe] ∼ +0.3, typical of Galactic disc and bulge stars in this metallicity range; [Al/Fe] and [N/Fe] are also high, whereas [C/Fe] < +0.3. An examination of their orbits suggests that two of these stars may be confined to the Galactic bulge and one is a halo trespasser, though proper motion values used to calculate orbits are quite uncertain. An additional two stars in the globular cluster M22 show [Fe/H] values consistent to within 1σ, although one of these two stars has [Fe/H] = -2.01 ± 0.09, which is on the low end for this cluster. The [α/Fe] and [Ni/Fe] values differ by 2σ, with the most metal-poor star showing significantly higher values for these elements. M22 is known to show element abundance variations, consistent with a multipopulation scenario though our results cannot discriminate this clearly given our abundance uncertainties. This is the first science demonstration of multi-object adaptive optics with high-resolution infrared spectroscopy, and we also discuss the feasibility of this technique for use in the upcoming era of 30-m class telescope facilities.

  19. The Structure of the Nearest Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    DiLullo, Christopher

    2015-01-01

    The occupation fraction of massive black holes in low-mass galaxies is a poorly constrained quantity. Understanding the rate at which tidal disruption events occur is critical to constraining the occupation fraction of black holes. It is known that most, if not all, galaxies with sub-Milky Way mass have a nuclear star cluster present. We have proposed to survey an extensive archive of HST observations of 80 galactic nuclei within 10 Mpc from Earth. At these distances, HST supplies us with adequate spatial resolution to create accurate surface brightness profiles that can then be used to create models of the nuclei's mass distribution and morphology. Our collaborators will use these data to generate models, based on black hole mass and cluster mass distribution, that predict occurrence rates of tidal disruption events. These models will then be compared to observations of tidal disruption events.We have begun the survey by generating models of the surface brightness profiles for two galaxies in our selection: M51 and NGC 404. I will discuss how these models were generated and what challenges were faced throughout the process. Finally, I present these models along with color maps and radial residual plots of each galaxy.

  20. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  1. The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.

    1981-01-01

    The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.

  2. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  3. Star formation rates on global and cloud scales within the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Longmore, S. N.; Battersby, C.; Bally, J.; Kruijssen, J. M. D.

    2017-01-01

    The environment within the inner few hundred parsecs of the Milky Way, known as the ``Central Molecular Zone'' (CMZ), harbours densities and pressures orders of magnitude higher than the Galactic Disc; akin to that at the peak of cosmic star formation (Kruijssen & Longmore 2013). Previous studies have shown that current theoretical star-formation models under-predict the observed level of star-formation (SF) in the CMZ by an order of magnitude given the large reservoir of dense gas it contains. Here we explore potential reasons for this apparent dearth of star formation activity.

  4. The Masses of the B Stars in the High Galactic Latitude Eclipsing Binary IT Librae

    NASA Astrophysics Data System (ADS)

    Martin, John C.

    2003-01-01

    A number of blue stars that appear to be similar to Population I B stars in the star-forming regions of the Galactic disk are found more than 1 kpc from the Galactic plane. Uncertainties about the true distances and masses of these high-latitude B stars have fueled a debate as to their origin and evolutionary status. The eclipsing binary IT Lib is composed of two B stars, is approximately 1 kpc above the Galactic plane, and is moving back toward the plane. Observations of the light and velocity curves presented here lead to the conclusion that the B stars in this system are massive young main-sequence stars. While there are several possible explanations, it appears most plausible that the IT Lib system formed in the disk about 30 million years ago and was ejected on a trajectory taking it to its present position. Based on observations made at the 2.1 m Otto Struve Telescope of McDonald Observatory operated by the University of Texas at Austin and also at the 2.1 m telescope at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  5. On the Binary Origin of FS CMa Stars: Young Massive Clusters as Test Beds

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Garcia, M.

    2017-02-01

    FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary origin is yet to be unraveled. Various binary-related hypotheses have been recently proposed, two of them involving a spiral-in evolution of the binary orbit. The latter occurs more often in dense stellar environments, such as young massive clusters (YMCs). Hence, a systematic study of FS CMa stars in YMCs would be crucial to find out how these objects are created. Two FS CMa stars have been confirmed and three candidates have been found in YMCs through a search method based on narrow-band photometry at Paschen-α and the neighboring continuum. We apply this method to archival data from the Paschen-α survey of the Galactic Center region, yielding a new candidate in the Quintuplet cluster. Limitations of this method and other alternatives are briefly discussed.

