Sample records for galactic supermassive black

  1. Shaping the relation between the mass of supermassive black holes and the velocity dispersion of galactic bulges

    NASA Astrophysics Data System (ADS)

    Chan, M. H.

    2013-05-01

    I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M ⊙. This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.

  2. When Supermassive Black Holes Wander

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  3. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  4. Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center.

    PubMed

    Hees, A; Do, T; Ghez, A M; Martinez, G D; Naoz, S; Becklin, E E; Boehle, A; Chappell, S; Chu, D; Dehghanfar, A; Kosmo, K; Lu, J R; Matthews, K; Morris, M R; Sakai, S; Schödel, R; Witzel, G

    2017-05-26

    We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of |α|<0.016 at a length scale of λ=150 astronomical units. We also derive a 95% confidence upper limit on a linear drift of the argument of periastron of the short-period star S0-2 of |ω[over ˙]_{S0-2}|<1.6×10^{-3}  rad/yr, which can be used to constrain various gravitational and astrophysical theories. This analysis provides the first fully self-consistent test of the gravitational theory using orbital dynamic in a strong gravitational regime, that of a supermassive black hole. A sensitivity analysis for future measurements is also presented.

  5. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  6. Ram-pressure feeding of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Poggianti, Bianca M.; Jaffé, Yara L.; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-01

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven ‘jellyfish’ galaxies—galaxies with long ‘tentacles’ of material that extend for dozens of kiloparsecs beyond the galactic disks—host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  7. Ram-pressure feeding of supermassive black holes.

    PubMed

    Poggianti, Bianca M; Jaffé, Yara L; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-16

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven 'jellyfish' galaxies-galaxies with long 'tentacles' of material that extend for dozens of kiloparsecs beyond the galactic disks-host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  8. Supermassive Black Hole Fueling and Feedback in Galaxies

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.

    2018-06-01

    Over the last few decades, observations have revealed surprisingly tight correlations between the properties of galaxies and their supermassive black holes. Active galactic nuclei (AGN) have emerged as key drivers of this coevolution of galaxies and supermassive black holes, by two primary mechanisms: AGN fueling and AGN feedback. Supermassive black holes build up mass by accreting gas during AGN fueling, while AGN feedback is a crucial regulator of star formation that controls the mass growth of the galaxies. In this talk, I will present multiwavelength studies of both AGN fueling and feedback. I will discuss results that address AGN fueling in galaxy mergers, the connection between AGN and star formation, and the effect of AGN outflows on their host galaxies.

  9. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations.

    PubMed

    Ueda, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find "obscured" AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.

  10. Spin and mass of the supermassive black hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for themore » present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.« less

  11. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  12. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations

    PubMed Central

    UEDA, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions. PMID:25971656

  13. Observing the Super-Massive Black Hole of the Galactic center with Simbol-X .

    NASA Astrophysics Data System (ADS)

    Goldwurm, A.

    The Center of our Galaxy is one of the prime objective of the Simbol-X mission. This region of several square degrees around the dynamical center of the galaxy hosts a large variety of high energy sources and violent phenomena that involve different non-thermal processes contributing to the hard X-ray emission from the region. Here we present in detail the case for the observation of Sgr A*, the super-massive black hole of the galactic nucleus, with Simbol-X, stressing on the presently open questions and on the crucial measurements that will be performed in the hard X-ray domain with this formation-flying hard X-ray focussing telescope expected to flight in the next decade.

  14. Forming Stars Near Our Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    Is it possible to form stars in the immediate vicinity of the hostile supermassive black hole at the center of our galaxy? New evidence suggests that nature has found a way.Infrared view of the central 300 light-years of our galaxy. [Hubble: NASA/ESA/Q.D. Wang; Spitzer: NASA/JPL/S. Stolovy]Too Hostile for Stellar Birth?Around Sgr A*, the supermassive black hole lurking at the Milky Ways center, lies a population of 200 massive, young, bright stars. Their very tight orbits around the black hole pose a mystery: did these intrepid stars somehow manage to form in situ, or did they instead migrate to their current locations from further out?For a star to be born out of a molecular cloud, the self-gravity of the cloud clump must be stronger than the other forces its subject to. Close to a supermassive black hole, the brutal tidal forces of the black hole dominate over all else. For this reason, it was thought that stars couldnt form in the hostile environment near a supermassive black hole until clues came along suggesting otherwise.Science as an Iterative ProcessVery Large Array observations of candidate photoevaporative protoplanetary disks discovered in 2015. [Yusef-Zadeh et al. 2015]Longtime AAS Nova readers might recall that one of our very first highlights on the site, back in August of 2015, was of a study led by Farhad Yusef-Zadeh of Northwestern University. In this study, the authors presented observations of candidate proplyds photoevaporative protoplanetary disks suggestive of star formation within a few light-years of the galactic center.While these observations seemed to indicate that stars might, even now, be actively forming near Sgr A*, they werent conclusive evidence. Follow-up observations of these and other signs of possible star formation were hindered by the challenges of observing the distant and crowded galactic center.Two and a half years later, Yusef-Zadeh and collaborators are back now aided by high-resolution and high-sensitivity observations

  15. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.

    PubMed

    Doeleman, Sheperd S; Weintroub, Jonathan; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C-J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-09-04

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

  16. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  17. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    PubMed

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  18. Two separate outflows in the dual supermassive black hole system NGC 6240

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.

  19. Two separate outflows in the dual supermassive black hole system NGC 6240.

    PubMed

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  20. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  1. Hidden Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  2. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA.

  4. Observing stellar mass and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_⊙) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_⊙) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  5. The habitability of the Milky Way during the active phase of its central supermassive black hole.

    PubMed

    Balbi, Amedeo; Tombesi, Francesco

    2017-11-30

    During the peak of their accretion phase, supermassive black holes in galactic cores are known to emit very high levels of ionizing radiation, becoming visible over intergalactic distances as quasars or active galactic nuclei (AGN). Here, we quantify the extent to which the activity of the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), may have affected the habitability of Earth-like planets in our Galaxy. We focus on the amount of atmospheric loss and on the possible biological damage suffered by planets exposed to X-ray and extreme ultraviolet (XUV) radiation produced during the peak of the active phase of Sgr A*. We find that terrestrial planets could lose a total atmospheric mass comparable to that of present day Earth even at large distances (~1 kiloparsec) from the galactic center. Furthermore, we find that the direct biological damage caused by Sgr A* to surface life on planets not properly screened by an atmosphere was probably significant during the AGN phase, possibly hindering the development of complex life within a few kiloparsecs from the galactic center.

  6. Wandering Supermassive Black Holes in Milky-Way-mass Halos

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Pontzen, Andrew; Quinn, Thomas R.

    2018-04-01

    We present a self-consistent prediction from a large-scale cosmological simulation for the population of “wandering” supermassive black holes (SMBHs) of mass greater than 106 M ⊙ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the ROMULUS25 cosmological simulation, which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of 5.1 ± 3.3 SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of 12.2 ± 8.4 SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyr, often accreted by their host halo in the early Universe. We find, with >4σ significance, that wandering SMBHs are preferentially found outside of galactic disks.

  7. VLBA Reveals Closest Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    2006-05-01

    black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy. "Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found. Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna. "Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs. Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their

  8. Supermassive Black Hole Binaries in High Performance Massively Parallel Direct N-body Simulations on Large GPU Clusters

    NASA Astrophysics Data System (ADS)

    Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.

    2012-07-01

    Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.

  9. Breaking the Supermassive Black Hole Speed Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidt, Joseph

    A new computer simulation helps explain the existence of puzzling supermassive black holes observed in the early universe. The simulation is based on a computer code used to understand the coupling of radiation and certain materials. “Supermassive black holes have a speed limit that governs how fast and how large they can grow,” said Joseph Smidt of the Theoretical Design Division at Los Alamos National Laboratory. “The relatively recent discovery of supermassive black holes in the early development of the universe raised a fundamental question, how did they get so big so fast?” Using computer codes developed at Los Alamosmore » for modeling the interaction of matter and radiation related to the Lab’s stockpile stewardship mission, Smidt and colleagues created a simulation of collapsing stars that resulted in supermassive black holes forming in less time than expected, cosmologically speaking, in the first billion years of the universe.« less

  10. Star motion around rotating black hole in the Galactic Center in real time

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav; Nazarova, Natalia

    2017-12-01

    The Event Horizon Telescope team intends by the 2020 to resolve the shadow of supermassive black hole SgrA* in the Galactic Center. It would be the first attempt for direct identification of the enigmatic black hole. In other words, it would be the first experimental verification of the General Relativity in the strong field limit. There is a chance to find a star moving on the relativistic orbit close to this black hole. We present the animated numerical model of the gravitational lensing of a star (or any other lighting probe), moving around rotating Kerr black hole in the Galactic Center and viewed by the distant observer.

  11. No supermassive black hole in M33?

    PubMed

    Merritt, D; Ferrarese, L; Joseph, C L

    2001-08-10

    We observed the nucleus of M33, the third-brightest galaxy in the Local Group, with the Space Telescope Imaging Spectrograph at a resolution at least a factor of 10 higher than previously obtained. Rather than the steep rise expected within the radius of gravitational influence of a supermassive black hole, the random stellar velocities showed a decrease within a parsec of the center of the galaxy. The implied upper limit on the mass of the central black hole is only 3000 solar masses, about three orders of magnitude lower than the dynamically inferred mass of any other supermassive black hole. Detecting black holes of only a few thousand solar masses is observationally challenging, but it is critical to establish how supermassive black holes relate to their host galaxies, and which mechanisms influence the formation and evolution of both.

  12. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  13. High-Resolution Millimeter-VLBI Imaging of the super-massive black hole candidate at the Galactic center - Sgr A*

    NASA Astrophysics Data System (ADS)

    Shen, Zqs

    Sagittarius A* (Sgr A*), the extremely compact radio source at the Galactic center (GC), is the best candidate for the single super-massive black hole (SMBH). The accurate measurements of its mass (as a gravitational source) and size (as a radiative source) are of great importance in testing its SMBH hypothesis. Great progress has been made on determining its central dark mass of 3.7 million solar masses. Here, we will present the highest resolution VLBI imaging observations of Sgr A* made at both 7.0 and 3.5 millimeters with the Very Long Baseline Array (VLBA) plus the Green Bank Telescope (GBT) and the VLBA, respectively. Both the imaging and the model-fitting with the closure amplitudes show a consistent East-West elongated elliptical Gaussian emission. The inferred possible intrinsic emitting region is less than 1 AU at the distance of 8 kpc to GC.

  14. Precocious Supermassive Black Holes Challenge Theories

    NASA Astrophysics Data System (ADS)

    2004-11-01

    NASA's Chandra X-ray Observatory has obtained definitive evidence that a distant quasar formed less than a billion years after the Big Bang contains a fully-grown supermassive black hole generating energy at the rate of twenty trillion Suns. The existence of such massive black holes at this early epoch of the Universe challenges theories of the formation of galaxies and supermassive black holes. Astronomers Daniel Schwartz and Shanil Virani of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA observed the quasar, known as SDSSp J1306, which is 12.7 billion light years away. Since the Universe is estimated to be 13.7 billion years old, we see the quasar as it was a billion years after the Big Bang. They found that the distribution of X-rays with energy, or X-ray spectrum, is indistinguishable from that of nearby, older quasars. Likewise, the relative brightness at optical and X-ray wavelengths of SDSSp J1306 was similar to that of the nearby group of quasars. Optical observations suggest that the mass of the black hole is about a billion solar masses. Illustration of Quasar SDSSp J1306 Illustration of Quasar SDSSp J1306 Evidence of another early-epoch supermassive black hole was published previously by a team of scientists from the California Institute of Technology and the United Kingdom using the XMM-Newton X-ray satellite. They observed the quasar SDSSp J1030 at a distance of 12.8 billion light years and found essentially the same result for the X-ray spectrum as the Smithsonian scientists found for SDSSp J1306. Chandra's precise location and spectrum for SDSSp J1306 with nearly the same properties eliminate any lingering uncertainty that precocious supermassive black holes exist. "These two results seem to indicate that the way supermassive black holes produce X-rays has remained essentially the same from a very early date in the Universe," said Schwartz. "This implies that the central black hole engine in a massive galaxy was formed very soon

  15. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  16. Supermassive and super-hungry

    NASA Image and Video Library

    2016-01-04

    This NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo (The Virgin). The galaxy’s orientation clearly reveals the galaxy’s striking spiral structure: a flat and dust-mottled disc surrounding a bright galactic bulge. NGC 4845’s glowing centre hosts a gigantic version of a black hole, known as a supermassive black hole. The presence of a black hole in a distant galaxy like NGC 4845 can be inferred from its effect on the galaxy’s innermost stars; these stars experience a strong gravitational pull from the black hole and whizz around the galaxy’s centre much faster than otherwise. From investigating the motion of these central stars, astronomers can estimate the mass of the central black hole — for NGC 4845 this is estimated to be hundreds of thousands times heavier than the Sun. This same technique was also used to discover the supermassive black hole at the centre of our own Milky Way — Sagittarius A* — which hits some four million times the mass of the Sun (potw1340a). The galactic core of NGC 4845 is not just supermassive, but also super-hungry. In 2013 researchers were observing another galaxy when they noticed a violent flare at the centre of NGC 4845. The flare came from the central black hole tearing up and feeding off an object many times more massive than Jupiter. A brown dwarf or a large planet simply strayed too close and was devoured by the hungry core of NGC 4845.

  17. Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.

    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. Wemore » test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.« less

  18. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  19. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  20. Chandra Finds Evidence for Swarm of Black Holes Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A swarm of 10,000 or more black holes may be orbiting the Milky Way's supermassive black hole, according to new results from NASA's Chandra X-ray Observatory. This would represent the highest concentration of black holes anywhere in the Galaxy. These relatively small, stellar-mass black holes, along with neutron stars, appear to have migrated into the Galactic Center over the course of several billion years. Such a dense stellar graveyard has been predicted for years, and this represents the best evidence to date of its existence. The Chandra data may also help astronomers better understand how the supermassive black hole at the center of the Milky Way grows. The discovery was made as part of Chandra's ongoing program of monitoring the region around Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way. It was announced today by Michael Muno of the University of California, Los Angeles (UCLA) at a meeting of the American Astronomical Society in San Diego, CA. Animation: Sequence Showing Evidence of Black Hole Swarm in Context Animation: Sequence Showing Evidence of Black Hole Swarm in Context Among the thousands of X-ray sources detected within 70 light years of Sgr A*, Muno and his colleagues searched for those most likely to be active black holes and neutron stars by selecting only the brightest sources that also exhibited large variations in their X-ray output. These characteristics identify black holes and neutron stars that are in binary star systems and are pulling matter from nearby companion stars. Of the seven sources that met these criteria, four are within three light years of Sgr A*. "Although the region around Sgr A* is crowded with stars, we expected that there was only a 20 percent chance that we would find even one X-ray binary within a three-light-year radius," said Muno. "The observed high concentration of these sources implies that a huge number of black holes and neutron stars have gathered in the center of the

  1. The black hole at the Galactic Center: observations and models in a nutshell

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2017-12-01

    The Galactic Center (Sgr A*) is a peculiar place in our Galaxy (Milky Way). Our Solar system is located at a distance around 8 kpc from the Galactic Center (GC). There were a number of different including exotic ones such as boson stars, fermion balls, neutrino balls, a cluster of neutron stars. Some of these models are significantly constrained with consequent observations and now supermassive black hole with mass around 4 × 106 M ⊙ is the preferable model for GC. Moreover, one can test alternative theories of gravity with observations of bright stars near the Galactic Center and and observations of bright structures near the black hole at the Galactic Center to reconstruct shadow structure around the black hole with current and future observational VLBI facilities such as the Event Horizon Telescope. In particular, we got a graviton mass constraint which is comparable and consistent with constraints obtained recently by the LIGO-Virgo collaboration.

  2. The Galactic Tango: The Elegant Dance of Galaxies and their Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Li, Yuexing; Zhu, Qirong

    2015-01-01

    For well over a decade, it has been known that a supermassive black hole resides in the center of almost every galaxy, and that these black holes strongly correlate with the stellar velocity dispersion (the MBH-σ correlation) and stellar mass (the MBH-Mhost correlation) of their hosts. The origins of these correlations, however, have yet to be determined. To explore the interplay between black holes and galaxies, we have utilized a sample of nearby spiral and elliptical galaxies as well as a sample of AGN in the redshift range z = 0-3. By examining galaxy properties such as mass, kinematics, and growth history, we have determined that these two correlations have distinct origins: the MBH-σ relation may be the result of virial equilibrium, whereas the MBH-Mhost relation may be the result of self-regulated black hole growth and star formation in galaxies. These results confirm the predictions of our previous theoretical model.

  3. Possible Alternatives to the Supermassive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.

    2015-12-01

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, (a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; (b) measuring the size and shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment, one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be precise enough due to enormous progress of observational facilities) while for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner-Nordstrom or Schwarzschild-de-Sitter metrics for better fits.

  4. Is there an ordinary supermassive black hole at the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner - Nordström or Schwarzschild - de-Sitter metrics for better fits.

  5. Intermediate-mass Black Holes and Dark Matter at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Silk, Joseph

    2018-01-01

    Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.

  6. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    NASA Astrophysics Data System (ADS)

    Comerford, Julia

    The growth of supermassive black holes is tied to the evolution of their host galaxies, but we are still missing a fundamental understanding of how and when supermassive black holes build up their mass. Black hole mass growth can be traced when the black holes are powered as active galactic nuclei (AGN), and AGN activity can be triggered by the stochastic accretion of gas or by gas inflows driven by galaxy mergers. Galaxy merger simulations make a series of predictions about the AGN that are triggered by mergers: (1) major mergers preferentially trigger higher-luminosity AGN, (2) minor mergers more often trigger AGN activity in one supermassive black hole while major mergers more often trigger AGN activity in both black holes in a merger, and (3) black hole mass growth peaks when the black holes approach the center (<10 kpc separations) of the merger-remnant galaxy. Observational tests of these predictions from theory have been limited by the difficulty in defining a clean observational sample of AGN in galaxy mergers and the observational challenge of spatially resolving two AGN with small (<10kpc) separations. Here we present offset and dual AGN as a new observational tool that can be used to address how and when supermassive black hole mass growth occurs. A merger of two galaxies brings two supermassive black holes together, and the two black holes exist at kpc-scale separations for 100 Myr before ultimately merging. While the black holes are at kpc-scale separations, they are known as dual AGN when both of them are fueled as AGN and offset AGN when only one is fueled as an AGN. Since offset and dual AGN only occur in galaxy mergers, by their very definition, they provide a clean observational sample of black hole mass growth in galaxy mergers. The small, kpc-scale separations of offset and dual AGN also enable an observational test of black hole fueling near the centers of merger-remnant galaxies. The full potential of offset and dual AGN for such studies of

  7. Supermassive black holes and their feedback effects in the IllustrisTNG simulation

    NASA Astrophysics Data System (ADS)

    Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars

    2018-06-01

    We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 108.5 M⊙, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass - stellar bulge mass relation in good agreement with observations, whereas the simulation tends to over-predict the high-redshift quasar luminosity function.

  8. Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Parsa, M.; Eckart, A.; Shahzamanian, B.; Karas, V.; Zajaček, M.; Zensus, J. A.; Straubmeier, C.

    2017-08-01

    The S-star cluster in the Galactic center allows us to study the physics close to a supermassive black hole, including distinctive dynamical tests of general relativity. Our best estimates for the mass of and the distance to Sgr A* using the three stars with the shortest period (S2, S38, and S55/S0-102) and Newtonian models are M BH = (4.15 ± 0.13 ± 0.57) × 106 M ⊙ and R 0 = 8.19 ± 0.11 ± 0.34 kpc. Additionally, we aim at a new and practical method to investigate the relativistic orbits of stars in the gravitational field near Sgr A*. We use a first-order post-Newtonian approximation to calculate the stellar orbits with a broad range of periapse distance r p . We present a method that employs the changes in orbital elements derived from elliptical fits to different sections of the orbit. These changes are correlated with the relativistic parameter defined as ϒ ≡ r s /r p (with r s being the Schwarzschild radius) and can be used to derive ϒ from observational data. For S2 we find a value of ϒ = 0.00088 ± 0.00080, which is consistent, within the uncertainty, with the expected value of ϒ = 0.00065 derived from M BH and the orbit of S2. We argue that the derived quantity is unlikely to be dominated by perturbing influences such as noise on the derived stellar positions, field rotation, and drifts in black hole mass.

  9. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    NASA Astrophysics Data System (ADS)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  10. An ordinary supermassive black hole at the Galactic Center: pro and contra

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2016-07-01

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Yukawa potential, Reissner -- Nordstrom or Schwarzschild -- de-Sitter metrics for better fits.

  11. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  12. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    PubMed

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  13. Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, M.; Eckart, A.; Shahzamanian, B.

    The S-star cluster in the Galactic center allows us to study the physics close to a supermassive black hole, including distinctive dynamical tests of general relativity. Our best estimates for the mass of and the distance to Sgr A* using the three stars with the shortest period (S2, S38, and S55/S0-102) and Newtonian models are M {sub BH} = (4.15 ± 0.13 ± 0.57) × 10{sup 6} M {sub ⊙} and R {sub 0} = 8.19 ± 0.11 ± 0.34 kpc. Additionally, we aim at a new and practical method to investigate the relativistic orbits of stars in the gravitationalmore » field near Sgr A*. We use a first-order post-Newtonian approximation to calculate the stellar orbits with a broad range of periapse distance r {sub p} . We present a method that employs the changes in orbital elements derived from elliptical fits to different sections of the orbit. These changes are correlated with the relativistic parameter defined as ϒ ≡ r {sub s} / r {sub p} (with r {sub s} being the Schwarzschild radius) and can be used to derive ϒ from observational data. For S2 we find a value of ϒ = 0.00088 ± 0.00080, which is consistent, within the uncertainty, with the expected value of ϒ = 0.00065 derived from M {sub BH} and the orbit of S2. We argue that the derived quantity is unlikely to be dominated by perturbing influences such as noise on the derived stellar positions, field rotation, and drifts in black hole mass.« less

  14. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  15. Cosmic string loops as the seeds of super-massive black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul

    2015-06-01

    Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.

  16. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we accountmore » for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.« less

  17. The supermassive black hole coincident with the luminous transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Krühler, T.; Fraser, M.; Leloudas, G.; Schulze, S.; Stone, N. C.; van Velzen, S.; Amorin, R.; Hjorth, J.; Jonker, P. G.; Kann, D. A.; Kim, S.; Kuncarayakti, H.; Mehner, A.; Nicuesa Guelbenzu, A.

