Sample records for galactic starburst ngc

  1. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  2. Molecular clouds in the NGC 6334 and NGC 6357 region; Evidence for a 100-pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100-pc scale.

  3. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  4. The interstellar medium in the starburst regions of NGC 253 and NGC 3256

    NASA Astrophysics Data System (ADS)

    Carral, P.; Hollenbach, D. J.; Lord, S. D.; Colgan, S. W. J.; Haas, Michael R.; Rubin, R. H.; Erickson, E. F.

    1994-03-01

    We discuss observations of the (C II) 158 micrometers, (O I) 63 micrometers, (Si II) 35 micrometers, (O III) 52,88 micrometers, and (S III) 33 micrometers fine-structure transitions toward the central 45 seconds of the starburst galaxies NGC 253 and NGC 3256. The (C II) and (O I) emission probably originates in photodissociated gas at the surfaces of molecular clouds, although a small (less than or approximately 30%) contribution to the (C II) flux from H II regions cannot be ruled out. The (O III) and (S III) lines originate in H II regions and the (Si II) flux is best explained as originating in H II regions with some contribution from photodissociation regions (PDRs). The gas phase silicon abundance is nearly solar in NGC 253, which we interpret as evidence for grain destruction in the starburst region. We find that the photodissociated atomic gas has densities approximately 104/cu cm and temperature 200-300 K. About 2% of the gas is in this phase. The thermal gas pressure in the PDRs, P(PDR)/k approximately 1-3 x 106 K/cu cm, might represent the 'typical' interstellar gas pressure in starburst systems. The Far Ultraviolet (FUV) radiation fields illuminating the clouds are 103-104 stronger than the local Galactic FUV field and come from the contribution of many closely packed O and B stars. For the central 250 pc of NGC 253, we find that the H II gas has an average density ne is approximately 400/cu cm. This corresponds to a thermal pressure P(H II)/k approximately 7 x 106 K/cu cm which is approximately P(PDR)/k, suggesting that the ionized gas is in pressure equilibrium with the photodissociated gas at the surfaces of molecular clouds. The H II gas fills a significant fraction, approximately 0.01-0.3, of the volume between the clouds. The effective temperature of the ionizing stars in NGC 253 is greater than or approximately 34,500 K; 2 x 105 O7.5 stars would produce the observed Lyman continuum photon luminosity. The average separation between the stars is

  5. Galactic Starburst NGC 3603 from X-Rays to Radio

    NASA Technical Reports Server (NTRS)

    Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; hide

    2002-01-01

    NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.

  6. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ˜300 pc, with a width of ˜50 pc, and a velocity dispersion of ˜40 km s-1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s-1 pc-1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1-0)/CO(1-0) line ratio of ˜ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (˜ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ˜1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  7. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  8. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  9. NGC 1614: A Laboratory for Starburst Evolution

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Engelbracht, C. W.; Rieke, M. J.; Rieke, G. H.; Quillen, A. C.

    2000-01-01

    The modest extinction and reasonably face-on viewing geometry make the luminous infrared galaxy NGC 1614 an ideal laboratory for study of a powerful starburst. HST/NICMOS observations show: (1) deep CO stellar absorption, tracing a starburst nucleus about 45 pc in diameter; (2) surrounded by an approx. 600 pc diameter ring of supergiant H II regions revealed in Pa-alpha line emission; (3) lying within a molecular ring indicated by its extinction shadow in H - K; and (4) all at the center of a disturbed spiral galaxy. The luminosities of the giant H II regions in the ring axe extremely high, an order of magnitude brighter than 30 Doradus; very luminous H II regions, comparable with 30 Dor, are also found in the spiral arms of the galaxy. Luminous stellar clusters surround the nucleus and lie in the spiral arms, similar to clusters observed in other infrared luminous and ultraluminous galaxies. The star forming activity may have been initiated by a merger between a disk galaxy and a companion satellite, whose nucleus appears in projection about 300 pc to the NE of the nucleus of the primary galaxy. The relation of deep stellar CO bands to surrounding ionized gas ring to molecular gas indicates that the luminous starburst started in the nucleus and is propagating outward into the surrounding molecular ring. This hypothesis is supported by evolutionary starburst modeling that shows that the properties of NGC 1614 can be fitted with two short-lived bursts of star formation separated by 5 Myr (and by inference by a variety of models with a similar duration of star formation). The total dynamical mass of the starburst region of 1.3 x 10(exp 9) solar masses is mostly accounted for by the old pre-starburst stellar population. Although our starburst models use a modified Salpeter initial mass function (turning over near one solar mass), the tight mass budget suggests that the IMF may contain relatively more 10 - 30 solar masses stars and fewer low mass stars than the

  10. The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603

    NASA Astrophysics Data System (ADS)

    Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans

    2006-07-01

    Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I

  11. Sampling methods for stellar masses and the mmax-Mecl relation in the starburst dwarf galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Weidner, Carsten; Kroupa, Pavel; Pflamm-Altenburg, Jan

    2014-07-01

    It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax - Mecl relation) is falsified by observations of the most-massive stars and the Hα luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here, it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the mmax - Mecl relation and with the integrated galactic stellar initial mass function theory. The difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax - Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled initial mass function. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.

  12. ROSAT observations of NGC 2146: Evidence for a starburst-driven superwind

    NASA Technical Reports Server (NTRS)

    Armus, L.; Heckman, T. M.; Weaver, K. A.; Lehnert, M. D.

    1995-01-01

    V bremsstrahlung component. The soft thermal component provides approximately 30% of the total luminosity over 0.2 - 2.4 keV, or approximately 10(exp 40) ergs/s. The pressure derived from the soft component of the X-ray spectrum is consistent with that predicted from a starburst-driven superwind if the filling factor of the warm gas is approximately 1% - 10 %. If the hard X-ray component is thermal gas associated with the galactic outflow, the filling factor must be close to unity. Predictions of the luminosity, temperature, and size of an adiabatic starburst-generated windblown bubble are consistent with those measured for the soft thermal X-ray emission in NGC 2146. The hard X-ray component, however, has a luminosity much larger than predicted by the superwind model if this component is thermal emission from gas heated by an internal shock in the expanding bubble. We briefly review various possibilities as to the nature of the hard X-ray component in NGC 2146.

  13. Molecular Gas Heating Mechanisms, and Star Formation Feedback in Merger/Starbursts: NGC 6240 and Arp 193 as Case Studies

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.; Weiss, Axel; van der Werf, Paul; Israel, F. P.; Greve, T. R.; Isaak, Kate G.; Gao, Y.

    2014-06-01

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L IR >= 1011 L ⊙). The high-J CO SLEDs are then combined with ground-based low-J CO, 13CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L FIR/L CO, 1 - 0, L HCN/L CO (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (~5%-15%) of dense gas (n >= 104 cm-3) unlike NGC 6240 where most of the molecular gas (~60%-70%) is dense (n ~ (104-105) cm-3). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.

  14. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  15. Superwind evolution: the young starburst-driven wind galaxy NGC 2782

    NASA Astrophysics Data System (ADS)

    Bravo-Guerrero, Jimena; Stevens, Ian R.

    2017-06-01

    We present results from a 30-ks Chandra observation of the important starburst galaxy NGC 2782, covering the 0.3-10 keV energy band. We find evidence of a superwind of small extent, which is likely in an early stage of development. We find a total of 27 X-ray point sources within a region of radius 2D25 of the galaxy centre and that are likely associated with the galaxy. Of these, 13 are ultraluminous X-ray point sources (ULXs; LX ≥ 1039 erg s- 1) and a number have likely counterparts. The X-ray luminosities of the ULX candidates are 1.2-3.9 × 1039 erg s- 1. NGC 2782 seems to have an unusually large number of ULXs. Central diffuse X-ray emission extending to ˜3 kpc from the nuclear region has been detected. We also find an X-ray structure to the south of the nucleus, coincident with Hα filaments and with a 5-GHz radio source. We interpret this as a blow-out region of a forming superwind. This X-ray bubble has a total luminosity (0.3-10 keV) of 5 × 1039 erg s-1 (around 15 per cent of the total luminosity of the extended emission), and an inferred wind mass of 1.5 × 106 M⊙ . We also discuss the nature of the central X-ray source in NGC 2782, and conclude that it is likely a low-luminosity active galactic nucleus, with a total X-ray luminosity of LX = 6 × 1040 erg s-1, with strong Fe line emission at 6.4 keV.

  16. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  17. H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    NASA Astrophysics Data System (ADS)

    Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.

    2015-07-01

    We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large-scale, low-surface-brightness emission. The KAT-7 observations detected 33 per cent more flux than previous Very Large Array observations, mainly in the outer parts and in the halo for a total H I mass of 2.1 ± 0.1 × 109 M⊙. H I can be found at large distances perpendicular to the plane out to projected distances of ˜9-10 kpc away from the nucleus and ˜13-14 kpc at the edge of the disc. A novel technique, based on interactive profile fitting, was used to separate the main disc gas from the anomalous (halo) gas. The rotation curve (RC) derived for the H I disc confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disc, kinematically lagging by 100 km s-1. The kinematics of the observed extra-planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate is compatible with the starburst nature of NGC 253.

  18. An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.

    1997-05-01

    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other

  19. Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614

    NASA Astrophysics Data System (ADS)

    Olsson, E.; Aalto, S.; Thomasson, M.; Beswick, R.

    2010-04-01

    GHz radio continuum and CO is likely related to previous star formation, where all molecular gas was not consumed. The LINER-like optical spectrum observed in NGC 1614 may be due to nuclear starburst activity, and not to an active galactic nucleus (AGN). Although the presence of an AGN cannot be excluded.

  20. Molecular gas heating mechanisms, and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.

    2014-06-20

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L {sub IR} ≥ 10{sup 11} L {sub ☉}). The high-J CO SLEDs are then combined with ground-based low-J CO, {sup 13}CO, HCN, HCO{sup +}, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging frommore » J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L {sub FIR}/L {sub CO,} {sub 1} {sub –0}, L {sub HCN}/L {sub CO} (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (∼5%-15%) of dense gas (n ≥ 10{sup 4} cm{sup –3}) unlike NGC 6240 where most of the molecular gas (∼60%-70%) is dense (n ∼ (10{sup 4}-10{sup 5}) cm{sup –3}). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.« less

  1. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    ouflow axis (at P.A.~160deg). We analyze in detail the physical conditions in the giant H II regions located in the asymmetric spiral arms, the two main optical nuclei, and the outflow component (using long-slit spectroscopy, plus standard models of photoionization, shocks, and starbursts). We present four detailed emission-line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide

  2. Minor Merger Origin for the Circumnuclear Starburst in NGC 7742

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Sarzi, M.; Knapen, J. H.; Veilleux, S.; Swaters, R.

    2006-01-01

    We present an emission-line diagnostic analysis of integral-field spectroscopic observations that cover the central kiloparsec of NGC 7742. This Sa galaxy hosts a spectacular nuclear starburst ring and nuclear regions characterized by low-ionization emission. The gas in the ring rotates in the opposite sense to the stars in the galaxy, suggesting a recent merging or acquisition event. The combination of integral-field measurements for the H alpha+[N II] emission lines from DensePak and the H beta and [O 111] emission from SAURON allow the construction of diagnostic diagrams that highlight the transition from star formation in the nuclear ring to excitation by high-velocity shocks or by a central AGN towards the center. DensePak measurements for the [S II] line ratio reveal very low gas densities in the nuclear ring, N(sub e) less than 100 per cubic centimeters, characteristic of massive H II regions. Comparison with MAPPINGS III models for starbursts with low gas densities show that the ring is of roughly solar metallicity. This suggests that the gas in the nuclear ring originated in a stellar system capable of substantially enriching the gas metallicity through sustained star formation. We propose that NGC 7742 cannibalised a smaller galaxy rich in metal-poor gas, and that star formation episodes in the ring have since increased the metallicity to its present value. The techniques explored here can be widely used to study similar systems, including composite (AGN+starburst) galaxies.

  3. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. A perfect starburst cluster made in one go: The NGC 3603 young cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel

    2014-06-01

    Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less

  5. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  6. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transitingmore » types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst

  7. Scaling Relations of Starburst-driven Galactic Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading.more » The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.« less

  8. Ultraviolet studies of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330 and the Galactic cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.; Hodge, P.

    1984-01-01

    High-resolution and low-resolution IUE spectra of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330, and the young Galactic cluster NGC 6530 are investigated. Temperatures and luminosities are determined. In the LMC and SMC clusters, the most luminous stars are evolved stars on the horizontal supergiant branch, while in NGC 6530 the stars are all still on the main sequence. Extinction laws were determined. They confirm the known differences between LMC and Galactic extinctions. No mass loss was detected for the evolved B stars in the LMC and SMC clusters, while the high-luminosity stars in NGC 6530 show P Cygni profiles.

  9. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    NASA Astrophysics Data System (ADS)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  10. The Secrets of the Nearest Starburst Cluster. I. Very Large Telescope/ISAAC Photometry of NGC 3603

    NASA Astrophysics Data System (ADS)

    Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans; Grebel, Eva K.

    2004-08-01

    VLT/ISAAC JHKL photometry with subarcsecond resolution of the dense, massive starburst cluster NGC 3603 YC forming the core of the NGC 3603 giant molecular cloud is analyzed to reveal characteristics of the stellar population in unprecedented detail. The color-magnitude plane features a strong pre-main-sequence/main-sequence (PMS/MS) transition region, including the PMS/MS transition point, and reveals a secondary sequence for the first time in a nearby young starburst cluster. Arguments for a possible binary nature of this sequence are given. The resolved PMS/MS transition region allows isochrone fitting below the hydrogen-burning turn-on in NGC 3603 YC, yielding an independent estimate of global cluster parameters. A distance modulus of 13.9 mag, equivalent to d=6.0+/-0.3 kpc, is derived, as well as a line-of-sight extinction of AV=4.5+/-0.6 toward PMS stars in the cluster center. The interpretation of a binary candidate sequence suggests a single age of 1 Myr for NGC 3603 YC, providing evidence for a single burst of star formation without the need to employ an age spread in the PMS population, as argued for in earlier studies. Disk fractions are derived from L-band excesses, indicating a radial increase in the disk frequency from 20% to 40% from the core to the cluster outskirts. The low disk fraction in the cluster core, as compared to the 42% L-band excess fraction found for massive stars in the Trapezium cluster of a comparably young age, indicates strong photoevaporation in the cluster center. The estimated binary fraction of 30%, as well as the low disk fraction, suggest strong impacts on low-mass star formation due to stellar interactions in the dense starburst. The significant differences between NGC 3603 YC and less dense and massive young star clusters in the Milky Way reveal the importance of using local starbursts as templates for massive extragalactic star formation. Based on observations obtained at the ESO VLT on Paranal, Chile, under programs 63.I

  11. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini Southmore » we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width

  12. The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.; Kobulnicky, Henry A.; Heckman, Timothy M.

    2002-08-01

    We present deep Chandra spectral imaging of the dwarf starburst galaxy NGC 1569. The unprecedented spatial resolution allows us to spatially identify the components of the integrated X-ray spectrum. Fitted spectral models require an intrinsic absorption component and higher metal abundances than previous studies indicated. Our results provide the first direct evidence for metal-enriched winds from dwarf starburst galaxies. We identify 14 X-ray point sources in NGC 1569. Most have properties consistent with those of high-mass X-ray binaries, but one is a steep-spectrum radio source that is probably a supernova remnant. The X-ray luminosity of NGC 1569 is dominated by diffuse, thermal emission from the disk (0.7 keV) and bipolar halo (0.3 keV). Photoelectric absorption from the inclined H I disk hardens the X-ray spectrum on the northern side of the disk relative to the southern side. Requiring the fitted absorption column to match the H I column measured at 21 cm implies that the metallicity of the H I disk is significantly less than solar but greater than 0.1 Zsolar. Hence, much of the H I is enriched to levels comparable to the metallicity of the H II regions [O/H=0.2(O/H)solar]. The X-ray color variations in the halo are inconsistent with a free-streaming wind and probably reveal the location of shocks created by the interaction of the wind with a gaseous halo. The X-ray spectrum of the diffuse gas presents strong emission lines from α-process elements. Fitted models require α-element abundances greater than 0.25 Zα,solar and ratios of α-elements to iron 2-4 times higher than the solar ratio. The best fit to the spectrum is obtained with solar mass fractions for the α-elements, 1.0 Zα,solar, but a degeneracy between the metallicity and the spectral normalization prevents us from deriving an upper limit on the wind metallicity from the X-ray spectrum alone. We argue, however, that abundances larger than 2.0 Zα,solar pose awkward implications for the

  13. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  14. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect formore » the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.« less

  15. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  16. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  17. Investigating The Nuclear Activity Of Barred Spirals: The case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, Leigh; Brandt, N.; Colbert, E.; Levan, A.; Roberts, T.; Ward, M.; Zezas, A.

    2008-03-01

    We present new results from Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located either end of its prominent bar. Using new X-ray imaging and spectral information, together with supporting multiwavelength data, we show for the first time that NGC1672 possesses a faint, hard, central X-ray source surrounded by a circumnuclear starburst ring that dominates the X-ray emission in the region, presumably triggered and sustained by gas and dust driven inwards along the galactic bar. The faint central source may represent low-level AGN activity, or alternatively emission associated with star-formation in the nucleus. More generally, we present some preliminary results on a Chandra archival search for low-luminosity AGN activity in barred galaxies.

  18. New Insights Into The X-ray Properties Of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, Leigh; Roberts, T.; Brandt, N.; Colbert, E.; Levan, A.; Zezas, A.; Ward, M.

    2006-09-01

    We present the first results of new Chandra and XMM-Newton X-ray observations of the barred spiral galaxy NGC1672. Previously classified as a Seyfert galaxy, the new combined X-ray imaging and spectral information provides evidence that the nucleus of the galaxy may be almost entirely starburst in nature, presumably triggered and sustained by gas and dust driven to the central region along the galactic bar.

  19. ASCA observations of NGC 1068

    NASA Technical Reports Server (NTRS)

    Ueno, Shiro; Mushotzky, Richard F.; Koyama, Katsuji; Iwasawa, Kazushi; Awaki, Hisamitsu; Hayashi, Ichizo

    1994-01-01

    With the high sensitivity and spectral resolution of the Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite, we have discovered strong emission lines from the H-like and/or He-like ions of Ne, Mg, Si, and S as well as Fe L and confirmed the complex structure of Fe K line emission in the Seyfert II galaxy NGC 1068. The continuum emission above 3 keV exhibits rather flat shape with no evidence of low energy absorption. The overall X-ray spectrum can be well explained with a model involving starburst activity plus an obscured active galactic nucleus.

  20. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  1. Molecular Chemistry as Diagnostic tool for Starbursts and AGNs The Molecular ISM of NGC 4418

    NASA Astrophysics Data System (ADS)

    Monje, R. R.; Aalto, S.

    We present a brief discussion of the statistical surveys of HCN, HNC, HCO+ and HC3N that are used to model the extreme environments in the nuclei of starbursts and AGNs. Molecular studies are particularly useful for probing the deeply enshrouded dusty nuclei of luminous infrared galaxies. Here we present NGC 4418 as an example, one of the closest LIRG with high obscuration of the inner region. The interpretation of the observed line ratios require parallel development of theoretical chemical and radiative transport models.

  2. Starburst Galaxy NGC 3310

    NASA Image and Video Library

    1999-12-07

    Scientists using NASA Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings.

  3. A (likely) X-ray jet from NGC6217 observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Falocco, Serena; Larsson, Josefin; Nandi, Sumana

    2017-12-01

    NGC6217 is a nearby spiral galaxy with a starburst region near its centre. Evidence for a low-luminosity Active Galactic Nucleus (AGN) in its core has also been found in optical spectra. Intriguingly, X-ray observations by ROSAT revealed three knots aligned with the galaxy centre, resembling a jet structure. This paper presents a study of XMM-Newton observations made to assess the hypothesis of a jet emitted from the centre of NGC6217. The XMM data confirm the knots found with ROSAT and our spectral analysis shows that they have similar spectral properties with a hard photon index Γ ∼ 1.7. The core of NGC6217 is well fitted by a model with an AGN and a starburst component, where the AGN contributes at most 46 per cent of the total flux. The candidate jet has an apparent length ∼15 kpc and a luminosity of ∼5 × 1038 erg s- 1. It stands out by being hosted by a spiral galaxy, since jets are more widely associated with ellipticals. To explain the jet launching mechanism we consider the hypothesis of an advection dominated accretion flow with a low accretion rate. The candidate jet emitted from NGC6217 is intriguing since it represents a challenge to the current knowledge of the connection between AGN, jets and host galaxies.

  4. Are starburst galaxies proton calorimeters?

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  5. A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances

    NASA Astrophysics Data System (ADS)

    Nakajima, Taku; Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric

    2018-01-01

    It is important to investigate the relationships between the power sources and the chemical compositions of galaxies in order to understand the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards active galactic nucleus (AGN) host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45 m telescope in the 3 mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ˜15″-19″, which is able to separate spatially the nuclear molecular emission from that of the starburst ring (d ˜ 30″) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends in the abundances of molecules surrounding the AGN on a 1-kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high-energy radiation or less sublimation of a precursor of CH3CCH from grains.

  6. NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.

    2016-01-01

    A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.

  7. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-07-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.

  8. NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster

    NASA Astrophysics Data System (ADS)

    Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.

    2016-09-01

    NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.

  9. Sodium abundances of AGB and RGB stars in Galactic globular clusters. II. Analysis and results of NGC 104, NGC 6121, and NGC 6809

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2017-11-01

    Aims: We investigate the Na abundance distribution of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) and its possible dependence on GC global properties, especially age and metallicity. Methods: We analyze high-resolution spectra of a large sample of AGB and red giant branch (RGB) stars in the Galactic GCs NGC 104, NGC 6121, and NGC 6809 obtained with FLAMES/GIRAFFE at ESO/VLT, and determine their Na abundances. This is the first time that the AGB stars in NGC 6809 are targeted. Moreover, to investigate the dependence of AGB Na abundance dispersion on GC parameters, we compare the AGB [Na/H] distributions of a total of nine GCs, with five determined by ourselves with homogeneous method and four from literature, covering a wide range of GC parameters. Results: NGC 104 and NGC 6809 have comparable AGB and RGB Na abundance distributions revealed by the K-S test, while NGC 6121 shows a lack of very Na-rich AGB stars. By analyzing all nine GCs, we find that the Na abundances and multiple populations of AGB stars form complex picture. In some GCs, AGB stars have similar Na abundances and/or second-population fractions as their RGB counterparts, while some GCs do not have Na-rich second-population AGB stars, and various cases exist between the two extremes. In addition, the fitted relations between fractions of the AGB second population and GC global parameters show that the AGB second-population fraction slightly anticorrelates with GC central concentration, while no robust dependency can be confirmed with other GC parameters. Conclusions: Current data roughly support the prediction of the fast-rotating massive star (FRMS) scenario. However, considering the weak observational and theoretical trends where scatter and exceptions exist, the fraction of second-population AGB stars can be affected by more than one or two factors, and may even be a result of stochasticity. Based on observations made with ESO telescopes at the La Silla Paranal

  10. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  11. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  12. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    NASA Astrophysics Data System (ADS)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment

  13. Young star clusters in circumnuclear starburst rings

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Ma, Chao; Jia, Siyao; Ho, Luis C.; Anders, Peter

    2017-03-01

    We analyse the cluster luminosity functions (CLFs) of the youngest star clusters in two galaxies exhibiting prominent circumnuclear starburst rings. We focus specifically on NGC 1512 and NGC 6951, for which we have access to Hα data that allow us to unambiguously identify the youngest sample clusters. To place our results on a firm statistical footing, we first explore in detail a number of important technical issues affecting the process from converting the observational data into the spectral energy distributions of the objects in our final catalogues. The CLFs of the young clusters in both galaxies exhibit approximate power-law behaviour down to the 90 per cent observational completeness limits, thus showing that star cluster formation in the violent environments of starburst rings appears to proceed similarly as that elsewhere in the local Universe. We discuss this result in the context of the density of the interstellar medium in our starburst-ring galaxies.

  14. How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Schinnerer, E.; Emsellem, E.; Hunt, L. K.; McDermid, R. M.; Liu, G.

    2013-03-01

    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, which form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation proceeds within these circumnuclear starburst rings is the subject of debate. Two main scenarios for this process have been put forward. In the first, the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting, once a mass threshold has been reached, in "random" positions within the ring like "popcorn". In the second, star formation primarily takes place near the locations where the gas enters the ring. This scenario has been dubbed "pearls-on-a-string". Here we combine new optical IFU data covering the full stellar bar with existing multiwavelength data to study the 580 pc radius circumnuclear starburst ring in detail in the nearby spiral galaxy NGC 6951. Using Hubble Space Telescope (HST) archival data together with SAURON and OASIS IFU data, we derive the ages and stellar masses of star clusters, as well as the total stellar content of the central region. Adding information on the molecular gas distribution, stellar and gaseous dynamics, and extinction, we find that the circumnuclear ring in NGC 6951 is ~1-1.5 Gyr old and has been forming stars for most of that time. We see evidence for preferred sites of star formation within the ring, consistent with the "pearls-on-a-string" scenario, when focusing on the youngest stellar populations. The ring's longevity means that this signature is washed out when older stellar populations are included in the analysis. Tables 4 and 5 are available in electronic form at http://www.aanda.orgOASIS maps and SAURON cube are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A81

  15. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  16. The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.

    2013-05-01

    Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that

  17. AKARI Near-infrared Spectroscopic Observations of Interstellar Ices in the Edge-on Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Yamagishi, Mitsuyoshi; Kaneda, Hidehiro; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki

    2011-04-01

    We present the spatially resolved near-infrared (2.5-5.0 μm) spectra of the edge-on starburst galaxy NGC 253 obtained with the Infrared Camera on board AKARI. Near the center of the galaxy, we clearly detect the absorption features of interstellar ices (H2O: 3.05 μm, CO2: 4.27 μm, and XCN: 4.62 μm) and the emission of polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm and the hydrogen recombination line Brα at 4.05 μm. We find that the distributions of the ices differ from those of the PAH and gas. We calculate the column densities of the ices and derive the abundance ratios of N(CO2)/N(H2O) = 0.17 ± 0.05. They are similar to those obtained around the massive young stellar objects in our Galaxy (0.17 ± 0.03), although a much stronger interstellar radiation field and higher dust temperature are expected near the center of NGC 253.

  18. Nuclear Radio Jet from a Low-luminosity Active Galactic Nucleus in NGC 4258

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (α ~ 0.3; F νvpropνα) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (Γ >~ 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  19. First estimates of the fundamental parameters of the relatively bright Galactic open cluster NGC 5288

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Clariá, Juan J.; Ahumada, Andrea V.

    2006-04-01

    In this paper we present charge-coupled device (CCD) images in the Johnson B and V and Kron-Cousins I passbands for the previously unstudied open cluster NGC 5288. The sample consists of 15688 stars reaching down to V~ 20.5. The cluster appears to have a relatively small but conspicuous nucleus and a low-density extended coronal region. Star counts carried out in 25 × 25 pixel2 boxes distributed throughout the whole observed field allowed us to estimate the angular core and corona radii as ~1.3 and 6.3arcmin, respectively. Our analysis suggests that NGC 5288 is moderately young and probably more metal-rich than the Sun. Adopting the theoretical metal content Z= 0.040, which provides the best global fit, we derive an age of 130+40-30Myr. Simultaneously, we have obtained colour excesses E(B-V) = 0.75 and E(V-I) = 0.95 and an apparent distance modulus V-MV= 14.00. The law of interstellar extinction in the cluster direction is found to be normal. NGC 5288 is located at 2.1 +/- 0.3kpc from the Sun beyond the Carina spiral feature and ~7.4kpc from the Galactic Centre. The cluster metallicity seems to be compatible with the cluster position in the Galaxy, given the recognized radial abundance gradient in the disc. For the first time, in this paper we determine the basic parameters for the open cluster NGC 5381, situated in the same direction as NGC 5288. This determination was reached by using CCD VI data published almost a decade ago by Pietrzyński et al. (1997) for NGC 5381. The properties of some open clusters aligned along the line of sight of NGC 5288 are examined. The properties of clusters of similar ages to NGC 5288 are also looked into. Evidence is presented that these did not form mainly along the spiral arms but rather in the thin Galactic disc (Z~+/-100pc).

  20. A galactic nursery

    NASA Image and Video Library

    2015-07-20

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of the Sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with way fewer elements heavier than hydrogen and helium than present in our Sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution . The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long.

  1. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Heesen, Volker

    2008-02-01

    The transport of cosmic rays (CR's) in large-scale magnetic fields can be bes t investigated in edge-on galaxies with radio continuum observations including p olarization. I observed the nearby starburst galaxy NGC 253 which hosts one of t he brightest known radio halos with the Effelsberg 100-m telescope and the VLA i nterferometer. The vertical emission profiles follow closely a two-component exp onential distribution where the scaleheight is a linear function of the synchrot ron lifetime of the CR electrons. This requires a convection dominated CR transp ort from the disk into the halo while the CR's lose their energy due to synchrot ron radiation the so-called CR aging. The interaction of the "disk-wind" with th e magnetic field explains the "X"-shaped magnetic field structure centered on th e nucleus where the ordered magnetic field is amplified by compression in the bo undaries of the expanding superbubbles of hot gas.

  2. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  3. ALMA CO Observations of Shocks and Star Formation in the Interacting Galaxies IC 2163 and NGC 2207

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, Bruce; Kaufman, Michele; Brinks, Elias; Struck, Curtis; Bournaud, Frederic; Sheth, Kartik; Juneau, Stephanie

    2017-01-01

    The spiral galaxies IC 2163 and NGC 2207 are a well-studied pair undergoing a grazing collision. ALMA CO observations of masses, column densities, and velocities are combined with HI, Hα, optical, and 24 micron data to study the star formation rates and efficiencies. The close encounter of the galaxies produced in-plane tidal forces in IC 2163, resulting in a large shock with high molecular velocity gradients and both radial and azimuthal streaming (100 km/s) that formed a pile-up of molecular gas in the resulting cuspy-oval or ``eyelid'' structure at mid-radius. The encounter also produced forces nearly orthogonal to the plane of NGC 2207, resulting in a warp. By comparing with the Kennicutt-Schmidt relation for star formation, we find that some regions of NGC 2207 with unusually high turbulent speeds (40-50 km/s) and high star formation rates (>0.01 Mo/pc2/Myr) have gas that is predominantly atomic with high density cores. Half of the CO mass is in 300 clouds each more massive than 4.0x105 Mo. The mass distribution functions for the CO clouds and star complexes in the eyelid in IC 2163 both have a slope similar to what is observed in Milky Way clouds; the CO slope is steeper in NGC 2207. The CO distribution in NGC 2207 also includes a nuclear ring, a mini-bar, and a mini-starburst region that dominates the 24 micron, radio, and Hα emission in both galaxies. Dust extinction, molecular column densities, and slightly negative molecular velocities indicate the mini-starburst region has ejected a jet of molecular gas nearly perpendicular to the plane of NGC 2207 on the near side with a kinetic energy of 1052 ergs. The large scale star formation efficiency, measured as the ratio of the summed masses of the star complexes near molecular clouds to the combined star complex and cloud masses, is 7% overall; it is 23% in the mini-starburst. The maximum age of star complexes in the galactic-scale shock front at the eyelid is about the same as the time since closest

  4. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  5. A New Spin for Understanding the Peculiar Horizontal Branch Morphology of the Galactic Globular Clusters NGC 6388 and NGC 6441

    NASA Technical Reports Server (NTRS)

    Busso, G.; Piotto, G.; Cassisi, S.; Romaniello, M.; Castelli, F.; Catelan, M.; Djorgovski, S. G.; King, I. R.; Landsman, W. B.; Blanco, A. Reico; hide

    2006-01-01

    In this paper we present multiband optical and UV Hubble Space Telescope photometry of the two Galactic globular clusters NGC 6388 and NGC 6441 Aims. We investigate the properties of their anomalous horizontal branches (HB) in different photometric planes in order to shed light on the nature of the physical mechanism(s) responsible for the existence of an extended HB blue tail, and of a slope in the HB, visible in all the color-magnitude diagrams. Methods. New photometric data have been collected and carefully reduced. Empirical data have been compared with updated stellar models of low-mass, metal-rich, He-burning structures, transformed to the observational plane with appropriate atmosphere models. Results. We have obtained the first UV color-magnitude diagrams for NGC 6388 and NGC 6441. These diagrams confirm previous results, obtained in optical bands, about the presence of a sizeable stellar population of extremely hot Horizontal Branch stars. At least in NGC 6388, we find a clear indication that at the hot end of the horizontal branch the distribution of stars forms a hook-like feature, closely resembling those observed in NGC 2808 and w Centauri. We briefly review the theoretical scenarios which have been suggested for interpreting this observational feature. We investigate also on the tilt in the horizontal branch morphology, and provide further evidence that supports early suggestions according to which this feature cannot be interpreted as an effect of differential reddening or radiative levitation, though these effects contribute to create the anomaly. We demonstrate that a possible solution of the puzzle is to assume that a small fraction (approx. 13% in NGC 6388 and approx. 8% NGC 6441) of the stellar population in the two clusters is strongly helium enriched (Y approx. 0.40 in NGC6388 and Y approx. 0.35 in NGC 6441). This solution necessarily implies the presence of a double generation of stars in the two clusters.

  6. The NGC 7771+NGC 7770 minor merger: harassing the little one?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Rosales-Ortega, F. Fabián.; Sánchez, Sebastián. F.; Kennicutt, Robert C.; Pereira-Santaella, Miguel; Díaz, Ángeles I.

    2012-09-01

    Numerical simulations of minor mergers, typically having mass ratios greater than 3:1, predict little enhancement in the global star formation activity. However, these models also predict that the satellite galaxy is more susceptible to the effects of the interaction than the primary. We use optical integral field spectroscopy and deep optical imaging to study the NGC 7771+NGC 7770 interacting system (˜10:1 stellar mass ratio) to test these predictions. We find that the satellite galaxy NGC 7770 is currently experiencing a galaxy-wide starburst with most of the optical light being from young and post-starburst stellar populations (<1 Gyr). This galaxy lies off the local star-forming sequence for composite galaxies with an enhanced integrated specific star formation rate. We also detect in the outskirts of NGC 7770 Hα emitting gas filaments. This gas appears to have been stripped from one of the two galaxies and is being excited by shocks. All these results are consistent with a minor-merger-induced episode(s) of star formation in NGC 7770 after the first close passage. Such effects are not observed on the primary galaxy NGC 7771. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). The data presented here were obtained (in part) with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA.

  7. Ionized Gas Kinematics at High Resolution. IV. Star Formation and a Rotating Core in the Medusa (NGC 4194)

    NASA Technical Reports Server (NTRS)

    Beck, Sara C.; Lacy, John; Neff, Susan Gale; Turner, Jean; Greathouse, Thomas; Neff, Susan

    2014-01-01

    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features.We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0".18 (35 pc) and a 12.8 micron [Ne II] data cube with spectral resolution approx. 4 km/s: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

  8. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  9. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio andmore » far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.« less

  10. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  11. Starburst Galaxies. III. Properties of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.

    1998-02-01

    We have analyzed the properties of the 20 most radio-luminous UGC starburst galaxies from Condon, Frayer, & Broderick. Near-infrared images, spectra, and optical rotation curves were presented in Smith et al. In this paper, we use these data and published radio data to assess the stellar populations, dust contents, ionizing conditions, and dynamics of the starbursts. Certain properties of the star formation occurring in these galaxies differ from those observed locally. The infrared excesses (IREs) are lower than and span a narrower range of values than those of Galactic H II regions. The starbursts appear to produce a higher proportion of ionizing photons than most Galactic H II regions. Consequently, the initial mass functions (IMFs) of the starbursts may be more strongly biased toward high-mass star formation. The starbursts may also contain fewer old H II regions than the Milky Way. Furthermore, the starburst IRE is likely to be influenced by the presence of large reservoirs of gas that absorb a larger fraction of the Lyman continuum photons. The OB stellar and far-infrared luminosities imply that the upper mass range of the starburst IMF (M > 10 M⊙) is characterized by a slope of 2.7 +/- 0.2. The starburst IMF thus bears a strong similarity to that observed in Magellanic OB associations. Optical line ratios indicate that a range of excitation conditions are present. We conclude that the near-infrared light from many of the starbursts is dominated by a heavily obscured mixture of emission from evolved red stars and young blue stars with small contributions (~5%) from thermal gas and hot dust, under the assumptions that a Galactic or SMC extinction law can be applied to these systems and that the true reddening curve follows one of the models currently existing in the literature. In some cases, larger amounts of emission from blue stars or hot dust may be required to explain the observed near-infrared colors. The amount of dust emission exceeds that predicted

  12. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  13. A Detailed Study of the Variable Stars in Five Galactic Globular Clusters: IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph

    2015-08-01

    We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass

  14. Speckle imaging of active galactic nuclei: NGC 1068 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Ebstein, Steven Michael

    High resolution images of NGC 1068 and NGC 4151 in the 5007 A line and the nearby continuum produced from data taken with the PAPA photon counting imaging detector using the technique of speckle imaging are presented. The images show an unresolved core of 5007 A emission in the middle of an extended emission region. The extended emission tends to lie alongside the subarcsecond radio structure. In NGC 4151, the extended emission comes from a nearly linear structure extending on both sides of the unresolved core. In NGC 1068, the extended emission is concentrated in lobes lying to the unresolved core but the emission is concentrated in lobes lying to either side of the major axis. The continuum of NGC 4151 is spatially unresolved. The continuum of NGC 1068 is extended approx. 1 in to the SW of the center of the 5007 A emission. Certain aspects of the PAPA detector are discussed, including the variable threshold discriminators that track the image intensifier pulse height and the camera artifacts. The data processing is described in detail.

  15. X-ray detections of submillimetre galaxies: active galactic nuclei versus starburst contribution

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wilson, G. W.; Wang, Q. D.; Williams, C. C.; Scott, K. S.; Yun, M. S.; Pope, A.; Lowenthal, J.; Aretxaga, I.; Hughes, D.; Kim, M. J.; Kim, S.; Tamura, Y.; Kohno, K.; Ezawa, H.; Kawabe, R.; Oshima, T.