  6. Star clusters as laboratories for stellar and dynamical evolution.

    PubMed

    Kalirai, Jason S; Richer, Harvey B

    2010-02-28

    Open and globular star clusters have served as benchmarks for the study of stellar evolution owing to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that established the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star clusters.

  7. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  8. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Zhang Qizhou

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  9. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  10. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  11. Halo K-Giant Stars from LAMOST: Kinematics and Galactic Mass Estimate

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2017-03-01

    We analyze line-of-sight velocities of over 3000 halo K-giant stars from the second data release of the spectral survey LAMOST (Zhao et al. 2012). We find a nearly constant velocity dispersion profile, with no large dips or peaks, in a Galactocentric radial range of 10-30 kpc, in accord with earlier analyses (Battaglia et al. 2005, 2006; Xue et al. 2008, 2014) (see Fig. 1). Previous studies of halo star radial velocity dispersions in a reference frame centered on the Galactic Center have detected dips within this radial range (Sommer-Larsen et al. 1994; Kafle et al. 2012, 2014). We use the stars to make estimates of the enclosed mass out to 40 kpc from the Galactic Center using the method of Evans et al. (2011). Tens of thousands of such stars are expected to become available to this analysis by the end of the five-year survey.

  12. POTASSIUM IN GLOBULAR CLUSTER STARS: COMPARING NORMAL CLUSTERS TO THE PECULIAR CLUSTER NGC 2419

    SciTech Connect

    Carretta, E.; Bragaglia, A.; Sollima, A.; Gratton, R. G.; Lucatello, S.; D'Orazi, V.; Sneden, C. E-mail: angela.bragaglia@oabo.inaf.it E-mail: raffaele.gratton@oapd.inaf.it E-mail: valentina.dorazi@mq.edu.au

    2013-05-20

    Two independent studies recently uncovered two distinct populations among giants in the distant, massive globular cluster (GC) NGC 2419. One of these populations has normal magnesium (Mg) and potassium (K) abundances for halo stars: enhanced Mg and roughly solar K. The other population has extremely depleted Mg and very enhanced K. To better anchor the peculiar NGC 2419 chemical composition, we have investigated the behavior of K in a few red giant branch stars in NGC 6752, NGC 6121, NGC 1904, and {omega} Cen. To verify that the high K abundances are intrinsic and not due to some atmospheric features in giants, we also derived K abundances in less evolved turn-off and subgiant stars of clusters 47 Tuc, NGC 6752, NGC 6397, and NGC 7099. We normalized the K abundance as a function of the cluster metallicity using 21 field stars analyzed in a homogeneous manner. For all GCs of our sample, the stars lie in the K-Mg abundance plane on the same locus occupied by the Mg-normal population in NGC 2419 and by field stars. This holds for both giants and less-evolved stars. At present, NGC 2419 seems unique among GCs.

  13. Constraining Stellar Population Models. I. Age, Metallicity and Abundance Pattern Compilation for Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.

    2014-01-01

    We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http

  14. Massive stars reveal variations of the stellar initial mass function in the Milky Way stellar clusters

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Schmeja, Stefan; Hony, Sacha

    2017-01-01

    We investigate whether the stellar initial mass function (IMF) is universal, or whether it varies significantly among young stellar clusters in the Milky Way. We propose a method to uncover the range of variation of the parameters that describe the shape of the IMF for the population of young Galactic clusters.These parameters are the slopes in the low and high stellar mass regimes, γ and Γ, respectively, and the characteristic mass, Mch. The method relies exclusively on the high-mass content of the clusters, but is able to yield information on the distributions of parameters that describe the IMF over the entire stellar mass range. This is achieved by comparing the fractions of single and lonely massive O stars in a recent catalogue of the Milky Way clusters with a library of simulated clusters built with various distribution functions of the IMF parameters. The synthetic clusters are corrected for the effects of the binary population, stellar evolution, sample incompleteness, and ejected O stars. Our findings indicate that broad distributions of the IMF parameters are required in order to reproduce the fractions of single and lonely O stars in Galactic clusters. They also do not lend support to the existence of a cluster mass-maximum stellar mass relation. We propose a probabilistic formulation of the IMF whereby the parameters of the IMF are described by Gaussian distribution functions centred around γ = 0.91, Γ = 1.37, and Mch = 0.41 M⊙, and with dispersions of σγ = 0.25, σΓ = 0.60, and σ _{M_{ch}}=0.27 M⊙ around these values.