    2018-02-01

    The progenitors of astronomical transients are linked to a specific stellar population and galactic environment, and observing their host galaxies hence constrains the physical nature of the transient itself. Here, we use imaging from the Hubble Space Telescope, and spatially resolved, medium-resolution spectroscopy from the Very Large Telescope obtained with X-shooter and MUSE to study the host of the very luminous transient ASASSN-15lh. The dominant stellar population at the transient site is old (around 1 to 2 Gyr) without signs of recent star formation. We also detect emission from ionized gas, originating from three different, time invariable, narrow components of collisionally excited metal and Balmer lines. The ratios of emission lines in the Baldwin-Phillips-Terlevich diagnostic diagram indicate that the ionization source is a weak active galactic nucleus with a black hole mass of M• = 5-3+8 × 108 M⊙, derived through the M•-σ relation. The narrow line components show spatial and velocity offsets on scales of 1 kpc and 500 km s-1, respectively; these offsets are best explained by gas kinematics in the narrow-line region. The location of the central component, which we argue is also the position of the supermassive black hole, aligns with that of the transient within an uncertainty of 170 pc. Using this positional coincidence as well as other similarities with the hosts of tidal disruption events, we strengthen the argument that the transient emission observed as ASASSN-15lh is related to the disruption of a star around a supermassive black hole, most probably spinning with a Kerr parameter a• ≳ 0.5. Based on observations at ESO, Program IDs: 097.D-1054, 297.B-5035, 099.D-0115.The data used in this manuscript are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A14

  18. Investigating Supermassive Black Hole Spin at Different Redshift

    NASA Astrophysics Data System (ADS)

    Sinanan-Singh, Jasmine

    2018-01-01

    Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  19. Galactic nuclei evolution with spinning black holes: method and implementation

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Sijacki, Debora; Pringle, J. E.

    2018-04-01

    Supermassive black holes at the centre of galactic nuclei mostly grow in mass through gas accretion over cosmic time. This process also modifies the angular momentum (or spin) of black holes, both in magnitude and in orientation. Despite being often neglected in galaxy formation simulations, spin plays a crucial role in modulating accretion power, driving jet feedback, and determining recoil velocity of coalescing black hole binaries. We present a new accretion model for the moving-mesh code AREPO that incorporates (i) mass accretion through a thin α-disc, and (ii) spin evolution through the Bardeen-Petterson effect. We use a diverse suite of idealised simulations to explore the physical connection between spin evolution and larger scale environment. We find that black holes with mass ≲ 107 M⊙ experience quick alignment with the accretion disc. This favours prolonged phases of spin-up, and the spin direction evolves according to the gas inflow on timescales as short as ≲ 100 Myr, which might explain the observed jet direction distribution in Seyfert galaxies. Heavier black holes (≳ 108 M⊙) are instead more sensitive to the local gas kinematic. Here we find a wider distribution in spin magnitudes: spin-ups are favoured if gas inflow maintains a preferential direction, and spin-downs occur for nearly isotropic infall, while the spin direction does not change much over short timescales ˜100 Myr. We therefore conclude that supermassive black holes with masses ≳ 5 × 108 M⊙ may be the ideal testbed to determine the main mode of black hole fuelling over cosmic time.

  20. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  1. Exploring Jets from a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  2. ALMA Explores How Supermassive Black Holes Talk to Their Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole

  3. Formation and Coalescence of Cosmological Supermassive-Black-Hole Binaries in Supermassive-Star Collapse

    NASA Astrophysics Data System (ADS)

    Reisswig, C.; Ott, C. D.; Abdikamalov, E.; Haas, R.; Mösta, P.; Schnetter, E.

    2013-10-01

    We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z≳10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 104-106M⊙. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ˜10% of the initial mass.

  4. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    PubMed

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  5. A strong magnetic field around the supermassive black hole at the centre of the Galaxy

    NASA Astrophysics Data System (ADS)

    Eatough, R. P.; Falcke, H.; Karuppusamy, R.; Lee, K. J.; Champion, D. J.; Keane, E. F.; Desvignes, G.; Schnitzeler, D. H. F. M.; Spitler, L. G.; Kramer, M.; Klein, B.; Bassa, C.; Bower, G. C.; Brunthaler, A.; Cognard, I.; Deller, A. T.; Demorest, P. B.; Freire, P. C. C.; Kraus, A.; Lyne, A. G.; Noutsos, A.; Stappers, B.; Wex, N.

    2013-09-01

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  6. Dynamically important magnetic fields near supermassive black holes in radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander

    The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.

  7. Major galaxy mergers and the growth of supermassive black holes in quasars.

    PubMed

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  8. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    NASA Astrophysics Data System (ADS)

    2002-11-01

    is a prime example of a massive galaxy in which stars are forming at an exceptionally rapid rate due to a recent collision and subsequent merger of two smaller galaxies. Because of the large amount of dust and gas in such galaxies, it is difficult to peer deep into their central regions with optical telescopes. However, X-rays emanating from the galactic core can penetrate the veil of gas and dust. NGC 6240 Optical & X-ray Comparison of NGC 6240 "The detection of a binary black hole supports the idea that black holes can grow to enormous masses in the centers of galaxies by merging with other black holes," said Komossa. "This is important for understanding how galaxies form and evolve," she said. Over the course of the next few hundred million years, the two black holes in NGC 6240, which are about 3000 light years apart, will drift toward one another and merge to form an even larger supermassive black hole. Toward the end of this process an enormous burst of gravitational waves will be produced several hundred million years from now. These gravitational waves will spread through the universe and produce ripples in the fabric of space, which would appear as minute changes in the distance between any two points. NASA's planned space-based detector, LISA (Laser Interferometer Space Antenna), will search for gravitational waves from massive black-hole mergers. These events are estimated to occur several times each year in the observable universe. "This is the first time we see a binary black hole in action, the smoking gun for something that will become a major gravitational wave burst in the future," said Hasinger. Chandra observed NGC 6240 for 10.3 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team are Vadim Burwitz and Peter Predehl of the Max Planck Institute, Jelle Kaastra of the Space Research Organization Netherlands and Yasushi Ikebe of the University of Maryland in Baltimore. NASA's Marshall Space Flight Center in Huntsville, Ala

  9. A highly magnetized twin-jet base pinpoints a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.

    2016-09-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47

  10. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  11. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  12. Active Galactic Nucleus

    NASA Image and Video Library

    2017-09-14

    SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook

  13. Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2017-08-01

    We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ =4 /3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9 M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7 . A massive, hot, magnetized torus surrounds the remnant black hole. At Δ t ˜400 - 550 M ≈2000 -2700 (M /106 M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δ t ˜105(M /106 M⊙)s , and the outgoing Poynting luminosity is LEM˜1 051 -52 ergs /s . If≳1 %-10 % of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z ˜20 . Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z ˜5 - 8 . Gravitational waves are copiously emitted during the collapse and peak at ˜15 (106 M⊙/M ) mHz [˜0.15 (104 M⊙/M ) Hz ], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z ≲3 (z ≲11 ). Hence, 1 04 M⊙ SMSs collapsing at z ˜10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.

  14. Hubble Sees a Supermassive and Super-hungry Galaxy

    NASA Image and Video Library

    2016-01-08

    This NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo (The Virgin). The galaxy’s orientation clearly reveals the galaxy’s striking spiral structure: a flat and dust-mottled disk surrounding a bright galactic bulge. NGC 4845’s glowing center hosts a gigantic version of a black hole, known as a supermassive black hole. The presence of a black hole in a distant galaxy like NGC 4845 can be inferred from its effect on the galaxy’s innermost stars; these stars experience a strong gravitational pull from the black hole and whizz around the galaxy’s center much faster than otherwise. From investigating the motion of these central stars, astronomers can estimate the mass of the central black hole — for NGC 4845 this is estimated to be hundreds of thousands times heavier than the sun. This same technique was also used to discover the supermassive black hole at the center of our own Milky Way — Sagittarius A* — which hits some four million times the mass of the sun. The galactic core of NGC 4845 is not just supermassive, but also super-hungry. In 2013 researchers were observing another galaxy when they noticed a violent flare at the center of NGC 4845. The flare came from the central black hole tearing up and feeding off an object many times more massive than Jupiter. A brown dwarf or a large planet simply strayed too close and was devoured by the hungry core of NGC 4845. Image credit: ESA/Hubble & NASA and S. Smartt (Queen's University Belfast) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  16. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Halpern, Jules P.; Eracleous, Michael

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less

  17. A supermassive black hole in an ultra-compact dwarf galaxy.

    PubMed

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  18. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  19. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  20. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayasaki, K.; Sohn, B.W.; Jung, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less

  1. Overlapping inflow events as catalysts for supermassive black hole growth

    NASA Astrophysics Data System (ADS)

    Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo

    2014-02-01

    One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.

  2. A Black Hole in Our Galactic Center

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  3. Chandra and VLA Observations of Supermassive Black Hole Outbursts in M87

    NASA Astrophysics Data System (ADS)

    Forman, William; Jones, C.; Churazov, Eugene

    2013-07-01

    We discuss the effects of supermassive black hole (SMBH) outbursts on the hot atmospheres surrounding the central massive galaxies in groups and clusters, as observed with X-ray and radio observations. We focus on a detailed study of the supermassive black hole in M87 at the center of the Virgo cluster using Chandra and VLA observations. We summarize the outburst history and describe the clearly observed energy input from buoyant bubbles of relativistic plasma produced by the central SMBH, uplifted filaments of X-ray emitting gas, and the Mach 1.2 shock together balance the energy lost as gas radiatively cools.

  4. The black hole at the Galactic Center: Observations and models

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander F.

    < 2.9 × 10‑21eV from the analysis of observational data on the trajectory of the star S2 near the Galactic Center. Therefore, observations of bright stars with existing and forthcoming telescopes such as the European extremely large telescope (E-ELT) and the thirty meter telescope (TMT) are extremely useful for investigating the structure of the Galactic Center in the framework of GR, but these observations also give a tool to confirm, rule out or constrain alternative theories of gravity. As we noted earlier, VLBI observations with current and forthcoming global networks (like the Event Horizon Telescope) are used to check the hypothesis about the presence of a supermassive black hole at the Galactic Center.

  5. Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Wright, S. A.; Barton, E. J.; Barth, A. J.; Simard, L.; Larkin, J. E.; Moore, A.

    2013-01-01

    The next generation of giant-segmented mirror telescopes (> 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS. These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise of a range of possible targets spanning intermediate mass black holes of ~10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. We find that future integral-field spectrographs will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest-cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at different spectral resolutions and plate scales. We find that a spectral resolution of ~8000 will be necessary to measure the masses of IMBHs. We find by using the SDSS DR7 catalog of galaxies that over 4000 massive black holes will be observable at distances between 0.005 < z < 0.3 with the estimated sensitivity and angular resolution of TMT. These observations will provide the most accurate dynamical mass measurements of black holes to enable the study of their demography, address the origin of the M_bh-σ and M_bh - L relationships, and the origins and evolution of black holes through cosmic time.

  6. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  7. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    PubMed

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  8. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  9. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  10. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  11. Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Costantini, E.; De Marco, B.; Svoboda, J.; Motta, S. E.; Proga, D.; Saxton, R.; Ferrigno, C.; Longinotti, A. L.; Miniutti, G.; Grupe, D.; Mathur, S.; Shappee, B. J.; Prieto, J. L.; Stanek, K.

    2017-01-01

    Aims: NGC 2617 is a nearby (z 0.01) active galaxy that recently switched from being a Seyfert 1.8 to be a Seyfert 1.0. At the same time, it underwent a strong increase of X-ray flux by one order of magnitude with respect to archival measurements. We characterise the X-ray spectral and timing properties of NGC 2617 with the aim of studying the physics of a changing-look active galactic nucleus (AGN). Methods: We performed a comprehensive timing and spectral analysis of two XMM-Newton pointed observations spaced by one month, complemented by archival quasi-simultaneous INTEGRAL observations. Results: We found that, to the first order, NGC 2617 looks like a type 1 AGN in the X-ray band and, with the addition of a modest reflection component, its continuum can be modelled well either with a power law plus a phenomenological blackbody, a partially covered power law, or a double Comptonisation model. Independent of the continuum adopted, in all three cases a column density of a few 1023 cm-2 of neutral gas covering 20-40% of the continuum source is required by the data. Most interestingly, absorption structures due to highly ionised iron have been detected in both observations with a redshift of about 0.1c with respect to the systemic redshift of the host galaxy. Conclusions: The redshifted absorber can be ascribed to a failed wind/aborted jets component, to gravitational redshift effects, and/or to matter directly falling towards the central supermassive black hole. In either case, we are probing the innermost accretion flow around the central supermassive black hole of NGC 2617 and might be even watching matter in a direct inflow towards the black hole itself.

  12. Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2017-01-01

    We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.

  13. THE PROPERTIES OF HYPERVELOCITY STARS AND S-STARS ORIGINATING FROM AN ECCENTRIC DISK AROUND A SUPERMASSIVE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šubr, Ladislav; Haas, Jaroslav, E-mail: subr@sirrah.troja.mff.cuni.cz, E-mail: haas@sirrah.troja.mff.cuni.cz

    2016-09-01

    Hypervelocity stars (HVSs), which are observed in the Galactic halo, are believed to be accelerated to large velocities by a process of tidal disruption of binary stars passing close to the supermassive black hole (SMBH) which resides in the center of the Galaxy. It is, however, still unclear where these relatively young stars were born and what dynamical process pushed them to nearly radial orbits around the SMBH. In this paper we investigate the possibility that the young binaries originated from a thin eccentric disk, similar to the one currently observed in the Galactic center. By means of direct Nmore » -body simulations, we follow the dynamical evolution of an initially thin and eccentric disk of stars with a 100% binary fraction orbiting around the SMBH. Such a configuration leads to Kozai–Lidov oscillations of orbital elements, bringing a considerable number of binaries to the close vicinity of the black hole. Subsequent tidal disruption of these binaries accelerates one of their components to velocities well above the escape velocity from the SMBH, while the second component becomes tightly bound to the SMBH. We describe the main kinematic properties of the escaping and tightly bound stars within our model, and compare them qualitatively to the properties of the observed HVSs and S-stars, respectively. The most prominent feature is strong anisotropy in the directions of the escaping stars, which is observed for Galactic HVSs but has not yet been explained.« less

  14. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  15. Supermassive Black Hole Binaries: Multi-Messenger Astrophysics and Long Baselines with the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy

    2018-01-01

    Dual ( < ˜1 kpc separation) and binary (< ˜10 pc separation) supermassive black holes are formed during the merger of two massive galaxies. Their formation and subsequent evolution is controlled by interactions with their environment and, at close separations, the emission of gravitational waves. If we can determine the occurrance rate of dual active nuclei in galaxy mergers, we can directly measure merger-induced active nucleus activity, supermassive black hole growth, and the physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.

  16. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  17. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less

  18. How well can we measure supermassive black hole spin?

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L. C.

    2016-05-01

    Being one of only two fundamental properties black holes possess, the spin of supermassive black holes (SMBHs) is of great interest for understanding accretion processes and galaxy evolution. However, in these early days of spin measurements, consistency and reproducibility of spin constraints have been a challenge. Here, we focus on X-ray spectral modelling of active galactic nuclei (AGN), examining how well we can truly return known reflection parameters such as spin under standard conditions. We have created and fit over 4000 simulated Seyfert 1 spectra each with 375±1k counts. We assess the fits with reflection fraction of R = 1 as well as reflection-dominated AGN with R = 5. We also examine the consequence of permitting fits to search for retrograde spin. In general, we discover that most parameters are overestimated when spectroscopy is restricted to the 2.5-10.0 keV regime and that models are insensitive to inner emissivity index and ionization. When the bandpass is extended out to 70 keV, parameters are more accurately estimated. Repeating the process for R = 5 reduces our ability to measure photon index (˜3 to 8 per cent error and overestimated), but increases precision in all other parameters - most notably ionization, which becomes better constrained (±45 erg cm s^{-1}) for low-ionization parameters (ξ < 200 erg cm s^{-1}). In all cases, we find the spin parameter is only well measured for the most rapidly rotating SMBHs (I.e. a > 0.8 to about ±0.10) and that inner emissivity index is never well constrained. Allowing our model to search for retrograde spin did not improve the results.

  19. OGLE16aaa - a signature of a hungry supermassive black hole

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Zieliński, M.; Kostrzewa-Rutkowska, Z.; Hamanowicz, A.; Jonker, P. G.; Arcavi, I.; Guillochon, J.; Brown, P. J.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K. A.; Greiner, J.; Krühler, T.; Bolmer, J.; Smartt, S. J.; Maguire, K.; Smith, K.

    2017-02-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift z = 0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as `changing-look quasars', if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

  20. How to Build a Supermassive Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    NASA astronomer Kim Weaver has got that sinking feeling. You know, it's that unsettling notion you get when you sift through your X-ray data and, to your surprise, find mid-sized black holes sinking toward the center of a galaxy, where they merge with others to form a single supermassive black hole. Could such a thing be true? These would be the largest mergers since America On Line bought Time-Warner, and perhaps even more violent. The process would turn a starburst galaxy inside out, making it more like a quasar host galaxy. Using the Chandra X-Ray Observatory, Weaver saw a hint of this fantastic process in a relatively nearby starburst galaxy named NGC 253 in the constellation Sculptor. She noticed that starburst galaxies - those gems set aglow in a colorful life cycle of hyperactive star birth, death, and renewal - seem to have a higher concentration of mid-mass black holes compared to other galaxies.

  1. Astrophysics of Super-Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  2. General Relativistic Simulations of Magnetized Plasmas Around Merging Supermassive Black Holes

    NASA Technical Reports Server (NTRS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe, total amplification of the magnetic field of approx 2 orders of magnitude which is driven by the accretion onto the binary and that leads to stronger electromagnetic signals than in the force-free regime where such amplifications are not possible.

  3. On the possibility that ultra-light boson haloes host and form supermassive black holes

    NASA Astrophysics Data System (ADS)

    Avilez, Ana A.; Bernal, Tula; Padilla, Luis E.; Matos, Tonatiuh

    2018-07-01

    Several observations suggest the existence of supermassive black holes (SMBH) at the centres of galaxies. However, the mechanism under which these objects form remains non-completely understood. In this work, we review an alternative mechanism of formation of galactic SMBHs from the collapse of a fraction of a dark matter (DM) halo made of an ultra-light scalar field (SF) whose critical mass of collapse is ˜1013 M⊙. Once the BH is formed, a long-living quasi-resonant SF configuration survives and plays the role of a central fraction of the galactic DM halo. In this work, we construct a model with an ultra-light SF configuration laying in a Schwarzschild space-time to describe the centre of the DM halo hosting an SMBH in equilibrium, in the limit where self-gravitating effects can be neglected. We compute the induced stellar velocity dispersion in order to investigate the influence of the BH on to the velocity field of visible matter at the central galactic regions. We fit the empirical correlation between stellar velocity dispersions and masses of SMBHs considering two instances: the idealized case of DM-dominated (DMD) systems, where the gravitational influence of baryons is neglected, and cases of real luminous galaxies (LGAL). In the DMD case, we found it is possible to reproduce the observed stellar velocity dispersions at the effective radius of systems hosting SMBHs of at most 108 M⊙. In the LGAL case, we found that the baryons are crucial to reproduce the observed velocity dispersion.

  4. The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzel, G.; Sitarski, B. N.; Ghez, A. M.

    We present new adaptive optics (AO) imaging and spectroscopic measurements of Galactic center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially resolved object interacting with a supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003–2014) and are comparatively close to the black hole ( a {sub min} ∼ 200–300 au) on very eccentric orbits ( e {sub G1} ∼ 0.99; e {sub G2} ∼ 0.96). While G2 has been tracked before and during periapsis passagemore » ( T {sub 0} ∼ 2014.2), G1 has been followed since soon after emerging from periapsis ( T {sub 0} ∼ 2001.3). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1's orbital trajectory appears to be in the same plane as that of G2 but with a significantly different argument of periapsis (Δ ω = 21° ± 4°). This suggests that G1 is an independent object and not part of a gas stream containing G2, as has been proposed. Furthermore, we show for the first time that (1) G1 is extended in the epochs closest to periapsis along the direction of orbital motion, and (2) it becomes significantly smaller over time (450 au in 2004 to less than 170 au in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with an SMBH. G1's existence 14 yr after periapsis, along with its compactness in epochs further from the time of periapsis, suggest that this source is stellar in nature.« less

  5. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  6. Circumnuclear media of quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.

    2015-10-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.

  7. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  8. Monitoring the Variability of the Supermassive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Do, Tuan; Witzel, Gunther; Ghez, Andrea; Schödel, Rainer; Gallego, Laly; Sitarski, Breann; Lu, Jessica; Becklin, Eric Eric; Dehghanfar, Arezu; Gautam, Abhimat; Hees, Aurelien; Jia, Siyao; Matthews, Keith; Morris, Mark

    2018-01-01

    The variability of the supermassive black hole at the center of the Galaxy, Sgr A*, has been widely studied over the years in a variety of wavelengths. However, near-infrared studies of the variability of Sgr A* only began in 2003 with the then new technique Adaptive Optics (AO) as speckle shift-and-add data did not reach sufficient depth to detect Sgr A* (K < 16). We apply our new speckle holography approach to the analysis of data obtained between 1995 and 2005 with the speckle imaging technique (reaching K < 17) to re-examine the variability of Sgr A* in an effort to explore the Sgr A* accretion flow over a time baseline of 20 years. We find that the average magnitude of Sgr A* from 1995 to 2005 (K = 16.49 +/- 0.086) agrees very well with the average AO magnitude from 2005-2007 (Kp = 16.3). Our detections of Sgr A* are the first reported prior to 2002. In particular, a significant increase of power in the PSD between the main correlation timescale of ~300 min and 20 years can be excluded. This renders 300 min the dominant timescale and setting the variability state of Sgr A* in the time since 1995 apart from states discussed in the context of the X-ray echoes in the surrounding molecular clouds (for which extended bright periods of several years are required). Finally, we note that the 2001 periapse passage of the extended, dusty object G1, a source similar to G2, had no apparent effect on the emissivity of the accretion flow onto Sgr A*.

  9. Visibility of Active Galactic Nuclei in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration

    2018-01-01

    Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.

  10. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartas, G.; Zalesky, L.; Krawczynski, H.

    We present a promising new technique, the g -distribution method, for measuring the inclination angle ( i ), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g -distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g -distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131–1231 ( z {sub s} = 0.658, z {sub l} = 0.295), QJmore » 0158–4325 ( z {sub s} = 1.294, z {sub l} = 0.317), and SDSS 1004+4112 ( z {sub s} = 1.734, z {sub l} = 0.68). For RX J1131−1231, our initial results indicate that r {sub ISCO} ≲ 8.5 gravitational radii ( r {sub g}) and i ≳ 55° (99% confidence level). We detect two shifted Fe lines in several observations, as predicted in our numerical simulations of caustic crossings. The current Δ E distribution of RX J1131–1231 is sparsely sampled, but further X-ray monitoring of RX J1131–1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii, and spins of the black holes of distant quasars.« less

  11. The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.

    2014-05-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.

  12. The 3 megasecond Chandra campaign on Sgr A*: a census of x-ray flaring activity from the galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joey

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  13. The 3 Megasecond Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2014-08-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  14. Understanding Supermassive Black Hole Growth Mechanisms in the SSA22 Protocluster

    NASA Astrophysics Data System (ADS)

    Bonine, Brett; Lehmer, Bret

    2018-01-01

    The SSA22 protocluster is a collection of galaxies at redshift z = 3.09, corresponding to a look back time of 11.6 billion years. Observations of the protocluster allow for the investigation of galaxy properties of such protocluster environments in the early universe, potentially giving insight into the formation and evolution of galaxy clusters visible in the local universe (e.g., the Coma Cluster). Compared to other field galaxies at a similar redshift, a larger fraction of galaxies in SSA22 have been found to possess active galactic nuclei (AGN). This enhanced AGN activity suggests a relationship between the environment within the cluster and the growth of supermassive black holes (SMBHs). I will clarify the role that the protocluster environment at z = 3.09 plays in enhancing the growth of SMBHs in the cluster. To accomplish this, we are analyzing recently obtained WFC3 F160W data from the Hubble Space Telescope (HST) in SSA22, and equivalent archival CANDELS data in the Hubble Deep Field-North, to compare the merger rates and stellar mass distributions of galaxies in the SSA22 protocluster and in the field. Our goal is to assess the relative role that mergers play in enhancing the SMBH growth observed in over-dense regions in the z = 3 Universe.