    2013-05-01

    We present a large-scale study of the X-ray properties and near-IR-to-radio spectral energy distributions (SEDs) of submillimetre galaxies (SMGs) detected at 1.1 mm with the AzTEC instrument across a ˜1.2 square degree area of the sky. Combining deep 2-4 Ms Chandra data with Spitzer IRAC/MIPS and Very Large Array data within the Great Observatories Origins Deep Survey North (GOODS-N), GOODS-S and COSMOS fields, we find evidence for active galactic nucleus (AGN) activity in ˜14 per cent of 271 AzTEC SMGs, ˜28 per cent considering only the two GOODS fields. Through X-ray spectral modelling and multiwavelength SED fitting using Monte Carlo Markov chain techniques to Siebenmorgen et al. (AGN) and Efstathiou, Rowan-Robinson & Siebenmorgen (starburst) templates, we find that while star formation dominates the IR emission, with star formation rates (SFRs) ˜100-1000 M⊙ yr-1, the X-ray emission for most sources is almost exclusively from obscured AGNs, with column densities in excess of 1023 cm-2. Only for ˜6 per cent of our sources do we find an X-ray-derived SFR consistent with NIR-to-radio SED derived SFRs. Inclusion of the X-ray luminosities as a prior to the NIR-to-radio SED effectively sets the AGN luminosity and SFR, preventing significant contribution from the AGN template. Our SED modelling further shows that the AGN and starburst templates typically lack the required 1.1 mm emission necessary to match observations, arguing for an extended, cool dust component. The cross-correlation function between the full samples of X-ray sources and SMGs in these fields does not indicate a strong correlation between the two populations at large scales, suggesting that SMGs and AGNs do not necessarily trace the same underlying large-scale structure. Combined with the remaining X-ray-dim SMGs, this suggests that sub-mm-bright sources may evolve along multiple tracks, with X-ray-detected SMGs representing transitionary objects between periods of high star formation and AGN

  16. Hubble Looks in on a Galactic Nursery

    NASA Image and Video Library

    2017-12-08

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of our sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with far fewer elements heavier than hydrogen and helium than are present in our sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution. The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long. Image credit: ESA/Hubble & NASA

  17. The nuclear superbubble of NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Cecil, G.; Bland-Hawthorn, J.; Tully, R. B.; Filippenko, A. V.; Sargent, W. L. W.

    1994-01-01

    We have used the Hawaii Imaging Fabry-Perot Interferometer (HIFI) at the CFH 3.6 m telescope to map H-alpha + (N II) lambda-lambda 6548, 6583 emission-line profiles across the entire edge-on, nearby SBc galaxy NGC 3079, with resolution 70 km/s and subarcsecond sampling. Blue and red long-slit spectra were obtained with the Double Spectrograph on the Palomar 5 meter telescope to provide additional emission-line diagnostics. A spectacular, line emitting bubble of diameter 13 sec (approximately 1.1 kpc) is observed immediately east of the nucleus. Its unusual gaseous excitation (e.g., (N II) lambda(6583)/H-alpha greater than 1) suggests that shocks are important. Extremely violent gas motions that range over 2000 km/s are detected across the bubble and diametrically opposite on the west side of the nucleus. Nonrotational motions are also found in the inner galaxy disk. The superbubble of NGC 3079 is the most powerful example known of a wind-blown bubble, and an excellent laboratory to study wind dynamics. The dimensions and energies of the bubble imply that is likely to be in the blowout phase and partially ruptured. The predicted rate of kinetic energy output from the central starburst appears sufficient to power most of this outflow. It is possible that a central active galactic nucleus also contributes to the outflow.

  18. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  19. On the Disappearance of a Cold Molecular Torus around the Low-luminosity Active Galactic Nucleus of NGC 1097

    NASA Astrophysics Data System (ADS)

    Izumi, T.; Kohno, K.; Fathi, K.; Hatziminaoglou, E.; Davies, R. I.; Martín, S.; Matsushita, S.; Schinnerer, E.; Espada, D.; Aalto, S.; Onishi, K.; Turner, J. L.; Imanishi, M.; Nakanishi, K.; Meier, D. S.; Wada, K.; Kawakatu, N.; Nakajima, T.

    2017-08-01

    We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity ≲ {10}42 erg s-1) of NGC 1097 at ˜10 pc resolution. These observations revealed a detailed cold gas distribution within a ˜100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a ˜7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of ≳2-3 less than that found for NGC 1068 by using the same CO-to-H2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μm H2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.

  20. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  1. An X-ray image of the Seyfert galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.

    1992-01-01

    An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.

  2. Exploring the Dust Content of Galactic Winds with MIPS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal; Engelbracht, Charles; Gordon, Karl

    2005-06-01

    This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.

  3. Super star clusters, their environment, and the formation of galactic winds

    NASA Astrophysics Data System (ADS)

    Westmoquette, Mark S.

    Starbursts and starburst-driven outflows play a central role in the evolution of galaxies. However, the paucity of detailed observations of superwinds limits our current understanding of these complex systems. To this end we have undertaken two intensive ground- and space-based observing campaigns aimed at studying the ionized gas conditions in two nearby starburst galaxies, M82 and NGC 1569. These two systems host starbursts on different scales: M82 contains densely-packed star cluster complexes that drive a large-scale bipolar superwind, whereas NGC 1569 exhibits a set of discrete superbubbles powered by only a handful of young massive clusters. We have used long-slit spectra, obtained with the Hubble Space Telescope (HST), together with HST and ground-based imaging from the WIYN 3.5 m telescope, to observe M82 at optical wavelengths. The high quality HST spectroscopy obtained with the Space Telescope Imaging Spectrograph (STIS), have allowed us to investigate the properties of the gas across the starburst core. By combining high-resolution HST imaging with deep WIYN observations, we have created the most comprehensive image of the M82 superwind to date, and used it to characterise the outflow morphology. We also observed the centre of NGC 1569 with the Integral Field Unit (IFU) of the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-North telescope, and M82 with the WIYN/DensePak and SparsePak IFUs. We decomposed the observed emission-line profile shapes, and identified an underlying broad (>100 kms-1) component across the starburst cores of both galaxies. By mapping the spatial variation of each individual line component, we have developed a new model to explain the broad emission and the state of the interstellar medium (ISM) in the central starbursts. We have also observed the outer-wind environment of NGC 1569 with the WIYN SparsePak instrument. We find that the broad line is only found within 500-700 pc of the centre, and speculate that the boundary of

  4. Spectral Analysis and Interpretation of the γ-Ray Emission from the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H. E. S. S. Collaboration

    2012-10-01

    Very high energy (VHE; E >= 100 GeV) and high-energy (HE; 100 MeV <= E <= 100 GeV) data from γ-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE γ-ray data can be described by a power law in energy with differential photon index Γ = 2.14 ± 0.18stat ± 0.30sys and differential flux normalization at 1 TeV of F 0 = (9.6 ± 1.5stat(+ 5.7, -2.9)sys) × 10-14 TeV-1 cm-2 s-1. A power-law fit to the differential HE γ-ray spectrum reveals a photon index of Γ = 2.24 ± 0.14stat ± 0.03sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 ± 1.0stat ± 0.3sys) × 10-9 cm-2 s-1. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE γ-ray data results in a differential photon index Γ = 2.34 ± 0.03 with a p-value of 30%. The γ-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE γ-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the γ-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region. We dedicate this paper to the memory of our colleague Dalibor Nedbal, who died on 2012 May 15 at the age of 31. Dalibor was universally liked and respected as a scientist and colleague and will be greatly missed.

  5. Chandra X-Ray Observatory Image NGC 3603

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant 'starburst' galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  6. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  7. A starburst region around l = 347° - 350°

    NASA Astrophysics Data System (ADS)

    Marco, A.; Negueruela, I.; Monguió, M.; González-Fernández, C.; Maíz Apellániz, J.; Dorda, R.; Clark, J. S.

    2017-03-01

    Very recently, a number of obscured massive open clusters have been identified in the Milky Way. A very significant fraction of them lie either close to the base of the Scutum Arm or towards Galactic longitude of 350°. We are studying these clusters and their neighbourhoods, finding very good evidence for a major starburst region close to the near tip of the Galactic Long Bar.

  8. The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Spoon, Henrik; Riechers, Dominik A.; González-Alfonso, Eduardo; Farrah, Duncan; Fischer, Jacqueline; Darling, Jeremy; Fergulio, Chiara; Afonso, Jose; Bizzocchi, Luca

    2018-05-01

    We report molecular gas observations of IRAS 20100‑4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using Atacama Large Millimeter Array and Plateau de Bure Interferometer observations, we spatially resolve the CO (1‑0) emission from the outflowing molecular gas in both and find maximum outflow velocities of v max ∼ 1600 and ∼1700 km s‑1 for IRAS 20100‑4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of {\\dot{M}}OF}∼ 670 and ∼350 M ⊙ yr‑1, respectively, corresponding to molecular gas depletion timescales {τ }OF}dep}∼ 11 and ∼16 Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, {τ }SFR}dep}∼ 33 and ∼46 Myr, respectively. To determine the outflow driving mechanism, we compare the starburst luminosity (L *) and active galactic nucleus (AGN) luminosity (L AGN) to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern L AGN. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with L * and L IR as with L AGN, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.

  9. A starburst region at the tip of the Galactic bar around l=347-350

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; González-Fernández, Carlos; Maíz-Apellániz, Jesús; Dorda, Ricardo; Clark, J. Simon

    2015-08-01

    In the past few years, several clusters of red supergiants have been discovered in a small region of the Milky Way, close to the base of the Scutum-Crux Arm and the tip of the Long Bar, between l=24º and l=29º. According to the number of observed red supergiants and using population synthesis models, they must contain very large stellar populations to harbour so many RSGs, some of them being candidates to the most massive young clusters in the Galaxy. These massive open clusters are part of a huge structure most likely containing hundreds of red supergiants. These results suggest that the Scutum complex represents a giant star formation region triggered by dynamical excitation by the Galactic bar, whose tip is believed to intersect the Scutum-Crux Arm close to this region. If this scenario is correct, a similar structure would be expected close to the opposite end of the Galactic long bar. We must find in an area between l=347º-350º (these sight lines include the expected location of the far tip of the Galactic bar in the model of González-Fernández et al. (2012)) likely candidates to very massive open clusters.We are carrying out a comprehensive optical and infrared photometric and spectroscopic study of this region containing the open clusters VdBH 222, Teutsch 85 and their surroundings. We have analyzed the population of VdBH 222 and we have found a large population of luminous supergiants and OB stars. The cluster lies behind ~7.5 mag of extinction and has a probable distance of ~ 10 kpc and an age of ~12 Ma. VdBH 222 is a young massive cluster with a likely mass > 20000 Msolar. Now, we are analyzing the population of the open cluster Teutsch 85 and surroundings, finding a numerous population of supergiants.In this work, we will discuss the possible role of the Galactic bar in triggering the formation of starburst clusters.

  10. Starlight morphology of the interacting galaxy NGC 5195

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gehrz, R. D.; Grasdalen, G. L.; Hackwell, John A.; Dietz, R. D.; Friedman, Scott D.

    1990-10-01

    We present near-infrared, red, and optical observations of NGC 5195, the interacting companion of NGC 5194 (M51). Three intrinsic components are suggested by the near-infrared data: a bright nuclear maximum, a low-contrast bar centered symmetrically on the nucleus, and a nearly face-on exponential disk. This organized near-infrared morphology contrasts strongly with the irregular appearance of optical images. Neither dust nor hot stars contribute much to the near-infrared emission, leaving cool stars probably of an evolved population as the main near-infrared sources. Optical (V) and red (R, I) images confirm the near-infrared morphology and imply that obscuration by an irregular distribution of dust causes the great difference between optical and near-infrared morphologies. Dust within a foreground spiral arm of M51 is an important source of obscuration. Dust internal to NGC 5195 gives an observed quantity of reradiation and perhaps contributes significant obscuration within 10" of the galactic nucleus. The nucleus itself lies at or near a local minimum in color produced by small obscuration or possibly hot emission from the galaxy's nuclear emission-line region or X-ray medium. When corrected for all spatial components of extinction, the body of NGC 5195 becomes much bluer and has a mean B - H color common to normal disk galaxies. Observations lead consistently to SB, but no further, as the best description of the NGC 5195 morphology. Images reveal no evidence of spiral arms which alone would imply a lenticular subtype. Yet the bulge-to-disk ratio of NGC 5195, evaluated from near-infrared observations, is far smaller than values inferred for noninteracting lenticular galaxies. Motivated by these difficulties in conventional classification, we proceed to discuss the possibility that certain attributes of NGC 5195, including its bar, are transient manifestations of the interaction with M51. Presented measurements support the galaxy mass ratio and type of NGC 5195

  11. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    PubMed

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  12. Observation of the Starburst Galaxy NGC 253 with the OSSE Instrument

    DTIC Science & Technology

    1993-01-01

    produced by a very recent Type Ia or Ib supernova outburst in NGC 253. INTRODUCTION NGC 253 is the third brightest infrared galaxy with a luminosity of ~ 4...1010 L.O1 in the far infrared band. This nearby (~ 3 Mpc) spiral Sc galaxy is undergoing extensive star formation within its central few kilo...100 MeV Ginga extrapolation Ginga data OSSE result Model WW2 Day 20 Model WR6C Day 120 Fig. 1 – The derived photon fluxes for NGC 253. The Ginga X-ray

  13. A (Si VI) (1.92 micrometer) coronal line survey of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marconi, A.; Moorwood, A. F. M.; Salvati, M.; Oliva, E.

    1994-11-01

    We present the results of a (Si VI) lambda 1.962 emission line survey of active, starburst and IRAS luminous galaxies. The line was only detected in known Seyfert type 1 and 2 nuclei confirming previous suggestions that (Si VI) is related to Seyfert activity. By modeling the formation of (Si VI) and (Fe VIII) lambda 6087 we find further strong evidence that these lines arise in gas photoionized by the active nucleus although collisional ionization e.g. by shock fronts may be important in some galaxies exhibiting (Fe VII) much greater than (Si VI). Our failure to detect (Si VI) in the IRAS ultraluminous galaxies does not exclude the possible presence of obscured Active Galactic Nuclei (AGNs), particularly as some of the known Seyferts were also not detected. Molecular hydrogen lines (a by-product of our spectra) are common in all galaxy types including several IRAS ultraluminous galaxies whose H2 equivalent widths (Wlambda less that 20 A) are 'normal'and much lower than the extreme value (Wlambda approximately = 70 A) found in NGC 6240 and NGC 1275. 'Bare' Seyferts have Wlambda(H2) less than 1 A and a factor greater than or approximately 10 lower than starbursts, and we do not confirm previous claims of H2 line emission in the quasar 3C273. Although the ratio of H2 to (Si VI) emission varies over a wide range it does not appear to provide a useful indicator of activity type or to impose constraints on the He excitation mechanism.

  14. Chandra Images the Seething Cauldron of Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  15. Two separate outflows in the dual supermassive black hole system NGC 6240

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.

  16. Two separate outflows in the dual supermassive black hole system NGC 6240.

    PubMed

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  17. [S IV] in the NGC 5253 Supernebula: Ionized Gas Kinematics at High Resolution

    NASA Astrophysics Data System (ADS)

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.; Kruger, Andrew; Richter, Matt; Crosthwaite, Lucian P.

    2012-08-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5 μm line of S +3 at 3.8 km s-1 spectral and 1farcs4 spatial resolution, using the high-resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s-1 and another of similar strength and FWHM 94 km s-1 centered ~20 km s-1 to the blue. This suggests a model for the supernebula in which gas flows toward us out of the molecular cloud, as in a "blister" or "champagne flow" or in the H II regions modelled by Zhu.

  18. Turbulence and the Formation of Filaments, Loops, and Shock Fronts in NGC 1275

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; de Gouveia Dal Pino, E. M.; Gallagher, J. S.; Lazarian, A.

    2010-01-01

    NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular Hα-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s-1 are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.

  19. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals

  20. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  1. Near--Infrared Imaging of the Starburst Ring in UGC12815

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Herter, T.; Haynes, M. P.; Neff, S. G.

    1995-05-01

    Starburst galaxies define an enigmatic class of objects undergoing a brief, intense episode of star formation. In order to investigate the nature of nearby starbursts, we have analyzed the 20 starburst galaxies with the highest 4.85 GHz luminosities from the survey of Condon, Frayer, & Broderick (1991, AJ, 101, 362) at infrared and optical wavelengths. As part of our study, we recently used the Cassegrain Infrared Camera at the Hale 5 m telescope to obtain high spatial resolution near--infrared images of the cores of 17 of these galaxies in order to better understand the starburst triggering mechanism. We find that one galaxy, UGC12815 (NGC7771), possesses a nucleus surrounded by a bright starburst ring. We present 1.25, 1.65, and 2.2 microns (J, H, and K band) images of the nuclear region of UGC12815 and a preliminary analysis of the properties of the starburst ring. The resolution of our K band image is 0.6('') FWHM. The ring is ~ 1.6 kpc (6('') ) in diameter assuming H_0=75 km/s/Mpc; several knots are detected in the ring at 2.2 microns. The spatial distribution of these knots is compared to that observed at 6 cm. The luminosities of the ring and nucleus, as mapped in the near--infrared and radio, are also discussed. Color maps (H-K and J-H) constructed from the near--infrared images trace the relative roles of extinction, and emission from evolved red stars, blue stars, thermal gas, and hot dust in the nucleus and starburst ring. A comparison between UGC12815 and other systems with circumnuclear starbursts is also made.

  2. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  3. Luminous Infrared Galaxies and the ``Starburst-AGN Connection"

    NASA Astrophysics Data System (ADS)

    Sanders, D. B.; Kartaltepe, J. S.; Kewley, L. J.; U, Vivian; Yuan, T.; Evans, A. S.; Armus, L.; Mazzarella, J. M.

    2009-10-01

    Luminous Infrared Galaxies (LIRGs) represent perhaps the most powerful examples of a connection between the fueling of starbursts and active galactic nuclei (AGNs). Major mergers of gas-rich spirals, which are now understood to trigger the majority of LIRGs, drive the bulk of the disk gas into the central kpc of the merger pair, where it provides fuel for both powerful nuclear starbursts and accretion onto a central massive black hole. The combined feedback from starburst and accretion luminosity eventually expels the gas, shutting down nuclear activity and leaving a gas-poor elliptical. Although there is now general agreement on the origin and evolutionary scenario for LIRGs, the detailed time evolution of starburst activity and black hole growth is still not well understood. We review the basic properties of LIRGs as determined from extensive multi-wavelength studies of a complete sample of local objects, and introduce new results from initial observations of fainter more distant LIRGs detected in the Spitzer survey of the HST-COSMOS 2-deg^2 Field.

  4. Detection of the H92α recombination line from NGC 4945

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Oosterloo, T.; Goss, W. M.; Anantharamaiah, K. R.

    2010-07-01

    Context. Hydrogen ionized by young, high-mass stars in starburst galaxies radiates radio recombination lines (RRLs), whose strength can be used as a diagnostic of the ionization rate, conditions and gas dynamics in the starburst region, without problems of dust obscuration. However, the lines are weak and only few extragalactic starburst systems have been detected. Aims: We aimed to increase the number of known starburst systems with detectable RRLs for detailed studies, and we used the line properties to study the gas properties and dynamics. Methods: We searched for the RRLs H91α and H92α with rest frequencies of 8.6 GHz and 8.3 GHz in the nearby southern Seyfert galaxy NGC 4945 using the Australia Telescope Compact Array with resolution of 3”. This yielded a detection from which we derived conditions in the starburst regions. Results: We detected RRLs from the nucleus of NGC 4945 with a peak line strength integrated over the source of 17.8 mJy, making it the strongest extragalactic RRL emitter known at this frequency. The line and continuum emission from NGC 4945 can be matched by a model consisting of a collection of 10 to 300 H II regions with temperatures of 5000 K, densities of 103 cm-3 to 104 cm-3 and a total effective diameter of 2 pc to 100 pc. The Lyman continuum production rate required to maintain the ionization is 6 × 1052 s-1 to 3 × 1053 s-1, which requires 2000 to 10 000 O5 stars to be produced in the starburst, inferring a star formation rate of 2 M_⊙ yr-1 to 8 M_⊙ yr-1. We resolved the rotation curve within the central 70 pc region and this is well described by a set of rotating rings that were coplanar and edge on. We found no reason to depart from a simple flat rotation curve. The rotation speed of 120 km s-1 within the central 1” (19 pc) radius infers an enclosed mass of 3 × 107 M⊙, and an average surface density with the central 19 pc of 25 000 pc-2, which exceeds the threshold gas surface density for star formation. Conclusions

  5. The potassium abundance in the globular clusters NGC 104, NGC 6752 and NGC 6809

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Merle, T.; Bellazzini, M.

    2017-04-01

    We derived potassium abundances in red-giant-branch stars in the Galactic globular clusters NGC 104 (144 stars), NGC 6752 (134 stars), and NGC 6809 (151 stars) using high-resolution spectra collected with FLAMES at the ESO - Very Large Telescope. In the samples we consider, we do not find significant intrinsic spreads in [K/Fe], which confirms the previous findings, but which is at variance with the cases of the massive clusters NGC 2419 and NGC 2808. Additionally, marginally significant [K/Fe]-[O/Fe] anti-correlations are found in NGC 104 and NGC 6809, and [K/Fe]-[Na/Fe] correlations are found in NGC 104 and NGC 6752. No evidence of [K/Fe]-[Mg/Fe] anti-correlation are found. The results of our analysis are consistent with a scenario in which the process leading to the multi-populations in globular clusters also implies enrichment in the K abundance, the amplitude of the associated [K/Fe] enhancement becoming measurable only in stars showing the most extreme effects of O and Mg depletion. Stars enhanced in [K/Fe] have so far only been found in clusters harbouring some Mg-poor stars, while the other globulars, without a Mg-poor sub-population, show small or null [K/Fe] spreads. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A104

  6. Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center

    NASA Astrophysics Data System (ADS)

    2004-06-01

    produced is by a wind of energetic particles driven by an epoch of starburst near the Galactic center. Law speculates that approximately 10 million years ago, there was a furious period of star formation, with many stars being born and quickly dying in a series of supernovae. "At that time, something caused an acceleration of star formation near the very center of our Galaxy that thrust this material out of the plane of the Galaxy. The hot, young stars would have generated a lot of wind, and the supernovae would have contributed more energy," added Law. "This collective energy would have blown a lot of gas out of the disk for an extended period, eventually producing the features we see today." As the hot gas and particles shot out of the plane they would have "shocked" or energized the gas in the interstellar medium, which would have concentrated and amplified the ambient magnetic fields. The magnetic fields would then have accelerated electrons in the interstellar medium, producing the non-thermal radio profiles of the lobe. Earlier work done by other researchers estimates that this feature could contain approximately 5,000,000 solar masses of material, and that -- in the starburst model -- it would take the energy of possibly 10,000 supernovae to eject that amount of material out of the plane of the Galaxy and produce the feature seen in the lobe. In addition to Law and Yusef-Zadeh, the team that conducted the multiwavelength GBT survey included Douglas Roberts and Jack Hewitt of Northwestern University, and William Cotton and Ron Maddalena of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Additional image without outline is here.

  7. Far-ultraviolet Observations of Outflows from Infrared-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida; Schaerer, Daniel

    2013-08-01

    We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 Å of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Lyα emitters with equivalent widths ranging between 2 and 13 Å. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of ~400 km s-1 and maximum velocities of almost 900 km s-1. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of ~100 M ⊙ yr-1 are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.

  8. Kinematical Focus on NGC 7086

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2005-12-01

    The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.

  9. A JWST Study of the Starburst-AGN Connection in Merging LIRGs

    NASA Astrophysics Data System (ADS)

    Armus, Lee; Appleton, P.; Barcos-Munoz, L.; Charmandaris, V.; Diaz-Santos, T.; Evans, A.; Howell, J.; Inami, H.; Larson, K.; Linden, S.; Malkan, M.; Marshall, J.; Mazzarella, J.; Medling, A.; Murphy, E.; Privon, G.; Rich, J.; Sanders, D.; Stierwalt, S.; Surace, J.; U, V.

    2017-11-01

    Galaxies evolve through a combination of secular processes, such as cold gas accretion, and nonsecular processes, such as galactic mergers, which can trigger massive starbursts and powerful AGN. JWST will transform our understanding of galactic evolution, providing a detailed look at the physics of star formation and black hole growth in nearby and distant galaxies. By using NIRSPEC, NIRCAM and MIRI, we will create a rich dataset for understanding the dynamics and energetics of the ISM on scales of 50-100pc in the nuclei of local Luminous Infrared Galaxies (LIRGs). Our targets cover a range of starburst-to-AGN power and IR spectral properties, and are all visible to JWST over the first 5 months of Cycle-1. We will target each nucleus with the NIRSPEC and MIRI IFUs to cover the full spectral range from 0.96-29 microns, and obtain deep, wide-field NIRCAM and MIRI images in the F150W, F200W, F335M, F444W, F560W, F770W and F1500W filters. The total time for our proposal (NOI #80) is 30.97hrs. Our science-enabling products include multi-wavelength, ancillary datasets from Spitzer, ALMA, JVLA, AKARI and HST, valuable cross-calibration infrared data from Spitzer and AKARI, together with custom spectral fitting software which we will deliver and use to analyze the JWST spectral cubes. The proposed observations will be scientifically compelling in their own right, and they will also demonstrate to the community how to fully explore the power of JWST to unravel the complex galactic ecosystems in nearby active and starburst galaxies. This proposal will set the stage for more extensive studies of active and starburst galaxies at low and high-redshift in Cycle-2 and beyond.

  10. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less

  11. Optical observations of NGC 2915: A nearby blue compact dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Meurer, G. R.; Mackie, G.; Carignan, C.

    1994-01-01

    This paper presents B and R band Charge Coupled Device (CCD) images and medium resolution spectroscopy of NGC 2915, a relatively isolated BCD (blue compact dwarf) galaxy at a distance of approximately 5 Mpc. NGC 2915 contains two stellar populations: a high surface brightness blue core population and a red diffuse population. The core population contains all of the H II, and numerous embedded objects. It is the locus of current high mass star formation. The brightest embedded objects are likely to be young ionizing clusters, while many of the fainter objects are likely to be individual supergiant stars with masses up to approximately 25 solar mass, or blends of a few such stars. Curious aligned structures on the SE side of the galaxy are seen and their nature discussed. The spectrum of the core is dominated by bright narrow emission lines like that of a high excitation and low metallicity (less than half solar) H II region. The continuum is flat, with Balmer and Ca II features seen in absorption. The velocity of the Ca II features suggest contamination by galactic interstellar absorption. There is a significant velocity gradient in the spectra, probably indicative of rotation. Outside of its core, NGC 2915 resembles a dE (dwarf elliptical) galaxy, in that it has an exponential surface brightness profile, is red ((B-R)(sub 0) = 1.65), and has a low extrapolated central surface brightness (B(0)(sub c) = 22.44). NGC 2915's properties are compared with other BCDs, concentrating on two morphologically similar BCDs that are near enough to resolve into stars: NGC 1705 and NGC 5253. It is noted that the presence of winds in BCDs invalidates closed box chemical evolution models and the remaining constraints on star formation duration are relatively weak. Some BCDs, including NGC 2915, may be able to maintain their present star formation rate for Gyr time scales. This suggests that the overall evolution of these BCDs may be much slower than the approximately 10 Myr burst

  12. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  13. The life cycle of starbursting circumnuclear gas discs

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Mould, J.; Wada, K.; Burkert, A.; Durré, M.; Behrendt, M.; Davies, R. I.; Burtscher, L.

    2018-01-01

    High-resolution observations from the submm to the optical wavelength regime resolve the central few 100 pc region of nearby galaxies in great detail. They reveal a large diversity of features: thick gas and stellar discs, nuclear starbursts, inflows and outflows, central activity, jet interaction, etc. Concentrating on the role circumnuclear discs play in the life cycles of galactic nuclei, we employ 3D adaptive mesh refinement hydrodynamical simulations with the RAMSES code to self-consistently trace the evolution from a quasi-stable gas disc, undergoing gravitational (Toomre) instability, the formation of clumps and stars and the disc's subsequent, partial dispersal via stellar feedback. Our approach builds upon the observational finding that many nearby Seyfert galaxies have undergone intense nuclear starbursts in their recent past and in many nearby sources star formation is concentrated in a handful of clumps on a few 100 pc distant from the galactic centre. We show that such observations can be understood as the result of gravitational instabilities in dense circumnuclear discs. By comparing these simulations to available integral field unit observations of a sample of nearby galactic nuclei, we find consistent gas and stellar masses, kinematics, star formation and outflow properties. Important ingredients in the simulations are the self-consistent treatment of star formation and the dynamical evolution of the stellar distribution as well as the modelling of a delay time distribution for the supernova feedback. The knowledge of the resulting simulated density structure and kinematics on pc scale is vital for understanding inflow and feedback processes towards galactic scales.

  14. Too much carbon in NGC253

    NASA Technical Reports Server (NTRS)

    Harrison, Andrew; Brand, Peter; Puxley, Phil; Russell, Adrian

    1995-01-01

    We have observed C(exp 0) across the nucleus of the starburst galaxy NGC253. C(exp 0) is very bright and we find N(C(exp 0))/N(CO) is between 1.5 and 2.3 across the nucleus. Existing PDR models cannot explain the observed C(exp 0) intensity. The size of the observed region seems to rule out 'simultaneous very early time chemistry' across the nucleus. Chemical models in which C(sup 0)/CO is enhanced deep in molecular clouds by large fluxes of cosmic rays also struggle to explain our observations. The most plausible explanation for the observed C(exp 0) is that the C/O elemental ratio is enhanced in NGC253.

  15. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-12-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, I.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the Fundamental Plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when LX ≳ 1.5 × 1042 erg s- 1. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  16. X-ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The X-ray properties of 15 nearby (v less than 3,000 km/s) galaxies that possess AGN (active galactic nuclei) and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from approx. 0.5 to approx. 1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst-AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  17. Integral Field Spectroscopy of the Merger Remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio

    2018-01-01

    The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.

  18. Lots of Small Stars Born in Starburst Region

    NASA Astrophysics Data System (ADS)

    1999-10-01

    will quickly affect their environment, but how much? At this moment, nobody knows for sure what determines the actual masses of individual stars that are formed in a very massive and turbulent gas cloud, although some ideas can now be tested with these new observations. The NGC 3603 region The new VLT observations are the key part of a larger research programme that also includes observations of the stellar cluster in the famous Tarantula Nebula in the Large Magellanic Cloud (LMC) with the NICMOS instrument on the Hubble Space Telescope (HST), as well as adaptive optics observations with ground-based telescopes of more quiescent, star-forming regions in the Galaxy. However, the team considered the starburst region NGC 3603 as the best target for this kind of investigation. It is situated in the far southern constellation Carina (The Keel) and can only be observed from the South. Moreover, such a study has to focus on the densest part of the cluster that can only be resolved with a very sensitive infrared (IR) instrument under the best seeing conditions. The VLT ANTU telescope and the multi-mode ISAAC facility are ideally suited for this purpose. NGC 3603 is located in the Carina spiral arm in the Milky Way galaxy at a distance of about 20,000 light-years (6 - 7 kpc). It is the only massive, galactic "HII-region" (so denoted by astronomers because part of its hydrogen is ionized) in which a central cluster of strongly UV-radiating stars of types "O" and "B" that ionize the nebula can be studied at visual and near-infrared wavelengths. This is because the line-of-sight is reasonably free of dust in this direction; the dimming in near-infrared radiation due to intervening matter between the nebula and us is only about a factor of 2 (contrary to 80 in visible light). The total mass of the hot O- and B-stars in NGC 3603 is over 2000 solar masses. Together, the more than fifty heavy and bright O-stars in NGC 3603 have about 100 times the ionizing power of the well

  19. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  20. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  1. The Second Nucleus of NGC 7727: Direct Evidence for the Formation and Evolution of an Ultracompact Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Schweizer, François; Seitzer, Patrick; Whitmore, Bradley C.; Kelson, Daniel D.; Villanueva, Edward V.

    2018-01-01

    We present new observations of the late-stage merger galaxy NGC 7727, including Hubble Space Telescope/WFPC2 images and long-slit spectra obtained with the Clay telescope. NGC 7727 is relatively luminous ({M}V = ‑21.7) and features two unequal tidal tails, various bluish arcs and star clusters, and two bright nuclei 480 pc apart in projection. These two nuclei have nearly identical redshifts, yet are strikingly different. The primary nucleus, hereafter Nucleus 1, fits smoothly into the central luminosity profile of the galaxy and appears—at various wavelengths—“red and dead.” In contrast, Nucleus 2 is very compact, has a tidal radius of 103 pc, and exhibits three signs of recent activity: a post-starburst spectrum, an [O III] emission line, and a central X-ray point source. Its emission-line ratios place it among Seyfert nuclei. A comparison of Nucleus 2 ({M}V = ‑15.5) with ultracompact dwarf galaxies (UCDs) suggests that it may be the best case yet for a massive UCD having formed through tidal stripping of a gas-rich disk galaxy. Evidence for this comes from its extended star formation history, long blue tidal stream, and elevated dynamical-to-stellar-mass ratio. While the majority of its stars formed ≳ 10 {Gyr} ago, ∼1/3 formed during starbursts in the past 2 Gyr. Its weak active galactic nucleus activity is likely driven by a black hole of mass 3× {10}6-8 {M}ȯ . We estimate that the former companion’s initial mass was less than half that of then NGC 7727, implying a minor merger. By now this former companion has been largely shredded, leaving behind Nucleus 2 as a freshly minted UCD that probably moves on a highly eccentric orbit. Based in part on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  2. Multi-epoch very long baseline interferometric observations of the nuclear starburst region of NGC 253: Improved modeling of the supernova and star formation rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.

    2014-01-01

    The results of multi-epoch observations of the southern starburst galaxy, NGC 253, with the Australian Long Baseline Array at 2.3 GHz are presented. As with previous radio interferometric observations of this galaxy, no new sources were discovered. By combining the results of this survey with Very Large Array observations at higher frequencies from the literature, spectra were derived and a free-free absorption model was fitted of 20 known sources in NGC 253. The results were found to be consistent with previous studies. The supernova remnant, 5.48-43.3, was imaged with the highest sensitivity and resolution to date, revealing a two-lobed morphology.more » Comparisons with previous observations of similar resolution give an upper limit of 10{sup 4} km s{sup –1} for the expansion speed of this remnant. We derive a supernova rate of <0.2 yr{sup –1} for the inner 300 pc using a model that improves on previous methods by incorporating an improved radio supernova peak luminosity distribution and by making use of multi-wavelength radio data spanning 21 yr. A star formation rate of SFR(M ≥ 5 M {sub ☉}) < 4.9 M {sub ☉} yr{sup –1} was also estimated using the standard relation between supernova and star formation rates. Our improved estimates of supernova and star formation rates are consistent with studies at other wavelengths. The results of our study point to the possible existence of a small population of undetected supernova remnants, suggesting a low rate of radio supernova production in NGC 253.« less

  3. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milone, A. P.; Marino, A. F.; Jerjen, H.

    2015-07-20

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by themore » data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium.« less

  4. An Introverted Starburst: Gas and SSC Formation in NGC 5253

    NASA Astrophysics Data System (ADS)

    Turner, J. L.; Beck, S. C.

    2004-06-01

    High resolution Brackett line spectroscopy with the Keck Telescope reveals relatively narrow recombination lines toward the embedded young super star cluster nebula in NGC 5253. The gas within this nebula is almost certainly gravitationally bound by the massive and compact young star cluster.

  5. Sturm und Drang: The turbulent, magnetic tempest in the Galactic center

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2014-05-01

    The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (˜ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ˜70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.

  6. The luminous starburst galaxy UGC 8387

    NASA Technical Reports Server (NTRS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N. Iii

    1995-01-01

    We present broad-band J, H, and K images and K-band spectroscopy of the luminous starburst galaxy UGC 8387. The images show a disturbed morphology, tidal tails, and a single elognated nucleus. Near infrared color maps constructed from the images reveal that the nucleus region is highly reddened. Strong emission from the central 3 arcseconds in the 2.166 micrometer Brackett gamma, 2.122 micrometer H2 v = 1-0 S(1), and 2.058 micrometer He I lines is present in the K-band spectrum. From the Brackett gamma and published radio fluxes, we find an optical depth toward the nucleus of tau(sub V) approximately 24. The CO band heads produce strong absorption in the spectral region long-ward of 2.3 micrometers. We measure a 'raw' CO index of 0.17 +/- 0.02 mag, consistent with a population of K2 supergiants of K4 giants. The nuclear colors, however, are not consistent with an obscured population of evolved stars. Instead, the red colors are best explained by an obscured mixture of stellar and warm dust emission. The amount of dust emission predicted by the near-infrared colors exceeds that expected from comparisons to galactic H II regions. After correcting the spectrum of UGC 8387 for dust emission and extinction, we obtain a CO index of greater than or equal to 0.25 mag. This value suggests the stellar component of the 2.2 micrometer light is dominated by young supergiants. The infrared excess, L(sub IR)/L(sub Ly alpha) derived for UGC 8387 is lower than that observed in galactic H II regions and M82. This implies that either the lower or upper mass cutoff of the initial mass function must be higher than those of local star-forming regions and M82. The intense nuclear starburst in this galaxy is presumably the result of merger activity; and we estimate the starburst age to be at least a few times 10(exp 7) yr.

  7. VLBI observations of galactic nuclei at 18 centimeters - NGC 1052, NGC 4278, M82, and M104

    NASA Technical Reports Server (NTRS)

    Shaffer, D. B.; Marscher, A. P.

    1979-01-01

    Compact radio sources about a light year in size have been detected in the nuclei of the galaxies NGC 1052, NGC 3034 (M82), NGC 4278, and NGC 4594 (M104) at a wavelength of 18 cm. The compact nucleus detected in M81 at 6 cm was not seen at 18 cm. The compact source in M82 is unique among extragalactic sources in its size-spectrum relationship. It is either broadened by scattering within M82 or it lies behind, and is absorbed by, an H II region. In these galaxies, the size of the nuclear radio source at 18 cm is larger than it is at higher frequencies. The nucleus of the giant radio galaxy DA 240 was not detected.

  8. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  9. Chandra/HETG Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    2017-09-01

    NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.

  10. Image-Subtraction Photometry of Variable Stars in the Globular Clusters NGC 6388 and NGC 6441

    NASA Technical Reports Server (NTRS)

    Corwin, Michael T.; Sumerel, Andrew N.; Pritzl, Barton J.; Smith, Horace A.; Catelan, M.; Sweigart, Allen V.; Stetson, Peter B.