  15. Proper motions and CCD photometry of stars in the region of the open cluster NGC 6866

    NASA Astrophysics Data System (ADS)

    Frolov, V. N.; Ananjevskaja, Yu. K.; Gorshanov, D. L.; Polyakov, E. V.

    2010-05-01

    We present the results of our comprehensive study of the Galactic open star cluster NGC 6866. The positions of stars in the investigated region have been obtained with the “Fantasy” automatic measuring machine from 10 plates of the normal astrograph at the Pulkovo Astronomical Observatory. The size of the investigated field is 40' × 40', the limiting magnitude is B ˜ 16{·/ m }6, and the maximum epoch difference is 79 yr. For 1202 field stars, we have determined the relative proper motions with an rms error of 2.5 mas yr-1. Out of them, 423 stars may be considered cluster members with a probability P > 70% according to the astrometric criterion. Photometric diagrams have been used as an additional criterion. We have performed two-color BV CCD photometry of stars with the Pulkovo ZA-320M mirror astrograph. The U magnitudes from the literature have also been used to construct the two-color diagrams. A total of 267 stars have turned out to be members of NGC 6866 according to the two criteria. We present refined physical parameters of the cluster and its age estimate (5.6 × 108 yr). The cluster membership of red and blue giants, variable, double, and multiple stars is considered. We have found an almost complete coincidence of the positions of one of the stars in the region (a cluster nonmember) and a soft X-ray source in the ROSAT catalog. The “Fantasy” automatic measuring machine is described in the Appendix.

  16. WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN

    SciTech Connect

    Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich; Scholz, Ralf-Dieter

    2010-07-20

    The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuring a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.

  17. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  18. Tracing galaxy evolution through resolved stellar populations and star clusters

    NASA Astrophysics Data System (ADS)

    Silva-Villa, E.

    2011-09-01

    Field stars and star clusters contain a big part of the galaxy’s history. To understand galaxy formation and evolution we need then to understand the parts of which galaxies are composed. It has commonly been assumed that most stars formed in clusters. However, the connection between these two systems is not clear, and the fraction of actual star formation happening in clusters is still uncertain. Through this thesis, we aim to use field stars and star clusters to attack different problems regarding galaxy formation and evolution, named: 1. the cluster formation efficiency and its (co-)relation with environment (i.e. the host galaxy), 2. the star formation rate in the arms and inter-arm regions of spiral galaxies, and 3. the indications of a possible interaction between two galaxies observed through their resolved stellar populations. We performed a systematic and homogeneous study over the galaxies NGC45, NGC1313, NGC4395, NGC5236 and NGC7793, where star clusters and field stars are analyze separately. For this aim, we used Hubble Space Telescope observations in the optical bands U, B, V and I, using the Advanced Camera for Surveys and the Wide Field Planetary Camera 2. Standard photometric procedures are use to study the properties of these two main parts of the galaxies. However, incompleteness constrains our results to ages younger than 100 Myr. Following the synthetic CMD method we recovered the star formation history for the last 100 Myr over the five galaxies. Comparing observed clusters properties with simple stellar population models, we estimate ages and masses of star clusters. We observe that the galaxies NGC5236 and NGC1313 show higher star and cluster formation rates, while NGC45, NGC4395 and NGC7793 show lower values. We found that the actual fraction of star formation happening in clusters presents low values (< 10%), contrary to common assumptions, however in agreement with studies in other galaxies. Observations of the surface star formation

  19. GALACTIC S STARS: INVESTIGATIONS OF COLOR, MOTION, AND SPECTRAL FEATURES

    SciTech Connect

    Otto, Elizabeth; Green, Paul J.; Gray, Richard O.