  15. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  16. Large Hubble Survey Confirms Link between Mergers and Supermassive Black Holes with Relativistic Jets

    NASA Image and Video Library

    2015-05-28

    Tidal disruption event Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using NASA’s Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy. Certain galaxies have shining centers, illuminated by heated gas circling around a supermassive black hole. Matter escapes where it can, forming two jets of plasma moving near the speed of light. To learn more about the relationship between galaxies and the black holes at their cores, go to NASA’s Hubble Space Telescope: www.nasa.gov/mission_pages/hubble/main/ -------------------------------- Original caption: A team of astronomers using the Hubble Space Telescope found an unambiguous link between the presence of supermassive black holes that power high-speed, radio-signal-emitting jets and the merger history of their host galaxies. Almost all galaxies with the jets were found to be merging with another galaxy, or to have done so recently. Credit: NASA/ESA/STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Bow shocks as tracers of the environment and stellar outflows near the supermassive black hole.

    NASA Astrophysics Data System (ADS)

    Stofanova, L.; Zajaček, M.; Karas, V.

    2017-10-01

    Bow shocks develop near stars in the supersonic motion with respect to the surrounding interstellar environment. In particular, extended shocks emerge due to the interaction of stars with strong winds. We discuss the expected shape and orientation of bow shocks in the context of fast moving stars near a supermassive black hole (SMBH) embedded within Bondi-type accretion flow (Zajaček et al. 2016, MNRAS; Štofanová 2016, BSc. Thesis). We present models which take into account different velocities of the probe star and also consider various scenarios for the ambient medium near the vicinity of the black hole such as an inflow/outflow of the material towards/outwards SMBH or a model which considers inflow and outflow at the same time. Under suitable circumstances, a bow shock structure can be detected in infrared domain and their properties can trace the environment of the Galactic center. On the other hand, if density of the ambient medium is determined from mm/radio observations, bow shocks can be used to constrain mass-loss rates of massive OB/WR stars. X-rays can supplement the spectral evidence, though, the structures are below the angular resolution of the current instruments even in the most favourable case of the Milky Way's SMBH (Sgr A*).

  18. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  19. Prospects for measuring supermassive black hole masses with future extremely large telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.

    2014-04-01

    The next generation of giant-segmented mirror telescopes (>20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm)more » to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ∼10{sup 4} M {sub ☉} to the most massive black holes known today of >10{sup 10} M {sub ☉}. We find that IRIS will be able to observe Milky Way mass black holes out the distance of the Virgo Cluster, and will allow us to observe many more of the brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of ∼8000 will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in Sloan Digital Sky Survey DR7, we find that over 10{sup 5} massive black holes will be observable at distances between 0.005 < z < 0.18 with the estimated sensitivity and angular resolution provided by access to Z-band (0.9 μm) spectroscopy from IRIS and the TMT adaptive optics system. These observations will provide the most accurate dynamical measurements of black hole

  20. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  1. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  2. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  3. Lilienfeld Prize Talk: How do massive black holes grow?

    NASA Astrophysics Data System (ADS)

    Rees, Martin

    2017-01-01

    The supermassive black holes in galactic nuclei evolve in symbiosis with their hosts. This paper will review how they grow, with particular emphasis on mergers, and on the complex phenomena associated with the tidal capture and disruption of stars.

  4. Dense Gas-Star Systems: Evolution of Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, P.; Spurzem, R.

    In the 60s and 70s super-massive central objects (from now onwards SMOs) were thought to be the main source of active galactic nuclei (AGNs) characteristics (luminosities of L ≅1012 Lodot). The release of gravitational binding energy by the accretion of material on to an SMO in the range of 107 - 109 Modot has been suggested to be the primary powerhouse (Lynden-Bell 1969). That rather exotic idea in early time has become common sense nowadays. Not only our own galaxy harbours a few million-solar mass black hole (Genzel 2001) but also many of other non-active galaxies show kinematic and gas-dynamic evidence of these objects (Magorrian et al. 1998) The concept of central super-massive stars (SMSs henceforth) (cal M ≥ 5 × 104 Modot, where cal M is the mass of the SMS) embedded in dense stellar systems was suggested as a possible explanation for high- energy emissions phenomena occurring in AGNs and quasars (Vilkoviski 1976, Hara 1978), such as X-ray emissions (Bahcall and Ostriker, 1975). SMSs and super-massive black holes (SMBHs) are two possibilities to explain the nature of SMOs, and SMSs may be an intermediate step towards the formation of SMBHs (Rees 1984). In this paper we give the equations that describe the dynamics of such a dense star-gas system which are the basis for the code that will be used in a prochain future to simulate this scenario. We also briefly draw the mathematical fundamentals of the code.

  5. Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Schawinski, K.; Privon, G. C.; Blecha, L.; Arevalo, P.; Armus, L.; Harrison, F.; Ho, L. C.; Iwasawa, K.; Sanders, D. B.; Stern, D.

    2017-06-01

    Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion on to supermassive black holes (SMBHs), giving rise to active galactic nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local luminous and ultraluminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. We find that the fraction of Compton-thick (CT, N H ≥ 1024 cm- 2) AGN in late-merger galaxies is higher (f_ CT=65^{+12}_{-13}{per cent}) than in local hard X-ray selected AGN (f CT = 27 ± 4 per cent), and that obscuration reaches its maximum when the nuclei of the two merging galaxies are at a projected distance of D12 ≃ 0.4-10.8 kpc (f_ CT=77_{-17}^{+13}{per cent}). We also find that all AGN of our sample in late-merger galaxies have N H > 1023 cm- 2, which implies that the obscuring material covers 95^{+4}_{-8}{per cent} of the X-ray source. These observations show that the material is most effectively funnelled from the galactic scale to the inner tens of parsecs during the late stages of galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by the classical AGN unification model in which the torus is responsible for the obscuration.

  6. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  7. The link between ejected stars, hardening and eccentricity growth of super massive black holes in galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Long; Berczik, Peter; Spurzem, Rainer

    2014-01-10

    The hierarchical galaxy formation picture suggests that supermassive black holes (SMBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of an MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a 'dry' gas-free environment and change the MBHB's energy and angular momentum (semimajor axis, eccentricity, and orientation). Here we present high-accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order of 10{sup 6} stars and two MBHs that are initially unbound. We analyze the properties of themore » ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte Carlo three-body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that MBHBs tend to switch stars with counter-rotating orbits into corotating orbits during their interactions.« less

  8. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  9. Supermassive blackholes without super Eddington accretion

    NASA Astrophysics Data System (ADS)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John

    2017-08-01

    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  10. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    NASA Astrophysics Data System (ADS)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  11. The Milky Way's Supermassive Black Hole: How Good a Case Is It?

    NASA Astrophysics Data System (ADS)

    Eckart, Andreas; Hüttemann, Andreas; Kiefer, Claus; Britzen, Silke; Zajaček, Michal; Lämmerzahl, Claus; Stöckler, Manfred; Valencia-S, Monica; Karas, Vladimir; García-Marín, Macarena

    2017-05-01

    The compact and, with {˜ }4.3± 0.3× 10^6 M_{\\odot }, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* (SgrA*) in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into the emission mechanisms responsible for the powerful near-infrared and X-ray flares from within a few tens to one hundred Schwarzschild radii of such a putative SMBH. If SgrA* is indeed a SMBH it will, in projection onto the sky, have the largest event horizon and will certainly be the first and most important target for very long baseline interferometry observations currently being prepared by the event horizon telescope (EHT). These observations in combination with the infrared interferometry experiment GRAVITY at the very large telescope interferometer and other experiments across the electromagnetic spectrum might yield proof for the presence of a black hole at the center of the Milky Way. The large body of evidence continues to discriminate the identification of SgrA* as a SMBH from alternative possibilities. It is, however, unclear when the ever mounting evidence for SgrA* being associated with a SMBH will suffice as a convincing proof. Additional compelling evidence may come from future gravitational wave observatories. This manuscript reviews the observational facts, theoretical grounds and conceptual aspects for the case of SgrA* being a black hole. We treat theory and observations in the framework of the philosophical discussions about "(anti)realism and underdetermination", as this line of arguments allows us to describe the situation in observational astrophysics with respect to supermassive

  12. Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?

    PubMed

    Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie

    2014-10-10

    If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.

  13. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  14. The birth of a supermassive black hole binary

    NASA Astrophysics Data System (ADS)

    Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo

    2017-11-01

    We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.

  15. ngVLA Key Science Goal 5: Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messenger Astronomy

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Maccarone, Thomas J.; Chomiuk, Laura; ngVLA Science Working Group 2, ngVLA Science Working Group 4

    2018-01-01

    The ngVLA will be a powerful telescope for finding and studying black holes, surveying everything from the remnants of massive stars to the supermassive black holes that lurk in the centers of galaxies. High-resolution imaging abilities will allow the separation of low-luminosity black holes in the local Universe from background sources, thereby providing critical constraints on the formation and growth of black holes of all sizes. Its combination of sensitivity and angular resolution will provide new constraints on the physics of black hole accretion and jet formation. Combined with facilities across the spectrum and gravitational wave observatories, the ngVLA will provide crucial constraints on the interaction of supermassive black holes with their environments, with implications for the evolution of galaxies and the emission of gravitational waves from in-spiraling supermassive black holes. The ngVLA will identify the radio counterparts to transient sources discovered by gravitational wave, neutrino, and optical observatories, and its high-resolution, fast-mapping capabilities will make it the preferred instrument to pinpoint electromagnetic counterparts to events such as supermassive black hole mergers.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey

    NASA Astrophysics Data System (ADS)

    High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.

    2016-01-01

    Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.

  17. REVIEWS OF TOPICAL PROBLEMS: Search for black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    2003-04-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.

  18. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  19. The Supernova that Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L.

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z ~ 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H2, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 108 M ⊙ and virial temperatures of 104 K, these halos began to rapidly cool by atomic lines, perhaps forming 104-106 M ⊙ Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of ~1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.

  20. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  1. Hubble Helps Find Smallest Known Galaxy Containing a Supermassive Black Hole

    NASA Image and Video Library

    2017-12-08

    This is an illustration of a supermassive black hole, weighing as much as 21 million suns, located in the middle of the ultradense galaxy M60-UCD1. The dwarf galaxy is so dense that millions of stars fill the sky as seen by an imaginary visitor. Because no light can escape from the black hole, it appears simply in silhouette against the starry background. The black hole's intense gravitational field warps the light of the background stars to form ring-like images just outside the dark edges of the black hole's event horizon. Combined observations by the Hubble Space Telescope and Gemini North telescope determined the presence of the black hole inside such a small and dense galaxy. More info: Astronomers using data from NASA’s Hubble Space Telescope and ground observation have found an unlikely object in an improbable place -- a monster black hole lurking inside one of the tiniest galaxies ever known. The black hole is five times the mass of the one at the center of our Milky Way galaxy. It is inside one of the densest galaxies known to date -- the M60-UCD1 dwarf galaxy that crams 140 million stars within a diameter of about 300 light-years, which is only 1/500th of our galaxy’s diameter. If you lived inside this dwarf galaxy, the night sky would dazzle with at least 1 million stars visible to the naked eye. Our nighttime sky as seen from Earth’s surface shows 4,000 stars. The finding implies there are many other compact galaxies in the universe that contain supermassive black holes. The observation also suggests dwarf galaxies may actually be the stripped remnants of larger galaxies that were torn apart during collisions with other galaxies rather than small islands of stars born in isolation. “We don’t know of any other way you could make a black hole so big in an object this small,” said University of Utah astronomer Anil Seth, lead author of an international study of the dwarf galaxy published in Thursday’s issue of the journal Nature. Seth

  2. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  3. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-05-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3 pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide, and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  4. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-07-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  5. Formation of massive black holes in galactic nuclei: runaway tidal encounters

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas C.; Küpper, Andreas H. W.; Ostriker, Jeremiah P.

    2017-06-01

    Nuclear star clusters (NSCs) and supermassive black holes (SMBHs) both inhabit galactic nuclei, coexisting in a range of bulge masses, but excluding each other in the largest or smallest galaxies. We propose that the transformation of NSCs into SMBHs occurs via runaway tidal captures, once NSCs exceed a certain critical central density and velocity dispersion. The bottleneck in this process is growing the first e-fold in black hole mass. The growth of a stellar mass black hole past this bottleneck occurs as tidally captured stars are consumed in repeated episodes of mass transfer at pericentre. Tidal captures may deactivate as a growth channel once the black hole mass ≳102-3 M⊙, but tidal disruption events will continue and can grow the seed SMBH to larger sizes. The runaway slows (becomes subexponential) once the seed SMBH consumes the core of its host NSC. While most of the cosmic mass density in SMBHs is ultimately produced by episodic gaseous accretion in very massive galaxies, the smallest SMBHs have probably grown from strong tidal encounters with NSC stars. SMBH seeds that grow for a time t entirely through this channel will follow simple power-law relations with the velocity dispersion, σ, of their host galaxy. In the simplest regime, it is M_\\bullet ˜ σ ^{3/2}√{M_\\star t / G} ˜ 106 M_{⊙} (σ / 50 {km s}^{-1})^{3/2}(t/10^{10} yr)^{1/2}, but the exponents and pre-factor can differ slightly depending on the details of loss cone refilling. Current tidal disruption event rates predicted from this mechanism are consistent with observations.

  6. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  7. The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-11-01

    The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.

  8. The Compton-thick Growth of Supermassive Black Holes constrained

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James

    2017-08-01

    A heavily obscured growth phase of supermassive black holes (SMBH) is thought to be important in the co-evolution with galaxies. X-rays provide a clean and efficient selection of unobscured and obscured AGN. Recent work with deeper observations and improved analysis methodology allowed us to extend constraints to Compton-thick number densities. We present the first luminosity function of Compton-thick AGN at z=0.5-4 and constrain the overall mass density locked into black holes over cosmic time, a fundamental constraint for cosmological simulations. Recent studies including ours find that the obscuration is redshift and luminosity-dependent in a complex way, which rules out entire sets of obscurer models. A new paradigm, the radiation-lifted torus model, is proposed, in which the obscurer is Eddington-rate dependent and accretion creates and displaces torus clouds. We place observational limits on the behaviour of this mechanism.

  9. The Compton-thick Growth of Supermassive Black Holes constrained

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Georgakakis, A.; Nandra, K.

    2017-10-01

    A heavily obscured growth phase of supermassive black holes (SMBH) is thought to be important in the co-evolution with galaxies. X-rays provide a clean and efficient selection of unobscured and obscured AGN. Recent work with deeper observations and improved analysis methodology allowed us to extend constraints to Compton-thick number densities. We present the first luminosity function of Compton-thick AGN at z=0.5-4 and constrain the overall mass density locked into black holes over cosmic time, a fundamental constraint for cosmological simulations. Recent studies including ours find that the obscuration is redshift and luminosity-dependent in a complex way, which rules out entire sets of obscurer models. A new paradigm, the radiation-lifted torus model, is proposed, in which the obscurer is Eddington-rate dependent and accretion creates and displaces torus clouds. We place observational limits on the behaviour of this mechanism.

  10. Disks around merging binary black holes: From GW150914 to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  11. THE SUPERNOVA THAT DESTROYED A PROTOGALAXY: PROMPT CHEMICAL ENRICHMENT AND SUPERMASSIVE BLACK HOLE GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z {approx} 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H{sub 2}, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 10{sup 8} M{sub Sun} and virial temperatures of 10{sup 4} K, these halos began to rapidly cool by atomic lines, perhaps forming 10{sup 4}-10{sup 6} M{sub Sun} Pop III starsmore » and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of {approx}1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.« less

  12. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  13. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    PubMed

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  14. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  15. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    PubMed

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  16. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    NASA Astrophysics Data System (ADS)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  17. The Potential for Cubesats to Determine Black Holes Masses in Nearby Active Galactic Nuclei and Contribute to Other Time Domain Science

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Ardila, David R.; Barth, Aaron J.; Janson, Siegfried; Kochanek, Christopher S.; Malkan, Matthew Arnold; Peterson, Bradley M.; Rowen, Darren; Seager, Sara; Shkolnik, Evgenya L.

    2016-01-01

    A 3U (30cmx10cmx10cm) CubeSat with a 9cm diameter aperture telescope can deliver unprecedented time domain coverage in the ultraviolet (UV) for the purposes of Active Galactic Nucleus (AGN) reverberation mapping to determine supermassive black hole (SMBH) masses. SMBH's reside at the centers of most, if not all, massive galaxies and accretion onto those black holes generates a great deal of emission peaking in the UV. These accretion disks are also surrounded by a nearby, fast moving gas region called the Broad Line Region (BLR). As light pulses generated near the black hole spread out, they first illuminate the accretion disk, and then the BLR. For a sample of bright AGN, a dedicated cubesat can follow these changes in brightness on a daily basis for up to 100 days from low Earth orbit. With such monitoring of changes in the accretion disk and then the BLR, an accurate distance between the two regions can be determined. Combining this UV coverage with optical emission-line spectroscopy from the ground allows for a direct measurement of the mass of the central black hole. This exchange of time resolution for spatial resolution can also be used to determine the structure of the central region of the AGN. Ground-based photometric and spectroscopic measurements will complement the UV by tracing the optically emitting and hence cooler regions of the AGN to provide one of the best measurements of supermassive black hole masses.In addition to the primary science mission, the long observing campaigns and the large field of view required to get comparison stars for relative photometry allow for other competitive science. We have identified UV activity in M dwarfs as ancillary science that can be addressed with such a cubesat. This activity will have a strong impact on the habitability of any possible planet around the star.

  18. On the Supermassive Black Hole-Galaxy Coevolution

    NASA Astrophysics Data System (ADS)

    Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.

    2017-01-01

    In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  19. A Three Dimensional Picture of Galactic Center Mass Flows From Kiloparsec to Subparsec Scales

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.

    2018-06-01

    The centers of galaxies host extreme and energetic phenomena, from the amassing of incredibly dense reservoirs of gas to nuclear starbursts producing tens to hundreds of solar masses per year to accreting supermassive black holes launching jets. All of these are found on compact scales from hundreds of parsecs to less than a microparsec. The nearest laboratory for examining these processes is the center of our own Milky Way Galaxy. Although the black hole is not currently active and the star formation rate is relatively low, it is still our best opportunity for detailed insight into the processes that regulate the growth of the central supermassive black hole. By providing access to mid and far infrared wavelengths, SOFIA plays a unique role in connecting large and small scales in the Galactic center and studying the cycling of gas through this region. In this talk I will highlight several key open questions and outline the role that SOFIA continues to play in answering them.

  20. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular,more » will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.« less

  1. Bright vigorous winds as signposts of supermassive black hole birth

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2016-01-01

    The formation of supermassive black holes is still an outstanding question. In the quasi-star scenario, black hole seeds experience an initial super-Eddington growth, that in less than a million years may leave a 104-105 M⊙ black hole at the centre of a protogalaxy at z ˜ 20-10. Super-Eddington accretion, however, may be accompanied by vigorous mass-loss that can limit the amount of mass that reaches the black hole. In this paper, we critically assess the impact of radiative driven winds, launched from the surface of the massive envelopes from which the black hole accretes. Solving the full wind equations coupled with the hydrostatic structure of the envelope, we find mass outflows with rates between a few tens and 104 M⊙ yr-1, mainly powered by advection luminosity within the outflow. We therefore confirm the claim by Dotan et al. that mass losses can severely affect the black hole seed early growth within a quasi-star. In particular, seeds with mass >104 M⊙ can only form within mass reservoirs ≳107 M⊙, unless they are refilled at huge rates (≳100 M⊙ yr-1). This may imply that only very massive haloes (>109 M⊙) at those redshifts can harbour massive seeds. Contrary to previous claims, these winds are expected to be relatively bright (1044-1047 erg s-1), blue (Teff ˜ 8000 K) objects, that while eluding the Hubble Space Telescope, could be observed by the James Webb Space Telescope.

  2. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  3. Understanding the build-up of supermassive black holes and galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe

  4. Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Perna, Rosalba; Haiman, Zoltán; Ostriker, Jeremiah P.; Stone, Nicholas C.

    2018-01-01

    Using few-body simulations, we investigate the evolution of supermassive black holes (SMBHs) in galaxies (M* = 1010-1012 M⊙ at z = 0) at 0 < z < 4. Following galaxy merger trees from the Millennium simulation, we model BH mergers with two extreme binary decay scenarios for the 'hard binary' stage: a full or an empty loss cone. These two models should bracket the true evolution, and allow us to separately explore the role of dynamical friction and that of multibody BH interactions on BH mergers. Using the computed merger rates, we infer the stochastic gravitational wave background (GWB). Our dynamical approach is a first attempt to study the dynamical evolution of multiple SMBHs in the host galaxies undergoing mergers with various mass ratios (10-4 < q* < 1). Our main result demonstrates that SMBH binaries are able to merge in both scenarios. In the empty loss cone case, we find that BHs merge via multibody interactions, avoiding the 'final parsec' problem, and entering the pulsar timing arrays band with substantial orbital eccentricity. Our full loss cone treatment, albeit more approximate, suggests that the eccentricity becomes even higher when GWs become dominant, leading to rapid coalescences (binary lifetime ≲1 Gyr). Despite the lower merger rates in the empty loss cone case, due to their higher mass ratios and lower redshifts, the GWB in the full/empty loss cone models are comparable (0.70 × 10-15 and 0.53 × 10-15 at a frequency of 1 yr-1, respectively). Finally, we compute the effects of high eccentricities on the GWB spectrum.

  5. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  6. Building black holes: supercomputer cinema.

    PubMed

    Shapiro, S L; Teukolsky, S A

    1988-07-22

    A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.

  7. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  8. Massive black holes in galactic halos?

    NASA Technical Reports Server (NTRS)

    Lacey, C. G.; Ostriker, J. P.

    1985-01-01

    In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.

  9. Testing General Relativity with the Reflection Spectrum of the Supermassive Black Hole in 1H0707-495.

    PubMed

    Cao, Zheng; Nampalliwar, Sourabh; Bambi, Cosimo; Dauser, Thomas; García, Javier A

    2018-02-02

    Recently, we have extended the x-ray reflection model relxill to test the spacetime metric in the strong gravitational field of astrophysical black holes. In the present Letter, we employ this extended model to analyze XMM-Newton, NuSTAR, and Swift data of the supermassive black hole in 1H0707-495 and test deviations from a Kerr metric parametrized by the Johannsen deformation parameter α_{13}. Our results are consistent with the hypothesis that the spacetime metric around the black hole in 1H0707-495 is described by the Kerr solution.

  10. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could

  11. Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Dong, Xiao-Bo; Xie, Fu-Guo; Liu, Wenjuan; Li, Di

    2018-06-01

    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (L R ), X-ray luminosity (L X), and BH mass ({M}BH}), the so-called “fundamental plane” (FP) of BH activity. Yet the supporting data are very limited in the {M}BH} regime between stellar mass (i.e., BHXBs) and 106.5 {M}ȯ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the Dong et al. sample. As a result, we obtained 19 new low-mass AGNs for FP research with both {M}BH} estimates ({M}BH} ≈ 105.5–6.5 {M}ȯ ), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature. Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined data set of BHXBs and supermassive AGNs by Gültekin et al.; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different {M}BH}. In view of the FP relation, we speculate that the radio loudness { \\mathcal R } (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on {M}BH}.