    2006-01-01

    We have applied Alard's image subtraction method (ISIS v2.1) to the observations of the globular clusters NGC 6388 and NGC 6441 previously analyzed using standard photometric techniques (DAOPHOT, ALLFRAME). In this reanalysis of observations obtained at CTIO, besides recovering the variables previously detected on the basis of our ground-based images, we have also been able to recover most of the RR Lyrae variables previously detected only in the analysis of Hubble Space Telescope WFPC2 observations of the inner region of NGC 6441. In addition, we report five possible new variables not found in the analysis of the EST observations of NGC 6441. This dramatically illustrates the capabilities of image subtraction techniques applied to ground-based data to recover variables in extremely crowded fields. We have also detected twelve new variables and six possible variables in NGC 6388 not found in our previous groundbased studies. Revised mean periods for RRab stars in NGC 6388 and NGC 6441 are 0.676 day and 0.756 day, respectively. These values are among the largest known for any galactic globular cluster. Additional probable type II Cepheids were identified in NGC 6388, confirming its status as a metal-rich globular cluster rich in Cepheids.

  11. Distances to M101, NGC 2403, and NGC 2366 via Long Period Variables

    NASA Astrophysics Data System (ADS)

    Jurcevic, J. S.

    1998-12-01

    A new method of measuring accurately extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and their period of luminosity variation. This period-luminosity (PL) relationship has been calibrated in the broadband optical R and I-bands with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33. To verify the effectiveness of these RSV PL relations, the distances to the galaxies M101, NGC 2403, and NGC 2366 were determined. These galaxies were chosen because they had existing Cepheid based distances to use as a comparison between the two methods. These galaxies also span a range of metallicity to investigate any metallicity effects. Ground-based photometry of the galaxies in the R-band was obtained over four years to discover red variable stars with periods in the range 100--1200 days. The number of RSVs discovered in M101, NGC 2403, and NGC 2366 was 42, 61, and 20, respectively. By assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag, respectively. These distances agree quite well with those found via recent Cepheid based measurements. In particular, the RSV distance modulus to M101 is very close to the HST Key Project Cepheid modulus of 29.34 +/- 0.17 mag (Kelson {et al. } 1996). These results show that RSVs, at optical wavelengths, provide a new method for measuring distances with a precision comparable to that of Cepheids with the advantages of being more luminous and more abundant than Cepheids.

  12. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  13. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex

  14. The Evolution of Dwarf-Irregular Galaxy NGC 1569: A Kinematic Study of the Stars and Gas

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.

    2011-12-01

    The evolution and formation of dwarf galaxies has great importance to our knowledge of cosmological history from the Big Bang through the present day structure we observe in our local universe. Dwarf galaxies are believed to be the "building blocks" of larger galaxies, which implies that interactions and mergers of these small systems must have occurred frequently in the early universe. There is a population of starburst dwarf irregular (dIm) galaxies that seem to have characteristics indicative of interactions or mergers. One of these dIm galaxies is the nearby post-starburst NGC 1569. This dissertation project explores the stellar and gas kinematics of NGC 1569 as well as examines a deep neutral Hydrogen (HI) map made using the Robert C. Byrd Green Bank Telescope (GBT). From these observations, this dissertation analyzes the evolution of NGC 1569 by understanding the three-dimensional shape of this dIm system for the first time. The structure of dIm galaxies is an important fundamental, physical property necessary to understand the evolution and formation of these common systems. However, the intrinsic shape of dIm galaxies remains controversial. Projected minor-to-major axis ratios provide insufficient data to determine the shapes of dIm galaxies. Fortunately, there is another method by which accurate structures can be measured. The stellar velocity dispersion, coupled with the maximum rotational velocity derived from HI observations, gives a measure of how kinematically hot a system is, and, therefore, indicates its structure. In this dissertation, we present the stellar kinematics, including the stellar velocity dispersion, of NGC 1569 obtained using the Kitt Peak National Observatory (KPNO) Mayall 4-m+Echelle spectrograph. These data are combined with an in depth analysis of high resolution HI data and a discussion of the nature of this starburst dwarf system. The dissertation concludes with a deep HI map of NGC 1569 and three of its nearest neighbors in the

  15. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  16. The origins of post-starburst galaxies at z < 0.05

    NASA Astrophysics Data System (ADS)

    Pawlik, M. M.; Taj Aldeen, L.; Wild, V.; Mendez-Abreu, J.; Lahén, N.; Johansson, P. H.; Jimenez, N.; Lucas, W.; Zheng, Y.; Walcher, C. J.; Rowlands, K.

    2018-06-01

    Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with 0.01 < z < 0.05, log ({M}_{\\star }/{M}_{⊙})>9.5 and projected axial ratio b/a > 0.32. We explore their structural properties, environments, emission lines, and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70 per cent of post-starburst galaxies at 9.5< log ({M}_{\\star}/{M}_{⊙})<10.5 and 60 per cent at log ({M}_{\\star}/{M}_{⊙})>10.5); (2) at 9.5< log ({M}_{\\star}/{M}_{⊙})<10.5, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30 per cent); (3) at log ({M}_{\\star}/{M}_{⊙})>10.5, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40 per cent). Our analysis suggests that active galactic nuclei (AGNs) are 'on' for 50 per cent of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission-line cuts will be at least 50 per cent incomplete due to the exclusion of narrow-line AGNs.

  17. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  18. Enhanced dust emissivity power-law index along the western H α filament of NGC 1569

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Kaneda, H.; Onaka, T.; Yamagishi, M.; Ishihara, D.; Kokusho, T.; Tsuchikawa, T.

    2018-07-01

    We used a data set from AKARI and Herschel images at wavelengths from 7 to 500 μm to catch the evidence of dust processing in galactic winds in NGC 1569. Images show a diffuse infrared (IR) emission extending from the galactic disc into the halo region. The most prominent filamentary structure seen in the diffuse IR emission is spatially in good agreement with the western H α filament (western arm). The spatial distribution of the F350/F500 map shows high values in regions around the super-star clusters (SSCs) and towards the western arm, which are not found in the F250/F350 map. The colour-colour diagram of F250/F350-F350/F500 indicates high values of the emissivity power-law index (βc) of the cold dust component in those regions. From a spectral decomposition analysis on a pixel-by-pixel basis, a βc map shows values ranging from ˜1 to ˜2 over the whole galaxy. In particular, high βc values of ˜2 are observed only in the regions indicated by the colour-colour diagram. Since the average cold dust temperature in NGC 1569 is ˜30 K, βc < 2.0 in the far-IR and sub-mm region theoretically suggests emission from amorphous grains, while βc = 2.0 suggests that from crystal grains. Given that the enhanced βc regions are spatially confined by the H I ridge that is considered to be a birthplace of the SSCs, the spatial coincidences may indicate that dust grains around the SSCs are grains of relatively high crystallinity injected by massive stars originating from starburst activities and that those grains are blown away along the H I ridge and thus the western arm.

  19. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  20. A case study for hydromagnetic outflow in active galactic nuclei: NGC 5548

    NASA Astrophysics Data System (ADS)

    Bottorff, Mark Clinton

    1999-01-01

    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk surrounding a supermassive black hole is invoked to explain observed emission and absorption features of gas at UV and X-ray energies in Seyfert 1 galaxies. It is the first attempt to explain a wide range of phenomena observed on the periphery of Active Galactic Nuclei (AGN) with a single dynamical model and within the framework of the AGN unification scheme. In the first part of this thesis, the results of long- term observations of the broadline region (BLR) in the Seyfert 1 galaxy NGC 5548 are analyzed and a critical comparison with the predictions of a hydromagnetically- driven outflow model is provided. The model reproduces the basic features of C IV line variability in this AGN, i.e., time evolution of the profile shape and strength of the C IV emission line without varying the model parameters . The best fit model provides the effective size, the dominant geometry, the emissivity distribution and the 3D velocity field of the C IV BLR and constrains the mass of the central black hole to ~3×107 Msolar . The inner part of the wind in NGC 5548 appears to be responsible for the anisotropically emitted C IV line, while its outer part remains dusty and molecular, thus having similar spectral characteristics to a molecular torus. In addition, the model predicts a differential response across the C IV line profile, producing a red-side-first response in the relative velocity interval of 3,000 km s-1 to 6,000 km s -1 followed by the blue mid-wing and finally by the line core. In the second part of this dissertation, we have analyzed the UV and X-ray absorption in NGC 5548 within the framework of warm absorbing gas. We focus on two important issues: (1)compatibility of kinematics and dynamics of the MHD wind with the observed properties of warm absorbers; and (2)the relationship between the UV and X-ray absorbing gases. An in-depth comparison between the MHD wind model and the well

  1. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  2. Development of a hot intergalactic medium in spiral-rich galaxy groups: the example of HCG 16

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Zezas, Andreas; Mamon, Gary; Ponman, Trevor J; Raychaudhury, Somak

    2014-08-01

    Galaxy groups provide the environment in which the majority of galaxies evolve, with low velocity dispersions and small galaxy separations that are conducive to tidal interactions and mergers between group members. X-ray observations reveal the frequent presence of hot gas in groups, with larger quantities linked to early-type galaxies, whereas cold gas is common in spiral-dominated groups. Clarification of the origin and role of the hot medium is central to the understanding of the evolution of the galaxy population and of all phases of the IGM.We here report on the nuclear activity, star formation and the high luminosity X-ray binary populations of the spiral-dominated, likely not yet virialized, group HCG 16, as well as on its intra-group medium, based principally on deep (150 ks) Chandra X-ray observations of the group, as well as new Giant Metrewave Radio Telescope (GMRT) 610 MHz radio data. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify what may be a previously unrecognized nuclear source in NGC 838; all are variable. NGC 838 and NGC 839 are both starburst-dominated systems, with galactic superwinds that show X-ray and radio evidence of IGM interaction, but only weak nuclear activity; NGC 848 is also dominated by emission from its starburst.We confirm the existence of a faint, extended low-temperature (0.3 keV) intra-group medium, a subject of some uncertainty in earlier studies. The diffuse emission is strongest in a ridge linking the four principal galaxies, and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We conclude that starburst winds and shock-heating of stripped HI may play an important role in the early stages of IGM formation, with galactic winds contributing 20-40% of the observed hot gas in the system.

  3. Starburst galaxy Messier 94

    NASA Image and Video Library

    2015-10-19

    This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring around Messier 94 new stars are forming at a high rate and many young, bright stars are present within it – thanks to this, this feature is called a starburst ring. The cause of this peculiarly shaped star-forming region is likely a pressure wave going outwards from the galactic centre, compressing the gas and dust in the outer region. The compression of material means the gas starts to collapse into denser clouds. Inside these dense clouds, gravity pulls the gas and dust together until temperature and pressure are high enough for stars to be born.

  4. The NGC 7742 star cluster luminosity function: a population analysis revisited

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Ma, Chao

    2018-02-01

    We re-examine the properties of the star cluster population in the circumnuclear starburst ring in the face-on spiral galaxy NGC 7742, whose young cluster mass function has been reported to exhibit significant deviations from the canonical power law. We base our reassessment on the clusters’ luminosities (an observational quantity) rather than their masses (a derived quantity), and confirm conclusively that the galaxy’s starburst-ring clusters—and particularly the youngest subsample, {log}(t {{{yr}}}-1)≤ 7.2—show evidence of a turnover in the cluster luminosity function well above the 90% completeness limit adopted to ensure the reliability of our results. This confirmation emphasizes the unique conundrum posed by this unusual cluster population.

  5. Investigation of Galactic open cluster remnants: the case of NGC 7193

    NASA Astrophysics Data System (ADS)

    de Souza Angelo, Mateus; Francisco Coelho dos Santos, João, Jr.; Barbosa Corradi, Wagner José; Ferreira de Souza Maia, Francisco; Piatti, Andrés Eduardo

    2017-01-01

    Galactic open clusters (OCs) that survive the early gas-expulsion phase are gradually destroyed over time by the action of disruptive dynamical processes. Their final evolutionary stages are characterized by a poorly populated concentration of stars called an open cluster remnant (OCR). This study is devoted to assessing the real physical nature of the OCR candidate NGC 7193. GMOS/Gemini spectroscopy of 53 stars in the inner target region were obtained to derive radial velocities and atmospheric parameters. We also employed photometric and proper motion data. The analysis method consists of the following steps: (i) analysis of the statistical resemblance between the cluster and a set of field samples with respect to the sequences defined in color-magnitude diagrams (CMDs); (ii) a 5-dimensional iterative exclusion routine was employed to identify outliers from kinematical and positional data; (iii) isochrone fitting to the Ks×(J-Ks) CMD of the remaining stars and the dispersion of spectral types along empirical sequences in the (J-H)×(H-Ks) diagram were checked. A group of stars was identified for which the mean heliocentric distance is compatible with that obtained via isochrone fitting and whose metallicities are compatible with each other. Fifteen of the member stars observed spectroscopically were identified together with another 19 probable members. Our results indicate that NGC 7193 is a genuine OCR, of a once very populous OC, for which the following parameters were derived: d = 501±46 pc, t=2.5+/-1.2 Gyr, < [Fe/H] >=-0.17+/-0.23 and E(B-V)=0.05+/-0.05. Its luminosity and mass functions show depletion of low mass stars, confirming the OCR is in a dynamically evolved state. Based on observations obtained at the Gemini Observatory, which is operated by the AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: NSF (United States), STFC (United Kingdom), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq (Brazil) and CONICET

  6. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  7. Chemical abundances in the globular clusters NGC6229 and NGC6779

    NASA Astrophysics Data System (ADS)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  8. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annuar, A.; Gandhi, P.; Alexander, D. M.

    2015-12-10

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significantmore » uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N{sub H} ≳ 5 × 10{sup 24} cm{sup −2}. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L{sub 2–10,int} = (0.8–1.7) × 10{sup 42} erg s{sup −1}, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.« less

  9. Unveiling the nucleus of NGC 7172

    NASA Astrophysics Data System (ADS)

    Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.

    2012-08-01

    Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and

  10. Chandra Observation of the X-ray Source Population of NGC 6946

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Schlegel, E. M.; Hwang, U.; Petre, R.

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  11. The Duration of Starbursts in Eighteen Nearby Dwarf Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Skillman, E. D.; Cannon, J. M.; Dalcanton, J.; Dolphin, A.; Hidalgo-Rodriguez, S.; Holtzman, J.; Stark, D.

    2009-05-01

    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. We present the recent star formation histories (SFHs) of 18 nearby dwarf galaxies and rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts last on the order of a few 100 Myr resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If this sample of starburst galaxies is representative of bursts in dwarf galaxies, then the short timescales (3 - 10 Myr) associated with starbursts in previous studies are best understood as ``flickering'' events which are simply small components of the larger starburst. Additionally, we study the spatial distribution of the star formation in three systems in more detail. In all three cases, the enhanced star formation moves around the galaxy during the bursts and covers a large fraction of the area of the galaxy. These massive, long duration starbursts appear to be a global phenomenon that can have evolutionary scale impacts on the host galaxies and their surrounding intergalactic medium (IGM).

  12. The Mid-Infrared Spectrum of the Galactic Center: A Starburst Nucleus

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Witteborn, F. C.; Cohen, M.; Price, S. D.

    1998-01-01

    Using the Michelson interferometer on the Midcourse Space Experiment (MSX), we have taken spectra of many positions in the central 25 min of the Galactic Center (GC) with a 6 min x 9 min FOV. The spectral coverage was 380 to 1700/ cm (6 to 26 microns) and the resolution was approx. 21/cm. The spectra exhibit strong UIR/PAH features at 6.2, 7.7, 8.6 and 11.3 microns, in addition to the ionic lines of (Ne II), at 12.8 microns, (S III) 18.7 microns, and (Ar II) 6.98 microns. There are deep silicate absorption features at 10 and 18 microns and a cold continuum increasing at the longest wavelengths. Additional weak features are present in the spectra. We discuss the variation in the extinction at 10 microns as a function of location in the GC. Compared to the MSX spectrum of the Orion nebula, smoothed to the same resolution and multiplied by the estimated GC extinction, the GC spectra have similar PAH features, but the Orion Nebula also has strong lines of (He III) 15.6 microns, (S IV) 10.5 microns, and (Ar III) 8.99 microns and its 25 microns continuum is stronger (colder). Thus, the GC exhibits the mid-IR spectrum of a low excitation H II region and a nearby molecular cloud with a surface photodissociation region (PDR). This is in excellent agreement with the canonical model of a starburst nucleus in which the hot stars and molecular clouds are randomly distributed. The outer surfaces of the clouds are photodissociated and ionized by the photons from the stars located outside the clouds. The PAH molecules are transiently heated by the stellar photons. Since the exciting stars are located well outside the clouds, the radiation field is dilute compared to a newly-formed blister H II region like Orion; this dilute radiation field causes the relatively low excitation of the ionic lines.

  13. Dust and super star clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Vanzi, L.; Sauvage, M.

    2004-02-01

    We present new observations of the famous starburst galaxy NGC 5253 which owes its celebrity to possibly being the youngest and closest starburst galaxy known. Our observations in the infrared and millimeter contribute to shed light on the properties of this interesting object. We have used our new data along with data from the literature to study the properties of the young stellar clusters present in NGC 5253. We find that the brightest optical clusters are all characterized by a near-infrared excess that is explained by the combined effect of extinction and emission by dust. For the brightest infrared cluster we model the spectral energy distribution from the optical to the radio. We find that this cluster dominates the galaxy emission longward of 3 \\mum, that it has a bolometric luminosity of 1.2× 109 L⊙ and a mass of 1.2× 106 M⊙, giving L/M≈103. The cluster is obscured by 7 mag of optical extinction produced by about 1.5× 105 M⊙ of dust. The dust properties are peculiar with respect to the dust properties in the solar neighbourhood with a composition characterized by a lack of silicates and a flatter size distribution than the standard one, i.e. a bias toward larger grains. We find that NGC 5253 is a striking example of a galaxy where the infrared-submillimeter and ultraviolet-optical emissions originate in totally decoupled regions of vastly different physical sizes. Based on observations obtained at the ESO telescopes of La Silla and Paranal, program 69.B-0345; and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  14. N-Band Observations of Henize 2-10: Unveiling the Dusty Engine of a Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Vacca, William D.; Johnson, Kelsey E.; Conti, Peter S.

    2002-02-01

    As part of an ongoing program to better understand the early stages of massive star cluster evolution and the physical conditions for their formation, we have obtained J, H, K', and N (10.8 μm) images of the nuclear region of the starburst galaxy He 2-10. The N-band images were obtained with the Gemini North Telescope. In only 10 minutes of on-source integration time with Gemini, we were able to detect four of the five enshrouded clusters, or ``ultradense H II regions'' (UD H II regions) recently discovered in radio maps. None of these sources appears in either the optical Hubble Space Telescope images or the near-infrared (J, H, and K') images. These sources make up about 60% of the total N-band flux from He 2-10 and, we suspect, a similar fraction of the total far-infrared flux measured by IRAS. The inferred spectra of the UD H II regions are strikingly similar to those of Galactic ultracompact H II regions. We have modeled the radio and IR spectra of these UD H II regions under the assumption that they are ``scaled-up'' Galactic ultracompact H II regions. From this model, the bolometric luminosity of the brightest cluster alone is estimated to be ~2×109 Lsolar. The total mass of the dust and gas in this UD H II region is Mshell~107 Msolar. We have also used the observed spectra to place constraints on the masses and ages of the stellar clusters enshrouded within the UD H II regions. For the brightest UD H II region, we find that the stellar mass must be Mcluster>~2.5×106 Msolar, and the age must be <~4.8×106 yr, with the most probable age being <~3.6×106 yr. If we assume that the region is pressure confined and enforce the requirement that the star formation efficiency must be less than ~90%, we find that the age of this stellar cluster must lie within a very narrow range, 4×105<τ<5×106 yr. All the clusters within the UD H II regions in He 2-10 are estimated to have ages less than about 5×106 yr and masses greater than about 5×105 Msolar. We find that

  15. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  16. Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-05-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  17. NGC 6334 and NGC 6357: Hα kinematics and the nature of the H II regions

    NASA Astrophysics Data System (ADS)

    Russeil, D.; Tigé, J.; Adami, C.; Anderson, L. D.; Schneider, N.; Zavagno, A.; Samal, M. R.; Amram, P.; Guennou, L.; Le Coarer, E.; Walsh, A.; Longmore, S. N.; Purcell, C.

    2016-03-01

    Aims: NGC 6334 and NGC 6357 are amongst the most active, optically visible Galactic star-forming complexes. They are composed of several H II regions that have a significant impact on their surrounding. The aim of this paper is to present a kinematic study of the optical H II regions that belong to NGC 6334 and NGC 6357. Methods: We use Fabry-Perot interferometer observations of the Hα line, which cover NGC 6334 and NGC 6357. These observations allow us to analyse the Hα line profiles to probe the kinematics of the ionised gas of both regions. We complement the Hα observations with multi-wavelength data to specify the nature of the H II regions. Results: We determine the dynamical nature of the optical H II regions that belongs to NGC 6334 and NGC 6357. In NGC 6334, GUM 61 is an expanding wind shell-like H II region, GUM 64b exhibits a champagne flow, GM1-24 is the Hα counterpart of two larger regions and H II 351.2+0.5 is, in fact, composed of two H II regions. In NGC 6357, H II 353.08+0.28 and H II 353.09+0.63 are probably stellar wind-shaped bubble H II regions, while H II 353.42+0.45 is a classical photo-ionised H II region. We suggest that, at large scale, star-formation seems to be triggered where large/old H II regions intersect. Inversely, stellar formation seems to have already started in the NGC 6334 north-east filament, irrespective of any evident external H II region impact. While NGC 6357 shows more complicated kinematics, NGC 6334 is characterised by a more active stellar formation. The Hα data (FITS cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A135

  18. Welcome to the Twilight Zone: The Mid-infrared Properties of Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Bitsakis, Theodoros; Lanz, Lauranne; Lacy, Mark; Brown, Michael J. I.; French, K. Decker; Ciesla, Laure; Appleton, Philip N.; Beaton, Rachael L.; Cales, Sabrina L.; Crossett, Jacob; Falcón-Barroso, Jesús; Kelson, Daniel D.; Kewley, Lisa J.; Kriek, Mariska; Medling, Anne M.; Mulchaey, John S.; Nyland, Kristina; Rich, Jeffrey A.; Urry, C. Meg

    2017-07-01

    We investigate the optical and Wide-field Survey Explorer (WISE) colors of “E+A” identified post-starburst galaxies, including a deep analysis of 190 post-starbursts detected in the 2 μm All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone. Furthermore, we find that post-starbursts occupy a distinct region of [3.4]-[4.6] versus [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broadband photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that the mid-infrared (4-12 μm) properties of post-starbursts are consistent with either 11.3 μm polycyclic aromatic hydrocarbon emission, or thermally pulsating asymptotic giant branch (TP-AGB) and post-AGB stars. The composite SED of extended post-starburst galaxies with 22 μm emission detected with signal-to-noise ratio ≥slant 3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22 μm. The composite SED of WISE 22 μm non-detections (S/N < 3), created by stacking 22 μm images, is also flat, requiring a hot dust component. The most likely source of the mid-infrared emission of these E+A galaxies is a buried active galactic nucleus (AGN). The inferred upper limits to the Eddington ratios of post-starbursts are 10-2-10-4, with an average of 10-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections capable of identifying AGNs as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.

  19. A Chandra observation of the interacting pair of galaxies NGC 4485/4490

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Warwick, R. S.; Ward, M. J.; Murray, S. S.

    2002-12-01

    We report the results of a 20-ks Chandra ACIS-S observation of the galaxy pair NGC 4485/4490. This is an interacting system containing a late-type spiral with an enhanced star formation rate (NGC 4490), and an irregular companion that possesses a disturbed morphology. A total of 29 discrete X-ray sources are found coincident with NGC 4490, but only one is found within NGC 4485. The sources range in observed X-ray luminosity from ~2 × 1037 to 4 × 1039 erg s-1. The more luminous sources appear, on average, to be spectrally harder than the fainter sources, an effect that is attributable to increased absorption in their spectra. Extensive diffuse X-ray emission is detected coincident with the disc of NGC 4490, and in the tidal tail of NGC 4485, which appears to be thermal in nature and hence the signature of a hot interstellar medium in both galaxies. However, the diffuse component accounts for only ~10 per cent of the total X-ray luminosity of the system (2 × 1040 erg s-1, 0.5-8 keV), which arises predominantly in a handful of the brightest discrete sources. This diffuse emission fraction is unusually low for a galaxy pair which has many characteristics that would lead it to be classified as a starburst system, possibly as a consequence of the small gravitational potential well of the system. The discrete source population, on the other hand, is similar to that observed in other starburst systems, possessing a flat luminosity function slope of ~-0.6 and a total of six ultraluminous X-ray sources (ULX). Five of the ULX are identified as probable black hole X-ray binary systems, and the sixth (which is coincident with a radio continuum source) is identified as an X-ray luminous supernova remnant. The ULX all lie in star formation regions, providing further evidence of the link between the ULX phenomenon and active star formation. Importantly, this shows that even in star-forming regions, the ULX population is dominated by accreting systems. We discuss the

  20. Estructura, Cinemática y Condiciones Físicas del Merger NGC3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R. J.; Carranza, G.

    We studied in detail the structure, the kinematics, and the physical conditions in the nuclear, central and external regions of the nearby merger and luminous IR source NGC 3256 (LIR = 3.3 × 1011Lsolar). Using broad-- (B, V, I) and narrow--band (Hα, [OIII]λ5007) images --obtained at ESO-NTT and CASLEO during march'89 to july'97-- we studied the properties of the main structures in this merger. In particular, we analyzed in detail the giant HII regions which are extended in the nuclear and central region of NGC 3256 and are probably associated to a massive starburst originated in the merger process of two gas rich spirals galaxies.

  1. XMM-Newton Observations of NGC 253: Resolving the Emission Components in the Disk and Nuclear Area

    NASA Technical Reports Server (NTRS)

    Pietsch, W.; Borozdin, K. N.; Branduardi-Raymont, G.; Cappi, M.; Ehle, M.; Ferrando, P.; Freyberg, M. J.; Kahn, S. M.; Ponman, T. J.; Ptak, A.

    2000-01-01

    We describe the first XMM-Newton observations of the starburst galaxy NGC 253. As known from previous X-ray observations, NGC 253 shows a mixture of extended (disk and halo) and point-source emission. The high XMM-Newton throughput allows for the first time a detailed investigation of the spatial, spectral and variability properties of these components simultaneously. We detect a bright X-ray transient approx. 70 sec SSW of the nucleus and show the spectrum and light curve of the brightest point source (approx. 30 sec S of the nucleus, most likely a black-hole X-ray binary, BHXRB). The unprecedented combination of RGS and EPIC also sheds new light on the emission of the complex nuclear region, the X-ray plume and the disk diffuse emission. In particular, EPIC images reveal that the limb-brightening of the plume is mostly seen in higher ionization emission lines, while in the lower ionization lines, and below 0.5 keV, the plume is more homo- geneously structured, pointing to new interpretations as to the make up of the starburst-driven outflow. Assuming that type IIa supernova remnants (SNRs) are mostly responsible for the E greater than 4 keV emission, the detection with EPIC of the 6.7 keV line allows us to estimate a supernova rate within the nuclear starburst of 0.2 /yr.

  2. Spitzer Observations of the X-ray Sources of NGC 4485/90

    NASA Astrophysics Data System (ADS)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  3. Class I methanol masers in NGC 253: Alcohol at the end of the bar

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Chen, X.; Breen, S. L.; Qiao, H.-H.

    2017-11-01

    We have used the Australia Telescope Compact Array to observe the 36.2-GHz class I methanol maser emission towards NGC 253 and find that it is located at the interface between the nuclear ring and both ends of the galactic bar. This is thought to be the location of the inner Linblad resonance and we suggest that the maser emission in this region is likely due to large-scale cloud-cloud collisions. We have detected the first extragalactic 44.1-GHz class I methanol maser and find that it is associated with the 36.2-GHz maser emission. In contrast to the class I methanol masers found in Galactic star formation regions, the 44.1-GHz emission in NGC 253 is two orders of magnitude weaker than the 36.2-GHz masers. Both the 36.2- and 44.1-GHz emission is orders of magnitude stronger than expected from typical high-mass star formation regions. This demonstrates that the luminous class I methanol masers observed in NGC 253 are significantly different from those associated with Galactic star formation.

  4. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  5. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  6. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  7. Deep HST Photometry of NGC 6388: Age and Horizontal Branch Luminosity

    NASA Technical Reports Server (NTRS)

    Stetson, Peter B.; Catelan, M.; Pritzl, Barton J.; Smith, Horace A.; Kinemuchi, Karen; Layden, Andrew C.; Sweigart, Allen V.; Rich, R. M.

    2006-01-01

    We present the first deep color-magnitude diagram (CMD) of the Galactic globular cluster NGC 6388, obtained with the Hubble Space Telescope, that is able to reach the main-sequence turnoff point of the cluster. From a detailed comparison between the cluster CMD and that of 47 Tucanae (NGC 104), we find that the bulk of the stars in these two clusters have nearly the same age and chemical composition. On the other hand, our results indicate that the blue horizontal branch and RR Lyrae components in NGC 6388 are intrinsically over-luminous, which must be due to one or more, still undetermined, non-canonical second parameter(s) affecting a relatively minor fraction of the stars in NGC 6388.

  8. Massive stars: Their lives in the interstellar medium; Proceedings of the Symposium, ASP Annual Meeting, 104th, Univ. of Wisconsin, Madison, June 23-25, 1992

    NASA Astrophysics Data System (ADS)

    Cassinelli, Joseph P.; Churchwell, Edward B.

    1993-01-01

    Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.

  9. The globular cluster NGC 7492 and the Sagittarius tidal stream: together but unmixed

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, J. A.; Corral-Santana, J. M.; Catelan, M.; Martínez-Delgado, D.; Muñoz, R. R.; Sollima, A.; Navarrete, C.; Duffau, S.; Côté, P.; Mora, M. D.

    2018-03-01

    We have derived from VIMOS spectroscopy the radial velocities for a sample of 71 stars selected from CFHT/Megacam photometry around the Galactic globular cluster NGC 7492. In the resulting velocity distribution, it is possible to distinguish two relevant non-Galactic kinematic components along the same line of sight: a group of stars at 〈vr〉 ˜ 125 km s-1 which is compatible with the velocity of the old leading arm of the Sagittarius tidal stream, and a larger number of objects at 〈vr〉 ˜ -110 km s-1 that might be identified as members of the trailing wrap of the same stream. The systemic velocity of NGC 7492 set at vr ˜ -177 km s-1 differs significantly from that of both components, thus our results confirm that this cluster is not one of the globular clusters deposited by the Sagittarius dwarf spheroidal in the Galactic halo, even if it is immersed in the stream. A group of stars with 〈vr〉 ˜ - 180 km s-1 might be comprised of cluster members along one of the tidal tails of NGC 7492.

  10. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Johnson, K. E.; Adamo, A.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses,more » and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.« less

  11. The Brightest Young Star Clusters in NGC 5253.

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher, J. S., III; Andrews, J. E.; Smith, L. J.; Clayton, G. C.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Kim, H.; Ryon, J. E.; Thilker, D.; Bright, S. N.; Zackrisson, E.; Kennicutt, R. C.; de Mink, S. E.; Whitmore, B. C.; Aloisi, A.; Chandar, R.; Cignoni, M.; Cook, D.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Krumholz, M. R.; Walterbos, R.; Wofford, A.; Brown, T. M.; Christian, C.; Dobbs, C.; Herrero, A.; Kahre, L.; Messa, M.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Sacchi, E.; Schaerer, D.; Tosi, M.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < -8.8) and the two young radio nebula clusters. The clusters have ages ˜1-15 Myr and masses ˜1 × 104-2.5 × 105 M⊙. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ˜15 Myr. The most massive cluster is in the radio nebula; with a mass ˜2.5 × 105 M⊙ and an age ˜1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with AV ˜ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ˜1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Amblard, Alexandre; Gitti, Myriam; Brighenti, Fabrizio; Gaspari, Massimo; Mathews, William G.; David, Laurence

    2018-05-01

    We present new ALMA CO(2–1) observations of two well-studied group-centered elliptical galaxies: NGC 4636 and NGC 5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC 5044 group. We find evidence that molecular gas is a common presence in bright group-centered galaxies (BGG). CO line widths are broader than Galactic molecular clouds, and using the reference Milky Way X CO, the total molecular mass ranges from 2.6 × 105 M ⊙ in NGC 4636 to 6.1 × 107 M ⊙ in NGC 5044. Complementary observations using the ALMA Compact Array do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps, suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ({10}3{--}{10}5 {{K}})/hot (≥106) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistent with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.

  13. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Technical Reports Server (NTRS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    ) 10.6, above which the ages are doubled. The starburst and postburst luminosity functions (LFs) follow each other closely until M(sub r ) (is) approximately -21, when active galactic nuclei (AGNs) begin to dominate. The postburst LF continues to follow the AGN LF, while starbursts become less significant. This suggests that the number of luminous starbursts is underestimated by about one dex at high luminosities, because of having large amounts of dust and/or being outshone by an AGN. It also indicates that the starburst phase preceded the AGN phase. Finally, we look at the conditions for global gas outflow caused by stellar feedback and find that massive starburst galaxies are susceptible to such outflows.

  14. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  15. Neon and [CII] 158 μm Emission Line Profiles in Dusty Starbursts and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.

    2017-07-01

    Identifying and understanding the initial formation of massive galaxies and quasars in the early universe is a fundamental goal of observational cosmology. A rapidly developing capability for tracing luminosity sources to high redshifts is the observation of the [CII] 158 μm emission line at redshifts z > 4 using ground based submillimeter interferometers, with detections now having been made to z = 7. This has long been known as the strongest far-infrared line in most sources, often carrying about 1% of the total source luminosity, and is thought to be associated with star formation because it should arise within the photodissociation region (PDR) surrounding starbursts. The sample of 382 extragalactic sources has been analysed that have mid-infrared,high resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII] 158 μm line with the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII] 12.81μm , [NeIII] 15.55 μm , and [CII] 158 μm are studied, and intrinsic line widths are determined. All line profiles together with overlays comparing positions of PACS and IRS observations are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from AGN to starburst based on equivalent widths of the 6.2 μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classification for [CII], with median widths of 207 km s-1 for AGN, 248 km s-1 for composites, and 233 km s-1 for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A small number of objects with unusually broad lines or unusual redshift differences in any feature are identified.

  16. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Technical Reports Server (NTRS)

    Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-01-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.

  17. Deep ALMA imaging of the merger NGC 1614. Is CO tracing a massive inflow of non-starforming gas?

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Gallagher, J. S.; Beswick, R. J.; Xu, C. K.; Evans, A.

    2016-10-01

    Aims: Observations of the molecular gas over scales of ~0.5 to several kpc provide crucial information on how molecular gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is one of the important steps forward to understand galaxy evolution. Methods: 12CO, 13CO, and C18O 1-0 high-sensitivity ALMA observations (~4'' × 2'') were used to assess the properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in the merger NGC 1614. Specifically, the role of excitation and abundances were studied in this context. We also observed the molecular gas high-density tracers CN and CS. Results: The spatial distributions of the detected 12CO 1-0 and 13CO 1-0 emission show significant differences. 12CO traces the large-scale molecular gas reservoir, which is associated with a dust lane that harbors infalling gas, and extends into the southern tidal tails. 13CO emission is for the first time detected in the large-scale dust lane. In contrast to 12CO, its line emission peaks between the dust lane and the circumnuclear molecular ring. A 12CO-to-13CO 1-0 intensity ratio map shows high values in the ring region (~30) that are typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). Surprisingly, we do not detect C18O emission in NGC 1614, but we do observe gas emitting the high-density tracers CN and CS. Conclusions: We find that the 12CO-to-13CO 1-0 line ratio in NGC 1614 changes from >45 in the 2 kpc dust lane to ~30 in the starburst nucleus. This drop in ratio with decreasing radius is consistent with the molecular gas in the dust lane being kept in a diffuse, unbound state while it is being funneled toward the nucleus. This also explains why there are no (or very faint) signs of star formation in the dust lane, despite its

  18. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  19. The multiwavelength spectrum of NGC 3115: hot accretion flow properties

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.

    2018-04-01

    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important test bed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modelling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a non-thermal electron population in the RIAF, similarly to Sgr A*.

  20. The Age of the Inner Halo Globular Cluster NGC 6652

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  1. Metal enrichment of the intracluster medium: SN-driven galactic winds

    NASA Astrophysics Data System (ADS)

    Baumgartner, V.; Breitschwerdt, D.

    2009-12-01

    % We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.

  2. The Impact of Starbursts on the Gaseous Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2009-07-01

    Perhaps the most important {yet uncertain} aspects of galaxy evolution are the processes by which galaxies accrete gas and by which the resulting star formation and black hole growth affects this accreting gas. It is believed that both the form of the accretion and the nature of the feedback change as a function of the galaxy mass. At low mass the gas comes in cold and the feedback is provided by massive stars. At high mass, the gas comes in hot, and the feedback is from an AGN. The changeover occurs near the mass where the galaxy population transitions from star-forming galaxies to red and dead ones. The population of red and dead galaxies is building with cosmic time, and it is believed that feedback plays an imporant role in this process: shutting down star formation by heating and/or expelling the reservoir of cold halo gas. To investigate these ideas, we propose to use COS far-UV spectra of background QSOs to measure the properties of the halo gas in a sample of galaxies near the transition mass that have undergone starbursts within the past 100 Myr to 1 Gyr. The galactic wind associated with the starburst is predicted to have affected the properties of the gaseous halo. To test this, we will compare the properties of the halos of the post-starburst galaxies to those of a control sample of galaxies matched in mass and QSO impact parameter. Do the halos of the post-starburst galaxies show a higher incidence rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the halo gas more disturbed in the post-starbursts? Has the wind affected the ionization state and/or the metallicity of the halo? These data will provide fresh new insights into the role of feedback from massive stars on the evolution of galaxies, and may also offer clues about the properties of the QSO metal absorption-line systems at high-redshift.

  3. A galactic mega-merger

    NASA Image and Video Library

    2016-01-11

    The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.

  4. Stochastic External Accretion and Asymmetric Outflows in NGC 4388

    NASA Astrophysics Data System (ADS)

    Shaver, Skylar; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Hicks, Erin K. S.