    2011-09-01

    Known bright S stars, recognized as such by their enhanced s-process abundances and C/O ratio, are typically members of the asymptotic giant branch (AGB) or the red giant branch. Few modern digital spectra for these objects have been published, from which intermediate resolution spectral indices and classifications could be derived. For published S stars, we find accurate positions using the Two-Micron All Sky Survey (2MASS), and use the FAST spectrograph of the Tillinghast reflector on Mt. Hopkins to obtain the spectra of 57 objects. We make available a digital S star spectral atlas consisting of 14 spectra of S stars with diverse spectral features. We define and derive basic spectral indices that can help distinguish S stars from late-type (M) giants and carbon stars. We convolve all our spectra with the Sloan Digital Sky Survey bandpasses, and employ the resulting gri magnitudes together with 2MASS JHK{sub s} mags to investigate S star colors. These objects have colors similar to carbon and M stars, and are therefore difficult to distinguish by color alone. Using near- and mid-infrared colors from IRAS and Akari, we identify some of the stars as intrinsic (AGB) or extrinsic (with abundances enhanced by past mass transfer). We also use V band and 2MASS magnitudes to calculate a temperature index for stars in the sample. We analyze the proper motions and parallaxes of our sample stars to determine upper and lower limit absolute magnitudes and distances, and confirm that most are probably giants.

  20. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  1. The Galactic O-Star Spectroscopic Survey (GOSSS). III. 142 Additional O-type Systems.

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Sota, A.; Arias, J. I.; Barbá, R. H.; Walborn, N. R.; Simón-Díaz, S.; Negueruela, I.; Marco, A.; Leão, J. R. S.; Herrero, A.; Gamen, R. C.; Alfaro, E. J.

    2016-05-01

    This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ˜ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al. The GOSSS spectroscopic data in this article were gathered with five facilities: the 1.5 m Telescope at the Observatorio de Sierra Nevada (OSN), the 2.5 m du Pont Telescope at Las Campanas Observatory (LCO), the 3.5 m Telescope at Calar Alto Observatory (CAHA), and the 4.2 m William Herschel Telescope (WHT) and 10.4 m Gran Telescopio Canarias (GTC) at Observatorio del Roque de los Muchachos (ORM).

  2. HUBBLE UNCOVERS MYSTERY OBJECTS IN THE DENSE CORE OF A NEARBY STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Piercing the heart of a glittering swarm of stars, NASA's sharp-eyed Hubble Space Telescope unveils the central region of the globular cluster M22, a 12- to 14-billion-year-old grouping of stars in the constellation Sagittarius. The telescope's view of the cluster's core measures 3.3 light-years across. The stars near the cluster's core are 100,000 times more numerous than those in the Sun's neighborhood. Buried in the glow of starlight are about six 'mystery objects,' which astronomers estimate are no larger than one quarter the mass of the giant planet Jupiter, the solar system's heftiest planet. The mystery objects are too far and dim for Hubble to see directly. Instead, the orbiting observatory detected these unseen celestial bodies by looking for their gravitational effects on the light from far distant stars. In this case, the stars are far beyond the cluster in the galactic bulge, about 30,000 light-years from Earth at the center of the Milky Way Galaxy. M22 is 8,500 light-years away. The invisible objects betrayed their presence by bending the starlight gravitationally and amplifying it, a phenomenon known as microlensing. From February 22 to June 15, 1999, Hubble's Wide Field and Planetary Camera 2 looked through this central region and monitored 83,000 stars. During that time the orbiting observatory recorded six unexpectedly brief microlensing events. In each case a background star jumped in brightness for less than 20 hours before dropping back to normal. These transitory spikes in brightness mean that the object passing in front of the star must have been much smaller than a normal star. Hubble also detected one clear microlensing event. In that observation a star appeared about 10 times brighter over an 18-day span before returning to normal. Astronomers traced the leap in brightness to a dwarf star in the cluster floating in front of the background star. The inset photo shows the entire globular cluster of about 10 million stars. M22 is about 60

  3. THE ABUNDANCE OF FLUORINE IN NORMAL G AND K STARS OF THE GALACTIC THIN DISK

    SciTech Connect

    Pilachowski, C. A.; Pace, Cameron E-mail: cjamespace@gmail.com

    2015-09-15

    The abundance of fluorine is determined from the (2-0) R9 2.3358 μm feature of the molecule HF for several dozen normal G and K stars in the Galactic thin disk from spectra obtained with the Phoenix IR spectrometer on the 2.1 m telescope at Kitt Peak. The abundances are analyzed in the context of Galactic chemical evolution to explore the contributions of supernovae and asymptotic giant branch (AGB) stars to the abundance of fluorine in the thin disk. The average abundance of fluorine in the thin disk is found to be [F/Fe] = +0.23 ± 0.03, and the [F/Fe] ratio is flat or declines slowly with metallicity in the range from –0.6 < [Fe/H] < +0.3, within the limits of our estimated uncertainty. The measured abundance of fluorine and lack of variation with metallicity in Galactic thin disk stars suggest neutrino spallation in Type II supernovae contributes significantly to the Galactic fluorine abundance, although contributions from AGB stars may also be important.