  12. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  13. Dynamics of supernova remnants in the Galactic centre.

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  14. Can black hole superradiance be induced by galactic plasmas?

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Herdeiro, Carlos A. R.

    2018-05-01

    Highly spinning Kerr black holes with masses M = 1- 100M⊙ are subject to an efficient superradiant instability in the presence of bosons with masses μ ∼10-10-10-12eV. We observe that this matches the effective plasma-induced photon mass in diffuse galactic or intracluster environments (ωpl ∼10-10-10-12eV). This suggests that bare Kerr black holes within galactic or intracluster environments, possibly even including the ones produced in recently observed gravitational wave events, are unstable to formation of a photon cloud that may contain a significant fraction of the mass of the original black hole. At maximal efficiency, the instability timescale for a massive vector is milliseconds, potentially leading to a transient rate of energy extraction from a black hole in principle as large as ∼1055ergs-1. We discuss possible astrophysical effects this could give rise to, including a speculative connection to Fast Radio Bursts.

  15. Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-06-01

    Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.

  16. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    PubMed

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  17. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    PubMed Central

    Hayasaki, Kimitake; Loeb, Abraham

    2016-01-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188

  18. Unusual Metals in Galactic Center Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  19. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  20. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  1. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  2. Constraining the properties of the proposed supermassive black hole system in 3C66B: limits from pulsar timing

    NASA Technical Reports Server (NTRS)

    Jenet, F. A.; Lommen, A.; Larson, S. L.; Wen, L.

    2003-01-01

    Data from long term timing observations of the radio pulsar PSR B1855+09 have been searched for the signature of Gravitational waves (G-waves) emitted by the proposed supermassive binary black hole system in 3C66B.

  3. A New Class of Transients Marking Intensified Accretion onto Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Arcavi, Iair; Ricci, Claudio; Horesh, Assaf; Tacchella, Sandro; Stern, Daniel

    2018-01-01

    Our understanding of the demographics and evolution of supermassive black holes (SMBHs) beyond the local universe is limited to actively growing SMBHs, where relatively stable accretion of gas persists over several hundreds of millions of years. A growing number of transient and/or variable phenomena in galaxy nuclei have recently begun to shed new light on SMBH demographics and the physics of gas accretion onto these objects, tracing events where this accretion has drastically intensified. We present such an event, identified in the nucleus of an early-type galaxy at z=0.064, in which a previously-active SMBH experienced a dramatic increase in ultraviolet-optical emission. The emerging optical spectrum exhibits a mix of emission features, some of which are typical of luminous, unobscured active galactic nuclei. Other observed emission features of high-ionization species are likely driven by Bowen fluorescence -- seen for the first time in high-velocity lines, with ~2000 km/s, in a galaxy nucleus -- originating in dense, metal-rich gas that is exposed to the recently intensified UV radiation. Our multiwavelength space- and ground-based monitoring campaign shows that the spectral features and elevated UV flux show little to no evolution, over a period of at least six months. This disfavours the tidal disruption of a star as the origin of the UV “flash”, but suggests a rather longer-term re-ignition event. This event joins two other recently reported transients with similar emission properties, forming a new class of transients which has important implications for the identification and understanding of tidal disruption events, as well as other drivers of SMBH re-ignition.

  4. Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-02-01

    Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}⊙ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  5. Black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these

  6. FRB 121102: A Repeatedly Combed Neutron Star by a Nearby Low-luminosity Accreting Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2018-02-01

    The origin of fast radio bursts (FRBs) remains mysterious. Recently, the only repeating FRB source, FRB 121102, was reported to possess an extremely large and variable rotation measure (RM). The inferred magnetic field strength in the burst environment is comparable to that in the vicinity of the supermassive black hole Sagittarius A* of our Galaxy. Here, we show that all of the observational properties of FRB 121102 (including the high RM and its evolution, the high linear polarization degree, an invariant polarization angle across each burst and other properties previously known) can be interpreted within the “cosmic comb” model, which invokes a neutron star with typical spin and magnetic field parameters whose magnetosphere is repeatedly and marginally combed by a variable outflow from a nearby low-luminosity accreting supermassive black hole in the host galaxy. We propose three falsifiable predictions (periodic “on/off” states, and periodic/correlated variation of RM and polarization angle) of the model and discuss other FRBs within the context of the cosmic comb model as well as the challenges encountered by other repeating FRB models in light of the new observations.

  7. Tidal disruptions by supermassive black holes - Hydrodynamic evolution of stars on a Schwarzschild background

    NASA Technical Reports Server (NTRS)

    Laguna, Pablo; Miller, Warner A.; Zurek, Wojciech H.; Davies, Melvyn B.

    1993-01-01

    We present a three-dimensional numerical study of tidal disruption of a main-sequence star by a supermassive black hole. The simulations include general relativistic effects which are important in this regime. We analyze stars in a marginally bound orbit around the black hole with pericentric separation of a few Schwarzschild radii. We show that during a close passage, as a result of relativistic effects analogous to the perihelion shift, the trajectories of the debris of the star fan out into a crescent-like shape centered on the black hole. We also discuss the increase of the central density of the star as it approaches pericentric distance, the fraction of the debris accreted by the hole, its accretion rate, the distribution of debris orbits bound to the hole, and the velocity of unbound ejected material. We compare these results with the disruption of the star by a Newtonian point mass.

  8. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  9. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Robyn Deborah

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmologicalmore » scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting

  10. Backflows by active galactic nuclei jets: global properties and influence on supermassive black hole accretion

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Silk, J.; Romeo, A. D.

    2017-06-01

    Jets from active galactic nuclei (AGN) inflate large cavities in the hot gas environment around galaxies and galaxy clusters. The large-scale gas circulation promoted within such cavities by the jet itself gives rise to backflows that propagate back to the centre of the jet-cocoon system, spanning all the physical scales relevant for the AGN. Using an adaptive mesh refinement code, we study these backflows through a series of numerical experiments, aiming at understanding how their global properties depend on jet parameters. We are able to characterize their mass flux down to a scale of a few kiloparsecs to about 0.5 M⊙ yr-1 for as long as 15 or 20 Myr, depending on jet power. We find that backflows are both spatially coherent and temporally intermittent, independently of jet power in the range 1043-1045 erg s-1. Using the mass flux thus measured, we model analytically the effect of backflows on the central accretion region, where a magnetically arrested disc lies at the centre of a thin circumnuclear disc. Backflow accretion on to the disc modifies its density profile, producing a flat core and tail. We use this analytic model to predict how accretion beyond the black hole magnetopause is modified, and thus how the jet power is temporally modulated. Under the assumption that the magnetic flux stays frozen in the accreting matter, and that the jets are always launched via the Blandford-Znajek mechanism, we find that backflows are capable of boosting the jet power up to tenfold during relatively short time episodes (a few Myr).

  11. The Coevolution of Supermassive Black Holes and Massive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Negrello, M.; Celotti, A.; De Zotti, G.; Danese, L.

    2014-02-01

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z >~ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale <~ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L Edd <~ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  12. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    PubMed

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  13. Testing the accuracy of reflection-based supermassive black hole spin measurements in AGN

    NASA Astrophysics Data System (ADS)

    Kammoun, E. S.; Nardini, E.; Risaliti, G.

    2018-06-01

    Context. X-ray reflection is a very powerful method to assess the spin of supermassive black holes (SMBHs) in active galactic nuclei (AGN), yet this technique is not universally accepted. Indeed, complex reprocessing (absorption, scattering) of the intrinsic spectra along the line of sight can mimic the relativistic effects on which the spin measure is based. Aims: In this work, we test the reliability of SMBH spin measurements that can currently be achieved through the simulations of high-quality XMM-Newton and NuSTAR spectra. Methods: Each member of our group simulated ten spectra with multiple components that are typically seen in AGN, such as warm and (partial-covering) neutral absorbers, relativistic and distant reflection, and thermal emission. The resulting spectra were blindly analysed by the other two members. Results: Out of the 60 fits, 42 turn out to be physically accurate when compared to the input model. The SMBH spin is retrieved with success in 31 cases, some of which (9) are even found among formally inaccurate fits (although with looser constraints). We show that, at the high signal-to-noise ratio assumed in our simulations, neither the complexity of the multi-layer, partial-covering absorber nor the input value of the spin are the major drivers of our results. The height of the X-ray source (in a lamp-post geometry) instead plays a crucial role in recovering the spin. In particular, a success rate of 16 out of 16 is found among the accurate fits for a dimensionless spin parameter larger than 0.8 and a lamp-post height lower than five gravitational radii.

  14. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    PubMed

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  15. Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates

    NASA Astrophysics Data System (ADS)

    Vigneron, Quentin; Lodato, Giuseppe; Guidarelli, Alessio

    2018-06-01

    The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous studies have focused on the disruption by single black holes, for which the fallback rate decays as ∝ t-5/3. In this paper, we generalize the study to the case of a supermassive black hole binary (SMBHB), using both analytical estimates and hydrodynamical simulations, looking for specific observable signatures. The range of binary separation for which it is possible to distinguish between the disruption created by a single or a binary black hole concerns typically separations of the order of a few milliparsecs for a primary of mass ˜106 M⊙. When the fallback rate is affected by the secondary, it undergoes two types interruptions, depending on the initial inclination θ of the orbit of the star relative to the plane of the SMBHB. For θ ≲ 70°, periodic sharp interruptions occur and the time of first interruption depends on the distance of the secondary black hole with the debris. If θ ≳ 70°, a first smooth interruption occurs, but not always followed by a further recovery of the fallback rate. This implies that most of the TDEs around a SMBHB will undergo periodic sharp interruptions of their light curve.

  16. Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Gillessen, S.; Martins, F.; Eisenhauer, F.; Plewa, P. M.; Pfuhl, O.; George, E.; Dexter, J.; Waisberg, I.; Ott, T.; von Fellenberg, S.; Bauböck, M.; Jimenez-Rosales, A.; Genzel, R.

    2017-10-01

    We study the young S-stars within a distance of 0.04 pc from the supermassive black hole in the center of our Galaxy. Given how inhospitable the region is for star formation, their presence is more puzzling the younger we estimate their ages. In this study, we analyze the result of 12 years of high-resolution spectroscopy within the central arcsecond of the Galactic Center (GC). By co-adding between 55 and 105 hr of spectra we have obtained high signal-to-noise H- and K-band spectra of eight stars orbiting the central supermassive black hole. Using deep H-band spectra, we show that these stars must be high surface gravity (dwarf) stars. We compare these deep spectra to detailed model atmospheres and stellar evolution models to infer the stellar parameters. Our analysis reveals an effective temperature of 21,000-28,500 K, a rotational velocity of 60-170 km s-1, and a surface gravity of 4.1-4.2. These parameters imply a spectral type of B0-B3V for these stars. The inferred masses lie within 8-14 {M}⊙ . We derive an age of {6.6}-4.7+3.4 Myr for the star S2, which is compatible with the age of the clockwise-rotating young stellar disk in the GC. We estimate the ages of all other studied S-stars to be less than 15 Myr, which is compatible with the age of S2 within the uncertainties. The relatively low ages for these S-stars favor a scenario in which the stars formed in a local disk rather than a field binary-disruption scenario that occurred over a longer period of time.

  17. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  18. The Supermassive Black Hole—Galaxy Connection

    NASA Astrophysics Data System (ADS)

    King, Andrew

    2014-09-01

    The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor should be in the range ˜1-30. A factor give black hole winds with velocities v˜0.1 c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical ( M- σ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical M- σ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10-3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out≃1200 km s-1 and drives rates in cool (molecular) gas, giving a typical outflow mechanical energy L mech≃0.05 L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is

  19. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  20. Making Supermassive Black Holes Spin

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Where does the angular momentum come from that causes supermassive black holes (SMBHs) to spin on their axes and launch powerful jets? A new study of nearby SMBHs may help to answer this question.High-mass SMBHs are thought to form when two galaxies collide and the SMBHs at their centers merge. [NASA/Hubble Heritage Team (STScI)]High- vs. Low-Mass MonstersObservational evidence suggests a dichotomy between low-mass SMBHs (those with 106-7 M) and high-mass ones (those with 108-10 M). High-mass SMBHs are thought to form via the merger of two smaller black holes, and the final black hole is likely spun up by the rotational dynamics of the merger. But what spins up low-mass SMBHs, which are thought to build up very gradually via accretion?A team of scientists led by Jing Wang (National Astronomical Observatories, Chinese Academy of Sciences) have attempted to address this puzzle by examining the properties of the galaxies hosting low-mass SMBHs.A Sample of Neighboring SMBHsWang and collaborators began by constructing a sample of radio-selected nearby Seyfert 2 galaxies: those galaxies in which the stellar population and morphology of the host galaxy are visible to us, instead of being overwhelmed by continuum emission from the galaxys active nucleus.An example of a galaxy with a concentrated, classical bulge (M87; top) and a one with a disk-like pseudo bulge (Triangulum Galaxy; bottom). The authors find that for galaxies hosting low-mass SMBHs, those with more disk-like bulges appear to have more powerful radio jets. [Top: NASA/Hubble Heritage Team (STScI), Bottom: Hewholooks]From this sample, the authors then selected 31 galaxies that have low-mass SMBHs at their centers, as measured using the surrounding stellar dynamics. Wang and collaborators cataloged radio information revealing properties of the powerful jets launched by the SMBHs, and they analyzed the host galaxies properties by modeling their brightness profiles.Spin-Up From Accreting GasBy examining this

  1. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  2. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  3. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  4. Monsters on the move: A search for supermassive black holes undergoing gravitational wave recoil

    NASA Astrophysics Data System (ADS)

    Jadhav, Yashashree; Robinson, Andrew; Lena, Davide

    2018-01-01

    There is compelling evidence that supermassive black holes (SMBH) reside at the centers of all large galaxies and are the gravitational ‘engines’ of Active Galactic Nuclei (AGN). Furthermore, galaxy mergers are thought to have played a fundamental role in the growth and evolution of the largest galaxies in the nearby universe. A galaxy merger is expected to lead to the formation of an SMBH binary, which itself eventually coalesces through the emission of gravitational waves. Such events fall outside the frequency range accessible to the LIGO/VIRGO gravitational wave detectors, but they can be detected via electromagnetic signatures. Numerical relativity simulations show that, depending on the initial spin-orbit configuration of the binary, the merged SMBH receives a gravitational recoil kick that may reach several 1000km/s. This recoil in turn causes the merged SMBH to oscillate for up to ~1 Gyr in the gravitational potential well of the galaxy. During this time, the recoiling SMBH may be observed as a ‘displaced’ AGN. Such events provide a strong test of gravitational physics and the formation and merger frequencies of binary SMBH. As a result of residual oscillations, displacements ~10 – 100pc may be expected even in nearby elliptical galaxies and can be measured as spatial offsets in high resolution optical or infrared images. We present the results of a preliminary study, in which isophotal analysis was conducted for a sample of 96 galaxies to obtain the photocenter of the galaxies using Hubble Space Telescope (HST) archival optical or infrared WFC2/PC, ACS or NICMOS images. The position of the nuclear point source (AGN) was also measured to obtain a displacement vector. This initial sample reveals 18 candidates that show a significant displacement. Of these, 14 are hosted by core ellipticals, while the rest have a cuspy light profile. As galactic and nuclear dust structures may interfere with the isophotal analysis, we are currently obtaining new WFC

  5. Gas cloud G2 can illuminate the black hole population near the galactic center.

    PubMed

    Bartos, Imre; Haiman, Zoltán; Kocsis, Bence; Márka, Szabolcs

    2013-05-31

    Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

  6. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  7. A simple way to classify supermassive black holes

    NASA Astrophysics Data System (ADS)

    Feoli, A.

    2014-02-01

    We propose a classification of supermassive black holes (SMBHs) based on their efficiency in the conversion of infalling mass in emitted radiation. We use a theoretical model that assumes a conservation of angular momentum between the gas falling inside the hole and the photons emitted outwards, and suggests the existence of the scaling relation M-Re \\sigma3, where M is the mass of the central SMBH, whereas Re and \\sigma are the effective radius and velocity dispersion of the host galaxies (bulges), respectively. We apply our model on a data set of 57 galaxies of different morphological types and with M measurements, obtained through the analysis of Spitzer/IRAC 3.6-\\mum images. In order to find the best fit of the corresponding scaling law, we use the FITEXY routine to perform a least-squares regression of M on Re \\sigma3 for the considered sample of galaxies. Our analysis shows that the relation is tight and our theoretical model allows to easily estimate the efficiency of mass conversion into radiation of the central SMBHs. Finally we propose a new appealing way to classify the SMBHs in terms of this parameter.

  8. Chandra Catches "Piranha" Black Holes

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  9. Supermassive Black Holes as Revealed by LISA: How Gravitational Wave Astronomy Will be a Game Changer

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly

    2018-04-01

    Astronomers now know that supermassive black holes are in nearly every galaxy.Though these black holes are an observational certainty, nearly every aspect of their evolution -- from their birth, to their fuel source, to their basic dynamics -- is a matter of lively debate. Fortunately, LISA, a space-based gravitational wave observatory set to launch in 2034, will revolutionize this field by providing data that is complementary to electromagnetic observations as well as data in regimes that are electromagnetically dark. This talk will touch on our current understanding of how SMBHs form, evolve, and alter their galaxy host, and will outline the theoretical, computational and observational work needed to make the most of LISA observations.

  10. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less

  11. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to anmore » increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.« less

  12. What stellar orbit is needed to measure the spin of the Galactic centre black hole from astrometric data?

    NASA Astrophysics Data System (ADS)

    Waisberg, Idel; Dexter, Jason; Gillessen, Stefan; Pfuhl, Oliver; Eisenhauer, Frank; Plewa, Phillip M.; Bauböck, Michi; Jimenez-Rosales, Alejandra; Habibi, Maryam; Ott, Thomas; von Fellenberg, Sebastiano; Gao, Feng; Widmann, Felix; Genzel, Reinhard

    2018-05-01

    Astrometric and spectroscopic monitoring of individual stars orbiting the supermassive black hole in the Galactic Center offer a promising way to detect general relativistic effects. While low-order effects are expected to be detected following the periastron passage of S2 in Spring 2018, detecting higher order effects due to black hole spin will require the discovery of closer stars. In this paper, we set out to determine the requirements such a star would have to satisfy to allow the detection of black hole spin. We focus on the instrument GRAVITY, which saw first light in 2016 and which is expected to achieve astrometric accuracies 10-100 μas. For an observing campaign with duration T years, total observations Nobs, astrometric precision σx, and normalized black hole spin χ, we find that a_orb(1-e^2)^{3/4} ≲ 300 R_S √{T/4 {yr}} (N_obs/120)^{0.25} √{10 μ as/σ _x} √{χ /0.9} is needed. For χ = 0.9 and a potential observing campaign with σ _x = 10 μas, 30 observations yr-1 and duration 4-10 yr, we expect ˜0.1 star with K < 19 satisfying this constraint based on the current knowledge about the stellar population in the central 1 arcsec. We also propose a method through which GRAVITY could potentially measure radial velocities with precision ˜50 km s-1. If the astrometric precision can be maintained, adding radial velocity information increases the expected number of stars by roughly a factor of 2. While we focus on GRAVITY, the results can also be scaled to parameters relevant for future extremely large telescopes.

  13. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fulai, E-mail: fulai.guo@phys.ethz.ch

    2014-12-20

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result inmore » a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M{sub ∗}/R{sub eff}{sup 1.5} is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be M{sub bh}{sup 1.6}M{sub ∗}/R{sub eff}{sup 1.5}, which may be tested in future observational studies.« less

  14. X-ray-ing the Low Luminosity Supermassive Black Hole Accretion: the Crucial Role of Public Serendipitous Catalogs.

    NASA Astrophysics Data System (ADS)

    Constantin, Anca; Green, Paul; Haggard, Daryl

    2018-01-01

    For most of the nearby active galaxies, a mix of processes including emission from star-forming regions, other ionization sources (shocks, turbulence, etc.), nuclear obscuration, as well as host galaxy starlight obfuscate the true nature of their dominant ionization mechanism. X-ray emission is one of the most reliable primary signatures of accretion activity, and with the advent of the public catalogs, it became one of the most effective diagnostics as well. Working with large and significantly less biased samples that only serendipitous X-ray catalogs are able to provide, we were able to: 1) provide the most accurate estimates of the AGN fraction as a function of a diverse set of parameters; 2) confirm with X-rays a sequence from star-forming to active to passive galaxies that matches trends in both optical host galaxy characteristics and in the large scale environment; 3) discover intriguing similarities between accretion onto supermassive and stellar size black holes, with direct consequences for the physical significance of the Gamma-L/Ledd relation for AGN of both type I and II in the local universe. This presentation will summarize these exciting results, and will also report on novel extended efforts to decipher the link between the water megamaser emission and galactic nuclear activity, which are made possible only by the availability of the large sample statistics of carefully curated X-ray measurements uniquely offered by the combined Chandra and XMM catalogs.

  15. The role of environment in the observed Fundamental Plane of radio Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav S.

    2018-05-01

    The optical Fundamental Plane of black hole activity relates radio continuum luminosity of Active Galactic Nuclei to [O III] luminosity and black hole mass. We examine the environments of low redshift (z < 0.2) radio-selected AGN, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio - optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.

  16. Merging a Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies

  17. Constraining the Orbits of the Supermassive Binary Blackhole Pair 0402+379

    NASA Astrophysics Data System (ADS)

    Holland, Ben; Peck, Alison B.; Taylor, Gregory B.; Zavala, Robert T.; Romani, Roger W.

    2015-01-01

    Galaxy mergers are a relatively common occurrence in the Universe. Given that most large galaxies harbor supermassive black holes in their centers, it should follow that two supermassive black holes could be found in the centers of galaxies that have recently undergone a merger event. Supermassive black hole binaries (SMBHB) with small separation (referred to as "tight binaries"), however, are quite rare, implying that the mergers happen less often than we think, or that the binary black hole merger happens much more quickly than expected from simulations. We present observations of one of the best candidates for a tight SMBHB, 0402+379, made in 2003, 2005, and 2009 using the VLBA at 3 frequencies, and report on their apparent relative component motions over this time frame. Additionally, these results are compared to earlier observations of 0402+379 which can help establish a long time baseline. This information, although still preliminary, can be used to provide constraints on the orbits of this binary system which in turn may yield insight as to why these binary systems are not significantly more commonly detected in, for example, ULIRGs in the late stages of merger.

  18. Dark matter haloes determine the masses of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Booth, C. M.; Schaye, Joop

    2010-06-01

    The energy and momentum deposited by the radiation from accretion flows on to the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the BH mass, mBH, scales with halo mass as mBH ~ mαhalo, with α ~ 1.55 +/- 0.05, and that the scatter around the mean relation in part reflects the scatter in the halo concentration-mass relation.