    2018-06-01

    We present here our findings on the Seyfert 2 galaxy, NGC 4388, one of the 40 active galactic nuclei (AGN) studied in the Keck/OSIRIS nearby AGN survey (KONA). NGC 4388 is located in the heart of the dense Virgo cluster, making it susceptible to interactions with neighboring galaxies and the intra-cluster medium. Using near-Infrared Adaptive-Optics Integral-Field Spectroscopy, we examined the two-dimensional spatial distribution and kinematics of the molecular and ionized gas in NGC 4388. We found that the nearly edge on galaxy exhibits an asymmetric outflow and signatures of external accretion feeding the AGN. To the southwest an outflow of ionized gas is extended along a position angle (PA) of 35 degrees and to the northeast a position angle between 30 to 60 degrees. This indicates a misalignment between the AGN torus and the galactic plane. As a result of the outflow in the southwest, molecular gas in the disk has been pushed to the west. Examining the molecular gas further led us to determine the presence of a warped disk surrounding the nucleus. In comparing our near-Infrared kinematic results to studies in different multi-wavelength datasets, we found evidence for a past minor merger event that drives gas inward to feed the AGN.

  5. Starbursts and their dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Colin

    1987-01-01

    Detailed mechanisms associated with dynamical process occurring in starburst galaxies are considered including the role of bars, waves, mergers, sinking satellites, self gravitating gas and bulge heating. The current understanding of starburst galaxies both observational and theoretical is placed in the context of theories of galaxy formations, Hubble sequence evolution, starbursts and activity, and the nature of quasar absorption lines.

  6. Radial Velocities of RR Lyrae Stars in and around NGC 6441

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Mills, Arthur; Edgecomb, Joseph; Thomas, Mathew; Schilter, Levi; Boyle, Craig; Parker, Stephen; Bellevue, Gordon; Rich, R. Michael; Koch, Andreas; Johnson, Christian I.; Nataf, David M.

    2018-04-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H] ∼ ‑1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of GCs. Here, an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy GC NGC 6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of 40 RRLs centered on the GC NGC 6441. All 13 of the RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 ± 5 km s‑1 and a star-to-star scatter of 11 km s‑1. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC 6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster’s orbit. Therefore, either the tidal radius of NGC 6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC 6441 that are building up the old spheroidal bulge.

  7. Starburst Cluster Shows Celestial Fireworks

    NASA Image and Video Library

    2017-12-08

    NASA image release June 6, 2010 Like a July 4 fireworks display a young, glittering collection of stars looks like an aerial burst. The cluster is surrounded by clouds of interstellar gas and dust - the raw material for new star formation. The nebula, located 20,000 light-years away in the constellation Carina, contains a central cluster of huge, hot stars, called NGC 3603. This environment is not as peaceful as it looks. Ultraviolet radiation and violent stellar winds have blown out an enormous cavity in the gas and dust enveloping the cluster, providing an unobstructed view of the cluster. Most of the stars in the cluster were born around the same time but differ in size, mass, temperature, and color. The course of a star's life is determined by its mass, so a cluster of a given age will contain stars in various stages of their lives, giving an opportunity for detailed analyses of stellar life cycles. NGC 3603 also contains some of the most massive stars known. These huge stars live fast and die young, burning through their hydrogen fuel quickly and ultimately ending their lives in supernova explosions. Star clusters like NGC 3603 provide important clues to understanding the origin of massive star formation in the early, distant universe. Astronomers also use massive clusters to study distant starbursts that occur when galaxies collide, igniting a flurry of star formation. The proximity of NGC 3603 makes it an excellent lab for studying such distant and momentous events. This Hubble Space Telescope image was captured in August 2009 and December 2009 with the Wide Field Camera 3 in both visible and infrared light, which trace the glow of sulfur, hydrogen, and iron. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of

  8. Gas Flows in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z < 0.05, using Keck/OSIRIS, VLT/SINFONI, SOFIA/FORCAST, and HST data. I will focus on the interplay between the several complex processes observed in dual AGN, using as an example the prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  9. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.

    2014-06-01

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  10. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.

    2014-06-10

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less

  11. Estrellas variables reconocidas en el campo del cúmulo abierto NGC 6250

    NASA Astrophysics Data System (ADS)

    Oviedo, C. G.; Palma, T.; Chavero, C.; Dékány, I.; Clariá, J. J.; Minniti, D.

    2017-10-01

    We present preliminary results obtained from a search of variable stars in the field of the moderately young open cluster NGC6250. The present study is based on the analysis of photometric near-infrared data in the and bands obtained with the 4.1m VISTA telescope of the VVV (Vista Variables in the Vía Láctea) Survey. Based on the obtained light curves, we performed a first classification of the newly detected variable stars. We also present the color-magnitude diagram of NGC6250, which is projected towards the galactic center direction, and we examined the possible physical association of the new variables discovered to NGC6250.

  12. Lithium in giant stars in NGC 752 and M67

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine; Saha, A.; Hobbs, L. M.

    1988-04-01

    Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.

  13. NGC 4945: The Milky Way's not-so-distant Cousin

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ESO has released a striking new image of a nearby galaxy that many astronomers think closely resembles our own Milky Way. Though the galaxy is seen edge-on, observations of NGC 4945 suggest that this hive of stars is a spiral galaxy much like our own, with swirling, luminous arms and a bar-shaped central region. These resemblances aside, NGC 4945 has a brighter centre that likely harbours a supermassive black hole, which is devouring reams of matter and blasting energy out into space. As NGC 4945 is only about 13 million light-years away in the constellation of Centaurus (the Centaur), a modest telescope is sufficient for skygazers to spot this remarkable galaxy. NGC 4945's designation comes from its entry number in the New General Catalogue compiled by the Danish-Irish astronomer John Louis Emil Dreyer in the 1880s. James Dunlop, a Scottish astronomer, is credited with originally discovering NGC 4945 in 1826 from Australia. Today's new portrait of NGC 4945 comes courtesy of the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile. NGC 4945 appears cigar-shaped from our perspective on Earth, but the galaxy is actually a disc many times wider than it is thick, with bands of stars and glowing gas spiralling around its centre. With the use of special optical filters to isolate the colour of light emitted by heated gases such as hydrogen, the image displays sharp contrasts in NGC 4945 that indicate areas of star formation. Other observations have revealed that NGC 4945 has an active galactic nucleus, meaning its central bulge emits far more energy than calmer galaxies like the Milky Way. Scientists classify NGC 4945 as a Seyfert galaxy after the American astronomer Carl K. Seyfert, who wrote a study in 1943 describing the odd light signatures emanating from some galactic cores. Since then, astronomers have come to suspect that supermassive black holes cause the turmoil in the centre of Seyfert galaxies. Black holes

  14. The essential signature of a massive starburst in a distant quasar.

    PubMed

    Solomon, P; Vanden Bout, P; Carilli, C; Guelin, M

    2003-12-11

    Observations of carbon monoxide emission in high-redshift (zeta > 2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the active galactic nucleus, from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds, where gas densities are n(H2) > 10(5) cm(-3) (refs 1, 2). Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations, however, is at a much lower density. For galaxies in the local Universe, the HCN molecule is an effective tracer of high-density molecular gas. Here we report observations of HCN emission from the infrared-luminous 'Cloverleaf' quasar (at a redshift zeta = 2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst, which contributes, together with the active galactic nucleus it harbours, to its high infrared luminosity.

  15. The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies. [Compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Leiter, D.

    1979-01-01

    A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.

  16. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  17. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  18. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  19. Starbursts in interacting galaxies: Observations and models

    NASA Technical Reports Server (NTRS)

    Bernloehr, Konrad

    1990-01-01

    Starbursts have been a puzzling field of research for more than a decade. It is evident that they played a significant role in the evolution of many galaxies but still quite little is known about the starburst mechanisms. A way towards a better interpretation of the available data is the comparison with evolution models of starburst. The modelling of starbursts and the fitting of such model starbursts to observed data is discussed. The models were applied to a subset of starburst and post-starburst galaxies in a sample of 30 interacting systems. These galaxies are not ultraluminous far infrared (FIR) galaxies but rather ordinary starburst galaxies with FIR luminosities of a few 10(exp 10) to a few 10(exp 11) solar luminosities.

  20. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NASA Astrophysics Data System (ADS)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146

    NASA Astrophysics Data System (ADS)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2018-04-01

    The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4‑1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature <86 K. We identify two new water masers in IC 342, and one new water maser in each of NGC 6946 and NGC 2146. The two galaxies NGC 253 and NGC 2146, with the most vigorous star formation, host H2O kilomasers. Lastly, we detect the first 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.

  2. A high spectral resolution map of the nuclear emitting regions of NGC 7582

    NASA Astrophysics Data System (ADS)

    Braito, Valentina; Reeves, J. N.; Bianchi, S.; Nardini, E.; Piconcelli, E.

    2017-04-01

    We present the results of the spatial and spectral analysis of the deep ( 200 ks) Chandra HETG observation of the changing look AGN NGC 7582. During this long Chandra observation, NGC 7582 was in a highly obscured state. Therefore, we also consider a short ( 24 ks) Suzaku observation, which caught NGC 7582 in a Compton thick state. This allows us to determine the underlying continuum model and the amount of absorption [NH = (1.2 ± 0.2) × 1024 cm-2]. A wealth of emission lines (from Mg, Si, S, and Fe) are detected in the Chandra data, which allows us to map the structure of the circumnuclear emitters. The high resolution spectrum reveals that the soft X-ray emission originates in a hybrid gas, which is ionized in part by the strong circumnuclear star-forming activity and in part by the central AGN. The high resolution images confirm that the emitting region is highly inhomogeneous and extends up to a few hundred pc from the nuclear source. The X-ray images are more extended in the lower energy lines (Ne and Mg) than in the higher energy lines (Si, Fe); the former are dominated by the collisionally ionized gas from the starburst and the latter by the photoionized AGN emission. This is supported by the analysis of the He-like triplets in the grating spectra. We deduce that a low density (ne 0.3-1 cm-3) photoionized gas is responsible for the strong forbidden components, which is likely to originate from extended AGN narrow line region gas at distances of 200-300 pc from the black hole. We also detect an absorption feature at 6.7 keV that is consistent with the rest frame energy of the resonance absorption line from Fe xxv (Elab = 6.7 keV), which traces the presence of a sub-parsec scale ionized circumnuclear absorber. The emerging picture is in agreement with our new view of the circumnuclear gas in AGN, where the medium is clumpy and stratified in both density and ionization. These absorbers and emitters are located on different scales, from the sub-pc broad line

  3. Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.

    2017-06-01

    NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with “iron-complex” clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s-1 (σ = 7.44 km s-1). We derived a mean metallicity of [Fe/H] = -1.54 dex (σ = 0.08 dex), but the cluster’s small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has < [{Eu}/{Fe}]> =+0.76 {dex} (σ = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] ˜ -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [α/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti)correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures ≳65-70 MK. However, the current data do not support burning temperatures exceeding ˜100 MK. We find some evidence that the first- and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass. This paper includes data gathered

  4. New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio

    2018-02-01

    NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.

  5. The age of the galactic disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandage, A.

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk,more » permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.« less

  6. Evolution of Starburst Galaxies in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. L.; Pimbblet, K. A.; Stott, J. P.; Few, C. G.; Gibson, B. K.

    2018-06-01

    There is a consensus in the literature that starburst galaxies are triggered by interaction events. However, it remains an open question as to what extent both merging and non-merging interactions have in triggering starbursts? In this study, we make use of the Illustris simulation to test how different triggering mechanisms can effect starburst events. We examine star formation rate, colour and environment of starburst galaxies to determine if this could be why we witness a bimodality in post-starburst populations within observational studies. Further, we briefly test the extent of quenching due to AGN feedback. From Illustris, we select 196 starburst galaxies at z = 0.15 and split them into post-merger and pre-merger/harassment driven starburst samples. We find that 55% of this sample not undergone a merger in the past 2 Gyr. Both of our samples are located in low-density environments within the filament regions of the cosmic web, however we find that pre-merger/harassment driven starburst are in higher density environments than post-merger driven starbursts. We also find that pre-merger/harassment starbursts are redder than post-merger starbursts, this could be driven by environmental effects. Both however, produce nuclear starbursts of comparable strengths.

  7. A Deep ROSAT HRI Observation of NGC 1313

    NASA Astrophysics Data System (ADS)

    Schlegel, E. M.; Petre, R.; Colbert, E. J. M.; Miller, S.

    1999-12-01

    We describe a series of observations of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ksec. The observations span an interval between 1992 and 1998; the purpose of observations since 1994 was to monitor the X-ray flux of SN1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of 7x1036 ergs s-1 arcmin-2. A total of eight sources are detected in the summed image within the D25 diameter of the galaxy and an additional seven outside of that region. We present light curves of the five brightest sources. Variability is detected at the 99.9% level from four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX339-4, but with considerably higher peak X-ray luminosity. We briefly discuss the large number of super-Eddington sources in this galaxy. The research was supported by NASA Grant NAG5-4015 to the Smithsonian Astrophysical Observatory.

  8. A Deep ROSAT HRI Observation of NGC 1313

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.; Petre, Robert; Colbert, E. J. M.; Miller, Scott

    2000-11-01

    We describe a series of observations of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ks. The observations span an interval between 1992 and 1998; the purpose of observations since 1994 was to monitor the X-ray flux of SN 1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of ~1-2×1037 ergs s-1 arcmin-2. A total of eight sources are detected in the summed image within the D25 diameter of the galaxy. The luminosities of five of the eight range from ~6×1037 to ~6×1038 ergs s-1 these sources are most likely accreting X-ray binaries, similar to sources observed in M31 and M33. The remaining three sources all emit above 1039 ergs s-1. We present light curves of the five brightest sources. Variability is detected at the 99.9% level in four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX 339-4 but with considerably higher peak X-ray luminosity. An additional seven sources lie outside the D25 diameter and are either foreground stars or background active galactic nuclei.

  9. A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.

    2015-08-01

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ˜ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s-1 (σ = 9.64 km s-1) and an extended metallicity distribution ([Fe/H] = -1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  10. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less

  11. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Megan, E-mail: mjohnson@nrao.edu; National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24915

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569.more » A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.« less

  12. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  13. A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744

    NASA Astrophysics Data System (ADS)

    Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.

    2018-03-01

    We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.

  14. Star-forming Galaxies as AGN Imposters? A Theoretical Investigation of the Mid-infrared Colors of AGNs and Extreme Starbursts

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.

    2018-05-01

    We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.

  15. AGB subpopulations in the nearby globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Cottrell, P. L.; Momany, Y.; Casagrande, L.

    2018-03-01

    It has been well established that Galactic Globular clusters (GCs) harbour more than one stellar population, distinguishable by the anticorrelations of light-element abundances (C-N, Na-O, and Mg-Al). These studies have been extended recently to the asymptotic giant branch (AGB). Here, we investigate the AGB of NGC 6397 for the first time. We have performed an abundance analysis of high-resolution spectra of 47 red giant branch (RGB) and eight AGB stars, deriving Fe, Na, O, Mg, and Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB and RGB in NGC 6397 are identical, within uncertainties. This agrees with expectations from stellar theory. This GC acts as a control for our earlier work on the AGB of M4 (with contrasting results), since the same tools and methods were used.

  16. Hard X-Ray View of HCG 16 (Arp 318)

    NASA Astrophysics Data System (ADS)

    Oda, Saeko; Ueda, Yoshihiro; Tanimoto, Atsushi; Ricci, Claudio

    2018-03-01

    We report the hard X-ray (3–50 keV) view of the compact group HCG 16 (Arp 318) observed with the Nuclear Spectroscopic Telescope Array (NuSTAR). NGC 838 and NGC 839 are undetected at energies above 8 keV, showing no evidence of heavily obscured active galactic nuclei (AGNs). This confirms that these are starburst-dominant galaxies as previously suggested. We perform a comprehensive broadband (0.3–50 keV) X-ray spectral analysis of the interacting galaxies NGC 833 and NGC 835, using data of NuSTAR, Chandra, and XMM-Newton observed on multiple epochs from 2000 to 2015. NuSTAR detects the transmitted continua of low-luminosity active galactic nuclei (LLAGNs) in NGC 833 and NGC 835 with line-of-sight column densities of ≈3 × 1023 cm‑2 and intrinsic 2–10 keV luminosities of ≈3 × 1041 erg s‑1. The iron-Kα to hard X-ray luminosity ratios of NGC 833 and NGC 835 suggest that their tori are moderately developed, which may have been triggered by the galaxy interactions. We find that NGC 835 underwent long-term variability in both intrinsic luminosity (by a factor of 5) and absorption (by ΔN H ≈ 2 × 1023 cm‑2). We discuss the relation between the X-ray and total infrared luminosities in local LLAGNs hosted by spiral galaxies. The large diversity in their ratios is consistent with the general idea that the mass accretion process in the nucleus and the star-forming activity in the disk are not strongly coupled, regardless of the galaxy environment.

  17. High-resolution mid-infrared observations of NGC 7469

    NASA Technical Reports Server (NTRS)

    Miles, J. W.; Houck, J. R.; Hayward, T. L.

    1994-01-01

    We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.

  18. LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Morandi, E.; Watkins, L. L.; Tosi, M.; Aloisi, A.; Buzzoni, A.; Cusano, F.; Fumana, M.; Marchetti, A.; Mignoli, M.; Mucciarelli, A.; Romano, D.; van der Marel, R. P.

    2018-05-01

    We present intermediate-resolution (R ˜ 1000) spectra in the ˜3500-10 000 Å range of 14 globular clusters in the Magellanic irregular galaxy NGC 4449 acquired with the Multi-Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the Ca II triplet index in the near-infrared in order to infer the clusters' stellar population properties. The inferred cluster ages are typically older than ˜9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range -1.2 ≲ [Fe/H] ≲ -0.7, and typically sub-solar [α/Fe] ratios, with a peak at ˜-0.4. These properties suggest that (i) during the first few Gyr NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the α-elements, and (ii) globular clusters in NGC 4449 formed relatively `late', from a medium already enriched in the products of Type Ia supernovae. The majority of clusters appear also underabundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M(<2.88 kpc) = 3.15^{+3.16}_{-0.75} × 10^9 M_{\\odot }. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.

  19. Galactic water vapor emission: further observations of variability.

    PubMed

    Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C

    1969-10-10

    Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.

  20. Central structures of Seyfert galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Díaz, R.; Dottori, H.; Aguero, M. P.; Bosch, G.; Hagele, G.; Cardaci, M.; Dors, O.

    2017-10-01

    We present the velocity field of the inner 4"(350 pc) of NGC1672, observed with Gemini GMOS/IFU with a spatial sampling of 0.2", spatial resolution of 0.4", and spectral resolution 6000. We determine an upper limit for the mass of the SMBH in the LINER core using the ionized gas radial velocity field, and we confirmed that the active galactic nucleus is located off-center respect to the circumnuclear disk rotation symmetry center.

  1. COLA. III. Radio Detection of Active Galactic Nucleus in Compact Moderate Luminosity Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.

  2. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  3. NGC 3393: multi-component AGN feedback as seen by CHEERS

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Raymond, John C.; Storchi-Bergmann, Thaisa; Paggi, Alessandro; Wang, Junfeng; Risaliti, Guido

    2017-01-01

    Due to its low density, moderate ionization, and weak kinematics, the narrow line region (NLR) of active galactic nuclei (AGN) provides poweful diagnostics for investigating AGN feedback. The CHandra Extended Emission line Region Survey (CHEERS) is the ultimate investigation into resolved feedback in the NLR. We present results from our CHEERS investigations of NGC 3393. By imaging extended X-ray line emission of NGC 3393 with Chandra and optical line emission with Hubble's narrow-band filters, we are able to map out the simultaneous impact of photoionization, jets and an AGN disk-wind. When resolved on scales of ~10s of parsecs, the NLR of NGC 3393 shows a complex multi-component medium. Diagnostic line mapping indicates a Low-ionization Emmision Line Region (LINER) cocoon surrounding the outflow-evacuated cavities (in optical) and surrounding the supports the presence of collisional plasma (in X-rays). These physically distinct constituent regions can only be resolved by the high-resolution imaging that Chandra and HST enable.

  4. Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2018-06-01

    We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.

  5. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  6. Angular correlation between IceCube high-energy starting events and starburst sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: moharana.reetanjali@mail.huji.ac.il, E-mail: srazzaque@uj.ac.za

    Starburst galaxies and star-forming regions in the Milkyway, with high rate of supernova activities, are candidate sources of high-energy neutrinos. Using a gamma-ray selected sample of these sources we perform statistical analysis of their angular correlation with the four-year sample of high-energy starting events (HESE), detected by the IceCube Neutrino Observatory. We find that the two samples (starburst galaxies and local star-forming regions) are correlated with cosmic neutrinos at ∼ (2–3)σ (pre-trial) significance level, when the full HESE sample with deposited energy ∼> 20 TeV is considered. However when we consider the HESE sample with deposited energy ∼> 60 TeV,more » which is almost free of atmospheric neutrino and muon backgrounds, the significance of correlation decreased drastically. We perform a similar study for Galactic sources in the 2nd Catalog of Hard Fermi -LAT Sources (2FHL, >50 GeV) catalog as well, obtaining ∼ (2–3)σ (pre-trial) correlation, however the significance of correlation increases with higher cutoff energy in the HESE sample for this case. We also fit available gamma-ray data from these sources using a pp interaction model and calculate expected neutrino fluxes. We find that the expected neutrino fluxes for most of the sources are at least an order of magnitude lower than the fluxes required to produce the HESE neutrinos from these sources. This puts the starburst sources being the origin of the IceCube HESE neutrinos in question.« less

  7. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  8. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  9. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  10. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  11. COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, R.; Conway, J. E.; Aalto, S.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less

  12. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  13. Tycho- Gaia Astrometric Solution Parallaxes and Proper Motions for Five Galactic Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Laura L.; Van der Marel, Roeland P., E-mail: lwatkins@stsci.edu

    2017-04-20

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho- Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneousmore » PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope ( HST ) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST . By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.« less

  14. Hα line measurements from ten diffuse galactic sources using the DEFPOS facility

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Oflaz, F. M.; Yegingil, I.; Tel, E.

    2015-08-01

    The hydrogen Balmer-α emission line spectrum of ten diffuse ionization sources in the Milk Way - NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2-45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2-105), NGC 6992 (Sh2-103), NGC 7635 (Sh2-162,) and IC 1848 (Sh2-199) - has been investigated using a dual etalon Fabry-Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51' N; 30° 20' E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21-24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, -46.72 to +54.07 km s-1, and 31.4 to 48.01 km s-1, respectively. The radial velocities and the half-widths of the H II regions and planetary nebulae determined from our measurements are found to be consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990).

  15. DISCOVERY OF CANDIDATE H{sub 2}O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti

    2009-12-10

    Based on spectroscopic signatures, about one-third of known H{sub 2}O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v {sub sys} < 20, 000 km s{sup -1}). The remaining three diskmore » maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s{sup -1}. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10{sup 7} M {sub sun}) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s{sup -1} galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not

  16. 13CO 1-0 imaging of the Medusa merger, NGC 4194. Large scale variations in molecular cloud properties

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Beswick, R.; Jütte, E.

    2010-11-01

    Aims: Studying molecular gas properties in merging galaxies gives important clues to the onset and evolution of interaction-triggered starbursts. The frac{12CO}{13CO} line intensity ratio can be used as a tracer of how dynamics and star formation processes impact the gas properties. The Medusa merger (NGC 4194) is particularly interesting to study since its {L_FIRover L_CO} ratio rivals that of ultraluminous galaxies (ULIRGs), despite the comparatively modest luminosity, indicating an exceptionally high star formation efficiency (SFE) in the Medusa merger. Methods: High resolution OVRO (Owens Valley Radio Observatory) observations of the 13CO 1-0 have been obtained and compared with matched resolution OVRO 12CO 1-0 data to investigate the molecular gas cloud properties in the Medusa merger. Results: Interferometric observations of 12CO and 13CO 1-0 in the Medusa (NGC 4194) merger show the {{12CO} over {13CO}} 1-0 intensity ratio ({\\cal R}) increases from normal, quiescent values (7-10) in the outer parts (r > 2 kpc) of the galaxy to high (16 to > 40) values in the central (r < 1 kpc) starburst region. In the central two kpc there is an east-west gradient in {\\cal R} where the line ratio changes by more than a factor of three over 5” (945 pc). The integrated 13CO emission peaks in the north-western starburst region while the central 12CO emission is strongly associated with the prominent crossing dust-lane. Conclusions: We discuss the central east-west gradient in {\\cal R} in the context of gas properties in the starburst and the central dust lane. We suggest that the central gradient in {\\cal R} is mainly caused by diffuse gas in the dust lane. In this scenario, the actual molecular mass distribution is better traced by the 13CO 1-0 emission than the 12CO. The possibilities of temperature and abundance gradients are also discussed. We compare the central gas properties of the Medusa to those of other minor mergers and suggest that the extreme and transient

  17. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and

  18. Influence of the active nucleus on the multiphase interstellar medium in NGC 1068

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Weisheit, Jon; Cecil, Gerald; Sokolowski, James

    1993-01-01

    The luminous spiral NGC 1068 has now been imaged from x-ray to radio wavelengths at comparably high resolution (approximately less than 5 in. FWHM). The bolometric luminosity of this well-known Seyfert is shared almost equally between the active nucleus and an extended 'starburst' disk. In an ongoing study, we are investigating the relative importance of the nucleus and the disk in powering the wide range of energetic activity observed throughout the galaxy. Our detailed analysis brings together a wealth of data: ROSAT HRI observations, VLA lambda lambda 6-20 cu cm and OVRO interferometry, lambda lambda 0.4-10.8 micron imaging, and Fabry-Perot spectrophotometry.

  19. Chandra and Hubble Composite Image of Spiral Galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  20. A Rare Encounter with Very Massive Stars in NGC~3125-A1

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Leitherer, C.; Chandar, R.; Bouret, J. C.

    2014-09-01

    Super star cluster A1 in the nearby starburst galaxy NGC~3125 shows broad He II λ1640 emission (FWHM ~ 1200 km/s) of unprecedented strength (equivalent width, EW = 7.1+/-0.4 angstroms). Previous attempts to characterize A1's massive star content were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to derive the ages, reddenings, masses, and Wolf-Rayet (WR) to O star ratios of three compact clusters in the galaxy. We rule out that the extraordinary HeII lambda 1640 emission and OV lambda 1371 absorption in A1 are due to an extremely flat upper Initial Mass Function (IMF), and suggest that they originate in the winds of Very Massive Stars ( > 120 Msun, VMS). In order to reproduce the properties of peculiar clusters such as A1, the stellar evolution tracks implemented in Starburst99 need to be extended to masses >120 Msun.

  1. Seeing Red in NGC 1978, NGC 55, and NGC 3109

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2018-04-01

    Spectra of the intermediate-age star cluster NGC 1978 and the dwarf irregular galaxies NGC 55 and NGC 3109 are discussed. The spectra were recorded with the Gemini Multi-object Spectrograph on Gemini South and span the 0.7–1.1 μm wavelength interval. Five slit pointings were observed in NGC 1978, and these are used to examine stochastic effects on the integrated red light from an intermediate-age cluster. The removal of either the brightest M giant or the brightest C star from the co-added spectrum has minor effects on the equivalent withs of the Ca triplet. The most robust signature of C stars in the integrated cluster spectrum at these wavelengths is the CN band head near 7900 Å. The equivalent widths of Ca triplet lines in the NGC 1978 spectrum and in the spectra of individual cluster stars are larger than expected for a scaled-solar abundance system. It is suggested that these stars have a lower than expected surface gravity, which might occur if the stars in NGC 1978 have been subject to extra mixing processes, as suggested by Lederer et al. The near-infrared color profile of NGC 1978 is shown to contain a prominent red cusp in the central 10 arcsec, and the suppression of light from this cusp does not affect the depth of the Ca lines in the integrated spectrum. The NGC 55 spectra run parallel to the major axis, and a gradient is found in the strength of the Ca lines, in the sense that the Ca lines weaken with increasing distance from the disk plane. Comparisons with models suggest that the disk light is dominated by stars with ages 1–2 Gyr, in agreement with star-forming histories (SFHs) obtained from the analysis of color–magnitude diagrams (CMDs). The NGC 55 spectra also sample a large star-forming complex. The age of this complex inferred from comparisons with models is broadly consistent with that estimated from a near-infrared CMD of the same region. The CN band head at 7900 Å in this part of NGC 55 is detected, but this is likely a signature of

  2. The peculiar asymmetry of NGC 949

    NASA Image and Video Library

    2015-05-04

    This image provides the clearest ever view of galaxy NGC 949, which lies over 30 million light-years away in the constellation of Triangulum. The galaxy has an unusual shape, made more obscure due to its inclination. From our point of view, it is difficult to discern exactly what type of galaxy NGC 949 is, but it is certainly a disc galaxy of some kind, most likely a spiral. NGC 949 was first discovered by Sir William Herschel on 21 September 1786, using an 18.7-inch reflecting telescope. The galaxy was one of about 3000 objects Herschel catalogued as "nebulae" during an intense and systematic deep sky survey, the results of which eventually formed the bulk of the New General Catalogue (NGC). Taken with Hubble’s Advanced Camera for Surveys (ACS), this new image shows extraordinary detail. This detail allows us to see a strange asymmetric alignment in the dark lanes of dust that snake across the galaxy. The top-right half of the galaxy appears considerably more marbled with dust in this image; a curious observation explained by stars tending to favour locations towards the centre of a galaxy, and dust preferring almost invariably to reside along the galactic plane. When a galaxy is inclined as NGC 949 is, some regions — in this case the top-right — are tipped towards us and the light from the stars we see in these regions has had to travel through more dust. This causes the light to appear redder — the result of the same process that gives the sun’s light a red hue at dusk — or else disappear entirely, making the dust appear more prominent on that side of the galaxy. In the part tipped away from us, the light from the stars has had to pass through much less dust to reach us, so it appears brighter, and the dust is much less prominent. Were it possible to view NGC 949 from the opposite side, the apparent alignment of the dust would be reversed. The scientific advantages of this effect were recently displayed in suitably stunning style in the M31 PHAT mosa

  3. AGB Sodium Abundances in the Globular Cluster 47 Tucanae (NGC 104)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; McDonald, Iain; Pilachowski, Catherine A.; Mateo, Mario; Bailey, John I., III; Cordero, Maria J.; Zijlstra, Albert A.; Crane, Jeffrey D.; Olszewski, Edward; Shectman, Stephen A.; Thompson, Ian

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan-Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be < R{{V}helio.}> = -18.56 km s-1 (σ = 10.21 km s-1) and < [Fe/H]> = -0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will ascend the AGB.

  4. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  5. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  6. Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.

    2018-01-01

    We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.

  7. IRX– β RELATION OF STAR-FORMING REGIONS IN NGC 628 BASED ON INTEGRAL FIELD SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chengyun; Lian, Jianhui; Hu, Ning

    2016-08-01

    It has been found that the infrared-to-ultraviolet luminosity ratio (IRX) and ultraviolet spectral slope ( β ) have a tight correlation in starburst galaxies, while in normal galaxies the relation is deviated and has a much larger scatter. Star formation regions are much simpler in both morphology and physical properties than galaxies, so their photometric and spectroscopic properties are more easily and accurately determined. We have used the integral field spectroscopy and multiband photometric images to study the IRX– β relation of H ii regions in a nearby galaxy, NGC 628. There are obvious correlations between the D{sub n} (4000),more » stellar population age, star formation rate, especially H α equivalent width EW(H α), and deviation distance d {sub p} from the starburst IRX– β relation. However, there is little correlation between the Balmer decrement, metallicity, and d {sub p}. It is much more complicated than expected, so that we cannot introduce a single second parameter to describe the scatter and deviation of the H ii region IRX– β relation.« less

  8. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*

    NASA Astrophysics Data System (ADS)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.

    2018-01-01

    We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.

  9. Strömgren survey for asteroseismology and galactic archaeology: Let the saga begin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casagrande, L.; Dotter, A.; Milone, A. P.

    2014-06-01

    Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. The ongoing Strömgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood. Here we present the first results from a stripe centered at a Galactic longitude of 74° and covering latitude from aboutmore » 8° to 20°, which includes almost 1000 K giants with seismic information and the benchmark open cluster NGC 6819. We describe the coupling of classical and seismic parameters, the accuracy as well as the caveats of the derived effective temperatures, metallicities, distances, surface gravities, masses, and radii. Confidence in the achieved precision is corroborated by the detection of the first and secondary clumps in a population of field stars with a ratio of 2 to 1 and by the negligible scatter in the seismic distances among NGC 6819 member stars. An assessment of the reliability of stellar parameters in the Kepler Input Catalog is also performed, and the impact of our results for population studies in the Milky Way is discussed, along with the importance of an all-sky Strömgren survey.« less

  10. On the Physical Environment in the Galactic Nuclei. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Beall, J. H.

    1979-01-01

    Galactic nuclei and quasars emit radiation over the entire electromagnetic spectrum. This suggests that concurrent observations over a wide frequency range may provide useful information in determining appropriate models for the physical environment in which the radiation is produced. In conjunction with observations by the high energy spectrometer on OSO-8, four sources have been studied in this manner; the nucleus of the elliptical galaxy, Centaurus A (NGG 5128); the quasar, 30273; the Seyfert galaxy, NGC 4151 and the nucleus of the Milky Way (GCX). Concurrent observations are used to construct the composite spectra (from radio to X-ray) for Cen A and NGC 4151 while the composite spectra of 30273 and GCX are derived from the OSO-8 data and from other observers. A skymap technique used to analyze observations of the galactic center region yielded data consistent with a significant, hard X-ray source at the radio and infrared position of the nucleus of the Milky Way. A theoretical analysis of the temporal variability of the Cen A data is undertaken and its implications discussed. Similarities between the composite spectra of the observed sources suggest that radio-bright and radio-quiet quasars may represent the emission from galactic nuclei with elliptical and Seyfert-like morphologies, respectively.

  11. VERITAS Upper Limit on the Very High Energy Emission from the Radio Galaxy NGC 1275

    DOE PAGES

    Acciari, V. A.; Aliu, E.; Arlen, T.; ...

    2009-11-16

    We report the recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 that makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. Finally, a 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at themore » decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.« less

  12. Optical polarization observations in Hogg 22 and NGC 6204

    NASA Astrophysics Data System (ADS)

    Martínez, R.; Vergne, M. M.; Feinstein, C.

    2004-06-01

    We present new (UBVRI) multicolor linear polarimetric data for 22 of the brightest stars in the area of the open clusters Hogg 22 and NGC 6204 to study the properties of the ISM (interstellar medium) toward these clusters and between them. The new data were incorporated in our data set of previous observations (Waldhausen et al. \\cite{waldhausen}), resulting in 28 observed stars in the region. Our data yield for NGC 6204 a mean polarization percentage of Pλ_max˜1.8%, close to the polarization value produced by the ISM with normal efficiency (Pλ_max ˜ 5 EB-V) with a color excess of EB-V =0.51. Meanwhile for Hogg 22, located behind NGC 6204, the mean polarization is Pλ_max˜ 2.15%, lower than the expected value for the observed color excess of EB-V =0.68 (Forbes et al. 1996) and the average efficiency of polarization for the interstellar dust. The mean angle of the polarization vectors of Hogg 22 is θ=44.9 °, which agrees with the expected angle produce by dust particles aligned in the direction of the Galactic Plane (θ=48°), while for NGC 6204 a lower value, θ=33.7 °, was found. Therefore, we believe that Hogg 22 is depolarized by the same dust that is polarizing NGC 6204, due to different orientations of the dust particles (and magnetic fields) that polarize the starlight. Based on observations obtanined at Complejo Astronómico El Leoncito (CASLEO), operated under agreement between the CONICET and the National Universities of La Plata, Córdoba, and San Juan, Argentina.

  13. Hubble Views a Galactic Mega-merger

    NASA Image and Video Library

    2016-01-15

    The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer stars, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centers of galaxies like satellites, packed tightly full of millions of stars. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Galactic politics

    NASA Image and Video Library

    2015-12-07

    Only rarely does an astronomical object have a political association. However, the spiral galaxy NGC 7252 acquired exactly that when it was given an unusual nickname. In December 1953, the US President Dwight D. Eisenhower gave a speech advocating the use of nuclear power for peaceful purposes. This  “Atoms for Peace” speech was significant for the scientific community, as it brought nuclear research into the public domain, and NGC 7252, which has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, was dubbed the Atoms for Peace galaxy in honour of this. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disc that is rotating in a direction opposite to the rest of the galaxy. This disc resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10 000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process.

  15. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  16. A volume-limited survey of High Galactic latitude planetary nebulae with the Extrme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Drake, Jeremy J.; Mcdonald, Kelley; Malina, Roger F.

    1995-01-01

    We present the results of a complete survey, at extreme-ultraviolet (EUV) wavelengths (58-234 A), of the high Galactic latitude (absolute value of b greater than or = to 20 deg) planetary nebulae (PNs) with at least one determination of the distance within 1 kpc of the Sun. The sample comprises 27 objects observed during the Extreme Ultraviolet Explorer (EUVE) all-sky survey and represents the majority of PN likely to be accessible at EUV wavelengths. Six PNs (NGC 246, NGC 1360, K1-16, LoTr 5, NGC 4361, and NGC 3587) were detected in the shortest EUV band (58-174 A). A seventh PN (NGC 6853), not included in the sample, was also detected during the survey. The emission is consistent in all cases with that of a point source and therefore most probably originates from the PN central star. Accurate EUV count rates or upper limits in the two shorter EUVE bands (centered at approximately 100 and 200 A) are given for all the sources in the sample. NGC 4361 and NGC 3587 are reported here for the first time as sources of EUV radiation. As might be expected, attenuation by the interstellar medium dominates the PN distribution in the EUV sky.

  17. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  18. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  19. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    NASA Astrophysics Data System (ADS)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  20. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile

  1. The Weak Fe Fluorescence Line and Long-Term X-Ray Evolution of the Compton-Thick Active Galactic Nucleus in NGC7674

    NASA Technical Reports Server (NTRS)

    Ghandi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; hide

    2017-01-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC7674.The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K(alpha) emission line (equivalent width [EW] of approximately 0.4 keV) and a strong Fe XXVI ionized line (EW approximately 0.2 keV).We construct an updated long-term X-ray light curve of NGC7674 and find that the observed 2-10 keV flux has remained constant for the past approximately 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be approximately 3.2 pc under the switched-off AGN scenario, approximately 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (N(sub H)) of 3 x 10(exp 24) cm(exp -2) at present, and yields an intrinsic 2-10 keV luminosity of (3-5) x 10(exp 43) erg s(exp -1). Realistic uncertainties span the range of approximately (1-13) x 10(exp 43) erg s1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe K line

  2. The weak Fe fluorescence line and long-term X-ray evolution of the Compton-thick active galactic nucleus in NGC 7674

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Del Moro, A.; Elvis, M.; Guainazzi, M.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Lamperti, I.; Malaguti, G.; Masini, A.; Matt, G.; Puccetti, S.; Ricci, C.; Rivers, E.; Walton, D. J.; Zhang, W. W.