  4. THE STAR-FORMATION RELATION FOR REGIONS IN THE GALACTIC PLANE: THE EFFECT OF SPATIAL RESOLUTION

    SciTech Connect

    Vutisalchavakul, Nalin; Evans II, Neal J.; Battersby, Cara

    2014-12-20

    We examined the relations between molecular gas surface density and star-formation rate surface density in an 11 deg{sup 2} region of the Galactic plane. Dust continua at 1.1 mm from the Bolocam Galactic Plane Survey and 22 μm emission from the Wide-field Infrared Survey Explorer (WISE) all-sky survey were used as tracers of molecular gas and the star-formation rate, respectively, across the Galactic longitude of 31.5 ≥ l ≥ 20.5 and Galactic latitude of 0.5 ≥ b ≥ –0.5. The relation was studied over a range of resolutions from 33'' to 20' by convolving images to larger scales. The pixel-by-pixel correlation between 1.1 mm and 22 μm increases rapidly at small scales and levels off at the scale of 5'-8'. We studied the star-formation relation based on a pixel-by-pixel analysis and on an analysis of the 1.1 mm and 22 μm peaks. The star-formation relation was found to be nearly linear with no significant changes in the form of the relation across all spatial scales, and it lies above the extragalactic relation from Kennicutt. The average gas-depletion time is ≈200 Myr and does not change significantly at different scales, but the scatter in the depletion time decreases as the scale increases.

  5. The High-mass Truncation of the Star Cluster Mass Function: Limits on Massive Cluster Formation

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; PHAT Team

    2017-01-01

    Long-lived star clusters serve as useful tracers of star formation, and massive clusters in particular are often associated with vigorous star formation activity. We examine how massive cluster formation varies as a function of star formation surface density (ΣSFR) by comparing cluster populations from galaxies that span a wide range of characteristic ΣSFR values. The Panchromatic Hubble Andromeda Treasury (PHAT) survey yielded an unparalleled census of young star clusters in M31 and allows us to examine massive cluster formation in a low intensity star formation environment. We measure the cluster mass function for a sample of 840 young star clusters with ages between 10-300 Myr. The data show clear evidence of a high-mass truncation: only 15 clusters more massive than 104 M⊙ are observed, compared to ~100 expected for a canonical M-2 power-law mass function with the same total number of clusters above the catalog completeness limit. Adopting a Schechter function parameterization, we fit a characteristic truncation mass (Mc) of 8.5×103 M⊙ — the lowest truncation mass ever reported. When combined with previous mass function results, we find that the cluster mass function truncation correlates strongly with the star formation rate surface density, where Mc ∝ ΣSFR1.3. We also find evidence that suggests the observed Mc-ΣSFR relation also holds for globular clusters, linking the two populations via a common formation pathway.

  6. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  7. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  8. UV spectroscopy of young star clusters

    NASA Astrophysics Data System (ADS)

    Maraston, Claudia

    We propose to take spectra of young star clusters (t < 1 Gyr) in the Magellanic Clouds. These data will serve to improve and extend the calibration of the UV spectral index system for stellar population models, which we have built with IUE spectra from the data bases of Fanelli et al. (1992) and Cassatella et al. (1987). We have developed evolutionary population synthesis models of the most relevant absorption features of stellar systems with ages in the range 1 Myr to 1 Gyr, covering the most important elements including C, Si, Fe and Mg (Nieves & Maraston 2004). The new data will allow the calibration of these spectral indices for different chemical abundances and ages. The calibrated stellar population models will provide an important tool to interpret spectra of high redshift galaxies

  9. A Remarkable Sample of New Symbiotic Stars Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Mikolajewska, J.; Udalski, A.