  19. Galaxy Clusters and Their Central Supermassive Black Holes: Case of M87

    NASA Astrophysics Data System (ADS)

    Churazov, Eugene; Sazonov, Sergey; Sunyaev, Rashid; Forman, William; Jones, Christine; Böhringer, Hans

    Observations suggest that AGN activity regulates the thermal state of the gas by injecting energy into the intra-cluster medium in the cores of relaxed clusters, where radiative cooling time is often as short as few 108 years. Bubbles of relativistic plasma are inflated by a supermassive black hole and rise buoyantly through the gaseous atmosphere, leading to a number of spectacular phenomena like expanding shocks, X-ray dim and radio bright cavities, X-ray dim and radio dim "ghost" cavities (aged version of "normal" cavities), filaments in the wakes of the rising bubbles formed by the entrained low entropy gas, etc. Simple estimates of the energetics involved (based on the estimates of the energy content of bubbles/cavities and their life-time) suggest that amount of mechanical energy supplied by AGNs is sufficient to offset gas cooling losses in objects vastly different in size and luminosity. This hints on some form of self-regulation controlling the AGN power as the gas cools or gets heated. One can build a toy model where accretion rate (and therefore the amount of energy provided by the AGN) is sensitive to the gas properties, in particular to its entropy, thus closing the feedback loop. How the mechanical energy, provided by the AGN, is dissipated depends on the ICM microphysics (e.g. magnetic fields, viscosity, conduction etc). However it is easy to imagine the situation when close to 100% of mechanical energy is eventually dissipated in the cluster core, regardless of the particular physical process involved. Comparison of the gravitational potential profiles of the elliptical galaxies derived from X-ray and optical data suggests that the combined contribution of cosmic rays, magnetic fields and micro-turbulence to the gas pressure is of order 10-30%. This in turn suggests that the dissipation time scale of the energy deposited by the AGN is a similar 10-30% fraction of the gas cooling time. The same process of AGN-ICM interaction, operating in nearby

  20. Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Merritt, David; Schnittman, Jeremy D.; Komossa, S.

    2009-07-01

    A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.

  1. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. 1. Emission-Line Diagnostics

    DTIC Science & Technology

    2010-06-20

    reserved. Printed in the U.S.A. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE . I. EMISSION... the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar- Green quasars, star...supermassive black holes (e.g., Rees 1984; Peterson et al. 2004). One way to approach the study of AGNs is to concentrate on those in the local universe

  2. Space telescope searches for black holes in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.

    1989-01-01

    The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.

  3. Modeling Supermassive Black Holes in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael

    My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.

  4. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  5. How A Black Hole Lights Up Its Surroundings

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process

  6. CO-DARK Star Formation and Black Hole Activity in 3C 368 at Z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Lamarche, C.; Stacey, G.; Brisbin, D.; Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Riechers, D.; Sharon, C. E.; Spoon, H.; Vishwas, A.

    2017-02-01

    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2-1) and [N II] 205 μm lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ˜6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2-1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.

  7. CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamarche, C.; Stacey, G.; Riechers, D.

    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2–1) and [N ii] 205 μ m lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ∼6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latestmore » episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2–1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.« less

  8. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  9. Extreme Environments: From supermassive black holes to supernovae

    NASA Astrophysics Data System (ADS)

    Krauss, Felicia

    2016-06-01

    -when-brighter' trend often found in the X-ray spectra of flaring blazars. I further find that the Compton dominance (which is redshift independent) agrees well with the blazar sequence. I find that the Fermi's blazar divide, which seems to indicate a lack of sources peaking between 10^14 Hz and 10^16 Hz is likely due to absorption/extinction in this energy band, and is not source-intrinsic. I study the thermal excess found in the optical/UV spectra of blazars, often called the "Big Blue Bump"(BBB). The temperature of the BBB in BL Lac objects is usually 6000 K, which suggest that the BBB is emission from the host galaxy, which is not completely outshone by the non-thermal continuum. In quasars the temperatures of the BBB lie between 10000 K and 40000 K, much lower than the expected 76000 K for an accretion disk temperature of a supermassive black hole with a mass of 10^9 solar masses. It is possible that this is due to reprocessing of the emission by clouds near the broad line region. It is interesting to note however, that the BBB of the 22 sources can be better described by a single temperature black body than a multi-temperature black body. For an accretion disk we would expect a very large range in temperatures, possibly further broadened by gravity and the velocity of disk. Another possible explanation is free-free emission in a hot corona surrounding the black hole, though a more detailed investigation is necessary to draw firm conclusions about the BBB in blazars. I have studied the fundamental plane of black holes as a tool for estimating the black hole mass. The fundamental plane of black holes finds one plane in a black hole mass, X-ray luminosity, and radio luminosity three-dimensional space. Separate works in the literature find various parameters for this plane, depending on the source population used for determining the parameters. I have tested most of the recent works and used the X-ray and radio luminosity from the SEDs to estimate the black hole mass. This estimate

  10. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  11. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  12. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  13. Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Koopmans, L.V.E.; Barnabe, M.; Bolton, A.; Bradac, M.; Ciotti, L.; Congdon, A.; Czoske, O.; Dye, S.; Dutton, A.; Elliasdottir, A.; Evans, E.; Fassnacht, C.D.; Jackson, N.; Keeton, C.; Lasio, J.; Moustakas, L.; Meneghetti, M.; Myers, S.; Nipoti, C.; Suyu, S.; van de Ven, G.; Vegetti, S.; Wucknitz, O.; Zhao, H.-S.

    Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.

  14. Unrecognized astrometric confusion in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Plewa, P. M.; Sari, R.

    2018-06-01

    The Galactic Centre is a crowded stellar field and frequent unrecognized events of source confusion, which involve undetected faint stars, are expected to introduce astrometric noise on a sub-mas level. This confusion noise is the main non-instrumental effect limiting the astrometric accuracy and precision of current near-infrared imaging observations and the long-term monitoring of individual stellar orbits in the vicinity of the central supermassive black hole. We self-consistently simulate the motions of the known and the yet unidentified stars to characterize this noise component and show that a likely consequence of source confusion is a bias in estimates of the stellar orbital elements, as well as the inferred mass and distance of the black hole, in particular if stars are being observed at small projected separations from it, such as the star S2 during pericentre passage. Furthermore, we investigate modelling the effect of source confusion as an additional noise component that is time-correlated, demonstrating a need for improved noise models to obtain trustworthy estimates of the parameters of interest (and their uncertainties) in future astrometric studies.

  15. Supermassive Black Holes in Bulgeless and Dwarf Galaxies: A Multi-Wavelength Investigation

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan J.

    Supermassive black holes (SMBHs) are now understood to reside at the centers of nearly all major galaxies in the Universe. From studies of high-redshift quasars, we understand that SMBHs formed very early in the Universe's history, and well-studied correlations between other properties of galaxies, such as their morphologies, star formation rate, and merger history, with their central SMBH shows that SMBHs played a key role in the evolution of galaxies. The fact that the post-Big Bang Universe was extremely uniform and homogeneous presents a major mystery: How did SMBHs millions to billions of times as massive as the Sun form in such a short time? Given the theoretical limit at which a black hole can accrete material, it is not plausible that SMBHs could have formed through the conventional route: the end stage of the lifecycle of a massive star. Rather, there are two major theories for the formation of SMBHs, each with its own prediction for the black hole mass distribution and occupation fraction in the local Universe. Understanding this mass distribution and occupation fraction is therefore imperative to understanding the formation of SMBHs, the quasars that reveal their presence in the early Universe, and ultimately the evolution of galaxies to the present day. While large SMBHs in major, bulge-dominated galaxies are relatively easy to detect and characterize, this population of SMBHs is understood to have been built up largely through black hole merger events that erase any information about the progenitor black holes' masses. We must therefore search for SMBHs in late-type, bulgeless, and dwarf galaxies, which are much more likely to have had a relatively quiet, merger-free history, in order to glimpse the properties of the `seed' black holes that led to the buildup of SMBHs during the earliest epoch of the Universe. In this thesis, I will discuss my contributions to the understanding of this question, as well as what questions remain to be answered and the

  16. THE OBSERVED M-{sigma} RELATIONS IMPLY THAT SUPER-MASSIVE BLACK HOLES GROW BY COLD CHAOTIC ACCRETION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayakshin, Sergei; King, Andrew R.; Power, Chris

    We argue that current observations of M-{sigma} relations for galaxies can be used to constrain theories of super-massive black holes (SMBHs) feeding. In particular, assuming that SMBH mass is limited only by the feedback on the gas that feeds it, we show that SMBHs fed via a planar galaxy-scale gas flow, such as a disk or a bar, should be much more massive than their counterparts fed by quasi-spherical inflows. This follows from the relative inefficiency of active galactic nucleus feedback on a flattened inflow. We find that even under the most optimistic conditions for SMBH feedback on flattened inflows,more » the mass at which the SMBH expels the gas disk and terminates its own growth is a factor of several higher than the one established for quasi-spherical inflows. Any beaming of feedback away from the disk and any disk self-shadowing strengthen this result further. Contrary to this theoretical expectation, recent observations have shown that SMBHs in pseudobulge galaxies (which are associated with barred galaxies) are typically under- rather than overmassive when compared with their classical bulge counterparts at a fixed value of {sigma}. We conclude from this that SMBHs are not fed by large (100 pc to many kpc) scale gas disks or bars, most likely because such planar flows are turned into stars too efficiently to allow any SMBH growth. Based on this and other related observational evidence, we argue that most SMBHs grow by chaotic accretion of gas clouds with a small and nearly randomly distributed direction of angular momentum.« less

  17. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (I) they grow readily from the remnants of Population III stars and (II) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  18. DISK ASSEMBLY AND THE M {sub BH}-{sigma} {sub e} RELATION OF SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debattista, Victor P.; Kazantzidis, Stelios; Van den Bosch, Frank C., E-mail: vpdebattista@gmail.com, E-mail: stelios@mps.ohio-state.edu, E-mail: frank.vandenbosch@yale.edu

    2013-03-01

    Recent Hubble Space Telescope observations have revealed that a majority of active galactic nuclei (AGNs) at z {approx} 1-3 are resident in isolated disk galaxies, contrary to the usual expectation that AGNs are triggered by mergers. Here we develop a new test of the cosmic evolution of supermassive black holes (SMBHs) in disk galaxies by considering the local population of SMBHs. We show that substantial SMBH growth in spiral galaxies is required as disks assemble. SMBHs exhibit a tight relation between their mass and the velocity dispersion of the spheroid within which they reside, the M {sub .}-{sigma} {sub e}more » relation. In disk galaxies the bulge is the spheroid of interest. We explore the evolution of the M {sub .}-{sigma} {sub e} relation when bulges form together with SMBHs on the M {sub .}-{sigma} {sub e} relation and then slowly re-form a disk around them. The formation of the disk compresses the bulge, raising its {sigma} {sub e}. We present evidence for such compression in the form of larger velocity dispersion of classical bulges compared with elliptical galaxies at the same mass. This compression leads to an offset in the M {sub .}-{sigma} {sub e} relation if it is not accompanied by an increased M {sub .}. We quantify the expected offset based on photometric data and show that, on average, SMBHs must grow by {approx}50%-65% just to remain on the M {sub .}-{sigma} {sub e} relation. We find no significant offset in the M {sub .}-{sigma} {sub e} relations of classical bulges and of ellipticals, implying that SMBHs have been growing along with disks. Our simulations demonstrate that SMBH growth is necessary for the local population of disk galaxies to have remained on the M {sub .}-{sigma} {sub e} relation.« less

  19. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  20. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pu; Lu, Kai-Xing; Hu, Chen

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 andmore » Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.« less

  1. THE FORMATION OF SUPERMASSIVE BLACK HOLES FROM LOW-MASS POP III SEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Fryer, Chris L.

    2012-09-01

    The existence of 10{sup 9} M{sub Sun} black holes (BHs) in massive galaxies by z {approx} 7 is one of the great unsolved mysteries in cosmological structure formation. One theory argues that they originate from the BHs of Pop III stars at z {approx} 20 and then accrete at the Eddington limit down to the epoch of reionization, which requires that they have constant access to rich supplies of fuel. Because early numerical simulations suggested that Pop III stars were {approx}>100 M{sub Sun }, the supermassive black hole (SMBH) seeds considered up to now were 100-300 M{sub Sun }. However,more » there is a growing numerical and observational consensus that some Pop III stars were tens of solar masses, not hundreds, and that 20-40 M{sub Sun} BHs may have been much more plentiful at high redshift. However, we find that natal kicks imparted to 20-40 M{sub Sun} Pop III BHs during formation eject them from their halos and hence their fuel supply, precluding them from Eddington-limit growth. Consequently, SMBHs are far less likely to form from low-mass Pop III stars than from very massive ones.« less

  2. NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra

    2018-01-01

    Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.

  3. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  4. Very high energy observations of the Galactic Centre: recent results and perspectives with CTA

    NASA Astrophysics Data System (ADS)

    Terrier, Regis

    2016-07-01

    The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.

  5. From the sun to the Galactic Center: dust, stars and black hole(s)

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  6. Supermassive Black Holes and their Host Spheroids III. The Mbh-nsph Correlation

    NASA Astrophysics Data System (ADS)

    Savorgnan, Giulia A. D.

    2016-04-01

    The Sérsic {R}1/n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH. The {M}{BH}{--}{n}{sph} correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph: the {L}{sph}{--}{n}{sph} and the {M}{BH}{--}{L}{sph}. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant {M}{BH}{--}{n}{sph} correlation. With the aim of re-investigating the {M}{BH}{--}{n}{sph} and other black hole mass scaling relations, we performed a detailed (I.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer. In this paper, the third of this series, we present an analysis of the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{n}{sph} diagrams. While early-type (elliptical+lenticular) and late-type (spiral) galaxies split into two separate relations in the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{L}{sph} diagrams, they reunite into a single {M}{BH}\\propto {n}{sph}3.39+/- 0.15 sequence with relatively small intrinsic scatter (ɛ ≃ 0.25 {dex}). The black hole mass appears to be closely related to the spheroid central concentration of stars, which mirrors the inner gradient of the spheroid gravitational potential.

  7. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  8. A universal scaling for the energetics of relativistic jets from black hole systems.

    PubMed

    Nemmen, R S; Georganopoulos, M; Guiriec, S; Meyer, E T; Gehrels, N; Sambruna, R M

    2012-12-14

    Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  9. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags

    NASA Astrophysics Data System (ADS)

    Du, Pu; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Zhang, Yue; Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2018-03-01

    As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015–2017. Six of them are observed for the first time, and have generally higher 5100 Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical R Hβ –L 5100 relation of sub-Eddington AGNs, by factors of ∼2–6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the R Hβ –L 5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical R Hβ –L 5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.

  10. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  11. Binary Black Hole Mergers from Planet-like Migrations.

    PubMed

    Gould; Rix

    2000-03-20

    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.

  12. Modelling supermassive black hole growth: towards an improved sub-grid prescription

    NASA Astrophysics Data System (ADS)

    Hobbs, Alexander; Power, Chris; Nayakshin, Sergei; King, Andrew R.

    2012-04-01

    Accretion on to supermassive black holes (SMBHs) in galaxy formation simulations is frequently modelled by the Bondi-Hoyle formalism. Here we examine the validity of this approach analytically and numerically. We argue that the character of the flow where one evaluates the gas properties is unlikely to satisfy the simple Bondi-Hoyle model. Only in the specific case of hot virialized gas with zero angular momentum and negligible radiative cooling is the Bondi-Hoyle solution relevant. In the opposite extreme, where the gas is in a state of free-fall at the evaluation radius due to efficient cooling and the dominant gravity of the surrounding halo, the Bondi-Hoyle formalism can be erroneous by orders of magnitude in either direction. This may impose artificial trends with halo mass in cosmological simulations by being wrong by different factors for different halo masses. We propose an expression for the sub-grid accretion rate which interpolates between the free-fall regime and the Bondi-Hoyle regime, therefore taking account of the contribution of the halo to the gas dynamics.

  13. Measuring supermassive black holes via reverberation mapping in the UV

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai

    2018-04-01

    Over the past three decades the reverberation mapping technique was used to measure the central regions of Active Galactic Nuclei (AGN), their size, velocity field, and the mass of the black hole in the center. This technique was used mainly in the optical with several studies in the UV. Reverberation mapping in the UV adds essential information to the AGN studies. This paper reviews these recent studies done in the UV, presents results from the recent HST campaign toward NGC 5548, and discuss two projects of reverberation mapping of UV emission lines in high-luminosity quasars. The advantages of reverberation mapping in the UV will be discussed as well as the needs from new UV missions in order to be able to advance UV reverberation mapping campaigns.

  14. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  15. Supermassive population III supernovae and the birth of the first quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley

    2013-11-20

    The existence of supermassive black holes as early as z ∼ 7 is one of the great, unsolved problems in cosmological structure formation. One leading theory argues that they are born during catastrophic baryon collapse in z ∼ 15 protogalaxies that form in strong Lyman-Werner UV backgrounds. Atomic line cooling in such galaxies fragments baryons into massive clumps that are thought to directly collapse to 10{sup 4}-10{sup 5} M {sub ☉} black holes. We have now discovered that some of these fragments can instead become supermassive stars that eventually explode as thermonuclear supernovae (SNe) with energies of ∼10{sup 55} erg,more » the most energetic explosions in the universe. We have calculated light curves and spectra for supermassive Pop III SNe with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible in near-infrared all-sky surveys by Euclid out to z ∼ 10-15 and by WFIRST and WISH out to z ∼ 15-20, perhaps revealing the birthplaces of the first quasars.« less

  16. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  17. Active galactic nucleus outflows in galaxy discs

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  18. Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chen, Howard; Forbes, John C.; Loeb, Abraham

    2018-03-01

    Black holes growing via the accretion of gas emit radiation that can photoevaporate the atmospheres of nearby planets. Here, we couple planetary structural evolution models of sub-Neptune-mass planets to the growth of the Milky Way’s central supermassive black hole, Sgr A*, and investigate how planetary evolution is influenced by quasar activity. We find that, out to ∼20 pc from Sgr A*, the XUV flux emitted during its quasar phase can remove several percent of a planet’s H/He envelope by mass; in many cases, this removal results in bare rocky cores, many of which are situated in the habitable zones of G-type stars. Near the Galactic Center, the erosion of sub-Neptune-sized planets may be one of the most prevalent channels by which terrestrial super-Earths are created. As such, the planet population demographics may be quite different close to Sgr A* than in the galactic outskirts. The high stellar densities in this region (about seven orders of magnitude greater than the solar neighborhood) imply that the distance between neighboring rocky worlds is short (500–5000 au). The proximity between potentially habitable terrestrial planets may enable the onset of widespread interstellar panspermia near the nuclei of our galaxy. More generally, we predict these phenomena to be ubiquitous for planets in nuclear star clusters and ultra-compact dwarfs. Globular clusters, on the other hand, are less affected by the central black holes.

  19. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  20. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  1. BlackHoleCam: Fundamental physics of the galactic center

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J. R. J.; Deane, R.; de Laurentis, M.; Desvignes, G.; Eatough, R. P.; Eisenhauer, F.; Fraga-Encinas, R.; Fromm, C. M.; Gillessen, S.; Grenzebach, A.; Issaoun, S.; Janßen, M.; Konoplya, R.; Krichbaum, T. P.; Laing, R.; Liu, K.; Lu, R.-S.; Mizuno, Y.; Moscibrodzka, M.; Müller, C.; Olivares, H.; Pfuhl, O.; Porth, O.; Roelofs, F.; Ros, E.; Schuster, K.; Tilanus, R.; Torne, P.; van Bemmel, I.; van Langevelde, H. J.; Wex, N.; Younsi, Z.; Zhidenko, A.

    Einstein’s General theory of relativity (GR) successfully describes gravity. Although GR has been accurately tested in weak gravitational fields, it remains largely untested in the general strong field cases. One of the most fundamental predictions of GR is the existence of black holes (BHs). After the recent direct detection of gravitational waves by LIGO, there is now near conclusive evidence for the existence of stellar-mass BHs. In spite of this exciting discovery, there is not yet direct evidence of the existence of BHs using astronomical observations in the electromagnetic spectrum. Are BHs observable astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Milky Way, which hosts the closest and best-constrained supermassive BH candidate in the universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment consists of making a standard astronomical image of the synchrotron emission from the relativistic plasma accreting onto Sgr A*. This emission forms a “shadow” around the event horizon cast against the background, whose predicted size (˜50μas) can now be resolved by upcoming very long baseline radio interferometry experiments at mm-waves such as the event horizon telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the next-generation near-infrared (NIR) interferometer GRAVITY at the very large telescope (VLT). The third experiment aims to detect and study a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama large millimeter array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and contributes directly to them at different levels. These efforts will eventually enable us to measure

  2. Supermassive black hole binaries and transient radio events: studies in pulsar astronomy

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, S.

    2011-06-01

    The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state

  3. Intermediate mass black holes in AGN discs - I. Production and growth

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-09-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).

  4. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  5. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation usedmore » for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.« less

  6. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  7. Test-particle dynamics in general spherically symmetric black hole spacetimes

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Rezzolla, Luciano

    2018-05-01

    To date, the most precise tests of general relativity have been achieved through pulsar timing, albeit in the weak-field regime. Since pulsars are some of the most precise and stable "clocks" in the Universe, present observational efforts are focused on detecting pulsars in the vicinity of supermassive black holes (most notably in the Galactic Centre), enabling pulsar timing to be used as an extremely precise probe of strong-field gravity. In this paper, a mathematical framework to describe test-particle dynamics in general black-hole spacetimes is presented and subsequently used to study a binary system comprising a pulsar orbiting a black hole. In particular, taking into account the parameterization of a general spherically symmetric black-hole metric, general analytic expressions for both the advance of the periastron and for the orbital period of a massive test particle are derived. Furthermore, these expressions are applied to four representative cases of solutions arising in both general relativity and in alternative theories of gravity. Finally, this framework is applied to the Galactic center S -stars and four distinct pulsar toy models. It is shown that by adopting a fully general-relativistic description of test-particle motion which is independent of any particular theory of gravity, observations of pulsars can help impose better constraints on alternative theories of gravity than is presently possible.

  8. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma

    2018-06-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  9. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma

    2018-05-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  10. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  11. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  12. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 - 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  13. Gravitational lensing by a massive black hole at the Galactic center

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    1992-01-01

    The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.

  14. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  15. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  16. The Impact of a New Speckle Holography Analysis on the Galactic Center Orbits Initiative

    NASA Astrophysics Data System (ADS)

    Mangian, John; Ghez, Andrea; Gautam, Abhimat; Gallego, Laly; Schödel, Rainer; Lu, Jessica; Chen, Zhuo; UCLA Galactic Center Group; W.M. Keck Observatory Staff

    2018-01-01

    The Galactic Center Orbit Initiative has used two decades of high angular resolution imaging data from the W. M. Keck Observatory to make astrometric measurements of stellar motion around our Galaxy's central supermassive black hole. We present an analysis of a new approach to ten years of speckle imaging data (1995 - 2005) that has been processed with a new holography analysis. This analysis has (1) improved the image quality near the edge of the combined speckle frame and (2) increased the depth of the images and therefore increased the number of sources detected throughout the entire image. By directly comparing each holography analysis, we find a 41% increase in total detected sources and a 81% increase in sources further than 3" from the central black hole (SgrA*). Further, we find a 49% increase in sources of K-band magnitude greater than the old holography limiting magnitude due to the reduction of light halos surrounding bright sources.

  17. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  18. Very-high energy observations of the galactic center region by VERITAS in 2010-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Beilicke, M.; Buckley, J. H.