    2017-06-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe Kα emission line (equivalent width [EW] of ≈ 0.4 keV) and a strong Fe xxvi ionized line (EW ≈ 0.2 keV). We construct an updated long-term X-ray light curve of NGC 7674 and find that the observed 2-10 keV flux has remained constant for the past ≈ 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be ˜ 3.2 pc under the switched-off AGN scenario, ≈ 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (NH) of 3 × 1024 cm-2 at present, and yields an intrinsic 2-10 keV luminosity of (3-5) × 1043 erg s-1. Realistic uncertainties span the range of ≈ (1-13) × 1043 erg s-1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe Kα line.

  3. VizieR Online Data Catalog: 5 Galactic GC proper motions from Gaia DR1 (Watkins+, 2017)

    NASA Astrophysics Data System (ADS)

    Watkins, L. L.; van der Marel, R. P.

    2017-11-01

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho-Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope (HST) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST. By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories. (4 data files).

  4. Vertical Shear of the Galactic Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Benjamin, Robert A.

    2000-01-01

    The detection of UV absorption, 21 cm, H alpha and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first, opportunity to probe the rotational properties of the ionized "atmospheres" of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R = 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by approximately 30 kilometers per second from z = 1 to 5 kpc and is expected to drop by 80 kilometers per second. Magnetic tension forces may resolve this discrepancy. Other possibilities will be examined in the near future.

  5. The evolutionary sequence of post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. L.; Pimbblet, K. A.; Stott, J. P.

    2017-12-01

    There are multiple ways in which to select post-starburst galaxies in the literature. In this work, we present a study into how two well-used selection techniques have consequences on observable post-starburst galaxy parameters, such as colour, morphology and environment, and how this affects interpretations of their role in the galaxy duty cycle. We identify a master sample of H δ strong (EWH δ > 3Å) post-starburst galaxies from the value-added catalogue in the seventh data release of the Sloan Digital Sky Survey (SDSS DR7) over a redshift range 0.01 < z < 0.1. From this sample we select two E+A subsets, both having a very little [O II] emission (EW_[O II] > -2.5 Å) but one having an additional cut on EWHα (>-3 Å). We examine the differences in observables and AGN fractions to see what effect the H α cut has on the properties of post-starburst galaxies and what these differing samples can tell us about the duty cycle of post-starburst galaxies. We find that H δ strong galaxies peak in the 'blue cloud', E+As in the 'green valley' and pure E+As in the 'red sequence'. We also find that pure E+As have a more early-type morphology and a higher fraction in denser environments compared with the H δ strong and E+A galaxies. These results suggest that there is an evolutionary sequence in the post-starburst phase from blue discy galaxies with residual star formation to passive red early-types.

  6. Spectral molecular line surveys of active galaxies

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin

    The enormous mass of molecular gas and dust found in the nuclei of active galaxies has a major role in feeding the activity (either starburst or AGN) and therefore in the galactic evolution. Thus, observations of the molecular can provide clues to identify and analyze the type of activity in very deeply obscured galactic nuclei. Indeed, studies of the chemical composition in starburst galaxies via wide band spectral has shown the potential of molecular spectroscopy to trace the physical and chemical propierties of their central ISM material. In this work we present the analysis of the emission of molecules such as HCN, CCH, CN,CS,HCO+, HNC, CH3OH, among others obtained from the survey of spectra of the 3 near seyfert galaxies observed with the APEX Telescope. We have also found that one of the molecules is not at LTE conditions- H3O+ molecule. Whether radiatively pumped or maser enhanced, the emission of H3O+ is emerging from a different region from most other molecules (distributed in two molecular lobes seen as the two velocity components). H3O+ emission peaks close to the systemic velocity of the system, particularly clear in NGC 253, which suggest the emission to be centrally peaked towards the nuclear engine, It is common in the same kind of galaxies? In adition, preliminar conclusions show isotopic ratio 12C/13C in starburst galaxies is higher than nuclei of the Milky Way indicating that interestelar matter in starburst nuclei is less processed than in the nucleus of the Milky Way .There are two possible explanations for this effect in starburst, nucleosynthesis differences due stellar population history and acretion of matter from halo.

  7. Near-IR spectral evolution of dusty starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the

  8. Diverse Nuclear Star-forming Activities in the Heart of NGC 253 Resolved with 10-pc-scale ALMA Images

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Nakanishi, Kouichiro; Kohno, Kotaro; Izumi, Takuma; Martín, Sergio; Harada, Nanase; Takano, Shuro; Kuno, Nario; Nakai, Naomasa; Sugai, Hajime; Sorai, Kazuo; Tosaki, Tomoka; Matsubayashi, Kazuya; Nakajima, Taku; Nishimura, Yuri; Tamura, Yoichi

    2017-11-01

    We present an 8 pc × 5 pc resolution view of the central ˜200 pc region of the nearby starburst galaxy NGC 253, based on ALMA Band 7 (λ ≃ 0.85 {mm} or ν ˜ 350 GHz) observations covering 11 GHz. We resolve the nuclear starburst of NGC 253 into eight dusty star-forming clumps, 10 pc in scale, for the first time. These clumps, each of which contains (4-10) × {10}4 {M}⊙ of dust (assuming that the dust temperature is 25 K) and up to 6× {10}2 massive (O5V) stars, appear to be aligned in two parallel ridges, while they have been blended in previous studies. Despite the similarities in sizes and dust masses of these clumps, their line spectra vary drastically from clump to clump, although they are separated by only ˜10 pc. Specifically, one of the clumps, Clump 1, exhibits line-confusion-limited spectra with at least 36 emission lines from 19 molecules (including CH3OH, HNCO, H2CO, CH3CCH, H2CS, and H3O+) and a hydrogen recombination line (H26α), while far fewer kinds of molecular lines are detected in some other clumps where fragile species, such as complex organic molecules and HNCO, completely disappear from their spectra. We demonstrate the existence of hot molecular gas ({T}{rot}({{SO}}2)=90+/- 11 K) in the former clump, which suggests that the hot and chemically rich environments are localized within a 10-pc-scale star-forming clump.

  9. The first high resolution image of coronal gas in a starbursting cool core cluster

    NASA Astrophysics Data System (ADS)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  10. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  11. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), I.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, I.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  12. Winds of change - a molecular outflow in NGC 1377?. The anatomy of an extreme FIR-excess galaxy

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Martín, S.; Costagliola, F.

    2012-10-01

    galactic nucleus (AGN) or an extremely young (1 Myr) compact starburst. Limitations on size and mass lead us to favor the AGN scenario, but additional studies are required to settle this question. In either case, the wind with its implied mass outflow rate will quench the nuclear power source within the very short time of 5-25 Myr. It is possible, however, that the gas is unable to escape the galaxy and may eventually fall back onto NGC 1377 again.

  13. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less

  14. Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Nardini, E.; Fabbiano, G.; Karovska, M.; Elvis, M.; Pellegrini, S.; Max, C. E.; Risaliti, G.; U, V.; Zezas, A.

    2013-04-01

    We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from 70 million K hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of 2200 km/s. For the first time we obtain spatial distribution of this highly ionized gas emitting FeXXV and find that it shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate.

  15. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A., E-mail: cjohnson@cfa.harvard.edu, E-mail: iain.mcdonald-2@manchester.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globularmore » cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a

  16. AN INVESTIGATION OF THE DUST CONTENT IN THE GALAXY PAIR NGC 1512/1510 FROM NEAR-INFRARED TO MILLIMETER WAVELENGTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guilin; Calzetti, Daniela; Yun, Min S.

    2010-03-15

    We combine new ASTE/AzTEC 1.1 mm maps of the galaxy pair NGC 1512/1510 with archival Spitzer IRAC and MIPS images covering the wavelength range 3.6-160 {mu}m from the SINGS project. The availability of the 1.1 mm map enables us to measure the long-wavelength tail of the dust emission in each galaxy, and in sub-galactic regions in NGC 1512, and to derive accurate dust masses. The two galaxies form a pair consisting of a large, high-metallicity spiral (NGC 1512) and a low-metallicity, blue compact dwarf (NGC 1510), which we use to compare similarities and contrast differences. Using the models of Drainemore » and Li, the derived total dust masses are (2.4 {+-} 0.6) x 10{sup 7} M {sub sun} and (1.7 {+-} 3.6) x 10{sup 5} M {sub sun} for NGC 1512 and NGC 1510, respectively. The derived ratio of dust mass to H I gas mass for the galaxy pair, M{sub d}/M{sub H{sub 1}}{approx}0.0034, is much lower (by at least a factor of 3) than expected, as previously found by Draine et al. In contrast, regions within NGC 1512, specifically the central region and the arms, do not show such unusually low M{sub d}/M{sub H{sub 1}} ratios; furthermore, the dust-to-gas ratio is within expectations for NGC 1510. These results suggest that a fraction of the H I included in the determination of the M{sub d}/M{sub H{sub 1}} ratio of the NGC 1512/NGC 1510 pair is not associated with the star-forming disks/regions of either galaxy. Using the dust masses derived from the models of Draine and Li as references, we perform simple two-temperature modified blackbody fits to the far-infrared/millimeter data of the two galaxies and the sub-regions of NGC 1512, in order to derive and compare the dust masses associated with warm and cool dust temperature components. As generally expected, the warm dust temperature of the low-metallicity, low-mass NGC 1510 (T{sub w} {approx} 36 K) is substantially higher than the corresponding warm temperature of the high-metallicity spiral NGC 1512 (T{sub w} {approx} 24 K

  17. Did the Infant R136 and NGC 3603 Clusters Undergo Residual Gas Expulsion?

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2013-02-01

    Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Our calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in ≈1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age (≈1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.

  18. A Hubble View of Starburst Galaxy Messier 94

    NASA Image and Video Library

    2017-12-08

    This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring or starburst ring around Messier 94, new stars are forming at a high rate and many young, bright stars are present within it. The cause of this peculiarly shaped star-forming region is likely a pressure wave going outwards from the galactic center, compressing the gas and dust in the outer region. The compression of material means the gas starts to collapse into denser clouds. Inside these dense clouds, gravity pulls the gas and dust together until temperature and pressure are high enough for stars to be born. Image credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  20. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (THE SUPERANTENNAE): X-Ray Emission From the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.

  1. Star formation histories in NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, R.; Javadi, A.; van Loon, J. Th

    2017-06-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). With similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? We present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars (LPVs). LPVs are low- to intermediate-mass stars at the asymptotic giant branch, which their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185 we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ∼ 3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times.

  2. The star formation history of low-mass disk galaxies: A case study of NGC 300

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang; Wang, Lang; Cheng, Liantao

    2016-01-01

    Context. Since NGC 300 is a bulgeless, isolated low-mass galaxy and it has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test the simple galactic chemical evolution model. Aims: Our main aim is to investigate the main properties of the star formation history (SFH) of NGC 300 and compare its SFH with that of M 33 to explore the common properties and differences between these two nearby low-mass systems. Methods: We construct a simple chemical evolution model for NGC 300, assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process. The model allows us to build a bridge between the SFH and observed data of NGC 300, in particular, the present-day radial profiles and global observed properties (e.g., cold gas mass, star formation rate, and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical χ2 methodology to find out the best combination of free parameters a, b, and bout. Results: Our results show that by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values. The model not only reproduces well the radial profiles, but also the global observational data for the NGC 300 disk. Our results suggest that NGC 300 may experience a rapid growth of its disk. Through comparing the best-fitting, model-predicted SFH of NGC 300 with that of M 33, we find that the mean stellar age of NGC 300 is older than that of M 33 and there is a recent lack of primordial gas infall onto the disk of NGC 300. Our results also imply that the local environment may play a key role in the secular evolution of galaxy disks.

  3. Metallic Winds in Dwarf Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, andmore » radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.« less

  4. The CN–CH Positive Correlation in the Globular Cluster NGC 5286

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Dongwook; Hong, Seungsoo; Lee, Young-Wook, E-mail: dwlim@yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr

    We performed low-resolution spectroscopy of the red giant stars in the Galactic globular cluster (GC) NGC 5286, which is known to show intrinsic heavy element abundance variations. We found that the observed stars in this GC are clearly divided into three subpopulations by CN index (CN-weak, CN-intermediate, and CN-strong). The CN-strong stars are also enhanced in the calcium HK′ (7.4 σ ) and CH (5.1 σ ) indices, while the CN-intermediate stars show no significant difference in the strength of the HK′ index from the CN-weak stars. From the comparison with high-resolution spectroscopic data, we found that the CN- andmore » HK′-strong stars are also enhanced in the abundances of Fe and s -process elements. It appears, therefore, that these stars are later-generation stars affected by some supernova enrichment in addition to the asymptotic giant branch ejecta. In addition, unlike normal GCs, sample stars in NGC 5286 show the CN–CH positive correlation, strengthening our previous suggestion that this positive correlation is only discovered in GCs with heavy element abundance variations, such as M22 and NGC 6273.« less

  5. Radio and infrared emission from Markarian starburst galaxies

    NASA Technical Reports Server (NTRS)

    Stine, Peter C.

    1992-01-01

    Radio and infrared emission were compared for a sample of 58 Markarian starburst galaxies, chosen to cover a wide range of 60-micron luminosity density. New radio observations were from the VLA at 6 and 20 cm in the B and A configurations. IRAS data were reanalyzed for 25 of the starbursts that were previously undetected at either 25 or 100 microns. The correlation between the global radio and IR emission for the starbursts in the sample is strongest at 25 and 60 microns, wavelengths in which the warm dust dominates. The radio spectral index steepens away from the center. This indicates that nonthermal emission leaks out of the starburst region. The change in the spectral index implies that while nonthermal sources dominate in the entire region, the bulk of the interior emission at 6 cm is thermal. The radio spectral index does not appear to vary as a function of the infrared luminosity or the infrared colors, which indicates that the slope of the initial mass function does not appear to be a function of either the mass or temperature of the starburst.

  6. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  7. A Rare Encounter with Very Massive Stars in NGC 3125-A1

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Chandar, Rupali; Bouret, Jean-Claude

    2014-02-01

    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He II λ1640 emission (FWHM ~ 1200 km s-1) of unprecedented strength (equivalent width, EW = 7.1 ± 0.4 Å). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(B - V) = 0.13, 0.15, and 0.13, and cluster masses of 1.7 × 105, 1.4 × 105, and 1.1 × 105 M ⊙, respectively. A1 and B2 show O V λ1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN5-6)/N(O) = 0.23 and 0.10, respectively. The high N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal initial mass function (IMF) and generic WR star line luminosities. We rule out that the extraordinary He II λ1640 emission and O V λ1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120 M ⊙) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120 M ⊙.

  8. Reddening and age for 13 southern Galactic open clusters determined from integrated spectra

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.; Torres, M. C.

    2001-10-01

    In this study we present flux-calibrated integrated spectra in the range 3800-6800 Å for 13 concentrated open clusters with Galactic longitudes between 219deg and 316deg, nine of which have not been previously studied. Using the equivalent widths of the Balmer lines and comparing the cluster spectra with template spectra of Magellanic Clouds and Galactic star clusters with known parameters, we derive both foreground interstellar reddening values and age. For nine clusters these two parameters have been determined for the first time, while for the rest of the sample the results show good agreement with previous studies. The present analysis indicates four very young (Hogg 11, NGC 5606, vdB-RN 80 and Pismis 17), seven moderately young (ESO 429-SC13, Hogg 3, Hogg 12, Haffner 7, BH 87, NGC 2368 and Bochum 12) and two intermediate-age (Berkeley 75 and NGC 2635) open clusters. The derived foreground interstellar reddening values are in the range 0.00 <= E(B-V) <= 0.38. The age and reddening distributions of the present sample of relatively faint open clusters match those of open clusters with known parameters in a 90deg sector centered at l = 270deg. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  9. The Frequency of Circumnuclear Starbursts in Seyfert Galaxies --- Testing the Starburst-AGN Connection

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T. M.

    We obtained sub-arcsecond medium resolution near-infrared spectra of a sample of nearby bright Seyfert galaxies (8 Seyfert 1s, 11 Seyfert 2s) using the KeckII telescope. The stellar absorption lines present in the spectra were used in conjunction with population synthesis models to determine the age of the circumnuclear stellar population. Initial analysis of a sub-sample of the Seyfert galaxies has provided no evidence for a connection between the age of the circumnuclear stellar population and the Seyfert type. The derived ages for the circumnuclear stellar population are in the range of 10 Myr to < 0.5 Gyr assuming an instantaneous starburst (using the STARBURST99 models).

  10. VizieR Online Data Catalog: RR Lyrae in 15 Galactic globular clusters (Dambis+, 2014)

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Rastorguev, A. S.; Zabolotskikh, M. V.

    2014-11-01

    Last year, the WISE All-Sky Data Release (Cutri et al., 2012, Cat. II/328) was made public, mapping the entire sky in four mid-infrared bands W1, W2, W3 and W4 with the effective wavelengths of 3.368, 4.618, 12.082 and 22.194um, respectively. We cross-correlated the WISE single-exposure data base with the Catalogue of Galactic globular-cluster variables by Clement et al. (2001AJ....122.2587C), the Catalogue of Accurate Equatorial Coordinates for Variable Stars in Globular Clusters by Samus et al. (2009PASP..121.1378S, Cat. J/PASP/121/1378) and the catalogue of Sawyer Hogg (1973PDDO....3....6S, Cat. V/97) (for ω Cen, NGC 6723 and NGC 6934) to compute (via Fourier fits) the intensity-mean average W1- and W2-band magnitudes, and , for a total of 357 and 272 RR Lyrae type variables in 15 and 9 Galactic globular clusters, respectively. (1 data file).

  11. New tools for the tracing of ancient starbursts: Analysing globular cluster systems using Lick indices

    NASA Astrophysics Data System (ADS)

    Lilly, T.; Fritze-v. Alvensleben, U.; de Grijs, R.

    2005-05-01

    We present mathematically advanced tools for the determination of age, metallicity, and mass of old Globular Clusters (CGs) using both broad-band colors and spectral indices, and we present their application to the Globular Cluster Systems (GCSs) of elliptical galaxies. Since one of the most intriguing questions of today's astronomy aims at the evolutionary connection between (young) violently interacting galaxies at high-redshift and the (old) elliptical galaxies we observe nearby, it is necessary to reveal the possibly violent star-formation history of these old galaxies. By means of evolutionary synthesis models, we can show that, using the integrated light of a galaxy's (composite) stellar content alone, it is impossible to date (and, actually, to identify) even very strong starbursts if these events took place more than two or three Gyr ago. However, since large and violent starbursts are associated with the formation of GCs, GCSs are very good tracers of the most violent starburst events in the history of their host galaxies. Using our well-established Göttingen SED (Spectral Energy Distribution) analysis tool, we can reveal the age, metallicity, mass (and possibly extinction) of GCs by comparing the observations with an extensive grid of SSP model colors. This is done in a statistically advanced and reasonable way, including their 1 σ uncertainties. However, since for all colors the evolution slows down considerably at ages older than about 8 Gyr, even with several passbands and a long wavelength base line, the results are severely uncertain for old clusters. Therefore, we incorporated empirical calibrations for Lick indices in our models and developed a Lick indices analysis tool that works in the same way as the SED analysis tool described above. We compare the theoretical possibilities and limitations of both methods as well as their results for the example of the cD galaxy NGC 1399, for which both multi-color observations and, for a subsample of

  12. Ammonia Observations of NGC 6334 I(N)

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Peters, W. L., III; Foster, J. R.; Gardner, F. F.; Whiteoak, J. B.

    1995-01-01

    Coincident with the far-infrared source NGC 6334 I(N) and water maser source E is a massive dense cloud which has the most intense ammonia (1, 1) emission of any known interstellar cloud. We have mapped the (3, 3) emission and find the cloud is extended 0.8 pc in the direction parallel to the Galactic plane, and 0.5 pc perpendicular to it. It has a velocity gradient of 1 km/s.pc perpendicular to the Galactic plane. The gas kinetic temperature is about 30 K and the density is greater than 10(exp 6)/cc. The mass of the cloud is about 3000 solar mass, 3 times greater than previously estimated. The para-ammonia column density is 6 - 8 x 10(exp 15)/sq cm. An ammonia abundance of 0.5 - 1.5 x 10(exp -8) is inferred, where the larger number assumes an early time ortho/para ratio. This suggests either a cloud age of less than approximately 10(exp 6) yr, or substantial depletion of ammonia.

  13. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  14. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  15. CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, Diogo; Cunha, K.; Smith, V.

    NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less

  16. Velocity field and physical conditions in the active lenticular galaxy NGC 3998

    NASA Technical Reports Server (NTRS)

    Blackman, C. P.; Wilson, A. S.; Ward, M. J.

    1983-01-01

    A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.

  17. The Massive Star Content of Circumnuclear Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Chandar, R.; Leitherer, C.

    2011-06-01

    The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1±0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV imaging and spectroscopy of 13 circumnuclear star clusters in M83. We compared the observed spectra with two types of single stellar population (SSP) models; semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE (Robert et al. 1993), and theoretical models, which are based on a new theoretical UV library of hot massive stars described in Leitherer et al. (2010) and computed with WM-Basic (Pauldrach et al. 2001). The models were generated with Starburst99 (Leitherer & Chen 2009). We derived the reddenings, the ages, and the masses of the clusters from model fits to the FUV spectroscopy, as well as from optical HST/WFC3 photometry.

  18. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  19. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T. M.; Bellini, A.; Anderson, J.

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arisemore » in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.« less

  20. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  1. Optical photometric variable stars towards the Galactic H II region NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  2. The Globular Cluster NGC 5286. I. A New CCD BV Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Zorotovic, M.; Catelan, M.; Zoccali, M.; Pritzl, B. J.; Smith, H. A.; Stephens, A. W.; Contreras, R.; Escobar, M. E.

    2009-01-01

    We present BV photometry of the Galactic globular cluster NGC 5286, based on 128 V frames and 133 B frames, and covering the entire face of the cluster. Our photometry reaches almost two magnitudes below the turn-off level, and is accordingly suitable for age analysis. Field stars were removed statistically from the cluster's color-magnitude diagram (CMD), and a differential reddening correction applied, thus allowing a precise ridgeline to be calculated. Using the latter, a metallicity of [Fe/H] = -1.70 ± 0.05 in the Zinn & West scale, and [Fe/H] = -1.47 ± 0.02 in the Carretta & Gratton scale, was derived on the basis of several parameters measured from the red giant branch, in good agreement with the value provided in the Harris catalog. Comparing the NGC 5286 CMD with the latest photometry for M3 by P. B. Stetson, and using VandenBerg isochrones for a suitable chemical composition, we find evidence that NGC 5286 is around 1.7 ± 0.9 Gyr older than M3. This goes in the right sense to help account for the blue horizontal branch of NGC 5286, for which we provide a measurement of several morphological indicators. If NGC 5286 is a bona fide member of the Canis Major dwarf spheroidal galaxy, as previously suggested, our results imply that the latter's oldest components may be at least as old as the oldest Milky Way globular clusters. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory, Chile.

  3. What Lurks in ULIRGs?—Probing the Chemistry and Excitation of Molecular Gas in the Nuclei of Arp 220 and NGC 6240

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, Swarnima; Scoville, Nick

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO{sup +}, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecularmore » gas is concentrated between the nuclei rather than on them. We calculated molecular H{sub 2} densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO{sup +} in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H{sub 2} volume densities are ∼5 × 10{sup 4} cm{sup −3} in the Arp 220 nuclei and ∼10{sup 4} cm{sup −3} in NGC 6240.« less

  4. DID THE INFANT R136 AND NGC 3603 CLUSTERS UNDERGO RESIDUAL GAS EXPULSION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de

    2013-02-10

    Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Ourmore » calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in Almost-Equal-To 1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age ( Almost-Equal-To 1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.« less

  5. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  6. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  7. High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara

    Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity

  8. Effects of environmental gas compression on the multiphase ISM and star formation . The Virgo spiral galaxies NGC 4501 and NGC 4567/68

    NASA Astrophysics Data System (ADS)

    Nehlig, F.; Vollmer, B.; Braine, J.

    2016-03-01

    The cluster environment can affect galaxy evolution in different ways: via ram pressure stripping or by gravitational perturbations caused by galactic encounters. Both kinds of interactions can lead to the compression of the interstellar medium (ISM) and its associated magnetic fields, causing an increase in the gas surface density and the appearance of asymmetric ridges of polarized radio continuum emission. New IRAM 30m HERA CO(2-1) data of NGC 4501, a Virgo spiral galaxy currently experiencing ram pressure stripping, and NGC 4567/68, an interacting pair of galaxies in the Virgo cluster, are presented. We find an increase in the molecular fraction where the ISM is compressed. The gas is close to self-gravitation in compressed regions. This leads to an increase in gas pressure and a decrease in the ratio between the molecular fraction and total ISM pressure. The overall Kennicutt Schmidt relation based on a pixel-by-pixel analysis at ~1.5 kpc resolution is not significantly modified by compression. However, we detected continuous regions of low molecular star formation efficiencies in the compressed parts of the galactic gas disks. The data suggest that a relation between the molecular star formation efficiency SFEH2 = SFR/M(H2) and gas self-gravitation (Rmol/Ptot and Toomre Q parameter) exists. Both systems show spatial variations in the star formation efficiency with respect to the molecular gas that can be related to environmental compression of the ISM. An analytical model was used to investigate the dependence of SFEH2 on self-gravitation. The model correctly reproduces the correlations between Rmol/Ptot, SFEH2, and Q if different global turbulent velocity dispersions are assumed for the three galaxies. We found that variations in the NH2/ICO conversion factor can mask most of the correlation between SFEH2 and the Toomre Q parameter. Dynamical simulations were used to compare the effects of ram pressure and tidal ISM compression. These models give direct

  9. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  10. Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4)

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Yong, D.; Da Costa, G.; Asplund, M.; Bedin, L. R.; Jerjen, H.; Nardiello, D.; Piotto, G.; Renzini, A.; Shetrone, M.

    2017-07-01

    We present a photometric and spectroscopic study of multiple populations along the asymptotic giant branch (AGB) of the intermediate-metallicity globular clusters (GCs) NGC 2808 and NGC 6121 (M4). Chemical abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Zn, Y, and Ce in AGB stars from high-resolution FLAMES+UVES@VLT spectra are reported for both clusters. Our spectroscopic results have been combined with multiwavelength photometry from the Hubble Space Telescope UV survey of Galactic GCs and ground-based photometry, as well as proper motions derived by combining stellar positions from ground-based images and Gaia DR1. Our analysis reveals that the AGBs of both clusters host multiple populations with different chemical compositions. In M4, we have identified two main populations of stars with different Na/O content lying on distinct AGBs in the {m}{{F}438{{W}}} versus {C}{{F}275{{W}},{{F}}336{{W}},{{F}}438{{W}}} and the V versus {C}{{U},{{B}},{{I}}} pseudo-color-magnitude diagrams. In the more massive and complex GC NGC 2808, three groups of stars with different chemical abundances occupy different locations on the so-called “chromosome map” photometric diagram constructed for AGB stars. The spectroscopic + photometric comparison of stellar populations along the AGB and the red giants of this GC suggests that the AGB hosts stellar populations with a range in helium abundances from primordial to high contents of Y˜ 0.32. By contrast, from our data set, there is no evidence for stars with extreme helium abundance (Y˜ 0.38) on the AGB, suggesting that the most He-rich stars of NGC 2808 do not reach this phase. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 093.D-0789 and 094.D-0455 and on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  11. Millimeter-wave Spectroscopy of NGC1068 With Z-Spec

    NASA Astrophysics Data System (ADS)

    Kamenetzky, Julia; Aguirre, J. E.; Bock, J. J.; Bradford, M.; Earle, L.; Glenn, J.; Maloney, P.; Matsuhara, H.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.

    2009-05-01

    NGC1068 is commonly cited as the prototypical Seyfert 2 galaxy. Both the central and extended regions have been studied extensively across the electromagnetic spectrum, revealing many different astrophysical phenomena, such as a bright central region, radio jet knots, and a conical narrow-line region. Significantly, evidence has been found that the active galactic nucleus is shrouded by a dusty molecular disk, which could support the theory that viewing angle will unify Seyfert 1 and 2 galaxies. We observed NGC1068 with Z-Spec, a broadband (185-305 GHz) millimeter-wave grating spectrometer, at the Caltech Submillimeter Observatory. Its large bandwidth allows us to simultaneously observe multiple molecular rotational transitions along with the underlying continuum. The detector array is composed of 160 silicon-nitride micromesh bolometers cooled to 60 mK by an adiabatic demagnetization refrigerator (ADR) and a closed-cycle 3He refrigerator. Z-Spec's compact design is achieved via a WaFIRS (Waveguide Far IR Spectrometer) design utilizing a parallel-plate waveguide and curved diffraction grating. Z-Spec's spectral resolution is approximately 900 MHz at the band center. We obtained a high signal-to-noise ratio spectrum of NGC1068 in late January 2007. Key observable transitions in Z-Spec's bandpass include CO , 13CO, and C18O (J = 2 - 1), HCN, HNC, and HCO+ (J = 3 - 2), and multiple CS transitions. We are modeling the NGC1068 spectrum using these data and other transitions of these molecules from the literature to probe the physical characteristics of its interstellar medium, such as temperature, density, dense gas fraction, and the extent of the AGN's contribution to the molecular gas excitation. We will present preliminary results of the analysis.

  12. Submillimetric study of nearby galaxies: A tool for new extragalactic molecules

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Armijos Abendaño, Jairo; Carreto, Francisco; Martin, Sergio; Martin-Pintado, Jesus; Requena-Torres, Miguel; Perez-Beaupuits, Juan Pablo

    2016-07-01

    We present the first submillimetre line survey of extragalactic sources carried out by APEX, the results were presented inside of Villicana-Pedraza phd thesis in 2015. The surveys cover the 0.8 mm atmospheric window toward NGC253, NGC4945 and Arp220. We found HCN, C2H, CN, CS, C34S, HCO+, HNC, CO, N2H+, CH3OH are presents in all the sources, while 13CO,C18O and C17O, HNCO, H2CO, H2CS, SO, NO, SO2 were detected toward NGC253 and NGC4945, 13CN, *CO+, OCS, H2S in Arp220, 13CS, NH2CN, SiO in NGC253, and c-C3H2 in NGC4945 were detected. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in the 32S/34S and 18O/17O ratios between the GC and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the GC. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the GC. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation cannot explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); We report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, the abundance is much

  13. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  14. Blue straggler star populations in globular clusters. I. Dynamical properties of blue straggler stars in NGC 3201, NGC 6218, and ω Centauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Mirko; Puzia, Thomas H., E-mail: msimunov@astro.puc.cl, E-mail: tpuzia@astro.puc.cl

    2014-02-10

    We present the first dynamical study of blue straggler stars (BSSs) in three Galactic globular clusters, NGC 3201, NGC 5139 (ω Cen), and NGC 6218, based on medium-resolution spectroscopy (R ≈ 10, 000) obtained with the Inamori-Magellan Areal Camera and Spectrograph mounted at the 6.5 m Baade Magellan telescope. Our BSS candidate selection technique uses HST/ACS and ESO/WFI photometric data out to >4.5 r{sub c} . We use radial velocity measurements to discard non-members and achieve a success rate of ∼93%, which yields a sample of 116 confirmed BSSs. Using the penalized pixel-fitting method (pPXF), we measure the vsin (i)more » values of the sample BSSs and find their distribution functions peaked at slow velocities with a long tail toward fast velocities in each globular cluster. About 90% of the BSS population in NGC 3201 and NGC 6218 exhibits values in the range 10-50 km s{sup –1}, while about 80% of the BSSs in ω Cen show vsin (i) values between 20 and 70 km s{sup –1}. We find that the BSSs in NGC 3201 and NGC 6218 that show vsin (i) > 50 km s{sup –1} are all found in the central cluster regions, inside a projected 2r{sub c} , of their parent clusters. We find a similar result in ω Cen for BSSs with vsin (i) > 70 km s{sup –1}, which are all, except for two, concentrated inside 2r{sub c} . In all globular clusters, we find rapidly rotating BSSs that have relatively high differential radial velocities that likely put them on hyperbolic orbits, suggestive of strong dynamical interactions in the past. Based on stellar spin-down and dynamical crossing timescales, we estimate that all the observed rapidly rotating BSSs are likely to form in their central cluster regions no longer than ∼300 Myr ago and may be subsequently ejected from their host globular clusters. Using dereddened V – I colors of our photometric selection, we show that blue BSSs in ω Cen with (V – I){sub 0} ≲ 0.25 mag show a significantly increased vsin (i) dispersion compared

  15. Multi-Wavelength Diagnostics of Starbirth in Starbursts

    NASA Astrophysics Data System (ADS)

    Waller, William

    2005-07-01

    From the Orion Nebula to the Hubble Deep Field, starburst activity can be seen transforming galaxian clouds of gas into populous clusters of stars. The pyrotechnics and chemical enrichment associated with this activity have led to outcomes as ubiquitous as interstellar dust and as exquisite as life on Earth. In this talk, I will focus on the circumstances of star formation in the environmental context of ongoing starburst activity. I begin with the premises that (1) the formation of a single star takes time, (2) the formation of a populous cluster takes even more time, and (3) ``stuff'' happens in the interim. Hubble images of the Orion Nebula and Eagle Nebula show how hot stars can excavate neighboring clouds of gas and photoevaporate the star-forming cores that are exposed. Hubble observations of giant HII regions in M33 reveal a significant variation in the stellar populations, such that the most metal-rich HII regions contain the greatest proportions of the most massive stars. ISO and Spitzer observations of these same HII regions reveal corresponding variations in the nebular response. These multi-wavelength diagnostics of the stellar-nebular feedback in galaxian starbursts suggest a star-forming mechanism which is subject to photo-evaporative ablation -- an erosive process that is mediated by the metal abundance and corresponding amounts of protective dust in the starbursting environment.

  16. Deep HST Imaging In 47 Tuc And NGC 6397: Helium-core White Dwarfs In The Core Of NGC 6397

    NASA Astrophysics Data System (ADS)

    Goldsbury, Ryan; Woodley, K.; Anderson, J.; Dotter, A.; Fahlman, G.; Hansen, B.; Hurley, J.; Kalirai, J.; King, I.; Rich, R. M.; Richer, H.; Shara, M.; Stetson, P.; Zurek, D.

    2011-01-01

    We present a detailed analysis of a population of helium-core white dwarfs in the core of the Galactic globular cluster NGC 6397. We analyze the radial distribution of these objects compared to the distributions of various other populations of known mass within the this cluster. From this comparison we are able to determine the average mass of the helium-core white dwarfs and their possible binary companions. We find that their distribution is inconsistent with the expected mass range of low-mass white dwarfs, but may be explained by the presence of massive companions to these objects. We also analyze the spectral energy distributions of the He-core white dwarfs to place constraints on the nature of their unresolved partners.

  17. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less

  18. http://www.nasa.gov/image-feature/goddard/hubble-spots-the-layers-of-ngc-3923

    NASA Image and Video Library

    2015-05-15

    The glowing object in this Hubble Space Telescope image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centers approach, they initially oscillate about a common center, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image, and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. Credit: ESA/Hubble & NASA

  19. Stephan's Quintet

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A famous group of five compact galaxies featured in the holiday film classic 'It's a Wonderful Life' appears in a new image from NASA's Hubble Space Telescope.

    In the movie, angelic figures take on the form of the galactic group called Stephan's Quintet. But the new pictures show the group has actually been doing some devilish things. At least two of its galaxies have been involved in high-speed, hit-and-run accidents, ripping stars and gas from neighboring galaxies and tossing them into space.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/22 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The close-up view of Stephan's Quintet reveals a string of bright star clusters sparkling like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers.

    The photo showcases three regions of star birth: the long, sweeping tail and spiral arms of the galaxy NGC 7319 (near center); the gaseous debris of two galaxies, NGC 7318B and NGC 7318A (top right); and the area north of those galaxies, dubbed the northern starburst region (top left).

    The clusters' bluish color indicates that they're relatively young -- between about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right.

    Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its neighbor. The partial galaxy on the far right is NGC 7320, a foreground

  20. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < -19.5 mag at 0.02 ≤z< 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al. (2011) who performed two-dimensional bulge+disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  1. New Methods for Tracking Galaxy and Black Hole Evolution Using Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    French, Katheryn Decker

    2017-08-01

    Galaxies in transition from star-forming to quiescence are a natural laboratory for exploring the processes responsible for this evolution. Using a sample of post-starburst galaxies identified to have recently experienced a recent burst of star formation that has now ended, I explore both the fate of the molecular gas that drives star formation and the increased rate of stars disrupted by the central supermassive black hole. Chapter 1 provides an introduction to galaxy evolution through the post-starburst phase and to tidal disruption events, which surprisingly favor post-starburst galaxy hosts. In Chapter 2, I present a survey of the molecular gas properties of 32 post-starburst galaxies traced by CO (1-0) and CO (2-1). In order to accurately put galaxies on an evolutionary sequence, we must select likely progenitors and descendants. We do this by identifying galaxies with similar starburst properties, such as the amount of mass produced in the burst and the burst duration. In Chapter 3, I describe a method to determine the starburst properties and the time elapsed since the starburst ended, and discuss trends in the molecular gas properties of these galaxies with time. In Chapter 4, I present the results of followup observations with ALMA of HCN (1-0) and HCO+ (1-0) in two post-starburst galaxies. CO (1-0) is detected in over half (17/32) the post-starburst sample and the molecular gas mass traced by CO declines on ˜100 Myr timescales after the starburst has ended. HCN (1-0) is not detected in either galaxy targeted, indicating the post-starbursts are now quiescent because of a lack of the denser molecular gas traced by HCN. In Chapter 5 I quantify the increase in TDE rate in quiescent galaxies with strong Balmer absorption to be 30 - 200x higher than in normal galaxies. Using the stellar population fitting method from Chapter 3, I examine possible reasons for the increased TDE rate in post-starburst galaxies in Chapter 6. The TDE rate could be boosted due to a

  2. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  3. The State of the Warm and Cold Gas in the Extreme Starburst at the Core of the Phoenix Galaxy Cluster (SPT-CLJ2344-4243)

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Swinbank, Mark; Edge, Alastair C.; Wilner, David J.; Veilleux, Sylvain; Benson, Bradford A.; Hogan, Michael T.; Marrone, Daniel P.; McNamara, Brian R.; Wei, Lisa H.; Bayliss, Matthew B.; Bautz, Marshall W.