    2014-12-01

    Symbiotic stars are the longest orbital period interacting binaries, where nova-like outbursts are generated by the accretion of a high mass loss rate red giant wind onto a white dwarf companion. Long-term photometric monitoring surveys such as OGLE and MACHO are ideal platforms to identify nova-like events in symbiotic stars. However, there are only a handful of known systems within the small footprint of these surveys. We introduce a systematic Hα emission line object survey for new symbiotic stars covering 35 deg2 towards the Galactic Bulge that combines deep 2dF/AAOmega spectroscopy with OGLE and MACHO photometry. This powerful combination has uncovered nearly two dozen new symbiotic stars, more than a dozen probable symbiotic stars, and several other unusual Hα emission line stars. While we don't find any nova-like activity, the lightcurves do exhibit semi-regular and Mira pulsations, orbital variations and slower changes due to dust. Here we introduce a few of the new symbiotics, including H1-45, only the fourth known carbon symbiotic Mira. This remarkable discovery may be the first luminous carbon star belonging to the Galactic Bulge, according to its period-luminosity relation distance of 6.2±1.4 kpc, potentially shedding new light on the puzzling lack of luminous carbon stars in the Bulge. We also present two old novae captured in the nebular phase, complementing other surveys to better characterize the old nova population.

  10. Variability in the Galactic globular cluster M15. Science verification phase of T80Cam/JAST80@OAJ

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Varela, J.; Cristóbal-Hornillos, D.; Muniesa, D.; Civera, T.; Hernández-Fuertes, J.; Ederoclite, A.; Blanco Siffert, B.; Chies Santos, A.; San Roman, I.; Lamadrid, J. L.; Iglesias Marzoa, R.; Díaz-Martín, M. C.; Kanaan, A.; Carvano, J.; Cortesi, A.; Ribeiro, T.; Reis, R.; Coelho, P.; Castillo, J.; López, A.; López San Juan, C.; Cenarro, A. J.; Marín-Franch, A.; Yanes, A.; Moles, M.

    2017-03-01

    In the framework of the Science Verification Phase of T80Cam of the 83cm Javalambre Auxiliary Survey Telescope (JAST80) located at the Observatorio Astrofísico de Javalambre (OAJ), Teruel, Spain, a program was proposed to study the variability of RR Lyrae stars, as well as other variable sources, belonging to the Galactic globular cluster M15. The observations were carried out on different epochs (almost a dozen different nights along a ˜ 4 months period) using the complete set of 12 filters, centered at the optical spectral range, that are being devoted to the exectuion of the ongoing Javalambre Photometric Local Universe Survey (J-PLUS). One of the main goals is the characterization of the variability of the spectral energy distribution of RR Lyrae stars along their pulsation. This will be used to define methods to detect these type of variables in J-PLUS and J-PLUS. Preliminarly results are presented here.

  11. Numerical Simulations of Self-Regulated, Star Forming Galactic Disks

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Struck, C.

    2000-12-01

    While star formation feedback models have been used in the study of galaxy formation, the effects of these processes on the global structure of disks have received less attention. We have adapted Hydra, the adaptive particle-particle, particle-mesh with smoothed particle hydrodynamics code by Couchman et al., to include heating processes deriving from star formation in order to study the effects of this heating on the structure of the disk and on the star formation itself. These processes include mechanical heating from strong stellar winds and supernovae, as well as heating due to photoelectric removal of electrons from grains by UV flux from young OB stars. Mechanisms of this type can be implemented in a simple way within the Hydra code, allowing us to study the density and temperature profiles of the gas, the balance among the multiple thermal phases generated in the disk, and the kinematics of the disk. Preliminary results from numerical simulations of star-forming gas disks of late type spirals are presented. Self-regulating effects of star formation on the global structure of the disk are discussed. We describe and compare the results of different star formation criteria and discuss the effects of particle resolution. This study was funded, in part, by a grant from the George Washington Carver Charitable Trust.