    2014-08-01

    The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significancemore » by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.« less

  19. Supermassive black hole formation by cold accretion shocks in the first galaxies

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Omukai, Kazuyuki

    2012-05-01

    We propose a new scenario for supermassive star (SMS: >rsim 105 M⊙) formation in shocked regions of colliding cold accretion flows near the centres of the first galaxies. Recent numerical simulations indicate that assembly of a typical first galaxy with virial temperature Tvir≳104 K proceeds via cold and dense flows penetrating deep to the centre, where supersonic streams collide with each other to develop a hot (˜104 K) and dense (˜103 cm-3) shocked gas. The post-shock layer first cools by efficient Lyα emission and contracts isobarically until ≃8000 K. Whether the layer continues its isobaric contraction depends on the density at this moment: if the density is high enough to excite H2 rovibrational levels collisionally (>rsim 104 cm-3), enhanced H2 collisional dissociation suppresses the gas from cooling further. In this case, the layer fragments into massive (>rsim 105 M⊙) clouds, which collapse isothermally (˜8000 K) by Lyα cooling without subsequent fragmentation. As an outcome, SMSs are expected to form and eventually evolve into the seeds of supermassive black holes (SMBHs). By calculating the thermal evolution of the post-shock gas, we delimit the range of post-shock conditions for SMS formation, which can be expressed as T≳6000 K (nH/104 cm-3)-1 for ? and T>rsim 5000 -6000 K for nH≳104 cm-3, depending somewhat on the initial ionization degree. We found that metal enrichment does not affect the above condition for metallicity below ≃10-3 Z⊙ if metals are in the gas phase, while condensation of several per cent of metals into dust decreases this critical value of metallicity by an order of magnitude. Unlike the previously proposed scenario for SMS formation, which postulates extremely strong ultraviolet radiation to quench H2 cooling, our scenario here naturally explains SMBH seed formation in the assembly process of the first galaxies, even without such strong radiation.

  20. Gamma-ray evidence for a stellar-mass black hole near the Galactic center

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Lingenfelter, Richard E.

    1989-01-01

    An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.

  1. How big can a black hole grow?

    NASA Astrophysics Data System (ADS)

    King, Andrew

    2016-02-01

    I show that there is a physical limit to the mass of a black hole, above which it cannot grow through luminous accretion of gas, and so cannot appear as a quasar or active galactic nucleus (AGN). The limit is Mmax ≃ 5 × 1010 M⊙ for typical parameters, but can reach Mmax ≃ 2.7 × 1011 M⊙ in extreme cases (e.g. maximal prograde spin). The largest black hole masses so far found are close to but below the limit. The Eddington luminosity ≃6.5 × 1048 erg s-1 corresponding to Mmax is remarkably close to the largest AGN bolometric luminosity so far observed. The mass and luminosity limits both rely on a reasonable but currently untestable hypothesis about AGN disc formation, so future observations of extreme supermassive black hole masses can therefore probe fundamental disc physics. Black holes can in principle grow their masses above Mmax by non-luminous means such as mergers with other holes, but cannot become luminous accretors again. They might nevertheless be detectable in other ways, for example through gravitational lensing. I show further that black holes with masses ˜Mmax can probably grow above the values specified by the black-hole-host-galaxy scaling relations, in agreement with observation.

  2. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  3. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  4. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  5. MOCCA-SURVEY Database I: Galactic Globular Clusters Harbouring a Black Hole Subsystem

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Sedda, Manuel Arca; Giersz, Mirek

    2018-05-01

    There have been increasing theoretical speculations and observational indications that certain globular clusters (GCs) could contain a sizeable population of stellar mass black holes (BHs). In this paper, we shortlist at least 29 Galactic GCs that could be hosting a subsystem of BHs (BHS). In a companion paper, we analysed results from a wide array of GC models (simulated with the MOCCA code for cluster simulations) that retained few tens to several hundreds of BHs at 12 Gyr and showed that the properties of the BHS in those GCs correlate with the GC's observable properties. Building on those results, we use available observational properties of 140 Galactic GCs to identify 29 GCs that could potentially be harbouring up to a few hundreds of BHs. Utilizing observational properties and theoretical scaling relations, we estimate the density, size and mass of the BHS in these GCs. We also calculate the total number of BHs and the fraction of BHs contained in a binary system for our shortlisted Galactic GCs. Additionally, we mention other Galactic GCs that could also contain significant number of single BHs or BHs in binary systems.

  6. Feeding supermassive black holes through supersonic turbulence and ballistic accretion

    NASA Astrophysics Data System (ADS)

    Hobbs, Alexander; Nayakshin, Sergei; Power, Chris; King, Andrew

    2011-06-01

    It has long been recognized that the main obstacle to the accretion of gas on to supermassive black holes (SMBHs) is a large specific angular momentum. It is feared that the gas settles in a large-scale disc, and that accretion would then proceed too inefficiently to explain the masses of the observed SMBHs. Here we point out that, while the mean angular momentum in the bulge is very likely to be large, the deviations from the mean can also be significant. Indeed, cosmological simulations show that velocity and angular momentum fields of gas flows on to galaxies are very complex. Furthermore, inside bulges the gas velocity distribution can be further randomized by the velocity kicks due to feedback from star formation. We perform hydrodynamical simulations of gaseous rotating shells infalling on to an SMBH, attempting to quantify the importance of velocity dispersion in the gas at relatively large distances from the black hole. We implement this dispersion by means of a supersonic turbulent velocity spectrum. We find that, while in the purely rotating case the circularization process leads to efficient mixing of gases with different angular momenta, resulting in a low accretion rate, the inclusion of turbulence increases this accretion rate by up to several orders of magnitude. We show that this can be understood based on the notion of 'ballistic' accretion, whereby dense filaments, created by convergent turbulent flows, travel through the ambient gas largely unaffected by hydrodynamical drag. This prevents the efficient gas mixing that was found in the simulations without turbulence, and allows a fraction of gas to impact the innermost boundary of the simulations directly. Using the ballistic approximation, we derive a simple analytical formula that captures the numerical results to within a factor of a few. Rescaling our results to astrophysical bulges, we argue that this 'ballistic' mode of accretion could provide the SMBHs with sufficient fuel without the need

  7. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    PubMed

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  8. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Xu, Y.; Xu, D. W.

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHsmore » are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.« less

  9. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2018-01-01

    Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.

  10. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  11. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  12. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  13. QSO Emission Lines and the Black Hole-Galaxy Bulge Relation

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.

    2002-05-01

    Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.

  14. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W.

    2013-02-15

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less

  15. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  16. The M BH versus M Gσ2 Relation and the Accretion of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Feoli, A.

    2014-03-01

    We propose a possible scenario that can explain the physical processes underlying the relation log10(M BH) = b + mlog10(M Gσ2/c 2) between the mass M BH of supermassive black holes, growing in the center of many galaxies, and the kinetic energy of the corresponding bulges (M G being the bulge mass and σ the velocity dispersion). In a series of papers, this scaling law proved to be very useful to describe the evolution of galaxies thanks to its close similarity to the Hertzsprung-Russell diagram. Studying the relation with different samples of galaxies, we have generally found a slope that can vary between two extremal theoretical possibilities, m = 3/4 and m = 1. We will try to describe a possible scenario compatible with the second one. Finally, we also examine a case of a relation that is linear, not in kinetic energy, but in momentum parameter.

  17. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  18. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE PAGES

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...

    2017-05-04

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  19. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  20. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  1. Confined-exotic-matter wormholes with no gluing effects—Imaging supermassive wormholes and black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azreg-Aïnou, Mustapha, E-mail: azreg@baskent.edu.tr

    2015-07-01

    We classify wormholes endowed with redshift effects and finite mass into three types. Type I wormholes have their radial pressure dying out faster, as one moves away from the throat, than any other component of the stress-energy and thus violate the least the local energy conditions. In type II (resp. III) wormholes the radial and transverse pressures are asymptotically proportional and die out faster (resp. slower) than the energy density. We introduce a novel and generalizable method for deriving, with no cutoff in the stress-energy or gluing, a class of each of the three wormhole types. We focus on typemore » I wormholes and construct different asymptotically flat solutions with finite, upper- and lower-bounded, mass M. It is observed that the radial pressure is negative, and the null energy condition is violated, only inside a narrow layer, adjacent to the throat, of relative spacial extent ε. Reducing the relative size of the layer, without harming the condition of traversability, yields an inverse square law of ε versus M for supermassive wormholes. We show that the diameter of the shadow of this type I supermassive wormhole overlaps with that of the black hole candidate at the center of the Milky Way and that the recent derivation, using the up-to-date millimeter-wavelength very long baseline interferometry made in Astrophys. J. (795) (2014) 134 [\\arXivid(1409.4690)], remains inconclusive. We show that redshift-free wormholes, with positive energy density, have one of their barotropic equations of state in the phantom regime (at least in the region adjacent to the throat), have their stress energy tensor traceless, and are anisotropic. They are all type III wormholes having their variable equations of state approaching 1 and −1 at spatial infinity. We also introduce a new approach for deriving new redshift-free wormholes.« less

  2. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  3. Spin properties of supermassive black holes with powerful outflows

    NASA Astrophysics Data System (ADS)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  4. Primordial Black Holes as Generators of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Silk, Joseph

    2018-05-01

    Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.

  5. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward themore » nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.« less

  6. THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SERSIC AND CORE-SERSIC GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W; Schombert, James

    2013-05-01

    We have examined the relationship between supermassive black hole mass (M{sub BH}) and the stellar mass of the host spheroid (M{sub sph,*}) for a sample of 75 nearby galaxies. To derive the spheroid stellar masses we used improved Two Micron All Sky Survey K{sub s}-band photometry from the ARCHANGEL photometry pipeline. Dividing our sample into core-Sersic and Sersic galaxies, we find that they are described by very different M{sub BH}-M{sub sph,*} relations. For core-Sersic galaxies-which are typically massive and luminous, with M{sub BH} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }-we find M{sub BH}{proportional_to} M{sub sph,*}{sup 0.97{+-}0.14}, consistent with othermore » literature relations. However, for the Sersic galaxies-with typically lower masses, M{sub sph,*} {approx}< 3 Multiplication-Sign 10{sup 10} M{sub Sun }-we find M{sub BH}{proportional_to}M{sub sph,*}{sup 2.22{+-}0.58}, a dramatically steeper slope that differs by more than 2 standard deviations. This relation confirms that, for Sersic galaxies, M{sub BH} is not a constant fraction of M{sub sph,*}. Sersic galaxies can grow via the accretion of gas which fuels both star formation and the central black hole, as well as through merging. Their black hole grows significantly more rapidly than their host spheroid, prior to growth by dry merging events that produce core-Sersic galaxies, where the black hole and spheroid grow in lockstep. We have additionally compared our Sersic M{sub BH}-M{sub sph,*} relation with the corresponding relation for nuclear star clusters, confirming that the two classes of central massive object follow significantly different scaling relations.« less

  7. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    NASA Technical Reports Server (NTRS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  8. Black holes in the Milky Way Galaxy

    PubMed Central

    Filippenko, Alexei V.

    1999-01-01

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong. PMID:10468548

  9. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  10. Dynamical Processes Near the Super Massive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio

    2011-01-01

    Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving

  11. Viewing the Shadow of the Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Melia, Fulvio; Agol, Eric

    2000-01-01

    In recent years, evidence for the existence of an ultracompact concentration of dark mass associated with the radio source Sagittarius A* in the Galactic center has become very strong. However, unambiguous proof that this object is indeed a black hole is still lacking. A defining characteristic of a black hole is the event horizon. To a distant observer, the event horizon casts a relatively large ``shadow'' with an apparent diameter of ~10 gravitational radii that is due to the bending of light by the black hole, and this shadow is nearly independent of the black hole spin or orientation. The predicted size (~30 μas) of this shadow for Sgr A* approaches the resolution of current radio interferometers. If the black hole is maximally spinning and viewed edge-on, then the shadow will be offset by ~8 μas from the center of mass and will be slightly flattened on one side. Taking into account the scatter broadening of the image in the interstellar medium and the finite achievable telescope resolution, we show that the shadow of Sgr A* may be observable with very long baseline interferometry at submillimeter wavelengths, assuming that the accretion flow is optically thin in this region of the spectrum. Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years.

  12. Secular Dynamical Anti-friction in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Levin, Yuri

    2012-07-01

    We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole. We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity; (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration; and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.

  13. Black hole candidates are not black holes, but engines for transforming old star matter to primordial matter

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2009-10-01

    Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used; see: arXiv:astro-ph/0401420. It explains the solar redshifts, the intrinsic redshifts of stars, galaxies, and quasars. It explains the cosmological redshift, the cosmic microwave background, the X-ray back ground. It explains the magnitude-redshift relation for SNe Ia, and the surface brightness-redshift relation for galaxies as measured by Sandage and Lubin. The Universe is quasi-static, and can renew itself forever. There is no need for Big Bang, Inflation, Cosmic Time Dilation, Dark Energy, Dark Matter, and Black Holes. Redshifts of solar Fraunhofer lines (when evaluated in light of plasma redshift) show clearly that photons are weightless. thus contradicting the general believe that photons have weight; see: arXiv:astro-ph/0408312. This presentation helps explain why the super-massive black hole candidate (SMBHC) at the Galactic center is an engine for converting old star matter to primordial matter, and why we have star forming region around the SMBHCs.

  14. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  15. A systematic study of the condensation of the corona and the application for Γ 2-10 keV-Lbol/LEdd correlation in luminous active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2018-06-01

    In this paper, we explained the observed Γ _2-10 keV-L_bol/L_Edd correlation in luminous active galactic nuclei within the framework of the condensation of the corona around a supermassive black hole (Liu et al.; Qiao & Liu). Specifically, we systemically test the effects of black hole mass M, the viscosity parameter α, and the magnetic parameter β (with magnetic pressure p_m=B^2/{8π }=(1-β )p_tot, ptot = pgas + pm) on the structure of the accretion disc and the corona, as well as the corresponding emergent spectra. It is found that the hard X-ray photon index Γ _2-10 keV nearly does not change with changing black hole mass M, or changing magnetic parameter β. Meanwhile, it is found that the geometry of the accretion flow, i.e. the relative configuration of the disc and corona, as well as the emergent spectra can be strongly affected by changing the value of α. By comparing with a sample composed of 29 luminous active galactic nuclei with well constrained X-ray spectra and Eddington ratios, it is found that the observed Γ _2-10 keV-L_bol/L_Edd correlation can be well matched with a relatively bigger value of α, i.e. α ˜ 1, as previously also suggested by Narayan for luminous accreting black holes.

  16. Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.

    2014-06-20

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole 'shadow', a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic modelsmore » of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (∼2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.« less

  17. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way.

    PubMed

    Schödel, R; Ott, T; Genzel, R; Hofmann, R; Lehnert, M; Eckart, A; Mouawad, N; Alexander, T; Reid, M J; Lenzen, R; Hartung, M; Lacombe, F; Rouan, D; Gendron, E; Rousset, G; Lagrange, A-M; Brandner, W; Ageorges, N; Lidman, C; Moorwood, A F M; Spyromilio, J; Hubin, N; Menten, K M

    2002-10-17

    Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

  18. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, Michael R.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both "stellar mass" x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  19. The Nearest Black Hole

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Garcia, Michael

    2005-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  20. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  1. Chandra Sees Remarkable Eclipse of Black Hole

    NASA Astrophysics Data System (ADS)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  2. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  3. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  4. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Coleman Miller, M.; Colbert, E. J. M.

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3-20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106-1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102-104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  5. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  6. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  7. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less

  8. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  9. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  10. The X-Ray Variability of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2015-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  11. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix

    2017-06-01

    Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.

  12. Polarization properties of bow shock sources close to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Zajaček, M.; Karas, V.; Hosseini, E.; Eckart, A.; Shahzamanian, B.; Valencia-S., M.; Peissker, F.; Busch, G.; Britzen, S.; Zensus, J. A.

    2017-12-01

    Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated by the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.

  13. Black Hole Safari: Tracking Populations and Hunting Big Game

    NASA Astrophysics Data System (ADS)

    McConnell, N. J.

    2013-10-01

    Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.

  14. Secular Black Hole Growth and Feedback in Merger-Free Galaxies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke

    2016-10-01

    We will measure the merger-free galaxy-black hole mass relation for the first time, using a unique, newly-discovered sample of luminous active galactic nuclei (AGN) hosted in galaxies that have not grown via mergers. Our preliminary study has shown that supermassive black holes (SMBHs) in bulgeless galaxies - i.e., galaxies that have never undergone a significant merger - can have substantial growth: bulges are not required for the formation and growth of SMBHs. The proposed targets are broad-line AGN with black hole masses spanning a wide mass range (1e6 to >1e9 M_Sun) and hosted in strongly disk dominated galaxies (>80% light from a disk). This sample is an ideal laboratory for understanding merger-free black hole growth and its feedback on the host galaxy. HST imaging will allow us to disentangle bright nuclear emission from host galaxy, measure bulge type and strength, and identify bulgeless galaxies that have evolved under purely secular conditions. In addition, we will determine whether merger-free galaxies lie on the same SMBH-galaxy relation as galaxies with substantial past mergers, or whether merger-free growth results in a separate relation. The answer to this question has profound consequences for the role of baryon dynamics in driving black hole-galaxy co-evolution.

  15. Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Blackwell, James H., Jr.

    1990-01-01

    The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.

  16. Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102?

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi; Miller, M. Coleman

    2018-05-01

    Graham et al. reported a periodically varying quasar and supermassive black hole binary candidate, PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-time Transient Survey (CRTS). Its combined Lincoln Near-Earth Asteroid Research (LINEAR) and CRTS optical light curve is well fitted to a sinusoid of an observed period of ≈1884 days and well modeled by the relativistic Doppler boosting of the secondary mini-disk. However, the LINEAR+CRTS light curve from MJD ≈52,700 to MJD ≈56,400 covers only ∼2 cycles of periodic variation, which is a short baseline that can be highly susceptible to normal, stochastic quasar variability. In this Letter, we present a reanalysis of PG1302 using the latest light curve from the All-sky Automated Survey for Supernovae (ASAS-SN), which extends the observational baseline to the present day (MJD ≈58,200), and adopting a maximum likelihood method that searches for a periodic component in addition to stochastic quasar variability. When the ASAS-SN data are combined with the previous LINEAR+CRTS data, the evidence for periodicity decreases. For genuine periodicity one would expect that additional data would strengthen the evidence, so the decrease in significance may be an indication that the binary model is disfavored.

  17. Gas Accretion onto a Supermassive Black Hole: A Step to Model AGN Feedback

    NASA Astrophysics Data System (ADS)

    Nagamine, K.; Barai, P.; Proga, D.

    2012-08-01

    We study gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with the spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of the outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities; however, the flow starts to exhibit non-spherical fragmentation due to the thermal instability for a certain range of central LX, and a strong overall outflow develops for greater LX. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.

  18. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C., E-mail: mponce@astro.rit.edu, E-mail: jafsma@rit.edu, E-mail: jalombar@allegheny.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick anglemore » with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.« less

  19. A Detection Pipeline for Galactic Binaries in LISA Data

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2012-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers) etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise - over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract greater than or equal to 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  20. Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations

    NASA Astrophysics Data System (ADS)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.

    2015-08-01

    We introduce a sub-grid force correction term to better model the dynamical friction experienced by a supermassive black hole (SMBH) as it orbits within its host galaxy. This new approach accurately follows an SMBH's orbital decay and drastically improves over commonly used `advection' methods. The force correction introduced here naturally scales with the force resolution of the simulation and converges as resolution is increased. In controlled experiments, we show how the orbital decay of the SMBH closely follows analytical predictions when particle masses are significantly smaller than that of the SMBH. In a cosmological simulation of the assembly of a small galaxy, we show how our method allows for realistic black hole orbits. This approach overcomes the limitations of the advection scheme, where black holes are rapidly and artificially pushed towards the halo centre and then forced to merge, regardless of their orbits. We find that SMBHs from merging dwarf galaxies can spend significant time away from the centre of the remnant galaxy. Improving the modelling of SMBH orbital decay will help in making robust predictions of the growth, detectability and merger rates of SMBHs, especially at low galaxy masses or at high redshift.

  1. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  2. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGES

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ ,  tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less

  3. Constraints on Black Hole Spin in a Sample of Broad Iron Line AGN

    NASA Technical Reports Server (NTRS)

    Brenneman, Laura W.; Reynolds, Christopher S.

    2008-01-01

    We present a uniform X-ray spectral analysis of nine type-1 active galactic nuclei (AGN) that have been previously found to harbor relativistically broadened iron emission lines. We show that the need for relativistic effects in the spectrum is robust even when one includes continuum "reflection" from the accretion disk. We then proceed to model these relativistic effects in order to constrain the spin of the supermassive black holes in these AGN. Our principal assumption, supported by recent simulations of geometrically-thin accretion disks, is that no iron line emission (or any associated Xray reflection features) can originate from the disk within the innermost stable circular orbit. Under this assumption, which tends to lead to constraints in the form of lower limits on the spin parameter, we obtain non-trivial spin constraints on five AGN. The spin parameters of these sources range from moderate (a approximates 0.6) to high (a > 0.96). Our results allow, for the first time, an observational constraint on the spin distribution function of local supermassive black holes. Parameterizing this as a power-law in dimensionless spin parameter (f(a) varies as absolute value of (a) exp zeta), we present the probability distribution for zeta implied by our results. Our results suggest 90% and 95% confidence limits of zeta > -0.09 and zeta > -0.3 respectively.

  4. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  5. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  6. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  7. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  8. Gas Flows in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z < 0.05, using Keck/OSIRIS, VLT/SINFONI, SOFIA/FORCAST, and HST data. I will focus on the interplay between the several complex processes observed in dual AGN, using as an example the prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  9. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  10. Behemoth Black Hole Found in an Unlikely Place

    NASA Image and Video Library

    2016-04-06

    This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole. Credits: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI) More info: Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe. The observations, made by NASA’s Hubble Space Telescope and the Gemini Telescope in Hawaii, may indicate that these monster objects may be more common than once thought. Until now, the biggest supermassive black holes – those roughly 10 billion times the mass of our sun – have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. In fact, the current record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster that consists of over 1,000 galaxies.

  11. Different Flavors of Black Holes

    NASA Image and Video Library

    2014-01-09

    A range of supermassive black holes lights up this new image from NASA NuSTAR. All of the dots are active black holes tucked inside the hearts of galaxies, with colors representing different energies of X-ray light.