    2014-03-01

    We present new optical integral field spectroscopy (Gemini South) and submillimeter spectroscopy (Submillimeter Array) of the central galaxy in the Phoenix cluster (SPT-CLJ2344-4243). This cluster was previously reported to have a massive starburst (~800 M ⊙ yr-1) in the central, brightest cluster galaxy, most likely fueled by the rapidly cooling intracluster medium. These new data reveal a complex emission-line nebula, extending for >30 kpc from the central galaxy, detected at [O II]λλ3726, 3729, [O III]λλ4959, 5007, Hβ, Hγ, Hδ, [Ne III]λ3869, and He II λ4686. The total Hα luminosity, assuming Hα/Hβ = 2.85, is L Hα = 7.6 ± 0.4 ×1043 erg s-1, making this the most luminous emission-line nebula detected in the center of a cool core cluster. Overall, the relative fluxes of the low-ionization lines (e.g., [O II], Hβ) to the UV continuum are consistent with photoionization by young stars. In both the center of the galaxy and in a newly discovered highly ionized plume to the north of the galaxy, the ionization ratios are consistent with both shocks and active galactic nucleus (AGN) photoionization. We speculate that this extended plume may be a galactic wind, driven and partially photoionized by both the starburst and central AGN. Throughout the cluster we measure elevated high-ionization line ratios (e.g., He II/Hβ, [O III]/Hβ), coupled with an overall high-velocity width (FWHM gsim 500 km s-1), suggesting that shocks are likely important throughout the interstellar medium of the central galaxy. These shocks are most likely driven by a combination of stellar winds from massive young stars, core-collapse supernovae, and the central AGN. In addition to the warm, ionized gas, we detect a substantial amount of cold, molecular gas via the CO(3-2) transition, coincident in position with the galaxy center. We infer a molecular gas mass of M_{H_2} = 2.2 ± 0.6 × 1010 M ⊙, which implies that the starburst will consume its fuel in ~30 Myr if it is not

  4. NGC 1291

    NASA Image and Video Library

    2007-11-14

    This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 1291, located about 33 million light-years away in the constellation Eridanus. NGC 1291 is notable for its unusual inner bar and outer ring structure.

  5. High resolution CO images of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Meixner, M.; Puchalsky, R.; Blitz, L.; Wright, M.

    1990-01-01

    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity.

  6. A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; Van Den Berg, Maureen

    2017-01-01

    We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.

  7. The young SMC cluster NGC 330

    NASA Technical Reports Server (NTRS)

    Carney, B. W.; Janes, K. A.; Flower, P. J.

    1985-01-01

    A color-magnitude diagram has been obtained for the young SMC cluster NGC 330. The diagram shows a well-defined main sequence, a group of blue supergiants, a group of red supergiants between B-V = 1.2 m and 1.6 m about one magnitude fainter, and an empty Hertzsprung gap. The surrounding field is a composite of a very gold population resembling galactic globular clusters and a very young population. DDO and infrared photometry strongly suggest that the cluster is metal-poor, but a definitive measure could not be made because of calibration difficulties. The cluster's age is estimated at 12 million years, with the surrounding field about 50 percent older. The cluster will prove very useful in testing stellar evolution models for young, metal-poor stars if the cluster's metallicity can be established via high-resolution spectroscopy.

  8. Demographics of Starbursts in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  9. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  10. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    NASA Astrophysics Data System (ADS)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  11. Direct Evidence for Maser Emission from the 36.2 GHz Class I Transition of Methanol in NGC253

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Ellingsen, Simon P.; Shen, Zhi-Qiang; McCarthy, Tiege P.; Zhong, Wei-Ye; Deng, Hui

    2018-04-01

    Observations made with the Jansky Very large Array (JVLA) at an angular resolution of ∼0.″1 have detected class I methanol maser emission from the 36.2 GHz transition toward the starburst galaxy NGC 253. The methanol emission is detected toward four sites which lie within the regions of extended methanol emission detected in previous lower angular resolution (a few arcseconds) observations. The peak flux densities of the detected compact components are in the range 3–9 mJy beam‑1. Combining the JVLA data with single-dish observations from the Shanghai Tianma Radio Telescope (TMRT) and previous interferometric observations with the Australia Telescope Compact Array (ATCA), we show that the 36.2 GHz class I methanol emission consists of both extended and compact structures, with typical scales of ∼6″ (0.1 kpc) and ∼0.″05 (1 pc), respectively. The strongest components have a brightness temperature of >103 K, much higher than the maximum kinetic temperature (∼100 K) of the thermal methanol emission from NGC 253. Therefore, these observations conclusively demonstrate for the first time the presence of maser emission from a class I methanol transition in an external galaxy.

  12. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  13. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  14. A near-infrared spectroscopic study of the starburst core of M82

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Gaffney, N.; Carr, J. S.; Joy, M.

    1990-01-01

    Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts.

  15. VizieR Online Data Catalog: NGC3115 & NGC1399 VEGAS-SSS globular clusters (Cantiello+, 2018)

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; D'Abrusco, R.; Spavone, M.; Paolillo, M.; Capaccioli, M.; Limatola, L.; Grado, A.; Iodice, E.; Raimondo, G.; Napolitano, N.; Blakeslee, J. P.; Brocato, E.; Forbes, D. A.; Hilker, M.; Mieske, S.; Peletier, R.; van de Ven, G.; Schipani, P.

    2017-11-01

    Photometric catalogs for globular cluster (GC) candidates over the the 1 sq. degree area around NGC3115 and NGC1399 (ngc3115.dat and ngc1399.dat). The catalogues are based on u-, g- and i- band images from the VST elliptical galaxies survey (VEGAS). Aperture magnitudes, corrected for aperture correction are reported. We also provide the full catalogs of matched sources, which also include the matched background and foreground sources in the frames (ngc3115_full.dat and ngc1399_full.dat). (4 data files).

  16. Central Star Properties and C-N-O Abundances in Eight Galactic Planetary Nebulae from New HST/STIS Observations

    NASA Astrophysics Data System (ADS)

    Henry, Richard B. C.; Balick, Bruce; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Corradi, Romano

    2015-01-01

    We present detailed photoionization models of eight Galactic planetary nebulae (IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, NGC7662, & PB6) based on recently obtained HST STIS spectra. Our interim goal is to infer Teff, luminosity, and current and progenitor masses for each central star, while the ultimate goal is to constrain published stellar evolution models which predict nebular CNO abundances. The models were produced by using the code CLOUDY to match closely the measured line strengths derived from high-quality HST STIS spectra (see poster by Dufour et al., this session) extending in wavelength from 1150-10270 Angstroms. The models assumed a blackbody SED. Variable input parameters included Teff, a radially constant nebular density, a filling factor, and elemental abundances. For the eight PNs we found a birth mass range of 1.5-2.9 Msun, a range in log(L/Lsun) of 3.10-3.88, and a Teff range of 51-150k K. Finally, we compare CNO abundances of the eight successful models with PN abundances of these same elements that are predicted by published stellar evolution models. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO12600.

  17. RUBIDIUM ABUNDANCES IN THE GLOBULAR CLUSTERS NGC 6752, NGC 1904, AND NGC 104 (47 Tuc)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Orazi, Valentina; Lugaro, Maria; Campbell, Simon W.

    2013-10-10

    Large star-to-star variations of the abundances of proton-capture elements, such as Na and O, in globular clusters (GCs) are interpreted as the effect of internal pollution resulting from the presence of multiple stellar populations. To better constrain this scenario, we investigate the abundance distribution of the heavy element rubidium (Rb) in NGC 6752, NGC 1904, and NGC 104 (47 Tuc). Combining the results from our sample with those in the literature, we found that Rb exhibits no star-to-star variations, regardless of cluster metallicity, with the possible intriguing, although very uncertain, exception of the metal-rich bulge cluster NGC 6388. If nomore » star-to-star variations can be confirmed for all GCs, this finding implies that the stellar source of the proton-capture element variations must not have produced significant amounts of Rb. This element is observed to be enhanced at extremely high levels in intermediate-mass asymptotic giant branch (IM-AGB) stars in the Magellanic Clouds (i.e., at a metallicity similar to 47 Tuc and NGC 6388). This fact may present a challenge to this popular candidate polluter, unless the mass range of the observed IM-AGB stars does not participate in the formation of the second-generation stars in GCs. A number of possible solutions are available to resolve this conundrum, including the fact that the Magellanic Cloud observations are very uncertain and may need to be revised. The fast rotating massive stars scenario would not face this potential problem as the slow mechanical winds of these stars during their main-sequence phase do not carry any Rb enhancements; however, these candidates face even bigger issues such as the production of Li and the close overlap with core-collapse supernova timescales. Observations of Sr, Rb, and Zr in metal-rich clusters such as NGC 6388 and NGC 6441 are sorely needed to clarify the situation.« less

  18. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies basedmore » on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.« less

  19. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  20. Interferometric CO observations of the ultraluminous IRAS galaxies ARP 220, IC 694/NGC 3690, NGC 6420 and NGC 7469

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Sanders, D. B.; Scoville, N. Z.; Soifer, B. T.

    1987-01-01

    High resolution CO observations of the IRAS galaxies Arp 220, IC 694/NGC 3690, NGC 6240 and NGC 7469 were made with the Millimeter Wave Interferometer of the Owen Valley Radio Observatory. These yield spatial information on scales of 1 to 5 kpc and allow the separation of compact condensations from the more extended emission in the galaxies. In the case of the obviously interacting system IC 694/NGC 3690 the contributions of each component can be discerned. For that galaxy, and also for Arp 220, the unusually high lumonisities may be produced by nonthermal processes rather than by intense bursts of star formation.

  1. The Milky Way's Tiny but Tough Galactic Neighbour

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today ESO announces the release of a stunning new image of one of our nearest galactic neighbours, Barnard's Galaxy, also known as NGC 6822. The galaxy contains regions of rich star formation and curious nebulae, such as the bubble clearly visible in the upper left of this remarkable vista. Astronomers classify NGC 6822 as an irregular dwarf galaxy because of its odd shape and relatively diminutive size by galactic standards. The strange shapes of these cosmic misfits help researchers understand how galaxies interact, evolve and occasionally "cannibalise" each other, leaving behind radiant, star-filled scraps. In the new ESO image, Barnard's Galaxy glows beneath a sea of foreground stars in the direction of the constellation of Sagittarius (the Archer). At the relatively close distance of about 1.6 million light-years, Barnard's Galaxy is a member of the Local Group, the archipelago of galaxies that includes our home, the Milky Way. The nickname of NGC 6822 comes from its discoverer, the American astronomer Edward Emerson Barnard, who first spied this visually elusive cosmic islet using a 125-millimetre aperture refractor in 1884. Astronomers obtained this latest portrait using the Wide Field Imager (WFI) attached to the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in northern Chile. Even though Barnard's Galaxy lacks the majestic spiral arms and glowing, central bulge that grace its big galactic neighbours, the Milky Way, the Andromeda and the Triangulum galaxies, this dwarf galaxy has no shortage of stellar splendour and pyrotechnics. Reddish nebulae in this image reveal regions of active star formation, where young, hot stars heat up nearby gas clouds. Also prominent in the upper left of this new image is a striking bubble-shaped nebula. At the nebula's centre, a clutch of massive, scorching stars send waves of matter smashing into the surrounding interstellar material, generating a glowing structure that appears ring-like from our perspective

  2. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  3. The peculiar Na-O anticorrelation of the bulge globular cluster NGC 6440

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Villanova, S.; Geisler, D.; Saviane, I.; Dias, B.; Cohen, R. E.; Mauro, F.

    2017-08-01

    Context. Galactic globular clusters (GCs) are essential tools for understanding the earliest epoch of the Milky Way, since they are among the oldest objects in the Universe and can be used to trace its formation and evolution. Current studies using high-resolution spectroscopy for many stars in each of a large sample of GCs allow us to develop a detailed observational picture of their formation and their relation with the Galaxy. However, it is necessary to complete this picture by including GCs that belong to all major Galactic components, including the bulge. Aims: Our aim is to perform a detailed chemical analysis of the bulge GC NGC 6440 in order to determine if this object has multiple populations (MPs) and investigate its relation with the bulge of the Milky Way and with the other Galactic GCs, especially those associated with the bulge, which are largely poorly studied. Methods: We determined the stellar parameters and the chemical abundances of light elements (Na, Al), iron-peak elements (Fe, Sc, Mn, Co, Ni), α-elements (O, Mg, Si, Ca, Ti) and heavy elements (Ba, Eu) in seven red giant members of NGC 6440 using high-resolution spectroscopy from FLAMES-UVES. Results: We found a mean iron content of [Fe/H] =-0.50 ± 0.03 dex in agreement with other studies. We found no internal iron spread. On the other hand, Na and Al show a significant intrinsic spread, but the cluster has no significant O-Na anticorrelation nor does it exhibit a Mg-Al anticorrelation. The α-elements show good agreement with the bulge field star trend, although they are at the high alpha end and are also higher than those of other GCs of comparable metallicity. The heavy elements are dominated by the r-process, indicating a strong contribution by SNeII. The chemical analysis suggests an origin similar to that of the bulge field stars.

  4. An Infrared Search for Extinguished Supernovae in Starburst Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossan, B.; Spillar, E.; Tripp, R.

    1999-08-01

    IR and radio-band observations of heavily extinguished regions in starburst galaxies suggest a high supernova (SN) rate associated with such regions. Optically measured SN rates may therefore underestimate the total SN rate by factors of up to 10, as a result of the very high extinction ({ital A}{sub {ital B}}thinsp{approximately}thinsp10{endash}20 mag) to core-collapse SNe in starburst regions. The IR/radio SN rates come from a variety of indirect means, however, which suffer from model dependence and other problems. We describe a direct measurement of the SN rate from a regular patrol of starburst galaxies done with {ital K}{prime}-band imaging to minimizemore » the effects of extinction. A collection of {ital K}{prime}-band measurements of core-collapse SNe near maximum light is presented. Such measurements (excluding 1987A) are not well reported in the literature. Results of a preliminary {ital K}{prime}-band search, using the MIRC camera at the Wyoming Infrared Observatory and an improved search strategy using the new ORCA optics, are described. A monthly patrol of a sample of {ital IRAS} bright (mostly starburst) galaxies within 25 Mpc should yield 1{endash}6 SNe yr{sup {minus}1}, corresponding to the range of estimated SN rates. Our initial MIRC search with low resolution (2&arcsec;2 pixels) failed to find extinguished SNe in the {ital IRAS} galaxies, limiting the SN rate outside the nucleus (at greater than 15{double_prime} radius) to less than 3.8 far-IR SN rate units (SNe per century per 10{sup 10} {ital L}{sub {circle_dot}} measured at 60 and 100 {mu}m, or FIRSRU) at 90{percent} confidence. The MIRC camera had insufficient resolution to search nuclear starburst regions, where starburst and SN activity is concentrated; therefore, we were unable to rigorously test the hypothesis of high SN rates in heavily obscured star-forming regions. We conclude that high-resolution nuclear SN searches in starburst galaxies with small fields are more productive than

  5. Characterizing bar structures: application to NGC 1300, NGC 7479 and NGC 7723

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Muñoz-Tuñón, C.; Varela, A. M.; Prieto, M.

    2000-09-01

    Detailed surface photometry has been carried out for three barred galaxies with use of high resolution CCD broad-band images in the B, V and I bands. Using azimuthal luminosity profiles and their decomposition into Fourier Series, the structural parameters (length and strength) of the bars in the three galaxies have been obtained. We have also inferred the corotation radii (CR) using information available in the B-I and B-V colour index profiles. The regions selected for the CR were the ends of the bars, or a little further out and with an older stellar population than the su rrounding regions. The resulting values, RCR ~ 100''+/-10'' for NGC 1300, RCR ~ 63'' for NGC 7479 and RCR ~ 23'' for NGC 7723, are in agreement with those previously reported in the literature. This demonstrates the utility of accurate photometry for this type of observation.

  6. Acceleration of ultrahigh-energy cosmic rays in starburst superwinds

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis Alfredo

    2018-03-01

    The sources of ultrahigh-energy cosmic rays (UHECRs) have been stubbornly elusive. However, the latest report of the Pierre Auger Observatory provides a compelling indication for a possible correlation between the arrival directions of UHECRs and nearby starburst galaxies. We argue that if starbursts are sources of UHECRs, then particle acceleration in the large-scale terminal shock of the superwind that flows from the starburst engine represents the best known concept model in the market. We investigate new constraints on the model and readjust free parameters accordingly. We show that UHECR acceleration above about 1 011 GeV remains consistent with observation. We also show that the model could accommodate hard source spectra as required by Auger data. We demonstrate how neutrino emission can be used as a discriminator among acceleration models.

  7. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  8. Uv-Optical Spectra and Imagery of the Bubble Nebula NGC 7635

    NASA Astrophysics Data System (ADS)

    Walter, Donald

    1997-07-01

    We propose to acquire UV-optical STIS spectra and WFPC2 imagery of the wind-blown Bubble Nebula NGC 7635. This object is significant to our understanding of galactic chemical evolution, star formation {possibly triggered by radiative implosion}, the mass-loss history of precursors to supernovae, the effect of wind-driven shocks on the ISM and the process of ionization and photoevaporation of high density knots {possibly HH objects} in the presence of an intense stellar wind and radiation field. The ener getic environment of NGC 7635 is more extreme and its features have evolved on a different time scale than in more quiescent objects studied with HST {e.g. Orion and M16}. HST is essential to our study in order to achieve high spatial resolution and ac cess to the UV region of the spectrum. The nebula's nearly spherical shell is the result of a recent { < 10^6 years} stellar mass-loss event and is the best young, clearly observed bubble available for study. We will exam in e the ionization front at the r im of the bubble, the extent to which it is shock-driven and the scale of the photoevaporative flow off the face of the molecular cloud. We will resolve high density knots down to a size of 2.1 x 10^15 cm {140 au}, searching for protostellar objects. STIS U V spectra will allow us to calculate the first accurate C/H abundance in the Perseus arm and test for the presence of a galactic abundance gradient. Finally, with our HST data we will compare our observational results with our radiative shock-model predi ctions.

  9. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, M.; Weisz, D.; Grocholski, A.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age ofmore » NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.« less

  10. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  11. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  12. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, G.; Vrtilek, J. M.; David, L.

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, amore » 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.« less

  13. Near-Infrared Continuum and 3.3um PAH Imaging of the Starburst Ring in the Type I Seyfert Galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Mazzarella, J.; Voit, G.; Soifer, B.; Matthews, K.; Graham, J.; Armus, L.; Shupe, D.

    1993-01-01

    High resolution near-infrared images of the type 1 Seyfert Galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct images are relatively featureless, but residual images created by subtacting a smooth model based on best-fitting elliptical isoophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3.

  14. On the missing second generation AGB stars in NGC 6752

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo

    2014-11-01

    In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along

  15. Galaxy evolution in groups. NGC 3447/NGC 3447A: the odd couple in LGG 225

    NASA Astrophysics Data System (ADS)

    Mazzei, P.; Marino, A.; Rampazzo, R.; Plana, H.; Rosado, M.; Arias, L.

    2018-02-01

    Context. Local Group (LG) analogs (LGAs) are galaxy associations dominated by a few bright spirals reminiscent of the LG. The NGC 3447/NGC 3447A system is a member of the LGG 225 group, a nearby LGA. This system is considered a physical pair composed of an intermediate-luminosity late-type spiral, NGC 3447 itself, and an irregular companion, NGC 3447A, linked by a faint, short filament of matter. A ring-like structure in the NGC 3447 outskirts has been emphasised by Galaxy Evolution Explorer (GALEX) observations. Aims: This work aims to contribute to the study of galaxy evolution in low-density environments, a favourable habitat to highly effective encounters, shedding light on the evolution of the NGC 3447/NGC 3447A system. Methods: We performed a multi-λ analysis of the surface photometry of this system to derive its spectral energy distribution and structural properties using ultraviolet (UV), Swift UVOT, and optical Sloan Digital Sky Survey (SDSS) images complemented with available far-IR observations. We also characterised the velocity field of the pair using two-dimensional Hα kinematical observations of the system obtained with PUMA Fabry-Perot interferometer at the 2.1 m telescope of San Pedro Mártir (Mexico). All these data are used to constrain smooth particle hydrodynamic simulations with chemo-photometric implementation to shed light on the evolution of this system. Results: The luminosity profiles, from UV to optical wavelengths, are all consistent with the presence of a disc extending and including NGC 3447A. The overall velocity field does not emphasise any significant rotation pattern, rather a small velocity gradient between NGC 3447 and NGC 3447A. Our simulation, detached from a large grid explored to best-fit the global properties of the system, suggests that this arises from an encounter between two halos of equal mass. Conclusions: NGC 3447 and NGC 3447A belong to the same halo, NGC 3447A being a substructure of the same disk including NGC

  16. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  17. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  18. Nascent starbursts: a missing link in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Roussel, Helene; Beck, Rainer; Condon, Jim; Helou, George; Smith, John-David

    2005-06-01

    We have identified a rare category of galaxies characterized by an extreme deficiency in synchro- tron radiation, relative to dust emission, and very high dust temperatures. We studied in detail the most extreme such object, and concluded in favor of a starburst just breaking out, less than one megayear old, in a galaxy having undergone no major star formation episode in the last 100 Myr. Such systems offer a perfect setting to study the initial conditions and early dynamics of starbursts and understand better the regulation of the infrared-radio continuum correlation in galaxies. For the prototypical nascent starburst, the mid-infrared spectrum is quite peculiar, suggesting tran- sient dust species and high optical depth; tracers of dust and molecular gas are the only indicators of unusual activity, and the active regions are likely very compact and dust-bounded, suppressing ionization. Only Spitzer data can provide the needed physical diagnostics for such regions. A sample of 25 nascent starbursts was drawn from the cross-correlation of the IRAS Faint Source Catalog and the NVSS VLA radio survey, and carefully selected based on our multi-wavelength VLA maps to span a range of infrared to radio ratios and luminosities. This sample allows a first step beyond studying prototypes toward a statistical analysis addressing systematic physical pro- perties, classification and search for starburst development sequences. We propose imaging and spectroscopic observations from 3 to 160 microns to characterize the state of the interstellar medium and the gas and dust excitation origin. Our aim is to learn from these unique systems how a star formation burst may develop in its very earliest phases, how it affects the fueling material and the host galaxy. Acquired observations of the radio continuum, cold molecular gas and tracers of shocks and HII regions will help us interpret the rich Spitzer data set and extract a coherent picture of the interstellar medium in our targets.

  19. The origin of the X-ray, radio and H I structures in the NGC 5903 galaxy group

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Kolokythas, Konstantinos; Kantharia, Nimisha G.; Raychaudhury, Somak; David, Laurence P.; Vrtilek, Jan M.

    2018-02-01

    The NGC 5903 galaxy group is a nearby (∼30 Mpc) system of ∼30 members, dominated by the giant ellipticals NGC 5903 and NGC 5898. The group contains two unusual structures: a ∼110 kpc long H I filament crossing NGC 5903 and a ∼75 kpc wide diffuse, steep-spectrum radio source of unknown origin that overlaps NGC 5903 and appears to be partly enclosed by the H I filament. Using a combination of Chandra, XMM-Newton, Giant Meterwave Radio Telescope (GMRT) and Very Large Array (VLA) observations, we detect a previously unknown ∼0.65 keV intra-group medium filling the volume within 145 kpc of NGC 5903 and find a loop of enhanced X-ray emission extending ∼35 kpc south-west from the galaxy, enclosing the brightest part of the radio source. The northern and eastern parts of this X-ray structure are also strongly correlated with the southern parts of the H I filament. We determine the spectral index of the bright radio emission to be α _{150}^{612} = 1.03 ± 0.08, indicating a radiative age >360 Myr. We discuss the origin of the correlated radio, X-ray and H I structures, either through an interaction-triggered active galactic nucleus (AGN) outburst with enthalpy 1.8 × 1057 erg, or via a high-velocity collision between a galaxy and the H I filament. While neither scenario provides a complete explanation, we find that an AGN outburst is the most likely source of the principal X-ray and radio structures. However, it is clear that galaxy interactions continue to play an important role in the development of this relatively highly evolved galaxy group. We also resolve the question of whether the group member galaxy ESO 514-3 hosts a double-lobed radio source, confirming that the source is a superposed background AGN.

  20. THE SUZAKU VIEW OF THE DISK-JET CONNECTION IN THE LOW-EXCITATION RADIO GALAXY NGC 6251

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, D. A.; Kraft, R. P.; Lee, J. C.

    We present results from an 87 ks Suzaku observation of the canonical low-excitation radio galaxy (LERG) NGC 6251. We have previously suggested that LERGs violate conventional active galactic nucleus unification schemes: they may lack an obscuring torus and are likely to accrete in a radiatively inefficient manner, with almost all of the energy released by the accretion process being channeled into powerful jets. We model the 0.5-20 keV Suzaku spectrum with a single power law of photon index {Gamma} = 1.82{sup +0.04} {sub -0.05}, together with two collisionally ionized plasma models whose parameters are consistent with the known galaxy- andmore » group-scale thermal emission. Our observations confirm that there are no signatures of obscured, accretion-related X-ray emission in NGC 6251, and we show that the luminosity of any such component must be substantially sub-Eddington in nature.« less

  1. The very massive star content of the nuclear star clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.; Crowther, Paul A.; Calzetti, Daniela

    2017-11-01

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters. Calzetti et al. (2015) find that the two clusters have an age of 1 Myr, in contradiction to the age of 3-5 Myr inferred from the presence of Wolf-Rayet (W-R) spectral features. We use Hubble Space Telescope (HST) far-ultraviolet (FUV) and ground-based optical spectra to show that the cluster stellar features arise from very massive stars (VMS), with masses greater than 100 M⊙, at an age of 1-2 Myr. We discuss the implications of this and show that the very high ionizing flux can only be explained by VMS. We further discuss our findings in the context of VMS contributing to He ii λ1640 emission in high redshift galaxies, and emphasize that population synthesis models with upper mass cut-offs greater than 100 M⊙ are crucial for future studies of young massive clusters.

  2. A PAndAS view of M31 dwarf elliptical satellites: NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; McConnachie, A. W.; Bernard, E. J.; Fardal, M. A.; Ibata, R. A.; Lewis, G. F.; Martin, N. F.; Navarro, J. F.; Noël, N. E. D.; Pasetto, S.

    2014-12-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC 147 and NGC 185. Our wide-field, homogeneous photometry allows us to construct deep colour-magnitude diagrams which reach down to ˜3 mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of μg ˜ 32 mag arcsec-2 and show that they have much larger extents (˜5 kpc radii) than previously recognized. While NGC 185 retains a regular shape in its peripheral regions, NGC 147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sérsic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC 147 has an effective radius almost three times that of NGC 185. In both cases, the effective radii that we calculate are larger by a factor of ˜2 compared to most literature values. We also calculate revised total magnitudes of Mg = -15.36 ± 0.04 for NGC 185 and Mg = -16.36 ± 0.04 for NGC 147. Using photometric metallicities computed for RGB stars, we find NGC 185 to exhibit a metallicity gradient of [Fe/H] ˜ -0.15 dex kpc-1 over the radial range 0.125-0.5 deg. On the other hand, NGC 147 exhibits almost no metallicity gradient, ˜-0.02 dex kpc-1 from 0.2 to 0.6 deg. The differences in the structure and stellar populations in the outskirts of these systems suggest that tidal influences have played an important role in governing the evolution of NGC 147.

  3. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-04-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  4. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-07-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh ENERGY cosmic rays through the state-of-the-art simulation framework CRPROPA 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  5. NGC 6334 and NGC 6357. Insights from spectroscopy of their OB star populations

    NASA Astrophysics Data System (ADS)

    Russeil, D.; Adami, C.; Bouret, J. C.; Hervé, A.; Parker, Q. A.; Zavagno, A.; Motte, F.

    2017-11-01

    Aims: The formation of high-mass stars is still debated. For this reason, several projects such as Herschel-HOBYS are focussed on the study of the earliest phases of massive star formation. As a result, massive star-forming complexes such as NGC 6334 and NGC 6357 have been observed in the far-infrared to study their massive dense cores where massive stars are expected to form. However, to better characterise the environments of these cores we need to understand the previous massive star formation history. To better characterise the environment of these massive dense cores we study the previous high-mass star formation and how these stars act on their environments. Methods: This study is based on the spectral classification of the OB stars identified towards NGC 6334 and NGC 6357 with spectra taken with the AAOmega spectrograph on the Anglo-Australian Telescope (AAT). From the subsequent spectral classification of 109 stars across these regions we were able to evaluate the following: distance, age, mass, global star-forming efficiency (SFE), and star formation rate (SFR) of the regions. The physical conditions of the ionised gas for both complexes was also derived. Results: We confirm that NGC 6334 and NGC 6357 belong to the Saggitarius-Carina arm which, in this direction, extends from 1 kpc to 2.2 kpc. From the location of the stars in Hertzprung-Russell diagram we show that stars older than 10 Myr are broadly spread across these complexes, while younger stars are mainly located in the H II regions and stellar clusters. Our data also suggests that some of the young stars can be considered runaway stars. We evaluate a SFE of 0.019-0.007+0.008 and 0.021-0.003+0.004 and a SFR of 1.1 × 103 ± 300 M⊙ Myr-1 and 1.7 × 103 ± 400 M⊙ Myr-1 for NGC 6334 and NGC 6357, respectively. We note that 29 OB stars have X-ray counterparts, most of them belonging to NGC 6357. This suggests that molecular clouds in NGC 6357 are more impacted by X-ray flux and stellar winds than in

  6. Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 μM Samples

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.

    2001-06-01

    We report the results of a spectropolarimetric survey of the CfA and 12 μm samples of Seyfert 2 (S2) galaxies. Polarized (hidden) broad-line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12 μm S2 galaxy sample shows a significantly higher incidence of HBLRs (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden active galactic nuclei. Compared to the non-HBLR S2 galaxies, the HBLR S2 galaxies display distinctly higher radio power relative to their far-infrared output and hotter dust temperature as indicated by the f25/f60 color. However, the level of obscuration is indistinguishable between the two types of S2 galaxies. These results strongly support the existence of two intrinsically different populations of S2 galaxies: one harboring an energetic, hidden S1 nucleus with a broad-line region and the other a ``pure'' S2 galaxy, with a weak or absent S1 nucleus and a strong, perhaps dominating starburst component. Thus, the simple purely orientation-based unification model is not applicable to all Seyfert galaxies.

  7. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506

    NASA Astrophysics Data System (ADS)

    Sun, Shangyu; Guainazzi, Matteo; Ni, Qingling; Wang, Jingchun; Qian, Chenyang; Shi, Fangzheng; Wang, Yu; Bambi, Cosimo

    2018-05-01

    We present a multi-epoch X-ray spectroscopy analysis of the nearby narrow-line Seyfert I galaxy NGC 5506. For the first time, spectra taken by Chandra, XMM-Newton, Suzaku, and NuSTAR - covering the 2000-2014 time span - are analyzed simultaneously, using state-of-the-art models to describe reprocessing of the primary continuum by optical thick matter in the AGN environment. The main goal of our study is determining the spin of the supermassive black hole (SMBH). The nuclear X-ray spectrum is photoelectrically absorbed by matter with column density ≃ 3 × 1022 cm-2. A soft excess is present at energies lower than the photoelectric cut-off. Both photo-ionized and collisionally ionized components are required to fit it. This component is constant over the time-scales probed by our data. The spectrum at energies higher than 2 keV is variable. We propose that its evolution could be driven by flux-dependent changes in the geometry of the innermost regions of the accretion disk. The black hole spin in NGC ,5506 is constrained to be 0.93± _{ 0.04 }^{0.04} at 90% confidence level for one interesting parameter.

  8. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  9. Buoyant AGN Bubbles in the Quasi-isothermal Potential of NGC 1399

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Forman, William R.; Jones, Christine; Irwin, Jimmy A.; Randall, Scott W.; Churazov, Eugene

    2017-10-01

    The Fornax Cluster is a low-mass cool-core galaxy cluster. We present a deep Chandra study of NGC 1399, the central dominant elliptical galaxy of Fornax. The cluster center harbors two symmetric X-ray cavities coincident with a pair of radio lobes fed by two collimated jets along a north-south axis. A temperature map reveals that the active galactic nucleus (AGN) outburst has created a channel filled with cooler gas out to a radius of 10 kpc. The cavities are surrounded by cool bright rims and filaments that may have been lifted from smaller radii by the buoyant bubbles. X-ray imaging suggests a potential ghost bubble of ≳5 kpc diameter to the northwest. We find that the amount of gas lifted by AGN bubbles is comparable to that which would otherwise cool, demonstrating that AGN-driven outflow is effective in offsetting cooling in low-mass clusters. The cluster cooling timescale is > 30 times longer than the dynamical timescale, which is consistent with the lack of cold molecular gas at the cluster center. The X-ray hydrostatic mass is consistent within 10%, with the total mass derived from the optical data. The observed entropy profile rises linearly, following a steeper slope than that observed at the centers of massive clusters; gas shed by stars in NGC 1399 may be incorporated in the hot phase. However, it is far-fetched for supernova-driven outflow to produce and maintain the thermal distribution in NGC 1399, and it is in tension with the metal content in the hot gas.

  10. Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.

    2018-02-01

    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster’s detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan–M2FS and VLT–FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of ‑48.8 km s‑1 (σ = 5.3 km s‑1 148 stars) and < [{Fe}/{{H}}]> =-0.87 dex (19 stars), but the cluster’s 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster’s low < [{La}/{Eu}]> =-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as ΔY ∼ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.

  11. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 < LIR < 1012 L[special character omitted]) and ultraluminous infrared galaxies (ULIRGs; 1012 < LIR < 1013 L[special character omitted]), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, I first spectroscopically examine U/LIRGs (1011 < LIR < 1013 L[special character omitted]) within the IRAS 2 Jansky Redshift Survey with 0.05 < z < 0.16. Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 < z < 0.16. I find evidence that the nuclear starburst forms first in U/LIRGs, and also find that U/LIRGs with relatively similar SFRs show

  12. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  13. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less

  14. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  15. Highlights And Shadows Of High Redshift Starbursts: A Herschel­Fmos Joint Effort

    NASA Astrophysics Data System (ADS)

    Puglisi, Annagrazia

    2017-06-01

    Starburst galaxies represent a critical stage in galaxy evolution as they are the likely progenitors of passively evolving ellipticals. The properties of high-redshift starbursts are however still debated as it is not clear to which extent their vigorous star formation rate is caused by an enhanced gas fraction or an enhanced star formation efficiency, and what physical processes trigger such violent activity. Our study of the rest-frame optical spectra from the FMOS-COSMOS survey of twelve z 1.6 Herschel starbursts combined with a rich ancillary data-set from UV to ALMA, is shedding light on some of these questions. By measuring the nebular extinction from different indicators, we find that 90% of their extreme SFR arises from an heavily obscured component which is thick in the optical. We also measure their gas-phase metallicity, showing that starbursts are metal-rich outliers from the metallicity-SFR anticorrelation observed at fixed stellar mass for the main sequence population. Our findings are consistent with a major merger origin for the starburst event. I will present this study discussing its implications on our interpretation of the high-redshift starbursts physics. I will also briefly discuss possible extensions of this work with the future PFS survey and how we can take advantage of the IFU capabilities of JWST/NIRspec to unveil the complex structure of these elusive systems.

  16. Unveiling the Role of Galactic Rotation on Star Formation

    NASA Astrophysics Data System (ADS)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  17. WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu

    2012-08-15

    We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. Utilizing 85 spectroscopic binary orbits out of a complete sample of 129 detected binary members, we study the cluster binary frequency and the distributions of binary orbital elements among the main-sequence (MS), giant, and blue straggler (BS) populations. The results are derived from our ongoing radial velocity survey of the cluster, which spans in magnitude from the brightest stars in the cluster to V = 16.5 (about 1.1-0.9 M{sub Sun} ), and extends to a projected radius of 17 pc ({approx}13 coremore » radii). Our detectable binaries have periods ranging from a few days to of order 10{sup 4} days, and thus are hard binaries that dynamically power the cluster. The MS solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We observe a global solar-type MS hard-binary frequency in NGC 188 of 23% {+-} 2%, which when corrected for incompleteness results in a frequency of 29% {+-} 3% for binaries with periods less than 10{sup 4} days. For MS hard binaries in the cluster, we observe a log-period distribution that rises toward our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises toward lower-mass companions. Importantly, the NGC 188 BS binaries show significantly different characteristics than the solar-type MS binaries in NGC 188. We observe a BS hard-binary frequency of 76% {+-} 19%, three times that of the MS. The excess of this binary frequency over the normal MS binary frequency is valid at the >99% confidence level. Furthermore, the BS binary eccentricity-log-period distribution is distinct from that of the MS at the 99% confidence level, with the majority of the BS binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution

  18. Measuring AGN & Starburst Wind Properties with ALMA

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Chatterjee, Suchetana; Nyland, Kristina; Kimball, Amy; Mason, Brian; Rocha, Graca

    2018-01-01

    The Sunyaev-Zeldovich (SZ) effect is one of the few ways to constrain the energetically-dominant hot component of winds from AGN and starbursts. Studies of stacked data from Planck and ground-based mm/submm single dish telescopes have found significant detections of SZ from quasars, but contamination from other phenomena are hard to rule out given the large beams of single dishes. Direct detection of these winds is just feasible with observations with current facilities (VLA and ALMA), but with ngVLA we should be able to go beyond detections, and start to map the SZ effect around these objects. In this poster I will present predictions for the detectability of SZ decrements from AGN and hyperluminous starbursts using ngVLA parameters.

  19. UVBY beta photometry of the young southern cluster NGC3293 and comparison with other young clusters

    NASA Astrophysics Data System (ADS)

    Shobbrook, R. R.

    1980-09-01

    Stromgren uvby photometry has been obtained for 42 members and beta photometry for 37 members of the young southern galactic cluster NGC 3293. The distance modulus obtained from using Crawford's beta/M(V) calibration is 12.75 mag, corresponding to a distance of 3.55 kpc. Comparison of the colour/colour and the HR diagrams of NGC 3293 with those of the five other young northern and southern clusters reveals large differences between the clusters which may possibly be due to metal abundance variations across the Galaxy. Apparently correlated with this effect is a variation of the luminosities of the lower main sequences over about 1 mag. The fainter stars in the southern clusters appear to be an average of 0.7 mag brighter than those in the northern clusters, but it is not certain at present how much of this difference is due to possible systematic errors in the beta index zero point between the northern and southern hemispheres.