  12. SPITZER SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Sloan, G. C.; Bernard-Salas, J.; Houck, J. R.; Matsunaga, N.; Matsuura, M.; Zijlstra, A. A.; Kraemer, K. E.; Wood, P. R.; Nieusma, J.; Devost, D. E-mail: jbs@isc.astro.cornell.ed E-mail: matsunaga@ioa.s.u-tokyo.ac.j E-mail: albert.zijlstra@manchester.ac.u E-mail: judaniel@umich.ed

    2010-08-20

    We have observed a sample of 35 long-period variables (LPVs) and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The LPVs in the sample cover a range of metallicities from near solar to about 1/40th solar. The dust mass-loss rate (MLR) from the stars increases with pulsation period and bolometric luminosity. Higher MLRs are associated with greater contributions from silicate grains. The dust MLR also depends on metallicity. The dependence is most clear when segregating the sample by dust composition, less clear when segregating by bolometric magnitude, and absent when segregating by period. The spectra are rich in solid-state and molecular features. Emission from alumina dust is apparent across the range of metallicities. Spectra with a 13 {mu}m dust emission feature, as well as an associated feature at 20 {mu}m, also appear at most metallicities. Molecular features in the spectra include H{sub 2}O bands at 6.4-6.8 {mu}m, seen in both emission and absorption, SO{sub 2} absorption at 7.3-7.5 {mu}m, and narrow emission bands from CO{sub 2} from 13.5 to 16.8 {mu}m. The star Lyngaa 7 V1 has an infrared spectrum revealing it to be a carbon star, adding to the small number of carbon stars associated with Galactic globular clusters.

  13. The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Loubser, S. I.; Babul, A.; Hoekstra, H.; Mahdavi, A.; Donahue, M.; Bildfell, C.; Voit, G. M.

    2016-02-01

    A fraction of brightest cluster galaxies (BCGs) show bright emission in the ultraviolet and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broad-band photometric data. Here, we study the optical spectra of a sample of 19 BCGs hosted by X-ray luminous galaxy clusters at 0.15 Cluster Comparison Project sample. We identify plausible star formation histories of the galaxies by fitting simple stellar populations as well as composite populations, consisting of a young stellar component superimposed on an intermediate/old stellar component, to accurately constrain their star formation histories. We detect prominent young (˜200 Myr) stellar populations in four of the 19 galaxies. Of the four, the BCG in Abell 1835 shows remarkable A-type stellar features indicating a relatively large population of young stars, which is extremely unusual even amongst star-forming BCGs. We constrain the mass contribution of these young components to the total stellar mass to be typically between 1 and 3 per cent, but rising to 7 per cent in Abell 1835. We find that the four of the BCGs with strong evidence for recent star formation (and only these four galaxies) are found within a projected distance of 5 kpc of their host cluster's X-ray peak, and the diffuse, X-ray gas surrounding the BCGs exhibits a ratio of the radiative cooling-to-free-fall time (tc/tff) of ≤10. These are also some of the clusters with the lowest central entropy. Our results are consistent with the predictions of the precipitation-driven star formation and active galactic nucleus feedback model, in which the radiatively cooling diffuse gas is subject to local thermal instabilities once the instability parameter tc/tff falls below ˜10, leading to the condensation and precipitation of cold gas. The number of galaxies in our sample where the host cluster satisfies all the

  14. Star formation driven galactic winds in UGC 10043

    NASA Astrophysics Data System (ADS)

    López-Cobá, C.; Sánchez, S. F.; Moiseev, A. V.; Oparin, D. V.; Bitsakis, T.; Cruz-González, I.; Morisset, C.; Galbany, L.; Bland-Hawthorn, J.; Roth, M. M.; Dettmar, R.-J.; Bomans, D. J.; González Delgado, Rosa M.; Cano-Díaz, M.; Marino, R. A.; Kehrig, C.; Monreal Ibero, A.; Abril-Melgarejo, V.

    2016-12-01

    We study the galactic wind in the edge-on spiral galaxy UGC 10043 with the combination of the CALIFA integral field spectroscopy data, scanning Fabry-Perot interferometry (FPI), and multiband photometry. We detect ionized gas in the extraplanar regions reaching a relatively high distance, up to ˜ 4 kpc above the galactic disk. The ionized gas line ratios ([N II]/Hα, [S II]/Hα and [O I]/Hα) present an enhancement along the semi minor axis, in contrast with the values found at the disk, where they are compatible with ionization due to H II-regions. These differences, together with the biconic symmetry of the extra-planar ionized structure, makes UGC 10043 a clear candidate for a galaxy with gas outflows ionizated by shocks. From the comparison of shock models with the observed line ratios, and the kinematics observed from the FPI data, we constrain the physical properties of the observed outflow. The data are compatible with a velocity increase of the gas along the extraplanar distances up to < 400 km s-1 and the preshock density decreasing in th