  12. Coevolution of Supermassive Black Holes and Galaxies across cosmic times

    NASA Astrophysics Data System (ADS)

    Aversa, Rossella

    2015-10-01

    Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a first step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1.5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0.5 - 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L/LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of ∼3 e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described

  13. SETI among galaxies by virtue of black holes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-09-01

    Black Hole radio bridge, having the distance of 2.5 million light years. The P2 Andromeda black hole is estimated to have a mass of about 40 million solar masses.The SgrA*-M32 (a dwarf elliptical galaxy satellite of Andromeda-M31) radio bridge, with a 2.65 million light year distance. The M32 black hole is estimated to have a mass of about 3 million solar masses.The SgrA*-M106 (also called NGC 4258, a spiral galaxy with anomalous arms) radio bridge, at about 24 million light years. The M106 black hole is estimated to have a mass of about 40 million solar masses.The SgrA*-Sombrero Galaxy (also called M104 or NGC 4594, an unbarred spiral galaxy) at a distance of 29.3 million light years. Its black hole is estimated to have a mass of 1 billion solar masses.The SgrA*-M87 radio bridge. M87 is the supergiant elliptical galaxy located at the center of the super-cluster of galaxies to which we belong, i.e. the Local Super Cluster, at the edge of which we are located. The distance between M87 and us is 53.5 million light years in the direction of the constellation of Virgo, which is why M87 and its surrounding clusters of galaxies are sometimes referred to as the Virgo Super Cluster. At the center of M87 is a supermassive black hole estimated to have a mass of 6.4 billion solar masses. M87 is also well known as “the jet galaxy” since a jet of energetic plasma originates at the core and extends out at least 5000 light-years.The conclusion that we draw from the mathematics describing these radio bridges across huge inter-galactic distances is surprising: they all perform better that the simple Sun-Alpha Cen A radio bridge, first studied in detail by this author in Ref. [1]. In other words, the powers necessary to keep the radio link between SgrA* and all of the above big black holes located in other nearby galaxies are smaller than the powers requested to keep the radio bridge between the Sun and Alpha Cen A. In other words still, despite inter-galactic distances are huge with

  14. HYDROSTATIC GAS CONSTRAINTS ON SUPERMASSIVE BLACK HOLE MASSES: IMPLICATIONS FOR HYDROSTATIC EQUILIBRIUM AND DYNAMICAL MODELING IN A SAMPLE OF EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, Philip J.; Buote, David A.; Brighenti, Fabrizio

    2009-10-01

    We present new mass measurements for the supermassive black holes (SMBHs) in the centers of three early-type galaxies. The gas pressure in the surrounding, hot interstellar medium (ISM) is measured through spatially resolved spectroscopy with the Chandra X-ray Observatory, allowing the SMBH mass (M {sub BH}) to be inferred directly under the hydrostatic approximation. This technique does not require calibration against other SMBH measurement methods and its accuracy depends only on the ISM being close to hydrostatic, which is supported by the smooth X-ray isophotes of the galaxies. Combined with results from our recent study of the elliptical galaxy NGCmore » 4649, this brings the number of galaxies with SMBHs measured in this way to four. Of these, three already have mass determinations from the kinematics of either the stars or a central gas disk, and hence join only a handful of galaxies with M {sub BH} measured by more than one technique. We find good agreement between the different methods, providing support for the assumptions implicit in both the hydrostatic and the dynamical models. The stellar mass-to-light ratios for each galaxy inferred by our technique are in agreement with the predictions of stellar population synthesis models assuming a Kroupa initial mass function (IMF). This concurrence implies that no more than {approx}10%-20% of the ISM pressure is nonthermal, unless there is a conspiracy between the shape of the IMF and nonthermal pressure. Finally, we compute Bondi accretion rates (M-dot{sub bondi}), finding that the two galaxies with the highest M-dot{sub bondi} exhibit little evidence of X-ray cavities, suggesting that the correlation with the active galactic nuclei jet power takes time to be established.« less

  15. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  16. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole.

    PubMed

    Reis, R C; Miller, J M; Reynolds, M T; Gültekin, K; Maitra, D; King, A L; Strohmayer, T E

    2012-08-24

    Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.

  17. On the Maximum Mass of Accreting Primordial Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  18. Proto-jet configurations in RADs orbiting a Kerr SMBH: symmetries and limiting surfaces

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-05-01

    Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.

  19. "Iron-Clad" Evidence For Spinning Black Hole

    NASA Astrophysics Data System (ADS)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  20. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  1. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (I.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  2. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  3. How Often do Giant Black Holes Become Hyperactive?

    NASA Astrophysics Data System (ADS)

    2010-12-01

    A new study from NASA's Chandra X-ray Observatory tells scientists how often the biggest black holes have been active over the last few billion years. This discovery clarifies how supermassive black holes grow and could have implications for how the giant black hole at the center of the Milky Way will behave in the future. Most galaxies, including our own, are thought to contain supermassive black holes at their centers, with masses ranging from millions to billions of times the mass of the Sun. For reasons not entirely understood, astronomers have found that these black holes exhibit a wide variety of activity levels: from dormant to just lethargic to practically hyper. The most lively supermassive black holes produce what are called "active galactic nuclei," or AGN, by pulling in large quantities of gas. This gas is heated as it falls in and glows brightly in X-ray light. "We've found that only about one percent of galaxies with masses similar to the Milky Way contain supermassive black holes in their most active phase," said Daryl Haggard of the University of Washington in Seattle, WA, and Northwestern University in Evanston, IL, who led the study. "Trying to figure out how many of these black holes are active at any time is important for understanding how black holes grow within galaxies and how this growth is affected by their environment." This study involves a survey called the Chandra Multiwavelength Project, or ChaMP, which covers 30 square degrees on the sky, the largest sky area of any Chandra survey to date. Combining Chandra's X-ray images with optical images from the Sloan Digital Sky Survey, about 100,000 galaxies were analyzed. Out of those, about 1,600 were X-ray bright, signaling possible AGN activity. Only galaxies out to 1.6 billion light years from Earth could be meaningfully compared to the Milky Way, although galaxies as far away as 6.3 billion light years were also studied. Primarily isolated or "field" galaxies were included, not galaxies

  4. A near-infrared relationship for estimating black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita

    2013-06-01

    Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.

  5. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  6. 360-degree videos: a new visualization technique for astrophysical simulations, applied to the Galactic Center

    NASA Astrophysics Data System (ADS)

    Russell, Christopher

    2018-01-01

    360-degree videos are a new type of movie that renders over all 4π steradian. Video sharing sites such as YouTube now allow this unique content to be shared via virtual reality (VR) goggles, hand-held smartphones/tablets, and computers. Creating 360-degree videos from astrophysical simulations not only provide a new way to view these simulations due to their immersive nature, but also yield engaging content for outreach to the public. We present our 360-degree video of an astrophysical simulation of the Galactic center: a hydrodynamics calculation of the colliding and accreting winds of the 30 Wolf-Rayet stars orbiting within the central parsec. Viewing the movie, which renders column density, from the location of the supermassive black hole gives a unique and immersive perspective of the shocked wind material inspiraling and tidally stretching as it plummets toward the black hole. We also describe how to create such movies, discuss what type of content does and does not look appealing in 360-degree format, and briefly comment on what new science can be extracted from astrophysical simulations using 360-degree videos.

  7. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  8. Accretion of magnetized matter into a black hole.

    NASA Astrophysics Data System (ADS)

    Bisnovatyj-Kogan, G. S.

    1999-12-01

    Accretion is the main source of energy in binary X-ray sources inside the Galaxy, and most probably in active galactic nuclei, where numerous observational data for the existence of supermassive black holes have been obtained. Standard accretion disk theory is formulated which is based on local heat balance. The whole energy produced by turbulent viscous heating is supposed to be emitted to the sides of the disk. Sources of turbulence in the accretion disk are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic field. In standard theory there are two branches of solution, optically thick, anti-optically thin, which are individually self-consistent. The choice between these solutions should be done on the basis of a stability analysis. Advection in the accretion disks is described by differential equations, which makes the theory nonlocal. The low-luminosity optically thin accretion disk model with advection under some conditions may become advectively dominated, carrying almost all the energy inside the black hole. A proper account for magnetic field in the process of accretion limits the energy advected into a black hole, and does not allow the radiative efficiency of accretion to become lower than about 1/4 of the standard accretion disk model efficiency.

  9. A dust-parallax distance of 19 megaparsecs to the supermassive black hole in NGC 4151.

    PubMed

    Hönig, Sebastian F; Watson, Darach; Kishimoto, Makoto; Hjorth, Jens

    2014-11-27

    The active galaxy NGC 4151 has a crucial role as one of only two active galactic nuclei for which black hole mass measurements based on emission line reverberation mapping can be calibrated against other dynamical techniques. Unfortunately, effective calibration requires accurate knowledge of the distance to NGC 4151, which is not at present available. Recently reported distances range from 4 to 29 megaparsecs. Strong peculiar motions make a redshift-based distance very uncertain, and the geometry of the galaxy and its nucleus prohibit accurate measurements using other techniques. Here we report a dust-parallax distance to NGC 4151 of 19.0(+2.4)(-2.6) megaparsecs. The measurement is based on an adaptation of a geometric method that uses the emission line regions of active galaxies. Because these regions are too small to be imaged with present technology, we use instead the ratio of the physical and angular sizes of the more extended hot-dust emission as determined from time delays and infrared interferometry. This distance leads to an approximately 1.4-fold increase in the dynamical black hole mass, implying a corresponding correction to emission line reverberation masses of black holes if they are calibrated against the two objects with additional dynamical masses.

  10. Amuse-Virgo: Downsizing In Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Gallo, Elena

    2010-03-01

    An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.

  11. Supersonic gas streams enhance the formation of massive black holes in the early universe

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf

    2017-09-01

    Supermassive black holes existed less than a billion years after the Big Bang. Because black holes can grow at a maximum rate that depends on their current mass, it has been difficult to understand how such massive black holes could have formed so quickly. Hirano et al. developed simulations to show that streaming motions—velocity offsets between the gas and dark matter components—could have produced black holes with tens of thousands of solar masses in the early universe. That's big enough to grow into the supermassive black holes that we observe today.

  12. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-07-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBHs) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion on to a point mass, and the related estimate of the drag force exerted on to a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply-limited accretion scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force, it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates on to the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  13. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-04-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  14. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  15. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  16. On the Maximum Mass of Accreting Primordial Supermassive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using themore » stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.« less

  17. Few and far between

    NASA Astrophysics Data System (ADS)

    Liu, Kuo; Eatough, Ralph

    2017-12-01

    Pulsars — fast-spinning neutron stars — are precision clocks provided by nature. Finding pulsars in the Galactic Centre orbiting Sagittarius A*, the closest supermassive black hole to the Earth, will offer unprecedented opportunities to test general relativity and its alternatives.

  18. New calibration and some predictions of the scaling relations between the mass of supermassive black holes and the properties of the host galaxies

    NASA Astrophysics Data System (ADS)

    Benedetto, E.; Fallarino, M. T.; Feoli, A.

    2013-10-01

    We present a new determination of the slope and normalization of three popular scaling laws between the mass of supermassive black holes and stellar velocity dispersion, bulge mass and kinetic energy of the host galaxies. To this aim we have collected 72 objects taken from three different samples and we have used three fitting methods applying the statistical analysis also to the subset of early type galaxies and spirals separately. We find that the relation involving kinetic energy has a slightly better χ2 and linear correlation coefficient than the other two laws. Furthermore, its Hertzsprung-Russell-like behavior is confirmed by the location of young and old galaxies in two different parts of the diagram. A test of its predictive power with the two giant galaxies NGC 3842 and NGC 4889 shows that the mass of the black hole inferred using the kinetic energy law is the closest to the experimental value. The subset of early type galaxies satisfies the theoretical models regarding the black hole mass vs stellar velocity dispersion relation, better than the full sample. Tables 1 and 7 are available in electronic form at http://www.aanda.org

  19. How to Spot a Primitive Black Hole

    NASA Image and Video Library

    2010-03-17

    These two data plots from NASA Spitzer Space Telescope show a primitive supermassive black hole top compared to a typical one; usually, dust tori are missing and only gas disks are observed in primitive black holes.

  20. X-Ray Emitting Supermassive Nuclei of the Local Group

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Liu, Siming

    2001-09-01

    In this talk, we will focus on a theoretical interpretation of what we have learned with recent Chandra observations of the supermassive black hole at the Galactic center (Sgr A*) and in the nucleus of M31 (M31*). The recent detection of Sgr A* in the X-ray band, together with the radio polarization measurements conducted over the past few years, offer the best constraints yet for understanding the nature of the emitting gas within several Schwarzschild radii (rS) of this object. It now appears that the sub-mm radiation from this source may be associated with thermal synchrotron emission from an inner Keplerian region within the circularization radius of the accreting plasma. In this talk, we discuss the implied high-energy emission of Sgr A* associated with the orbiting, hot, magnetized gas. For the accretion rate inferred from the fits to the sub-mm data, the dominant contribution to Sgr A*'s X-ray flux is due to self-Comptonization of the radio photons, rather than from bremsstrahlung. The latter is a two-body process, which would produce significant X-ray emission only at much higher accretion rates. This picture leads to the testable prediction that the physical conditions within the inner ~5rS are variable on a time scale of order a year. In particular, the accretion rate dot M appears to have changed by about 15% between the sub-mm measurements in 1996 and 1999. Given that the radio and self-Comptonized fluxes are strongly correlated, upcoming multi-wavelength observations of Sgr A* may provide the direct evidence required to test this picture. M31* has many features in common with Sgr A*, yet they differ in several significant and important ways. Though M31* is probably ten times heavier, its radio luminosity at 3.6 cm is only one third that of Sgr A*. At the same time, M31* is apparently thousands of times more luminous in X-rays than its Galactic Center counterpart. Thus, a comparative study of these objects can be valuable in helping us to understand the

  1. Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-05-01

    Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.

  2. Artist Concept: Active Black Hole Squashes Star Formation

    NASA Image and Video Library

    2012-05-09

    Herschel Space Observatory has shown that galaxies with the most powerful, active, supermassive black holes at their cores produce fewer stars than galaxies with less active black holes in this artist concept.

  3. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At the cores of many galaxies, supermassive black holes expel powerful jets of particles at nearly the speed of light. Just how they perform this feat has long been one of the mysteries of astrophysics. The leading theory says the particles are accelerated by tightly-twisted magnetic fields close to the black hole, but confirming that idea required an elusive close-up view of the jet's inner throat. Now, using the unrivaled resolution of the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), astronomers have watched material winding a corkscrew outward path and behaving exactly as predicted by the theory. Galactic core and jet Artist's conception of region near supermassive black hole where twisted magnetic fields propel and shape jet of particles (Credit: Marscher et al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF). Click on image for high-resolution file. Watch Video of Black-Hole-Powered Jet (Credit: Cosmovision, Wolfgang Steffen) Download: NTSC Format (90MB) | PAL Format (90MB) "We have gotten the clearest look yet at the innermost portion of the jet, where the particles actually are accelerated, and everything we see supports the idea that twisted, coiled magnetic fields are propelling the material outward," said Alan Marscher, of Boston University, leader of an international research team. "This is a major advance in our understanding of a remarkable process that occurs throughout the Universe," he added. Marscher's team studied a galaxy called BL Lacertae (BL Lac), some 950 million light-years from Earth. BL Lac is a blazar, the most energetic type of black-hole-powered galactic core. A black hole is a concentration of mass so dense that not even light can escape its gravitational pull. Supermassive black holes in galaxies' cores power jets of particles and intense radiation in similar objects including quasars and Seyfert galaxies. Material pulled inward toward the black hole forms a flattened, rotating disk, called an accretion disk

  4. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  5. The early growth of the first black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jarrett L.; Haardt, Francesco

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  6. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  7. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  8. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  9. Missing Black Holes Found!

    NASA Image and Video Library

    2007-10-25

    NASA Spitzer and Chandra space telescopes have uncovered a long-lost population of active supermassive black holes, or quasars located deep in the bellies of distant, massive galaxies circled in blue.

  10. NuSTAR monitoring of the Galactic center diffuse emission

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo

    2017-08-01

    Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.

  11. Tidal breakup of triple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Gualandris, Alessia

    2018-04-01

    The last decade has seen the detection of fast moving stars in the Galactic halo, the so-called hypervelocity stars (HVSs). While the bulk of this population is likely the result of a close encounter between a stellar binary and the supermassive black hole (MBH) in the Galactic Centre (GC), other mechanims may contribute fast stars to the sample. Few observed HVSs show apparent ages, which are shorter than the flight time from the GC, thereby making the binary disruption scenario unlikely. These stars may be the result of the breakup of a stellar triple in the GC, which led to the ejection of a hypervelocity binary (HVB). If such binary evolves into a blue straggler star due to internal processes after ejection, a rejuvenation is possible that make the star appear younger once detected in the halo. A triple disruption may also be responsible for the presence of HVBs, of which one candidate has now been observed. We present a numerical study of triple disruptions by the MBH in the GC and find that the most likely outcomes are the production of single HVSs and single/binary stars bound to the MBH, while the production of HVBs has a probability ≲ 1 per cent regardless of the initial parameters. Assuming a triple fraction of ≈ 10 per cent results in an ejection rate of ≲ 1 Gyr - 1, insufficient to explain the sample of HVSs with lifetimes shorter than their flight time. We conclude that alternative mechanisms are responsible for the origin of such objects and HVBs in general.

  12. NUMERICAL SIMULATIONS OF THE POSSIBLE ORIGIN OF THE TWO SUB-PARSEC SCALE AND COUNTERROTATING STELLAR DISKS AROUND SgrA*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alig, C.; Schartmann, M.; Burkert, A.

    2013-07-10

    We present a high-resolution simulation of an idealized model to explain the origin of the two young, counterrotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the center of the Milky Way. In our model, the collision of a single molecular cloud with a circumnuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing toward the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circumnuclear disk material. The infalling gas creates two inclined, counterrotating sub-parsec scale accretion disks around the supermassive black holemore » with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second counterrotating disk forms. Fragmentation of the second disk would lead to the two inclined, counterrotating stellar disks which are observed at the Galactic center. A similar event might be happening again right now at the Milky Way Galactic center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so-called mini spiral that has been detected in the Galactic center.« less

  13. Active Galactic Nuclei with James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    I'll discuss several ways in which JWST will probe the cosmic history of accretion onto supermassive black holes, and the co-evolution of host galaxies. Key investigations include: 1) Measurements of redshift, luminosity, and AGN fraction for obscured AGN candidates identified by other missions. 2) Measurements of AGN hosts at all redshifts, including stellar masses, morphology, interactions, and star formation rates. 3) Measurements of stellar mass and black hole mass in AGN at high redshift, to chart the early history of black hole and galaxy growth.

  14. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  15. Fragments of the past activity of Sgr A* inferred from X-ray echoes in Sgr C

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Soldi, S.; Clavel, M.; Morris, M.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-10-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole Sgr A*. We study this reflected emission in observations of the molecular complex Sgr C made with the X-ray observatories XMM-Newton and Chandra between 2000 and 2014. We show that this complex exhibits clear variability in both space and time, which strongly favours the reflection scenario, the most likely illuminating source being Sgr A*. By comparing data to Monte-Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  16. Hubble Gazes Into a Black Hole of Puzzling Light

    NASA Image and Video Library

    2017-12-08

    The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle. At first glance, this galaxy appears to be a normal spiral galaxy, much like the Milky Way, but first appearances can be deceptive! The Milky Way galaxy, like most large galaxies, has a supermassive black hole at its center, but some galaxies are centered on lighter, intermediate-mass black holes. RX J1140.1+0307 is such a galaxy — in fact, it is centered on one of the lowest black hole masses known in any luminous galactic core. What puzzles scientists about this particular galaxy is that the calculations don’t add up. With such a relatively low mass for the central black hole, models for the emission from the object cannot explain the observed spectrum. There must be other mechanisms at play in the interactions between the inner and outer parts of the accretion disk surrounding the black hole. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Investigating the Binarity of S0-2: Implications for Its Origins and Robustness as a Probe of the Laws of Gravity around a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Chu, Devin S.; Do, Tuan; Hees, Aurelien; Ghez, Andrea; Naoz, Smadar; Witzel, Gunther; Sakai, Shoko; Chappell, Samantha; Gautam, Abhimat K.; Lu, Jessica R.; Matthews, Keith

    2018-02-01

    The star S0-2, which orbits the supermassive black hole (SMBH) in our Galaxy with a period of 16 years, provides the strongest constraint on both the mass of the SMBH and the distance to the Galactic center. S0-2 will soon provide the first measurement of relativistic effects near a SMBH. We report the first limits on the binarity of S0-2 from radial velocity (RV) monitoring, which has implications for both understanding its origin and robustness as a probe of the central gravitational field. With 87 RV measurements, which include 12 new observations that we present, we have the requisite data set to look for RV variations from S0-2‧s orbital model. Using a Lomb–Scargle analysis and orbit-fitting for potential binaries, we detect no RV variation beyond S0-2‧s orbital motion and do not find any significant periodic signal. The lack of a binary companion does not currently distinguish different formation scenarios for S0-2. The upper limit on the mass of a companion star ({M}{comp}) still allowed by our results has a median upper limit of {M}{comp} sin i ≤ 1.6 M ⊙ for periods between 1 and 150 days, the longest period to avoid tidal break-up of the binary. We also investigate the impact of the remaining allowed binary system on the measurement of the relativistic redshift at S0-2‧s closest approach in 2018. While binary star systems are important to consider for this experiment, we find that plausible binaries for S0-2 will not alter a 5σ detection of the relativistic redshift.

  18. Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-01-01

    Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  19. X-raying the Galactic centre

    NASA Astrophysics Data System (ADS)

    Ponti, G.

    2017-10-01

    The advent of XMM-Newton and Chandra led to major advancements in our comprehension of the physics at heart of the Milky Way. I will discuss some of the most recent findings related to the present activity of Sgr A* (the supermassive black hole at the Milky Way center), the signatures of its glorious past and the traces of powerful energy releases within the central degrees of the Galaxy.

  20. Collisions Around a Black Hole Mean Mealtime

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    When a normally dormant supermassive black hole burps out a brief flare, its assumed that a star was torn apart and fell into the black hole. But a new study suggests that some of these flares might have a slightly different cause.Not a Disruption?Artists impression of a tidal disruption event, in which a star has been pulled apart and its gas feeds the supermassive black hole. [NASA/JPL-Caltech]When a star swings a little too close by a supermassive black hole, the black holes gravity can pull the star apart, completely disrupting it. The resulting gas can then accrete onto the black hole, feeding it and causing it to flare. The predicted frequency of these tidal disruption events and their expected light curves dont perfectly match all our observations of flaring black holes, however.This discrepancy has led two scientists from the Columbia Astrophysics Laboratory, Brian Metzger and Nicholas Stone, to wonder if we can explain flares from supermassive black holes in another way. Could a differentevent masquerade as a tidal disruption?Evolution of a stars semimajor axis (top panel) and radius (bottom panel) as a function of time since Roche-lobe overflow began onto a million-solar-mass black hole. Curves show stars of different masses. [Metzger Stone 2017]Inspirals and OutspiralsIn the dense nuclear star cluster surrounding a supermassive black hole, various interactions can send stars on new paths that take them close to the black hole. In many of these interactions, the stars will end up on plunging orbits, often resulting in tidal disruption. But sometimes stars can approach the black hole on tightly bound orbits with lower eccentricities.A main-sequence star on such a path, in what is known as an extreme mass ratio inspiral (EMRI), slowly approaches the black hole over a period of millions of years, eventually overflowing its Roche lobe and losing mass. Theradius of the star inflates, driving more mass loss and halting the stars inward progress. The star then

  1. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  2. Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars

    NASA Astrophysics Data System (ADS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  3. Two Models of Black Hole Spin Artist Concept

    NASA Image and Video Library

    2013-02-27

    Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. The light comes from accretion disks that swirl around black holes, as shown in both of the artist concepts.

  4. Maximally Rotating Supermassive Stars at the Onset of Collapse: The Perturbative Effects of Gas Pressure, Magnetic Fields, Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-04-01

    The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  5. Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy

    NASA Astrophysics Data System (ADS)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-07-01

    The discovery of quasars at increasingly large cosmological redshifts may favour `direct collapse' as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  6. How Complete is Mid-Infrared Selection of Active Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Diamond-Stanic, Aleks

    2015-01-01

    Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.