  20. Isolated ellipticals and their globular cluster systems. III. NGC 2271, NGC 2865, NGC 3962, NGC 4240, and IC 4889

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Alabi, A.; Richtler, T.; Lane, R. R.

    2015-05-01

    As tracers of star formation, galaxy assembly, and mass distribution, globular clusters have provided important clues to our understanding of early-type galaxies. But their study has been mostly constrained to galaxy groups and clusters where early-type galaxies dominate, leaving the properties of the globular cluster systems (GCSs) of isolated ellipticals as a mostly uncharted territory. We present Gemini-South/GMOS g'i' observations of five isolated elliptical galaxies: NGC 3962, NGC 2865, IC 4889, NGC 2271, and NGC 4240. Photometry of their GCSs reveals clear color bimodality in three of them, but remains inconclusive for the other two. All the studied GCSs are rather poor with a mean specific frequency SN ~ 1.5, independently of the parent galaxy luminosity. Considering information from previous work as well, it is clear that bimodality and especially the presence of a significant, even dominant, population of blue clusters occurs at even the most isolated systems, which casts doubts on a possible accreted origin of metal-poor clusters, as suggested by some models. Additionally, we discuss the possible existence of ultra-compact dwarfs around the isolated elliptical NGC 3962. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Globular cluster photometry is available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A59Appendices are available in

  1. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NASA Astrophysics Data System (ADS)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-12-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galactocentric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+ 0.1, and underabundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+ 0.1 in the centre to ˜+ 0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended SFH. This would be the case if the galaxy originated from a Large Magellanic Cloud-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  2. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  3. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] < -1.5 are all α-enhanced at about the same level as Milky Way GCs. Their Na abundances are also generally enhanced relative to Milky Way halo stars, suggesting that these extragalactic GCs resemble their Milky Way counterparts in containing large numbers of Na-rich stars. For [Fe/H] > -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] < -2.0 account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack

  4. Supra-galactic colour patterns in globular cluster systems

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  5. The Starburst-AGN connection: quenching the fire and feeding the monster

    NASA Astrophysics Data System (ADS)

    Melnick, Jorge; Telles, Eduardo; De Propris, Roberto; Chu, Zhang-Hu

    2015-10-01

    The merger of two spiral galaxies is believed to be one of the main channels for the production of elliptical and early-type galaxies. In the process, the system becomes an (ultra) luminous infrared galaxy, or (U)LIRG, that morphs to a quasar, to a K+A galaxy, and finally to an early-type galaxy. The time scales for this metamorphosis are only loosely constrained by observations. In particular, the K+A phase should follow immediately after the quasi stellar object (QSO) phase during which the dust and gas remaining from the (U)LIRG phase are expelled by the active galactic nucleus (AGN). An intermediate class of QSOs with K+A spectral signatures, the post-starburst QSOs (PSQ), may represent the transitional phase between QSOs and K+As. We have compiled a sample of 72 bona fide z < 0.5 PSQ from the SDSS DR7 QSO catalogue. We find the intermediate age populations in this sample to be on average significantly weaker and metal poorer than their putative descendants, the K+A galaxies. The typical spectral energy distribution of PSQ is well fitted by three components: starlight; an obscured power-law; and a hot dust component required to reproduce the mid-IR fluxes. From the slope and bolometric luminosity of the power-law component we estimate typical masses and accretion rates of the AGN, but we find little evidence of powerful radio-loud or strong X-ray emitters in our sample. This may indicate that the power-law component originates in a nuclear starburst rather than in an AGN, as expected if the bulk of their young stars are still being formed, or that the AGN is still heavily enshrouded in dust and gas. We find that both alternatives are problematic and that more and better optical, X-ray, and mm-wave observations are needed to elucidate the evolutionary history of PSQ.

  6. Low-Luminosity AGN As Analogues of Galactic Black Holes in the Low/Hard State: Evidence from X-Ray Timing of NGC 4258

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Uttley, P.

    2005-01-01

    We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.

  7. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  8. Hubble Hotbed of Vigorous Star Formation

    NASA Image and Video Library

    2017-12-08

    This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars more than 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times farther away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars. Image credit: ESA/Hubble & NASA, Aloisi, Ford; Acknowledgement: Judy Schmidt

  9. On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram

    NASA Astrophysics Data System (ADS)

    Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han; Sun, Mou-Yuan; Zhang, Ji-Xian

    2018-06-01

    The reprocessing scenario is widely adopted in literature to explain the observed tight inter-band correlation and short lags in the UV/optical variations of active galactic nuclei (AGNs). In this work we look into the color variability of the famous Seyfert galaxy NGC 5548 with high-quality Swift multi-band UV/optical light curves. We find the color variation of NGC 5548 is clearly timescale-dependent, in a way that it is more prominent on shorter timescales. This is similar to that previously detected in quasar samples, but for the first time in an individual AGN. We show that while a reprocessing model with strict assumptions on the driving source and the disk size can apparently match the observed light curves and inter-band lags, it fails to reproduce the observed timescale dependency in the color variation. Such discrepancy raises a severe challenge to, and can hardly be reconciled under the widely accepted reprocessing diagram. It also demonstrates that the timescale dependency of the color variation is uniquely powerful in probing the physics behind AGN UV/optical variations.

  10. The case of missing CO-13 in mergers

    NASA Technical Reports Server (NTRS)

    Casoli, Fabienne; Dupraz, Christophe; Combes, F.

    1993-01-01

    We present a comparison of the CO-13 and CO-12 emissions of six systems of merging galaxies: NGC 828, NGC 3256, NGC 4194, NGC 6240, Arp 220, and Arp 299. The observations were made in both J=1-0 and J=2-1 transitions with the IRAM 30 m and SEST 15 m telescopes. In all galaxies but NGC 828, the CO-13 is much weaker than in spiral galaxies. The average emissivity ratios measured at the few kiloparsec scale are: CO-12(1-0)/CO-13(1-0) approx. equals 30, CO-12(2-1)/CO-13(2-1) approx. equals 40. These values are significantly larger than those usually measured in normal spiral galaxies, which are always between 5 and 15 for the J=1-0 line. We show that such a peculiar behavior cannot be interpreted as due to the dominant presence of diffuse gas and it cannot be attributed to optically thin CO emission either. The faint CO-13 emission of mergers must result from either an underabundance of CO-13 or an overabundance of CO-12. They may be accounted for by different mechanisms: CO-13 molecules are more easily photodissociated than CO-12 ones - however our observations seem to rule out physical conditions characteristic of photodissociation regions; in the course of the merging, large amounts of unprocessed gas, with a high (CO-12/CO-13) abundance ratio, are driven from the external regions of the progenitor galaxies to the new nucleus - this could increase the (CO-12/CO-13) ratio by a factor of 2; the interstellar medium can also be quickly enriched in C-12 (thus in CO-12) by a factor of 2, due to selective nucleosynthesis of this isotope (vs. C-13) in the massive stars born during the starburst. The last two processes can thus significantly contribute to the weakness of the CO-13 lines. The high CO-13-to-CO-12 line ratios that we have measured are due to the deep transformations that take place in the interstellar medium during the merging and the starburst: indeed, the only object with nearly normal line ratios, NGC 828, appears less perturbed and active in star formation

  11. Distribution and motions of atomic hydrogen in lenticular galaxies. X - The blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Van Woerden, H.; Van Driel, W.; Braun, R.; Rots, A. H.

    1993-01-01

    Results of the mapping of the blue gas-rich S0 galaxy NGC 5102 in the 21-cm H I line with a spatial resolution of 34 x 37 arcsec (delta(alpha) x Delta(delta)) and a velocity resolution of 12 km/s are presented. The H I distribution has a pronounced central depression of 1.9 kpc radius, and most of the H I is concentrated in a 3.6 kpc wide ring with an average radius of 3.7 kpc, assuming a distance of 4 Mpc for NGC 5102. The maximum azimuthally averaged H I surface density in the ring is 1.4 solar mass/sq pc, comparable to that found in other S0 galaxies. The HI velocity field is quite regular, showing no evidence for large-scale deviations from circular rotation, and the H I is found to rotate in the plane of the stellar disk. Both the H I mass/blue luminosity ratio and the radial H I distribution are similar to those in early-type spirals. The H I may be an old disk or it may have been acquired through capture of a gas-rich smaller galaxy. The recent starburst in the nuclear region, which gave the galaxy its blue color, may have been caused by partial radial collapse of the gas disk, or by infall of a gas-rich dwarf galaxy.

  12. On the extended stellar structure around NGC 288

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-01-01

    We report on observational evidence of an extra-tidal clumpy structure around NGC 288 from homogeneous coverage of a large area with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) PS1 data base. The extra-tidal star population has been disentangled from that of the Milky Way (MW) field by using a cleaning technique that successfully reproduces the stellar density, luminosity function and colour distributions of MW field stars. We have produced the cluster stellar density radial profile and a stellar density map from independent approaches, and we found the results to be in excellent agreement - the feature extends up to 3.5 times further than the cluster tidal radius. Previous works based on shallower photometric data sets have speculated on the existence of several long tidal tails, similar to that found in Pal 5. The present outcome shows that NGC 288 could hardly have such tails, but it favours the notion that the use of interactions with the MW tidal field has been a relatively inefficient process for stripping stars off the cluster. These results point to the need for a renewed overall study of the external regions of Galactic globular clusters (GGCs) in order to reliably characterize them. It will then be possible to investigate whether there is any connection between detected tidal tails, extra-tidal stellar populations and extended diffuse halo-like structures, and the dynamical histories of GGCs in the Galaxy.

  13. Black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these

  14. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  15. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙} yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  16. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  17. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Davis, Timothy A.; Nguyen, Dieu D.; Seth, Anil; Wrobel, Joan M.; Kamble, Atish; Lacy, Mark; Alatalo, Katherine; Karovska, Margarita; Maksym, W. Peter; Mukherjee, Dipanjan; Young, Lisa M.

    2017-08-01

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M ⊙) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12-18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2-1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2-1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.

  18. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyland, Kristina; Lacy, Mark; Davis, Timothy A.

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M {sub ⊙}) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12–18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2–1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked,more » extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2–1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.« less

  19. STIS Observations of the Intrinsic UV Absorption in the Dwarf Seyfert Nucleus of NGC 4395

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven

    2002-07-01

    The Sd IV dwarf galaxy NGC 4395 is one of the nearest {d 4.2 Mpc} and least luminous {L_bol 10^41 ergs s^-1} examples of Seyfert 1 galaxies. Furthermore, it is the only known example of an active nucleus within a bulgeless, extreme late-type galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines and highly variable X-ray emission, presumably powered by a small {few x 10^4 M_odot} black hole. Furthermore, we have discovered evidence for blueshifted, intrinsic absorption lines in the UV {C IV LambdaLambda1548.2, 1550.8}, while X-ray spectra show the presence of bound-free edges from O VII and O VIII. We propose HST/STIS echelle observations to determine the properties {ionization states, column densities, velocity coverages, covering factors} of the intrinsic UV absorbers in NGC 4395. Due to the high covering factor of its narrow-line emission, NGC 4395 offers the best case for testing the connection between the absorbers and the narrow-line region {NLR}. Furthermore, an empirical comparison of its absorption properties with those in higher luminosity active galactic nuclei {AGN} will provide valuable constraints on dynamical models of the absorbers, which make predictions that are strongly dependent on luminosity and/or central black hole mass.

  20. Final Technical Report

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1997-01-01

    We have analysed ROSAT X-ray data for a small sample of starburst galaxies in order to understand the physical origin of the X-ray emission and probe the physics and phenomenology of galactic-scale outflows of hot gas ('superwinds') that are driven by tile mechanical energy supplied by the ensemble of supernovae in the starbursts. We have found that the X-ray emission in the ROSAT energy band comes from a population of compact hard sources (most likely X-ray binaries) and hot diffuse gas with a temperature ranging from a few to ten million K. This gas is spatially-extended on galactic scales and its properties are entirely consistent with theoretical expectations for a starburst-driven superwind. The starbursts studied span a range of roughly 1000 in bolometric luminosity and are hosted by galaxies ranging from dwarfs through L* spirals through ma,ior galactic mergers. The X-ray properties of these o@jecls scale in a natural way with the luminosity of tile starburst: more powerful starbursts are more X-ray luminous and create hot outflowing gas whose energy content is likewise larger.

  1. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the > 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an

  2. The Lesser Role of Starbursts in Star Formation at z = 2

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; Cava, A.; Elbaz, D.; Feltre, A.; Fontana, A.; Förster Schreiber, N. M.; Franceschini, A.; Genzel, R.; Grazian, A.; Gruppioni, C.; Ilbert, O.; Le Floch, E.; Magdis, G.; Magliocchetti, M.; Magnelli, B.; Maiolino, R.; McCracken, H.; Nordon, R.; Poglitsch, A.; Santini, P.; Pozzi, F.; Riguccini, L.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2011-10-01

    Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 < z < 2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than four times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star-forming galaxies and account for only 10% of the cosmic SFR density at z ~ 2. Only when limited to SFR > 1000 M sun yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.

  3. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  4. B, V Photometry for ~19,000 Stars in and around the Magellanic Cloud Globular Clusters NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M.

    2014-06-01

    Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ~ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.

  5. Galactic Halos of Hydrogen

    NASA Image and Video Library

    2005-07-25

    This image shows two companion galaxies, NGC 4625 top and NGC 4618 bottom, and their surrounding cocoons of cool hydrogen gas purple. The huge set of spiral arms on NGC 4625 blue was discovered by the ultraviolet eyes of NASA GALEX.

  6. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  7. Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt

    2015-10-01

    We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.

  8. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    NASA Astrophysics Data System (ADS)

    Duah Asabere, B.; Horellou, C.; Jarrett, T. H.; Winkler, H.

    2016-07-01

    Context. Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. Aims: In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 μm and Spitzer mid-infrared spectra. Methods: By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.̋6 to 5.̋5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 μm images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 μm images to estimate the stellar continuum contribution to the emission in the 12 and 22 μm bands. Results: The two galaxies differ markedly in their mid-IR properties. The 3.4 μm brightness distribution can be well represented by the superposition of two Sérsic models in NGC 1316 and by a Sérsic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 μm luminosity, we infer a star-formation rate of ~0.7 M⊙ yr-1 in NGC 1316 and ~7 M⊙ yr-1 in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 μm PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1'-2' of the galaxies. In NGC 1316, the extra-nuclear emission coincides with two dusty regions NW and SE of the nucleus seen in extinction in optical images and where molecular gas is known to reside

  9. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minjin; Ho, Luis C.; Im, Myungshin

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directlymore » responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.« less

  10. Newly discovered globular clusters in NGC 147 and NGC 185 from PAndAS

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Ferguson, A. M. N.; Huxor, A. P.; Mackey, A. D.; Fishlock, C. K.; Irwin, M. J.; Tanvir, N.; Chapman, S. C.; Ibata, R. A.; Lewis, G. F.; McConnachie, A.

    2013-11-01

    Using data from the Pan-Andromeda Archaeological Survey (PAndAS), we have discovered four new globular clusters (GCs) associated with the M31 dwarf elliptical (dE) satellites NGC 147 and NGC 185. Three of these are associated with NGC 147 and one with NGC 185. All lie beyond the main optical boundaries of the galaxies and are the most remote clusters yet known in these systems. Radial velocities derived from low-resolution spectra are used to argue that the GCs are bound to the dwarfs and are not part of the M31 halo population. Combining PAndAS with United Kingdom Infrared Telescope (UKIRT)/WFCAM (Wide-Field Camera) data, we present the first homogeneous optical and near-IR photometry for the entire GC systems of these dEs. Colour-colour plots and published colour-metallicity relations are employed to constrain GC ages and metallicities. It is demonstrated that the clusters are in general metal poor ([Fe/H] < -1.25 dex), while the ages are more difficult to constrain. The mean (V - I)0 colours of the two GC systems are very similar to those of the GC systems of dEs in the Virgo and Fornax clusters, as well as the extended halo GC population in M31. The new clusters bring the GC-specific frequency (SN) to ˜9 in NGC 147 and ˜5 in NGC 185, consistent with values found for dEs of similar luminosity residing in a range of environments.

  11. A Hubble Study of the Peculiar Asymmetry of NGC 949

    NASA Image and Video Library

    2015-05-08

    This image provides the clearest ever view of galaxy NGC 949, which lies over 30 million light-years away in the constellation of Triangulum. The galaxy has an unusual shape, made more obscure due to its inclination. From our point of view, it is difficult to discern exactly what type of galaxy NGC 949 is, but it is certainly a disk galaxy of some kind, most likely a spiral. NGC 949 was first discovered by Sir William Herschel on September 21, 1786, using an 18.7-inch reflecting telescope. The galaxy was one of about 3,000 objects Herschel cataloged as "nebulae" during an intense and systematic deep sky survey, the results of which eventually formed the bulk of the New General Catalogue (NGC). Taken with Hubble’s Advanced Camera for Surveys (ACS), this image shows extraordinary detail. This detail allows us to see a strange asymmetric alignment in the dark lanes of dust that snake across the galaxy. The top-right half of the galaxy appears considerably more marbled with dust in this image; a curious observation explained by stars tending to favor locations towards the center of a galaxy, and dust preferring almost invariably to reside along the galactic plane. When a galaxy is inclined as NGC 949 is, some regions — in this case the top-right — are tipped toward us and the light from the stars we see in these regions has had to travel through more dust. This causes the light to appear redder — the result of the same process that gives the sun’s light a red hue at dusk — or else disappear entirely, making the dust appear more prominent on that side of the galaxy. In the part tipped away from us, the light from the stars has had to pass through much less dust to reach us, so it appears brighter, and the dust is much less prominent. Were it possible to view NGC 949 from the opposite side, the apparent alignment of the dust would be reversed. The scientific advantages of this effect were recently displayed in suitably stunning style in the M31 PHAT mosaic

  12. Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Wilson, G. W.; Draine, B. T.; Roussel, H.; Johnson, K. E.; Heyer, M. H.; Wall, W. F.; Grasha, K.; Battisti, A.; Andrews, J. E.; Kirkpatrick, A.; Rosa González, D.; Vega, O.; Puschnig, J.; Yun, M.; Östlin, G.; Evans, A. S.; Tang, Y.; Lowenthal, J.; Sánchez-Arguelles, D.

    2018-01-01

    We investigate the relation between gas and star formation in subgalactic regions, ∼360 pc to ∼1.5 kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8–500 μm from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR–molecular gas and the SFR–total gas relations in NGC 4449. We find that the SFR–molecular gas relation is described by a power law with an exponent that decreases from ∼1.5 to ∼1.2 for increasing region size, while the exponent of the SFR–total gas relation remains constant with a value of ∼1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples. Based on observations obtained with the Large Millimeter Telescope Alfonso Serrano—a binational collaboration between INAOE (Mexico) and the University of Massachusetts–Amherst (USA).

  13. The Blue Straggler Star Population in NGC 1261: Evidence for a Post-core-collapse Bounce State

    NASA Astrophysics Data System (ADS)

    Simunovic, Mirko; Puzia, Thomas H.; Sills, Alison

    2014-11-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs.

  14. Discovery of Classical Nova in NGC2403 : P60-NGC2403-090314

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Rau, A.; Caltech, Kulkarni, S. R.

    2009-03-01

    On UT 2009 Mar 14.160, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in NGC2403 at RA(J2000) = 07:36:35.00, DEC(J2000)=+65:40:20.8, offset from the nucleus by 101.0"W, 252.0"N. P60-NGC2403-090314 had a brightness of g = 20.6 +/- 0.1 at discovery. At peak, on Mar 15.147, the apparent g = 19.6 corresponded to Mg = -8.2, at the distance of NGC2403. It was not detected by P60 to g > 21.8 on Mar 2.164.

  15. Wide Field Views of M31's dE Satellites: NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Noël, N. E. D.; Ferguson, A. M. N.; Irwin, M. J.

    2010-06-01

    Panoramic imaging studies of the M31 halo are revealing a wealth of previously-unknown faint tidal debris [e.g. 1] suggesting that it presents a hostile environment for dwarf galaxies to live in. NGC 185(MV = -15.6) and NGC 147(MV = -15.1) are dwarf elliptical (dE) satellites of M31 which currently reside in the remote outer halo (RM31~160 kpc). Given their similarity to more distant, unresolved, dEs, NGC 147 and NGC 185 are ideal workplaces to carry out detailed studies in dEs. While NGC 147 and 185 have been studied extensively in the past, almost all previous studies have been of small field-of-view. Our ongoing wide-field analysis will allow a thorough examination of the global content and structure of these systems and enable us to assess the extent to which they have previously interacted with M31 as well as each other. We present first results from our ongoing analysis of wide-field near-IR and optical imagery of these systems which we are using to derive the first truly global views of their overall structures and stellar contents. In particular, UKIRT/WFCAM JHK data are used to identify and analyse luminous asymptotic giant branch (AGB) stars in NGC 147 and NGC 185 and separate out C-rich and O-rich populations while INT/WFC Vi data are used to analyse the red giant branch (RGB) populations.

  16. Metallicity Variations in the Type II Globular Cluster NGC 6934

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Yong, D.; Milone, A. P.; Piotto, G.; Lundquist, M.; Bedin, L. R.; Chené, A.-N.; Da Costa, G.; Asplund, M.; Jerjen, H.

    2018-06-01

    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar “chromosome map” for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and Gemini Telescope at Canada–France–Hawaii Telescope.

  17. Clouds in Context: The Cycle of Gas and Stars in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles; Forbrich, Jan

    2015-08-01

    The physical process by which gas is converted into stars takes place on small scales within Giant Molecular Clouds (GMCs), while the formation and evolution of these GMCs is influenced by global, galactic-scale processes. It is thus of key importance to connect GMC (~10 pc) and galaxy (~10 kpc) scales in order to approach a fundamental understanding of the star formation process. With this goal in mind, we have conducted a multiscale, comprehensive, multiwavelength study of the interstellar medium and star formation in the nearby (d~1.9 Mpc) spiral galaxy NGC 300. We have fully mapped the dust content within this star-forming galaxy with the Herschel Space Observatory, combining these observations with archival Spitzer data to construct a high-sensitivity, ~250 pc-scale map of the column density and dust temperature across the entire NGC 300 disk. We find that peaks in the dust temperature generally correspond with active star-forming regions, and use our Herschel data along with pointed CO(2-1) observations from APEX to characterize the ISM in these regions. To derive star formation rates from ultraviolet, visible, and infrared photometry, we have developed a new method that utilizes population synthesis modeling of individual stellar populations and accounts for both the presence of extinction and the short (< 10 Myr) timescales appropriate for cloud-scale star formation. We find that the average molecular gas depletion time at GMC complex scales in NGC 300 is similar to that of Milky Way clouds, but significantly shorter than depletion times measured over kpc-sized regions in nearby galaxies. This difference likely reflects the presence of a diffuse, non-star-forming component of molecular gas between GMCs, as well as the fact that star formation is strongly concentrated in discrete regions within galaxies. I will also present first results from follow-up interferometric observations with the SMA and ALMA that resolve individual GMCs in NGC 300 for the first

  18. X-ray-emitting gas surrounding the spiral galaxy NGC 891

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Pidis, Rachel A.

    1994-01-01

    We observed the edge-on spiral galaxy NGC 891 with the Position Sensitive Proportional Counter (PSPC) on Roentgen Satellite (ROSAT) to search for how extraplanar gas expected in the galactic fountain model. Diffuse X-ray emission surrounds the disk with a Half Width at Half Maximum (HWHM) for the surface brightness perpendicular to the disk of 50 sec (2.4 kpc) and a radial extent of approximately 6.5 kpc, both of which are similar in extent to the extended H(alpha) and radio halo component; the implied density scale height for the hot gas is 7 kpc. The spectrum is best fitted with a hard stellar component and a soft diffuse gas component of temperature 3.6 x 10(exp 6) K. The density of this gas is 2 x 10(exp -3)/cu cm, the luminosity is 4.4 x 10(exp 39) ergs/s, the mass is 1 x 10(exp 8) solar mass, and the pressure (P/k) is 1.4 10(exp 4) K/cu cm. These data are consistent with this gas participating in a galactic fountain, where the material approaches hydrostatic equilibrium before cooling at a rate of 0.12 solar mass/yr. The cooled material may be responsible for some of the H(alpha) emission.

  19. X-ray-emitting gas surrounding the spiral galaxy NGC 891

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Pildis, Rachel A.

    1994-01-01

    We observed the edge-on spiral galaxy NGC 891 with the Position Sensitive Proportional Counter (PSPC) on Roentgen Satellite (ROSAT) to search for how extraplanar gas expected in the galactic fountain model. Diffuse X-ray emission surrounds the disk with a Half Width at Half Maximum (HWHM) for the surface brightness perpendicular to the disk of 50 sec (2.4 kpc) and a radial extent of approximately 6.5 kpc, both of which are similar in extent to the extended H(alpha) and radio halo component; the implied density scale height for the hot gas is 7 kpc. The spectrum is best fitted with a hard stellar component and a soft diffuse gas component of temperature 3.6 x 106 K. The density of this gas is 2 x 10-3/cu cm, the luminosity is 4.4 x 1039 ergs/s, the mass is 1 x 108 solar mass, and the pressure (P/k) is 1.4 104 K/cu cm. These data are consistent with this gas participating in a galactic fountain, where the material approaches hydrostatic equilibrium before cooling at a rate of 0.12 solar mass/yr. The cooled material may be responsible for some of the H(alpha) emission.

  20. THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J., E-mail: tim.davidge@nrc.ca

    2016-02-20

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least amore » few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.« less

  1. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  2. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  3. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  4. Spectroscopic Study of NGC 281 West

    NASA Astrophysics Data System (ADS)

    Hasan, Priya

    2018-04-01

    NGC 281 is a complex region of star formation at 2.8 kpc. This complex is situated 300 pc above the Galactic plane, and appears to be part of a 270 pc diameter ring of atomic and molecular clouds expanding at 22 km/s (Megeath et al. 2003). It appears that two modes of triggered star formation are at work here: an initial supernova to trigger the ring complex and the initial O stars and the subsequent triggering of low mass star formation by photoevaporation driven molecular core compression. To get a complete census of the young stellar population, we use observations from Chandra ACIS 100 ksec coupled with data from 2MASS and Spitzer. The Master X-ray catalog has 446 sources detected in different bandpasses. We present the spatial distribution of Class I, II and III sources to study the progress of star formation. We also determine the gas to dust ratio NH/AK to be 1.93 ± 0.47 ×1022 cm‑2 mag‑1 for this region. In this article, we present NGC 281 as a good target to study with the 3.6-m Devasthal Optical Telescope (DOT) in spectroscopy. With these spectra, we look for evidence for the pre-main-sequence (PMS) nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed young stellar objects (YSOs). The temperatures implied by the spectral types can be combined with luminosities determined from the near-infrared (NIR) photometry to construct Hertzsprung–Russell (HR) diagrams for the clusters. By comparing the positions of the YSOs in the HR diagrams with the PMS tracks, we can determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks.

  5. Magnetized Disk Winds in NGC 3783

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination theta (sub obs) and wind density normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD wind is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  6. Magnetized Disk Winds in NGC 3783

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  7. Discovery of Possible Bright Nova in NGC891 : P60-NGC891-080813

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Rau, A.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.

    2008-08-01

    On UT 2008 Aug 13.45, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient at RA(J2000)=02:22:32.70, DEC(J2000)=42:21:56.1 in the field of NGC891. P60-NGC891-080813 is offset from the nucleus of NGC891 by 8"W,59"N. The light curve thus far is g>22 (Jul 30.48), g=21.2 (Aug 13.45), g=21.0 (Aug 14.32), g=21.0 (Aug 15.32). Photometric calibration is wrt USNO-B1 and uncertain by 0.2 mags.

  8. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  9. 12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro

    2018-03-01

    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.

  10. Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227

    NASA Technical Reports Server (NTRS)

    Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa

    1995-01-01

    The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.

  11. NGC 1266 as a Local Candidate for Rapid Cessation of Star Formation

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Nyland, Kristina; Graves, Genevieve; Deustua, Susana; Shapiro Griffin, Kristen; Duc, Pierre-Alain; Cappellari, Michele; McDermid, Richard M.; Davis, Timothy A.; Crocker, Alison F.; Young, Lisa M.; Chang, Philip; Scott, Nicholas; Cales, Sabrina L.; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Davies, Roger L.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2014-01-01

    We present new Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) integral-field spectroscopy and Swift Ultraviolet Optical Telescope (UVOT) observations of molecular outflow host galaxy NGC 1266 that indicate NGC 1266 has experienced a rapid cessation of star formation. Both the SAURON maps of stellar population age and the Swift UVOT observations demonstrate the presence of young (<1 Gyr) stellar populations within the central 1 kpc, while existing Combined Array for Research in Millimeter-Wave Astronomy CO(1-0) maps indicate that the sites of current star formation are constrained to only the inner few hundred parsecs of the galaxy. The optical spectrum of NGC 1266 from Moustakas & Kennicutt reveal a characteristic poststarburst (K+A) stellar population, and Davis et al. confirm that ionized gas emission in the system originate from a shock. Galaxies with K+A spectra and shock-like ionized gas line ratios may comprise an important, overlooked segment of the poststarburst population, containing exactly those objects in which the active galactic nucleus (AGN) is actively expelling the star-forming material. While AGN activity is not the likely driver of the poststarburst event that occurred 500 Myr ago, the faint spiral structure seen in the Hubble Space Telescope Wide-field Camera 3 Y-, J- and H-band imaging seems to point to the possibility of gravitational torques being the culprit. If the molecular gas were driven into the center at the same time as the larger scale galaxy disk underwent quenching, the AGN might be able to sustain the presence of molecular gas for >~ 1 Gyr by cyclically injecting turbulent energy into the dense molecular gas via a radio jet, inhibiting star formation.

  12. Double blue straggler sequences in globular clusters: The case of NGC 362

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalessandro, E.; Ferraro, F. R.; Massari, D.

    2013-12-01

    We used high-quality images acquired with the Wide Field Camera 3 on board the Hubble Space Telescope to probe the blue straggler star (BSS) population of the galactic globular cluster NGC 362. We have found two distinct sequences of BSSs: this is the second case, after M30, where such a feature has been observed. Indeed, the BSS location, their extension in magnitude and color, and their radial distribution within the cluster nicely resemble those observed in M30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass-transfer binaries, the blue one bymore » collisions. The discovery of four new W UMa stars, three of which lie along the red BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power law (α ∼ –0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core-collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362; in fact, together with M30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the 'dynamical clock' classification proposed by Ferraro et al. The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.« less

  13. A gravitationally lensed starburst galaxy at z=1.03 detected by SOFIA/HAWC+

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Ma, Jingzhe; Cooray, Asantha; Nayyeri, Hooshang; Timmons, Nicholas

    2018-01-01

    We present a high S/N~20 detection at 89 micron (in 15 mins) of the Herschel-selected gravitationally lensed starburst galaxy HATLASJ1429-0028 with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z=0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared galaxy at z=1.03. Is this high luminosity powered by pure star formation (SF) or an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star-formation dominated. SOFIA/HAWC+ allows the broad-band spectral energy distribution of the galaxy to be studied between 20 - 100 micron, which is an important wavelength range for further constraining the fractional AGN contribution to the total IR luminosity. Multi-wavelength SED modeling constrains the AGN fraction to be < 1%. The detection of a source at z of 1 shows the potential of utilizing SOFIA/HAWC+ for distant galaxy studies and the potential to decompose SF/AGN that cannot be obtained with other current facilities.

  14. A complete disclosure of the hidden type-1 AGN in NGC 1068 thanks to 52 years of broadband polarimetric observation

    NASA Astrophysics Data System (ADS)

    Marin, F.

    2018-06-01

    We create the first broadband polarization spectrum of an active galactic nucleus (AGN) by compiling the 0.1 - 100 μm, 4.9 GHz and 15 GHz continuum polarization of NGC 1068 from more than 50 years of observations. Despite the diversity of instruments and apertures, the observed spectrum of linear continuum polarization has distinctive wavelength-dependent signatures that can be related to the AGN and host galaxy physics. The impact of the Big Blue bump and infrared bump, together with electron, Mie scattering, dichroism and synchrotron emission are naturally highlighted in polarization, allowing us to reveal the type-1 AGN core inside this type-2 object with unprecedented precision. In order to isolate the AGN component, we reconstruct the spectral energy distribution of NGC 1068 and estimate the fraction of diluting light in the observed continuum flux. This allows us to clearly and independently show that, in the case of NGC 1068, Thomson scattering is the dominant mechanism for the polarization in the optical band. We also investigate the effect of aperture on the observed polarization and confirm previous findings on the extension of the narrow line region of NGC 1068 and on the B-band and K-band polarization from the host. Finally, we do not detect statistically significant aperture-corrected polarimetric variations over the last 52 years, suggesting that the parsec-scale morphological and magnetic geometries probably remained stable for more than half a century.

  15. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  16. Bursting at the seams

    NASA Image and Video Library

    2016-06-27

    This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually  the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.

  17. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less

  18. Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Costantini, E.; De Marco, B.; Svoboda, J.; Motta, S. E.; Proga, D.; Saxton, R.; Ferrigno, C.; Longinotti, A. L.; Miniutti, G.; Grupe, D.; Mathur, S.; Shappee, B. J.; Prieto, J. L.; Stanek, K.

    2017-01-01

    Aims: NGC 2617 is a nearby (z 0.01) active galaxy that recently switched from being a Seyfert 1.8 to be a Seyfert 1.0. At the same time, it underwent a strong increase of X-ray flux by one order of magnitude with respect to archival measurements. We characterise the X-ray spectral and timing properties of NGC 2617 with the aim of studying the physics of a changing-look active galactic nucleus (AGN). Methods: We performed a comprehensive timing and spectral analysis of two XMM-Newton pointed observations spaced by one month, complemented by archival quasi-simultaneous INTEGRAL observations. Results: We found that, to the first order, NGC 2617 looks like a type 1 AGN in the X-ray band and, with the addition of a modest reflection component, its continuum can be modelled well either with a power law plus a phenomenological blackbody, a partially covered power law, or a double Comptonisation model. Independent of the continuum adopted, in all three cases a column density of a few 1023 cm-2 of neutral gas covering 20-40% of the continuum source is required by the data. Most interestingly, absorption structures due to highly ionised iron have been detected in both observations with a redshift of about 0.1c with respect to the systemic redshift of the host galaxy. Conclusions: The redshifted absorber can be ascribed to a failed wind/aborted jets component, to gravitational redshift effects, and/or to matter directly falling towards the central supermassive black hole. In either case, we are probing the innermost accretion flow around the central supermassive black hole of NGC 2617 and might be even watching matter in a direct inflow towards the black hole itself.

  19. Circumnuclear starbursts in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew S.

    1987-01-01

    Observational diagnostics for the recognition of circumnuclear star formation in Seyfert galaxies are described and illustrated. These methods include: (1) spatially resolved optical spectroscopy, which allows the emission lines for HII regions to be separated from those originating in gas ionized by the Seyfert nucleus; (2) radio continuum mapping, where the linear radio sources characteristic of the nuclear activity may be distinguished from the diffuse morphology of multiple supernova remnants generated in a starburst; (3) infrared spectroscopic searches for emission features of dust, which are seen in starbursts but not in Seyfert nuclei; (4) the shape of the IRAS spectrum. These various diagnostics agree well as to the presence or absence of ongoing star formation. The IRAS spectra of a significant fraction of Seyferts are dominated by emission from dust heated by stars, not the Seyfert nucleus itself. In these cases, the spectrum is curved, being steep between 25 and 60 microns and flatter between 60 and 100 microns. When the Seyfert nucleus dominates, the 25 to 100 micron spectrum is much flatter. It is suggested that the location of a Seyfert galaxy in the IRAS color-color diagram reflects primarily the relative contributions of the active nucleus and dust heated by stars to the infrared fluxes.

  20. Survey of Milliarcsec Structure in Eight Seyfert Galaxies: Results on NGC 1068 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Wilson, A. S.; Norris, R. P.

    We are surveying eight nearby Seyfert galaxies (four Sy1s and four Sy2s) that have compact radio cores, using the VLBA. We are interested in parsec-scale morphology and low-frequency absorption effects, and so are observing four frequencies (1.6, 4.8, 8.4 and 15 GHz) to get spectral-index diagnostics. In this paper, we present results on two galaxies, NGC 1068 and NGC 4151. NGC 4151 shows a curved radio jet on the sub-parsec scale, with the smallest scale structure misaligned by $55^\\circ$ from the jet on scales of parsecs to hundreds of parsecs. NGC 1068 contains several components in the inner tens of parsecs, with those components showing a variety of absorption and resolution effects.

  1. Photometric and integrated spectral study of the young open clusters Pismis 22, NGC 6178, NGC 6216 and Ruprecht 130

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Bica, E.

    2000-08-01

    We present CCD observations in the B, V , and I passbands obtained for stars in the fields of the open clusters Pismis 22, NGC 6178, NGC 6216, and Ruprecht 130, projected not far from the Galactic centre (|l| < 30̂, |b| < 2̂). The sample consists of about 790 stars reaching down to V ~ 18-19 mag. From the analysis of the colour magnitude diagrams, we confirmed the physical reality of the clusters and derived their reddening, distance and age. In addition, we obtained flux-calibrated integrated spectra in the range 3500-9200 Å for the cluster sample. The equivalent widths of the Balmer lines provided us with age estimates, while the comparison with template spectra allowed us to derive both foreground reddening and age. The photometric and spectroscopic results reveal that the four studied objects are young open clusters with ages ranging between 35 and 50 Myr. The clusters, located between 1.0 kpc and 4.3 kpc from the Sun, are affected by different amounts of interstellar visual absorption (0.6 ≃ Av ≃ 6.0). Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la Repúbica Argentina and the National Universities of La Plata, Córdoba, and San Juan, Argentina, and at the University of Toronto (David Dunlap Observatory) 24-inch telescope, Las Campanas, Chile. Tables 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  2. Formation of the young compact cluster GM 24 triggered by a cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Nishimura, Atsushi; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    High-mass star formation is an important step which controls galactic evolution. GM 24 is a heavily obscured star cluster including a single O9 star with more than ˜100 lower-mass stars within a 0.3 pc radius toward (l, b) ˜ (350.5°, 0.96°), close to the Galactic mini-starburst NGC 6334. We found two velocity components associated with the cluster by new observations of 12CO J =2-1 emission, whereas the cloud was previously considered to be single. We found that the distribution of the two components of 5 {km}s-1 separation shows complementary distribution; the two fit well with each other if a relative displacement of 3 pc is applied along the Galactic plane. A position-velocity diagram of the GM 24 cloud is explained by a model based on numerical simulations of two colliding clouds, where an intermediate velocity component created by the collision is taken into account. We estimate the collision time scale to be ˜Myr in projection of a relative motion tilted to the line of sight by 45°. The results lend further support for cloud-cloud collision as an important mechanism of high-mass star formation in the Carina-Sagittarius Arm.

  3. Hubble Views a Galaxy Fit to Burst

    NASA Image and Video Library

    2017-12-08

    This NASA/ESA Hubble Space Telescope image reveals the vibrant core of the galaxy NGC 3125. Discovered by John Herschel in 1835, NGC 3125 is a great example of a starburst galaxy — a galaxy in which unusually high numbers of new stars are forming, springing to life within intensely hot clouds of gas. Located approximately 50 million light-years away in the constellation of Antlia (The Air Pump), NGC 3125 is similar to, but unfathomably brighter and more energetic than, one of the Magellanic Clouds. Spanning 15,000 light-years, the galaxy displays massive and violent bursts of star formation, as shown by the hot, young, and blue stars scattered throughout the galaxy’s rose-tinted core. Some of these clumps of stars are notable — one of the most extreme Wolf–Rayet star clusters in the local Universe, NGC 3125-A1, resides within NGC 3125. Despite their appearance, the fuzzy white blobs dotted around the edge of this galaxy are not stars, but globular clusters. Found within a galaxy’s halo, globular clusters are ancient collections of hundreds of thousands of stars. They orbit around galactic centers like satellites — the Milky Way, for example, hosts over 150 of them. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Ultraviolet properties of individual hot stars in globular cluster cores. 1: NGC 1904 (M 79)

    NASA Technical Reports Server (NTRS)

    Altner, Bruce; Matilsky, Terry A.

    1992-01-01

    As part of an observing program using the International Ultraviolet Explorer (IUE) satellite to investigate the ultraviolet properties of stars found within the cores of galactic globular clusters with blue horizontal branches (HBs), we obtained three spectra of the cluster NGC 1904 (M 79). All three were long integration-time, short-wavelength (SWP) spectra obtained at the so called 'center of light' and all three showed evidence of sources within the IUE large aperture (21.4 in. by 10 in.). In this paper we shall describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-HB stage of evolution.

  5. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  6. From Luminous Hot Stars to Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Conti, Peter S.; Crowther, Paul A.; Leitherer, Claus

    2012-10-01

    1. Introduction; 2. Observed properties; 3. Stellar atmospheres; 4. Stellar winds; 5. Evolution of single stars; 6. Binaries; 7. Birth of massive stars and star clusters; 8. The interstellar environment; 9. From giant HII regions to HII galaxies; 10. Starburst phenomena; 11. Cosmological implications; References; Index.

  7. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360,more » NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age

  8. THE EVOLUTION OF POST-STARBURST GALAXIES FROM z  ∼ 1 TO THE PRESENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley

    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z  ∼ 0.05 and z  ∼ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS mainmore » galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M  ∼ −23.5 at z  ∼ 0.8 to M  ∼ −20.3 at z  ∼ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (∼1%) of all star formation quenching in the redshift range z  = 0.2–0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.« less

  9. STAR CLUSTERS BORN IN THE WRECKAGE OF COSMIC COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of Stephan's Quintet, a group of five galaxies, reveals a string of bright star clusters that sparkles like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers. The NASA Hubble Space Telescope photo showcases three regions of star birth: the long, sweeping tail and spiral arms of NGC 7319 [near center]; the gaseous debris of two galaxies, NGC 7318B and NGC 7318A [top right]; and the area north of those galaxies, dubbed the northern starburst region [top left]. The clusters' bluish color indicates that they're relatively young. Their ages span from about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm (about 30,000 light-years long) and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right. Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its close neighbor. The partial galaxy on the far right is NGC 7320, a foreground galaxy not physically bound to the other galaxies in the picture. About 20 to 50 of the clusters in the northern starburst region reside far from the coziness of galaxies. The clusters were born about 150,000 light-years from the nearest galaxy. A galaxy that is no longer part of the group triggered another collision that wreaked havoc. NGC 7320C [not in the photo] plowed through the quintet several hundred million years ago, pulling out the 100,000 light-year-long tail of gaseous debris from NGC 7319. The clusters in NGC 7319's streaming tail are 10 million to 500 million years old and may have formed at the time of the violent collision. The faint bluish object at

  10. An X-Ray Survey of the Open Cluster NGC 6475 (M7) with ROSAT

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Stauffer, John R.; Caillault, J.-P.; Balachandran, Suchitra; Stern, Robert A.; Randich, Sofia

    1995-01-01

    A ROSAT x-ray survey, with complimentary optical photometry, of the open cluster NGC 6475 has enabled the detection of approx. 50 late-F to K0 and approx. 70 K/M dwarf new candidate members, providing the first reliable detection of low-mass stars in this low. galactic latitude, 220 Myr old cluster. The x-ray observations reported here have a typical limiting sensitivity of L(sub x) approx. equal to 10(exp 29) erg/s. The detection frequency of early type cluster members is consistent with the hypothesis that the x-ray emitting early type stars are binary systems with an unseen, low-mass secondary producing the x rays. The ratio between x-ray and bolometric luminosity among NGC 6475 members saturates at a spectral-type/color which is intermediate between that in much younger and in much older clusters, consistent with rotational spindown of solar-type stars upon their arrival on the ZAMS. The upper envelope of x-ray luminosity as a function of spectral type is comparable to that of the Pleiades, with the observed spread in x-ray luminosity among low-mass members being likely due to the presence of binaries and relatively rapid rotators. However, the list of x-ray selected candidate members is likely biased against low-mass, slowly rotating single stars. While some preliminary spectroscopic information is given in an appendix, further spectroscopic observations of the new candidate members will aid in interpreting the coronal activity among solar-type NGC 6475 members and their relation to similar stars in older and younger open clusters.

  11. PROBING ELECTRON-CAPTURE SUPERNOVAE: X-RAY BINARIES IN STARBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Sepinsky, J. F.; Kalogera, V.

    We develop population models of high-mass X-ray binaries (HMXBs) formed after bursts of star formation and we investigate the effect of electron-capture supernovae (ECS) of massive ONeMg white dwarfs and the hypothesis that ECS events are associated with typically low supernova kicks imparted to the nascent neutron stars. We identify an interesting ECS bump in the time evolution of HMXB numbers; this bump is caused by significantly increased production of wind-fed HMXBs 20-60 Myr post-starburst. The amplitude and age extent of the ECS bump depend on the strength of ECS kicks and the mass range of ECS progenitors. We alsomore » find that ECS-HMXBs form through a specific evolutionary channel that is expected to lead to binaries with Be donors in wide orbits. These characteristics, along with their sensitivity to ECS properties, provide us with an intriguing opportunity to probe ECS physics and progenitors through studies of starbursts of different ages. Specifically, the case of the Small Magellanic Cloud, with a significant observed population of Be-HMXBs and starburst activity 30-60 Myr ago, arises as a promising laboratory for understanding the role of ECS in neutron star formation.« less

  12. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  13. Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts

    NASA Astrophysics Data System (ADS)

    Arnold Malkan, Matthew

    2009-05-01

    Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.

  14. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: Variability of NGC 3783 from ground-based data

    NASA Technical Reports Server (NTRS)

    Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.

    1994-01-01

    The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.

  15. VizieR Online Data Catalog: Herschel FIR observations of NGC3603 (Di Cecco+, 2015)

    NASA Astrophysics Data System (ADS)

    di Cecco, A.; Faustini, F.; Paresce, F.; Correnti, M.; Calzoletti, L.

    2015-06-01

    The cloud complex surrounding NGC 3603 YC was observed by Herschel SPIRE/PACS during the Hi-GAL Survey (Molinari et al. 2010A&A...518L.100M, 2010PASP..122..314M), a Key Programme that mapped the Galactic plane in five photometric bands (70, 160, 250, 350, and 500um). The MSX (Egan et al. 2003AAS...203.5708E) images were taken at (wavelengths) 8.3, 12.1, 14.7, and 21.3um using the scan observing mode, and the WISE (Wright et al. 2010AJ....140.1868W) images were acquired in freeze-frame scan mode at 3.4, 4.6, 12, and 22um. (2 data files).

  16. Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544

    NASA Astrophysics Data System (ADS)

    Contreras Ramos, R.; Zoccali, M.; Rojas, F.; Rojas-Arriagada, A.; Gárate, M.; Huijse, P.; Gran, F.; Soto, M.; Valcarce, A. A. R.; Estévez, P. A.; Minniti, D.

    2017-12-01

    Context. In the last six years, the VISTA Variable in the Vía Láctea (VVV) survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes 36 globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims: The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods: This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results: PSF-fitting photometry over the six years baseline of the survey allowed us to obtain a mean precision of 0.51 mas yr-1, in each PM coordinate, for stars with Ks< 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of 11-13 Gyr, and metallicity [Fe/H] =-1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Conclusions: Kinematical techniques are a fundamental step toward disentangling different stellar populations that overlap in a studied field. Our results show

  17. Rubidium and Lead Abundances in Giant Stars of the Globular Clusters M13 and NGC 6752

    NASA Astrophysics Data System (ADS)

    Yong, David; Aoki, Wako; Lambert, David L.; Paulson, Diane B.

    2006-03-01

    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M13. The abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe]=-0.17+/-0.06 (σ=0.14), [Rb/Zr]=-0.12+/-0.06 (σ=0.13), and [Pb/Fe]=-0.17+/-0.04 (σ=0.08). In M13 the mean abundance is [Pb/Fe]=-0.28+/-0.03 (σ=0.06). Within the measurement uncertainties, we find no evidence for star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the Magellan Clay Telescope at Las Campanas Observatory.

  18. NGC1448 and IC 3639: Two Concealed Black Holes Lurking in our Cosmic Backyard Unveiled by NuSTAR

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Boorman, Peter; Annuar, Ady; Gandhi, Poshak; Alexander, D. M.; Lansbury, George B.; Asmus, Daniel; Ballantyne, David R.; Bauer, Franz E.; Boggs, Steven E.; Brandt, W. Niel; Brightman, Murray; Christensen, Finn; Craig, William W.; Farrah, Duncan; Goulding, Andy D.; Hailey, Charles James; Harrison, Fiona; Hoenig, Sebastian; Koss, Michael; LaMassa, Stephanie M.; Masini, Alberto; Murray, Stephen S.; Ricci, Claudio; Risaliti, Guido; Rosario, David J.; Stanley, Flora; Zhang, William

    2017-01-01

    We present NuSTAR observations of two nearby Active Galactic Nuclei (AGN), NGC 1448 and IC 3639, located at distances of 12 Mpc and 54 Mpc, respectively. NuSTAR high-energy X-ray (> 10 keV) observations, combined with archival lower energy X-ray observations from Chandra and Suzaku, reveal both sources to contain heavily obscured, accreting super-massive black holes. NGC 1448 is one of the nearest luminous galaxies to the Milky Way, yet the AGN at its centre was only discovered in 2009. Using state-of-the-art models, we constrain the obscuring column density (NH) of gas concealing both AGN, finding them to be extreme, with NH values well into the Compton-thick (CT) regime with N(H) > 3e24 /cm2. NGC 1448 has an intrinsic X-ray luminosity of L(24 keV) ˜ 5e40 erg/s, making it one of the lowest luminosity CT AGN known. IC 3639, on the other hand, has one of the strongest iron fluorescence emission lines known. We also discuss multi-wavelength diagnostics at optical and mid-infrared energies as indirect indicators to penetrate through the obscuring veils and probe the intrinsic properties of the AGN. Through detailed studies such as we present here, NuSTAR is showing that there are still plenty of interesting discoveries awaiting to be made, even in the nearby Universe.

  19. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  20. The interaction of the outflow with the molecular disk in the Active Galactic Nucleus of NGC 6951

    NASA Astrophysics Data System (ADS)

    May, D.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Andrade, I. S.

    2015-02-01

    Context: we present a study of the central 200 pc of NGC 6951, in the optical and NIR, taken with the Gemini North Telescope integral field spectrographs, with resolution of ~ 0''.1 Methods: we used a set of image processing techniques, as the filtering of high spatial and spectral frequencies, Richardson-Lucy deconvolution and PCA Tomography (Steiner et al. 2009) to map the distribution and kinematics of the emission lines. Results: we found a thick molecular disk, with the ionization cone highly misaligned.

  1. Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela

    2018-06-01

    The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).

  2. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, K. Decker; Zabludoff, Ann; Arcavi, Iair

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 inmore » most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.« less

  3. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  4. HST Observations of NGC 7252

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-05-01

    A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9

  5. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with I) high spatial resolution HST photometry; II) numbers of W-R stars in nearby galaxies; and III) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  6. Hour-Scale Variability in NGC 663 and NGC 1960

    NASA Astrophysics Data System (ADS)

    Souza, Steven P.; Garcia Soto, Aylin; Wong, Hallee

    2016-06-01

    Since 2010 we have been monitoring massive emission-line (mainly Be) stars in young open clusters using narrowband imaging at Hα (656nm) and the nearby continuum (645nm) (Souza, Davis, and Teich 2013, BAAS. 45, PM354.22; Souza, Beltz-Mohrmann, and Sami 2014. JAAVSO, 42, 154). To supplement longer-timescale data taken at Williams College we obtained high-cadence observations, in both filters, of NGC 663 on the night of 12/10/15, and of NGC 1960 on the nights of 12/10/14, 1/23/15, 1/25/15, 11/11/15, and 12/13/15 at the 0.5m ARCSAT at Apache Point Observatory. After raw magnitude extraction using Aperture Photometry Tool (Laher et al. 2012, PASP, 124, 737), we used inhomogeneous ensemble photometry (Bhatti et al., 2010, ApJ Supp., 186, 233) to correct for transparency and seeing variations. The NGC 663 field is crowded; of 29 known Be stars in the observed field, 10 have nearby interferers. None of the remaining 19 Be stars showed significant variation during ~5.5 hours of observation. 1σ uncertainty estimates range from 0.02mag at R~10 to 0.15mag at R~14. To verify the observing and reduction procedure, we recovered hour-scale variability in known variables BY Cas (δ Cephei type, ~0.05mag decline) and V1155 Cas (β Cephei type, ~0.04mag amplitude). In NGC 1960, of 5 known and suspect Be stars observed, two not previously reported as variable (BD+34 1110 and USNOB1.0 1241-0103450) showed irregular variation on timescales of hours. In NGC 1960 we also report the incidental discovery of two non-Be suspect variables: a likely eclipsing binary (0.07mag), and a possible δ Scuti star (maximum amplitude ~0.02mag). We gratefully acknowledge support for student research from NSF grant AST-1005024 to the Keck Northeast Astronomy Consortium, and the Office of the Dean of Faculty and the DIII Research Funding Committee of Williams College. Based on observations obtained with Apache Point Observatory's 0.5-m Astrophysical Research Consortium Small Aperture Telescope.

  7. Very Luminous X-ray Point Sources in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  8. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  9. Stellar Variability in the Intermediate Age Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo

    2017-01-01

    The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.

  10. THE YOUNG OPEN CLUSTERS KING 12, NGC 7788, AND NGC 7790: PRE-MAIN-SEQUENCE STARS AND EXTENDED STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2012-12-20

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less

  11. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  12. Exploring the Merger/Starburst/AGN Connection in Nearby Infrared- Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Chynoweth, Katie; Knop, Robert; Gibbons, Rachel

    2007-02-01

    We propose to explore the connection between galaxy interactions, starburst activity, and (in a few cases) AGN activity by obtaining spatially resolved optical spectroscopy of a sample of 11 infrared- luminous galaxies. The targets are chosen from the IRAS Bright Galaxy Sample (BGS), all of which show evidence for an ongoing starburst. Additionally, many of these galaxies are advanced mergers, or show clear signs of strong interactions. The kinematics of these galaxies are complicated, and many of them have significant off-nuclear star formation activity. We plan to use the DensePak Fiber Array on the WIYN 3.5m telescope to obtain spectra across the entire face of each galaxy system. These data in combination with similar data obtained for southern galaxies will contribute to understanding of interacting galaxies, galaxy evolution, and star formation. We will use line ratios, velocities, and profile as a means of tracing the dynamics of the gas, the age, strength, and progress of starburst activity throughout the system, and (for those few galaxies that show it) dynamical processes (e.g. outflows) arising from a central AGN.

  13. Intergalactic HI in the NGC5018 group

    NASA Technical Reports Server (NTRS)

    Guhathakurta, P.; Knapp, G. R.; Vangorkom, Jacqueline H.; Kim, D.-W.

    1990-01-01

    The cold interstellar and intergalactic medium is in the small group of galaxies whose brightest member is the elliptical galaxy NGC5018. Researchers' attention was first drawn to this galaxy as possibly containing cold interstellar gas by the detection by the Infrared Astronomy Satellite (IRAS) of emission at lambda 60 microns and lambda 100 microns at an intensity of about 1 Jy (Knapp et al. 1989), which is relatively strong for an elliptical (Jura et al. 1987). These data showed that the temperature of the infrared emission is less than 30K and that its likely source is therefore interstellar dust. A preliminary search for neutral hydrogen (HI) emission from this galaxy using the Very Large Array (VLA) showed that there appears to be HI flowing between NGC5018 and the nearby Sc galaxy NGC5022 (Kim et al. 1988). Since NGC5018 has a well-developed system of optical shells (cf. Malin and Carter 1983; Schweizer 1987) this observation suggests that NGC5018 may be in the process of forming its shell system by the merger of a cold stellar system with the elliptical, as suggested by Quinn (1984). Researchers describe follow-up HI observations of improved sensitivity and spatial resolution, and confirm that HI is flowing between NCG5022 and NGC5018, and around NGC5018. The data show, however, that the HI bridge actually connects NGC5022 and another spiral in the group, MCG03-34-013, both spatially and in radial velocity, and that in doing so it flows through and around NGC5018, which lies between the spiral galaxies. This is shown by the total HI map, with the optical positions of the above three galaxies labelled.

  14. SUZAKU MONITORING OF THE IRON K EMISSION LINE IN THE TYPE 1 ACTIVE GALACTIC NUCLEUS NGC 5548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuan; Elvis, Martin; Wilkes, Belinda J.

    2010-02-20

    We present seven sequential weekly observations of NGC 5548 conducted in 2007 with the Suzaku X-ray Imaging Spectrometer (XIS) in the 0.2-12 keV band and Hard X-ray Detector (HXD) in the 10-600 keV band. The iron Kalpha line is well detected in all seven observations and Kbeta line is also detected in four observations. In this paper, we investigate the origin of the Fe K lines using both the width of the line and the reverberation mapping method. With the co-added XIS and HXD spectra, we identify Fe Kalpha and Kbeta line at 6.396{sup +0.009}{sub -0.007} keV and 7.08{sup +0.05}{submore » -0.05} keV, respectively. The width of line obtained from the co-added spectra is 38{sup +16}{sub -18} eV (FWHM = 4200{sup +1800}{sub -2000} km s{sup -1}) which corresponds to a radius of 20{sup +50}{sub -10} light days, for the virial production of 1.220 x 10{sup 7} M{sub sun} in NGC 5548. To quantitatively investigate the origin of the narrow Fe line by the reverberation mapping method, we compare the observed light curves of Fe Kalpha line with the predicted ones, which are obtained by convolving the continuum light curve with the transfer functions in a thin shell and an inclined disk. The best-fit result is given by the disk case with i = 30 deg. which is better than a fit to a constant flux of the Fe K line at the 92.7% level (F-test). However, the results with other geometries are also acceptable (P>50%). We find that the emitting radius obtained from the light curve is 25-37 light days, which is consistent with the radius derived from the Fe K line width. Combining the results of the line width and variation, the most likely site for the origin of the narrow iron lines is 20-40 light days away from the central engine, though other possibilities are not completely ruled out. This radius is larger than the Hbeta emitting parts of the broad-line region at 6-10 light days (obtained by the simultaneous optical observation), and smaller than the inner radius of the hot dust in

  15. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100-300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}⊙ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}⊙ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}⊙ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  16. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  17. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  18. Fueling nuclear activity in disk galaxies: Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Heller, Clayton H.; Shlosman, Isaac

    1994-03-01

    We study the evolution of the gas distribution in a globally unstable galactic disk with a particular emphasis on the gasdynamics in the central kiloparsec and the fueling activity there. The two-component self-gravitating disk is embedded in a responsive halo of comparable mass. The gas and stars are evolved using a three-dimensional hybrid smoothed particle hydrodynamics/N-body code and the gravitational interactions are calculated using a hierarchical TREE algorithm. A massive 'star formation' is introduced when the gas becomes Jeans unstable and locally exceeds the critical density of approximately 100 solar mass pc-3. The newly formed OB stars deposit energy in the gas by means of radiation-driven winds and supernovae. This energy is partially thermalized (efficiency of a few percent); the rest is radiated away. Models without star formation are evolved for a comparison. The effect of a massive object at the disk center is studied by placing a 'seed' black hole (BH) of 5 x 107 solar mass with an accretion radius of 20 pc. The tendency of the system to form a massive object 'spontaneously' is tested in models without the BH. We find that for models without star formation the bar- or dynamical friction-driven inflows lead to (1) domination of the central kpc by a few massive clouds that evolve into a single object probably via a cloud binary system, with and without a 'seed' BH, (2) accretion onto the BH which has a sporadic character, and (3) formation of remnant disks around the BH with a radius of 60-80 pc which result from the capture and digestion of clouds. For models with star formation, we find that (1) the enrgy input into the gas induces angular momentum loss and inflow rates by a factor less than 3, (2) the star formation is concentrated mainly at the apocenters of the gaseous circulation in the stellar bar and in the nuclear region, (3) the nuclear starburst phase appears to be very luminous approximately 1045-1046 erg/s and episodic with a typical

  19. The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.

    2013-08-01

    We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as

  20. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J.

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidatesmore » are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.« less

  1. What triggers starbursts in dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    While the processes regulating star formation and the interstellar medium in massive interacting galaxies have been studied extensively, the extent to which these processes occur in the shallower gravitational potential wells of lower mass dwarf galaxies is relatively unconstrained. While dwarf galaxies are known to undergo starbursts (Heckman et al. 1998; Johnson et al. 2000), the origins of these bursts remain unclear, and interactions and mergers with other dwarfs have not been ruled out (Lelli et al. 2012; Koleva et al. 2014). These gas-rich dwarf galaxies in the nearby universe are expected to offer glimpses of star formation modes at high redshift with their low metal content and large amounts of fuel for forming stars. Given that dwarf-dwarf mergers dominate the merger rate at any given redshift (i.e. De Lucia et al. 2006; Fakhouri et al. 2010), this lack of observational constraints leaves a significant mode of galaxy evolution in the universe mostly unexplored. While a few individual dwarf mergers/pairs have been observed (e.g., Henize 2-10: Reines et al. 2012; NGC4490: Clemens et al. 1998; NGC3448: Noreau & Kronberg 1986; IIZw40: Lequeux et al. 1980), a systematic study of the star formation histories of interacting dwarfs as a population has never been done. We propose to obtain and further process near- and far-ultraviolet (NUV/FUV), nearinfrared (NIR), and mid-infrared (MIR) imaging for a sample of 58 dwarf galaxy pairs (116 dwarfs) and 348 unpaired dwarfs (analogs matched in stellar mass, redshift, and local density enhancement) using the NASA archives for the Galaxy Evolution Explorer (GALEX; Martin et al. 2003), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), and the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) missions. We aim to characterize the impact interactions have on fueling star formation in the nearby universe for a complete sample of dwarf galaxy pairs caught in a variety of interaction stages from the Ti

  2. The Radio Jets and Accretion Disk in NGC 4261

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn

    2000-05-01

    The structure of active galactic nucleus (AGN) accretion disks on subparsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. For objects in which both jet and counterjet are detectable with very long baseline interferometry (VLBI), the accretion disk will cover part of the counterjet and produce diminished brightness whose angular size and depth as a function of frequency can reveal the radial distribution of free electrons in the disk. The nearby (41 Mpc, independent of H0) FR I radio galaxy NGC 4261 contains a pair of symmetric kiloparsec-scale jets. On parsec scales, radio emission from the nucleus is strong enough for detailed imaging with VLBI. We present new Very Long Baseline Array (VLBA) observations of NGC 4261 at 22 and 43 GHz, which we combine with previous observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. The relative closeness of NGC 4261 combined with the high angular resolution provided by the VLBA at 43 GHz gives us a very high linear resolution, approximately 2×10-2 pc ~4000 AU ~400 Schwarzschild radii for a 5×108 Msolar black hole. The jets appear more symmetric at 1.6 GHz because of the low angular resolution available. The jets are also more symmetric at 22 and 43 GHz, presumably because the optical depth of free-free absorption is small at high frequencies. At 8.4 GHz, neither confusion effect is dominant and absorption of counterjet emission by the presumed disk is detectable. We find that the orientation of the radio jet axis is the same on parsec and kiloparsec scales, indicating that the spin axis of the inner accretion disk and black hole has remained unchanged for at least 106 (and more likely >107) yr. This suggests that a single merger event may be responsible for the supply of gas in the nucleus of NGC 4261. The jet opening angle is between 0.3d and 20° during the first 0.2 pc of the jet and must be less than 5° during the first 0

  3. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  4. Hopkins Ultraviolet Telescope observations of H2 toward the planetary nebula NGC 1535

    NASA Technical Reports Server (NTRS)

    Bowers, Charles W.; Blair, William P.; Long, Knox S.; Davidsen, Arthur F.

    1995-01-01

    We have observed the far-ultraviolet spectrum (912-1860 A) of the bright high-excitation planetary nebula NGC 1535 with approximately 3 A resolution using the Hopkins Ultraviolet Telescope (HUT) aboard the Astro-1 space shuttle pmission in 1990 December. We see strong continuum emission down to the Lyman limit and strong P Cygni profiles from high-excitation lines such as C IV wavelength 1549, N V wavelength 1240, O V wavelength 1371, and O VI wavelength 1035. Below 1150 A strong absorption bands of H2 are seen, which were unanticipated by us because of the low reddening and high galactic latitude of the object and the absence of detected H2 emission in the infrared. We construct model H2 spectra and convolve them to the HUT resolution for comparison with the NGC 1535 data. We find good agreement with a population distribution characterized by a single temperature (T = 300 K) or a two-temperature model (T = 144/500 K), and determine limits on the H2 column density. While both inter-stellar and circumstellar origins for the observed H2 absorption are plausible, we ascribe the material to the planetary nebula in order to estimate the conditions of excitation and place upper limits on the mass of both H2 and H1 in this system. Because the UV transitions are ground-state connected, we determine a stringent upper limit of 0.03 d(sup 2)(sub 1.6) solar mass on the mass of H2, where d(sub 1.6) is the distance relative to an assumed distance of 1.6 kpc. This value is less model-dependent than IR estimates. Along with the central star and nebular masses, these estimates allow us to limit the main-sequence mass of the progenitor star to less than 1.8 solar mass. This upper limit is consistent with a relatively low-mass extended thick disk or Population II progenitor, as expected for an object approximately 1 kpc off the galactic plane.

  5. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

  6. Zooming in on the Starburst at the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2011-10-01

    In a recently published letter to Nature, we report the discovery of the most X-ray luminous galaxy cluster in the known Universe, within which the intracluster medium is cooling at an unprecedented rate. In the core of this cluster, the brightest cluster galaxy is forming stars at an unmatched rate of 740 Msun/yr, which is highly unusual for this class of galaxy which are typically referred to as "red and dead". We suspect that the extreme cooling and star formation rates are intimately linked: the cooling intracluster gas is most likely providing fuel for the starburst. We request 2 orbits of near-UV and optical broadband WFC3-UVIS imaging in order to morphologically classify this starburst as a result of i} cooling, infalling gas {filamentary UV emission}; ii} a recent merger {tidal tails with both UV and optical emission}; or iii} a starburst- or AGN-driven wind {wide opening angle}. These data will also allow us to determine the stellar populations of both the starburst and the underlying, older stellar populations, and will provide a much sharper view of the central AGN, allowing us to more carefully extract the contribution to the extended UV emission from young stars. Our early results have already received substantial attention from the international press, and we expect that a dramatically improved picture of the heart of this cluster would stir up as much, if not more, interest from the public.

  7. The Absolute Proper Motion of NGC 6397 Revisited

    NASA Astrophysics Data System (ADS)

    Rees, Richard; Cudworth, Kyle

    2018-01-01

    We compare several determinations of the absolute proper motion of the Galactic globular cluster NGC 6397: (1) our own determination relative to field stars derived from scans of 38 photographic plates spanning 97 years in epoch; (2) using our proper motion membership to identify cluster stars in various catalogs in the literature (UCAC4, UCAC5, PPMXL, HSOY, Tycho-2, Hipparcos, TGAS); (3) published results from the Yale SPM Program (both tied to Hipparcos and relative to galaxies) and two from HST observations relative to galaxies. The various determinations are not in good agreement. Curiously, the Yale SPM relative to galaxies does not agree with the HST determinations, and the individual HST error ellipses are close to each other but do not overlap. The Yale SPM relative to galaxies does agree with our determination, Tycho-2, and the Yale SPM tied to Hipparcos. It is not clear which of the current determinations is most reliable; we have found evidence of systematic errors in some of them (including one of the HST determinations). This research has been partially supported by the NSF.

  8. Exploring the inner parsecs of active galactic nuclei using near-infrared high resolution polarimetric simulations with MontAGN

    NASA Astrophysics Data System (ADS)

    Grosset, L.; Rouan, D.; Gratadour, D.; Pelat, D.; Orkisz, J.; Marin, F.; Goosmann, R.

    2018-04-01

    Aims: In this paper we aim to constrain the properties of dust structures in the central first parsecs of active galactic nuclei (AGN). Our goal is to study the required optical depth and composition of different dusty and ionised structures. Methods: We developed a radiative transfer code called Monte Carlo for Active Galactic Nuclei (MontAGN), which is optimised for polarimetric observations in the infrared. With both this code and STOKES, designed to be relevant from the hard X-ray band to near-infrared wavelengths, we investigate the polarisation emerging from a characteristic model of the AGN environment. For this purpose, we compare predictions of our models with previous infrared observations of NGC 1068, and try to reproduce several key polarisation patterns revealed by polarisation mapping. Results: We constrain the required dust structures and their densities. More precisely, we find that the electron density inside the ionisation cone is about 2.0 × 109 m-3. With structures constituted of spherical grains of constant density, we also highlight that the torus should be thicker than 20 in term of K-band optical depth to block direct light from the centre. It should also have a stratification in density: a less dense outer rim with an optical depth at 2.2 μm typically between 0.8 and 4 for observing the double scattering effect previously proposed. Conclusions: We bring constraints on the dust structures in the inner parsecs of an AGN model supposed to describe NGC 1068. When compared to observations, this leads to an optical depth of at least 20 in the Ks band for the torus of NGC 1068, corresponding to τV ≈ 170, which is within the range of current estimation based on observations. In the future, we will improve our study by including non-uniform dust structures and aligned elongated grains to constrain other possible interpretations of the observations.

  9. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  10. Deep and wide photometry of the two open clusters NGC 1245 and NGC 2506: CCD observation and physical properties

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kang, Y.-W.; Ann, H. B.

    2012-09-01

    We have conducted VI CCD photometry of the two open clusters NGC 1245 and NGC 2506 using the CFH12K CCD camera. Our photometry covers a sky area of 84 × 82 and 42 × 81 arcmin2 for the two clusters, respectively, and reaches down to V ≈ 23. We derived the physical parameters using detailed theoretical isochrone fittings using χ2 minimization. The derived cluster parameters are E(B - V) = 0.24 ± 0.05 and 0.03 ± 0.04, (V - MV)0 = 12.25 ± 0.12 and 12.47 ± 0.08, age (Gyr) = 1.08 ± 0.09 and 2.31 ± 0.16, and [Fe/H] = -0.08 ± 0.06 and -0.24 ± 0.06, respectively, for NGC 1245 and NGC 2506. We present the luminosity functions of the two clusters, which reach down to MV ≈ 10, and derive mass functions with slopes of Γ = -1.29 for NGC 1245 and Γ = -1.26 for NGC 2506. The slopes are slightly shallower than that of the solar neighbourhood, implying the existence of dynamical evolution that drives the evaporation of the low-mass stars in the clusters.

  11. Post-Starburst Galaxies At The End of The E+A Phase

    NASA Astrophysics Data System (ADS)

    Liu, Charles; Marinelli, Mariarosa; Chang, Madeleine; Lyczko, Camilla; Vega Orozco, Cecilia; SDSS-IV Collaboration

    2018-06-01

    Post-starburst galaxies, once thought to be rare curiosities, are now recognized to represent a key phase in the galaxy evolution. The post-starburst, or E+A phase, should however not be considered as a single, short-lived phenomenon; rather, it is an extended evolutionary process that occurs a galaxy transitions from an actively star-forming system into a quiescent one. We present a study of nearby galaxies at or near the end of the E+A phase, wherein all star formation has been quenched, the fossilized stellar population of the most recent starburst is highly localized, and the remainder of the galaxy's stellar population is old and quiescent. The luminosity and stellar age distribution of these "end-phase E+As" can provide insights into the evolution of galaxies onto and within the red sequence, from active to passive systems. This work is supported by National Science Foundation grants to CUNY College of Staten Island and the American Museum of Natural History; the College of Staten Island Office of Academic Affairs; the Sherman Fairchild Science Pathways Scholars Program (SP^2) at Barnard College; and the Alfred P. Sloan Foundation.

  12. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  13. A Deep Herschel/PACS Observation of CO(40-39) in NGC 1068: A Search for the Molecular Torus

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Bruderer, S.; Sturm, E.; Contursi, A.; Davies, R.; Hailey-Dunsheath, S.; Poglitsch, A.; Genzel, R.; Graciá-Carpio, J.; Lutz, D.; Tacconi, L.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Veilleux, S.; Verma, A.; Burtscher, L.

    2015-10-01

    Emission from high-J CO lines in galaxies has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by active galactic nuclei (AGNs). Of particular interest is the question of whether the obscuring torus, which is required by AGN unification models, can be observed via high-J CO cooling lines. Here we report on the analysis of a deep Herschel/PACS observation of an extremely high-J CO transition (40-39) in the Seyfert 2 galaxy NGC 1068. The line was not detected, with a derived 3σ upper limit of 2× {10}-17 {{W}} {{{m}}}-2. We apply an XDR model in order to investigate whether the upper limit constrains the properties of a molecular torus in NGC 1068. The XDR model predicts the CO spectral line energy distributions for various gas densities and illuminating X-ray fluxes. In our model, the CO(40-39) upper limit is matched by gas with densities of ˜ {10}6-{10}7 {{cm}}-3, located at 1.6-5 pc from the AGN, with column densities of at least {10}25 {{cm}}-2. At such high column densities, however, dust absorbs most of the CO(40-39) line emission at λ =65.69 μ {{m}}. Therefore, even if NGC 1068 has a molecular torus that radiates in the CO(40-39) line, the dust can attenuate the line emission to below the PACS detection limit. The upper limit is thus consistent with the existence of a molecular torus in NGC 1068. In general, we expect that the CO(40-39) is observable in only a few AGN nuclei (if at all), because of the required high gas column density, and absorption by dust.

  14. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  15. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6584 and NGC 7099

    NASA Astrophysics Data System (ADS)

    O’Malley, Erin M.; Chaboyer, Brian

    2018-04-01

    We obtain high-resolution spectra of red giant branch stars in NGC 6584 and NGC 7099 to perform a detailed abundance analysis. We confirm cluster membership for these stars based on consistent radial velocities measured in this study and small pixel offsets between the observations of Sarajedini et al. and Piotto et al. We find mean metallicities of [Fe/H] = ‑1.53 ± 0.08 dex and [Fe/H] = ‑2.29 ± 0.07 dex for NGC 6584 and NGC 7099, respectively. We also find these clusters to be enhanced in their [α/Fe] ratios, consistent with what is expected for metal-poor globular clusters. Additionally, we find evidence of a statistically significant Na–O anti-correlation in both clusters. Finally, with the use of HST photometry, we compare the location of the enhanced and pristine populations in chromosome maps of the clusters to confirm previous photometric evidence of multiple stellar populations. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences, our results can be used to constrain pollution models.

  16. Astrometry With the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, ABELL 31, and DeHt 5

    DTIC Science & Technology

    2009-12-01

    reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi

  17. Neutrino and axion bounds from the globular cluster M5 (NGC 5904).

    PubMed

    Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A

    2013-12-06

    The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.

  18. Galactic star formation rates gauged by stellar end-products

    NASA Astrophysics Data System (ADS)

    Persic, M.; Rephaeli, Y.

    2007-02-01

    Young galactic X-ray point sources (XPs) closely trace the ongoing star formation in galaxies. From measured XP number counts we extract the collective 2-10 keV luminosity of young XPs, L_x^yXP, which we use to gauge the current star formation rate (SFR) in galaxies. We find that, for a sample of local star-forming galaxies (i.e., normal spirals and mild starbursts), L_x^yXP correlates linearly with the SFR over three decades in luminosity. A separate, high-SFR sample of starburst ULIRGs can be used to check the calibration of the relation. Using their (presumably SF-related) total 2-10 keV luminosities we find that these sources satisfy the SFR-L_x^yXP relation, as defined by the weaker sample, and extend it to span ˜5 decades in luminosity. The SFR-L_x^yXP relation is also likely to hold for distant (z ˜ 1) Hubble Deep Field North galaxies, especially so if these high-SFR objects are similar to the (more nearby) ULIRGs. It is argued that the SFR-L_x^yXP relation provides the most adequate X-ray estimator of instantaneous SFR by the phenomena characterizing massive stars from their birth (FIR emission from placental dust clouds) through their death as compact remnants (emitting X-rays by accreting from a close donor). For local, low/intermediate-SFR galaxies, the simultaneous existence of a correlation of the instantaneous SFR with the total 2-10 keV luminosity, L_x, which traces the SFR integrated over the last ˜109 yr, suggests that during such epoch the SF in these galaxies has been proceeding at a relatively constant rate.

  19. Young star clusters in the circumnuclear region of NGC 2110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (Hemore » I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.« less

  20. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.