  7. Hustle and Bustle at Center of Milky Way

    NASA Image and Video Library

    2013-05-07

    This artist concept illustrates the frenzied activity at the core of our Milky Way galaxy. The galactic center hosts a supermassive black hole in the region known as Sagittarius A*, or Sgr A*, with a mass of about four million times that of our sun.

  8. Observational Corollaries of Proto-AGN: Understanding Formation of Supermassive Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac

    2016-10-01

    Formation of supermassive black holes (SMBHs) is still an enigma. Recent detections of high-z quasars which harbor massive SMBHs provide a challenge to models of structure buildup in the universe. Main alternatives for the formation of SMBH seeds are (1) remnants of Population III stars, and (2) a direct baryonic collapse within dark matter (DM) halos of 10^8 Mo -- first halos whose virial temperature exceeds 10^4 K, and which can lead to the formation of proto-AGN -- luminous pre-SMBH objects. Potentially, this can involve both high-z objects as well as low-z dwarf galaxies in voids. We focus on the direct collapse in 10^8 Mo halos which circumvents the pitfalls of Pop III remnants. The collapse can proceed via a radiation pressure-supported quasistar -- with a modified blackbody continuum. Such a configuration requires a very efficient angular momentum transfer. Or, it can form a thick, differentially rotating, self-gravitating disk, which is associated with an X-ray-infrared continuum and Seyfert-level luminosity, anisotropic emission, massive bi-conical outflows, and will be a powerful source of the Ly-alpha emission. We propose to perform radiative transfer in the continuum and hydrogen lines (e.g., Lyman and Balmer), using our models of proto-AGN, and do it on-the-fly -- concurrently with the collapse. We shall test the path to quasistellar and disky proto-AGN, produce first synthetic spectra of proto-AGN, and address the issue of feasibility of their detection by the JWST. Finally, we shall develop the strategy of searching for these objects at high- and low-z, based on the specific features in the spectra and associated variability.

  9. Hunting a wandering supermassive black hole in the M31 halo hermitage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Yohei; Mori, Masao; Kawaguchi, Toshihiro

    2014-03-10

    In the hierarchical structure formation scenario, galaxies enlarge through multiple merging events with less massive galaxies. In addition, the Magorrian relation indicates that almost all galaxies are occupied by a central supermassive black hole (SMBH) of mass 10{sup –3} times the mass of its spheroidal component. Consequently, SMBHs are expected to wander in the halos of their host galaxies following a galaxy collision, although evidence of this activity is currently lacking. We investigate a current plausible location of an SMBH wandering in the halo of the Andromeda galaxy (M31). According to theoretical studies of N-body simulations, some of the manymore » substructures in the M31 halo are remnants of a minor merger occurring about 1 Gyr ago. First, to evaluate the possible parameter space of the infalling orbit of the progenitor, we perform numerous parameter studies using a graphics processing unit cluster. To reduce uncertainties in the predicted position of the expected SMBH, we then calculate the time evolution of the SMBH in the progenitor dwarf galaxy from N-body simulations using the plausible parameter sets. Our results show that the SMBH lies within the halo (∼20-50 kpc from the M31 center), closer to the Milky Way than the M31 disk. Furthermore, the predicted current positions of the SMBH were restricted to an observational field of 0.°6 × 0.°7 in the northeast region of the M31 halo. We also discuss the origin of the infalling orbit of the satellite galaxy and its relationships with the recently discovered vast thin disk plane of satellite galaxies around M31.« less

  10. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    NASA Astrophysics Data System (ADS)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  11. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Katsoulakos, Grigorios; Rieger, Frank M.

    2018-01-01

    The rapidly variable, very high-energy (VHE) gamma-ray emission from active galactic nuclei (AGNs) has been frequently associated with non-thermal processes occurring in the magnetospheres of their supermassive black holes. The present work aims to explore the adequacy of different gap-type (unscreened electric field) models to account for the observed characteristics. Based on a phenomenological description of the gap potential, we estimate the maximum extractable gap power L gap for different magnetospheric setups, and study its dependence on the accretion state of the source. L gap is found in general to be proportional to the Blandford–Znajek jet power L BZ and a sensitive function of gap size h, i.e., {L}{gap}∼ {L}{BZ}{(h/{r}g)}β , where the power index β ≥slant 1 is dependent on the respective gap setup. The transparency of the vicinity of the black hole to VHE photons generally requires a radiatively inefficient accretion environment and thereby imposes constraints on possible accretion rates, and correspondingly on L BZ. Similarly, rapid variability, if observed, may allow one to constrain the gap size h∼ c{{Δ }}t. Combining these constraints, we provide a general classification to assess the likelihood that the VHE gamma-ray emission observed from an AGN can be attributed to a magnetospheric origin. When applied to prominent candidate sources these considerations suggest that the variable (day-scale) VHE activity seen in the radio galaxy M87 could be compatible with a magnetospheric origin, while such an origin appears less likely for the (minute-scale) VHE activity in IC 310.

  12. Rapid Black-Hole Growth in the Nitrogen-Rich Era

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta

    2014-01-01

    The connection between the active galactic nuclei (AGNs) and star formation is one of the most crucial aspects in understanding the co-evolution of supermassive black holes (SMBHs) and galaxies. In Matsuoka et al. (2011, A&A, 527, A100), by using SDSS quasar spectra we found that the nitrogen abundance correlates with the Eddington ratio. This correlation suggests that the mass accretion is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with nitrogen. To further pursue this relation, we focus on nitrogen-loud quasars that show extremely strong emission lines of nitrogen (e.g., N iv]λ1486 and N iii]λ1750) due to high-abundance of nitrogen instead of high metallicity. Based on the C ivλ1549 line which is available in SDSS optical spectra, we found they may show high accretion rate, supporting above correlation. However, this is not enough to confirm the relation since the C iv line may be unreliable as a mass indicator. In this proposal, we detect the Hα line which is reliable to estimate black-hole masses, and to shed light on the AGN-starburst connection.

  13. Supra-galactic colour patterns in globular cluster systems

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  14. RADIO SYNCHROTRON EMISSION FROM A BOW SHOCK AROUND THE GAS CLOUD G2 HEADING TOWARD THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal

    2012-10-01

    A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons andmore » show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.« less

  15. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  16. Gravitational interactions of stars with supermassive black hole binaries - I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-07-01

    Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).

  17. Chandra Data Reveal Rapidly Whirling Black Holes

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  18. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  19. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    NASA Astrophysics Data System (ADS)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  20. Big Black Holes Mean Bad News for Stars (diagram)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies.

    In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars.

    The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth.

    The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.

  1. Super massive black hole in galactic nuclei with tidal disruption of stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less

  2. Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Perley, R. A.; Dhawan, V.

    2017-06-01

    We report the appearance of a new radio source at a projected offset of 460 pc from the nucleus of Cygnus A. The flux density of the source (which we designate Cygnus A-2) rose from an upper limit of <0.5 mJy in 1989 to 4 mJy in 2016 ( ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincidentmore » with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary SMBH at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 10{sup 7} years.« less

  3. HST/NICMOS Paschen-α Survey of the Galactic Centre: Overview

    NASA Astrophysics Data System (ADS)

    Wang, Q. D.; Dong, H.; Cotera, A.; Stolovy, S.; Morris, M.; Lang, C. C.; Muno, M. P.; Schneider, G.; Calzetti, D.

    2010-02-01

    We have recently carried out the first wide-field hydrogen Paschen-α line imaging survey of the Galactic Centre using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument aboard the Hubble Space Telescope. The survey maps out a region of ) around the central supermassive black hole (Sgr A*) in the 1.87 and 1.90μm narrow bands with a spatial resolution of ~0.01pc (0.2arcsec full width at half-maximum) at a distance of 8kpc. Here, we present an overview of the observations, data reduction, preliminary results and potential scientific implications, as well as a description of the rationale and design of the survey. We have produced mosaic maps of the Paschen-α line and continuum emission, giving an unprecedentedly high-resolution and high-sensitivity panoramic view of stars and photoionized gas in the nuclear environment of the Galaxy. We detect a significant number of previously undetected stars with Paschen-α in emission. They are most likely massive stars with strong winds, as confirmed by our initial follow-up spectroscopic observations. About half of the newly detected massive stars are found outside the known clusters (Arches, Quintuplet and Central). Many previously known diffuse thermal features are now resolved into arrays of intriguingly fine linear filaments indicating a profound role of magnetic fields in sculpting the gas. The bright spiral-like Paschen-α emission around Sgr A* is seen to be well confined within the known dusty torus. In the directions roughly perpendicular to it, we further detect faint, diffuse Paschen-α emission features, which, like earlier radio images, suggest an outflow from the structure. In addition, we detect various compact Paschen-α nebulae, probably tracing the accretion and/or ejection of stars at various evolutionary stages. Multiwavelength comparisons together with follow-up observations are helping us to address such questions as where and how massive stars form, how stellar clusters are

  4. Dark-matter haloes and the M-σ relation for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Larkin, Adam C.; McLaughlin, Dean E.

    2016-10-01

    We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.

  5. Active galactic nuclei: what's in a name?

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Alexander, D. M.; Assef, R. J.; De Marco, B.; Giommi, P.; Hickox, R. C.; Richards, G. T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M.

    2017-08-01

    Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different "flavours" in the literature that now comprise a complex and confusing AGN "zoo". It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to γ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.

  6. Dual Active Galactic Nuclei in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  7. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-04-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.

  8. Behemoth Black Hole Found in an Unlikely Place

    NASA Image and Video Library

    2017-12-08

    This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole. Credits: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI) More info: Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe. The observations, made by NASA’s Hubble Space Telescope and the Gemini Telescope in Hawaii, may indicate that these monster objects may be more common than once thought. Until now, the biggest supermassive black holes – those roughly 10 billion times the mass of our sun – have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. In fact, the current record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster that consists of over 1,000 galaxies. More: www.nasa.gov/feature/goddard/2016/behemoth-black-hole-fou... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The Formation of Supermassive Black Holes from Population III.1 Seeds. I. Cosmic Formation Histories and Clustering Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Nilanjan; Tan, Jonathan C.; Monaco, Pierluigi

    We calculate the cosmic distributions in space and time of the formation sites of the first, "Pop III.1" stars, exploring a model in which these are the progenitors of all supermassive black holes (SMBHs). Pop III.1 stars are defined to form from primordial composition gas in dark matter minihalos withmore » $$\\sim10^6\\:M_\\odot$$ that are isolated from neighboring astrophysical sources by a given isolation distance, $$d_{\\rm{iso}}$$. We assume Pop III.1 sources are seeds of SMBHs, based on protostellar support by dark matter annihilation heating that allows them to accrete a large fraction of their minihalo gas, i.e., $$\\sim 10^5\\:M_\\odot$$. Exploring $$d_{\\rm{iso}}$$ from 10--$$100\\:\\rm{kpc}$$ (proper distances), we predict the redshift evolution of Pop III.1 source and SMBH remnant number densities. The local, $z=0$ density of SMBHs constrains $$d_{\\rm{iso}}\\lesssim 100\\:\\rm{kpc}$$ (i.e., $$3\\:\\rm{Mpc}$$ comoving distance at $$z\\simeq30$$). In our simulated ($$\\sim60\\:\\rm{Mpc}$$)$^3$ comoving volume, Pop III.1 stars start forming just after $z=40$. Their formation is largely complete by $$z\\simeq25$$ to 20 for $$d_{\\rm{iso}}=100$$ to $$50\\:\\rm{kpc}$$. We follow source evolution to $z=10$, by which point most SMBHs reside in halos with $$\\gtrsim10^8\\:M_\\odot$$. Over this period, there is relatively limited merging of SMBHs for these values of $$d_{\\rm{iso}}$$. We also predict SMBH clustering properties at $z=10$$: feedback suppression of neighboring sources leads to relatively flat angular correlation functions. Finally, we consider a simple "Str\\"omgren" model for $$d_{\\rm iso}$, based on ionizing feedback from zero age main sequence supermassive Pop III.1 stars that may be the direct progenitors of SMBHs in this scenario. Such models naturally produce feedback effects on scales of $$\\sim100\\:$$kpc and thus self-consistently generate a SMBH number density similar to the observed value.« less

  10. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    PubMed

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  11. The Blazar PG 1553+113 as a Binary System of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Cavaliere, A.; Munar-Adrover, Pere; Argan, A.

    2018-02-01

    The BL Lac PG 1553+113 has been continuously monitored in gamma-rays with Fermi-LAT for over 9 years. Its updated light curve now includes five iterations of a main pattern comprising a high peak and a longer trough, with a period P≃ 2.2 {year}. Our analysis of 2015–2017 data confirms the occurrence in 2017 January of a new peak fitting in with the previous trend. In addition, we identify secondary peaks (“twin peaks”) that occur in closely symmetric pairs on both sides of most main peaks, including the last one; their occurrence is supported by correlated X-ray outbursts. We stress that the above features strongly point to binary dynamics in a system of two black holes (BHs) of some 108 and {10}7 {M}ȯ . At periastron the smaller BH periodically stresses the jet j 1 launched by the heavier companion, and triggers MHD–kinetic tearing instabilities. These lead to magnetic reconnections and to acceleration of electrons that produce synchrotron emission from the optical to X-ray bands, and inverse Compton scattering into the GeV range. We discuss two possible origins of the twin peaks : a single-jet model, based on added instabilities induced in j 1 by the smaller companion BH on its inner orbital arc; and a two-jet model with the smaller BH supporting its own, precessing jet j 2 that contributes lower, specific GeV emissions. Such behaviors combining time stability with amplitude variations betray plasma instabilities driven in either jet by binary dynamics, and can provide a double signature of the long-sought supermassive BH binaries.

  12. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  13. Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Gualandris, Alessia

    2018-07-01

    We model the inspiral of globular clusters (GCs) towards a galactic nucleus harbouring a supermassive black hole (SMBH), a leading scenario for the formation of nuclear star clusters. We consider the case of GCs containing either an intermediate-mass black hole (IMBH) or a population of stellar-mass black holes (BHs), and study the formation of gravitational wave (GW) sources. We perform direct summation N-body simulations of the infall of GCs with different orbital eccentricities in the live background of a galaxy with either a shallow or steep density profile. We find that the GC acts as an efficient carrier for the IMBH, facilitating the formation of a bound pair. The hardening and evolution of the binary depends sensitively on the galaxy's density profile. If the host galaxy has a shallow profile, the hardening is too slow to allow for coalescence within a Hubble time, unless the initial cluster orbit is highly eccentric. If the galaxy hosts a nuclear star cluster, the hardening leads to coalescence by emission of GWs within 3-4 Gyr. In this case, we find an IMBH-SMBH merger rate of ΓIMBH-SMBH = 2.8 × 10-3 yr-1 Gpc3. If the GC hosts a population of stellar BHs, these are deposited close enough to the SMBH to form extreme mass ratio inspirals with a merger rate of ΓEMRI = 0.25 yr-1 Gpc3. Finally, the SMBH tidal field can boost the coalescence of stellar black hole binaries delivered from the infalling GCs. The merger rate for this merging channel is ΓBHB = 0.4-4 yr-1 Gpc3.

  14. Preferential Accretion in the Supermassive Black Holes of Milky Way-size Galaxies Due to Direct Feeding by Satellites

    NASA Astrophysics Data System (ADS)

    Sanchez, N. Nicole; Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Tremmel, Michael; Brooks, Alyson; Governato, Fabio; Quinn, Tom; Volonteri, Marta; Wadsley, James

    2018-06-01

    Using a new, high-resolution cosmological hydrodynamic simulation of a Milky Way-type (MW-type) galaxy, we explore how a merger-rich assembly history affects the mass budget of the central supermassive black hole (SMBH). We examine a MW-mass halo at the present epoch whose evolution is characterized by several major mergers to isolate the importance of merger history on black hole (BH) accretion. This study is an extension of Bellovary et al. (2013), which analyzed the accretion of high mass, high-redshift galaxies and their central BHs, and found that the gas content of the central BH reflects what is accreted by the host galaxy halo. In this study, we find that a merger-rich galaxy will have a central SMBH preferentially fed by gas accreted through mergers. Moreover, we find that the gas composition of the inner ∼10 kpc of the galaxy can account for the increase of merger-accreted gas fueling the SMBH. Through an investigation of the angular momentum of the gas entering the host and its SMBH, we determine that gas accreted through mergers enters the galaxy halo with lower angular momentum compared to smooth accretion, partially accounting for the preferential fueling witnessed in the SMBH. In addition, the presence of mergers, particularly major mergers, also helps funnel low angular momentum gas more readily to the center of the galaxy. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories.

  15. Relativistic jet activity from the tidal disruption of a star by a massive black hole [Discovery of the onset of rapid accretion by a dormant massive black hole

    DOE PAGES

    Burrows, D. N.; Kennea, J. A.; Ghisellini, G.; ...

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased inmore » brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. Furthermore, this event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.« less

  16. The evolving corona and evidence for jet launching from the supermassive black hole in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, Daniel; Gallo, Luigi C.

    2015-01-01

    Through detailed analysis of the X-rays that are reflected from the accretion disc, it is possible to probe structures right down to the innermost stable circular orbit and event horizon around the supermassive black holes in AGN. By measuring the illumination pattern of the accretion disc, along with reverberation time lags between variability in the X-ray continuum and reflection, unprecedented detail of the geometry and spatial extent of the corona that produces the X-ray continuum has emerged when the observed data are combined with insight gained from general relativistic ray tracing simulations.We conducted detailed analysis of both the X-ray continuum and its reflection from the accretion disc in the narrow line Seyfert 1 galaxy Markarian 335, over observations spanning nearly a decade to measure the underlying changes in the structure of the X-ray emitting corona that gave rise to more than an order of magnitude variation in luminosity.Underlying this long timescale variability lies much more complex patterns of behaviour on short timescales. We are, for the first time, able to observe and measure the changes in the structure of the corona that give rise to transient phenomena including a flare in the X-ray emission seen during a low flux state by Suzaku in July 2013. This flaring event was found to mark a reconfiguration of the corona while there is evidence that the flare itself was cased by an aborted jet-launching event. More recently, detailed analysis of a NuSTAR target of opportunity observation is letting us understand the sudden increase in X-ray flux by a factor of 15 in Markarian 335 seen in September 2014.These observations allow us to trace, from observations, the evolution of the X-ray emitting corona that gives rise to not only the extreme variability seen in the X-ray emission from AGN, but also the processes by which jets and other outflow are launched from the extreme environments around black holes. This gives us important insight into

  17. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst.

    PubMed

    Marscher, Alan P; Jorstad, Svetlana G; D'Arcangelo, Francesca D; Smith, Paul S; Williams, G Grant; Larionov, Valeri M; Oh, Haruki; Olmstead, Alice R; Aller, Margo F; Aller, Hugh D; McHardy, Ian M; Lähteenmäki, Anne; Tornikoski, Merja; Valtaoja, Esko; Hagen-Thorn, Vladimir A; Kopatskaya, Eugenia N; Gear, Walter K; Tosti, Gino; Kurtanidze, Omar; Nikolashvili, Maria; Sigua, Lorand; Miller, H Richard; Ryle, Wesley T

    2008-04-24

    Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole's accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV gamma-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright 'core' seen on the images.

  18. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    ScienceCinema

    Craig, Bill

    2018-05-18

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week.

  19. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Bill

    2013-09-10

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week.

  20. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  1. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  2. Observational signatures of spherically-symmetric black hole spacetimes

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Fromm, Christian; Rezzolla, Luciano; Olivares, Hector

    2017-12-01

    A binary system composed of a supermassive black hole and a pulsar orbiting around it is studied. The motivation for this study arises from the fact that pulsar timing observations have proven to be a powerful tool in identifying physical features of the orbiting companion. In this study, taking into account a general spherically-symmetric metric, we present analytic calculations of the geodesic motion, and the possible deviations with respect to the standard Schwarzschild case of General Relativity. In particular, the advance at periastron is studied with the aim of identifying corrections to General Relativity. A discussion of the motion of a pulsar very close the supermassive central black hole in our Galaxy (Sgr A*) is reported.

  3. Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, James C.; Wheaton, William A.; Harmon, Alan; Fishman, G. J.; Meegan, C. A.; Paciesas, William S.; Gruber, Duane E.; Rubin, Brad; Wilson, R. B.

    1992-01-01

    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity.

  4. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  5. The Merger-Free Growth of Galaxies and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Smethurst, Rebecca; Lintott, Chris; Martin, Garreth; Kaviraj, Sugata; Devriendt, Julien; Galaxy Zoo Team

    2018-01-01

    There is now clear evidence that the merger-driven pathway to black hole and galaxy growth is only half the story. Merger-free evolution contributes roughly equally to the overall growth of black holes in the Universe and is also responsible for a significant amount of galaxy growth over cosmic time. A recent study examining the growth of black holes in unambiguously disk-dominated galaxies shows these black holes reach quasar-like luminosities and black hole masses typical of those hosted in bulge-dominated and elliptical galaxies with major mergers in their evolutionary histories. However, while there appears to be no correlation between the size of the black hole and upper limits on the host galaxy bulges, the fitted correlation between black hole mass and total galaxy stellar mass in these merger-free systems is fully consistent with the canonical relationship based on merger-driven systems. There is further evidence via comparison between observed populations and cosmological simulations confirming that bulgeless systems are generally consistent with having merger-free histories. If bulgeless and disk-dominated galaxies are indeed signatures of systems with no violent mergers in their formation histories, the same correlation between black hole and galaxy in these systems versus that seen in elliptical galaxy samples indicates the black hole-galaxy connection must originate with a process more fundamental than the dynamical configuration of a galaxy's stars.

  6. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less

  7. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Mohanty, Soumya D.

    2017-04-01

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 1 03 pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 1 010 M⊙ out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4 ×1 08 M⊙). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  8. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    NASA Astrophysics Data System (ADS)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-05-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modelled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106 M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the electromagnetic counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  9. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era.

    PubMed

    Wang, Yan; Mohanty, Soumya D

    2017-04-14

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10}  M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8}  M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  10. Black Hole Spills Kaleidoscope of Color

    NASA Image and Video Library

    2006-07-21

    This new false-colored image from NASA Hubble, Chandra and Spitzer space telescopes shows a giant jet of particles that has been shot out from the vicinity of a type of supermassive black hole called a quasar.

  11. Nuclear Radio Jet from a Low-luminosity Active Galactic Nucleus in NGC 4258

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (α ~ 0.3; F νvpropνα) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (Γ >~ 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  12. ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi; Pu, Hung-Yi, E-mail: hirotani@tiara.sinica.edu.tw

    2016-02-10

    Supermassive black holes (BHs) are believed to be the central powerhouse of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to BH magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating BH. In this particle accelerator (or a gap), electrons and positrons are created by photon–photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null-charge surface formed by the frame-dragging effect, provided that there is nomore » current injection across the gap boundaries. The gap is dissipating a part of the hole’s rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive BH, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC 310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.« less

  13. Millimetre-wave emission from an intermediate-mass black hole candidate in the Milky Way

    NASA Astrophysics Data System (ADS)

    Oka, Tomoharu; Tsujimoto, Shiho; Iwata, Yuhei; Nomura, Mariko; Takekawa, Shunya

    2017-10-01

    It is widely accepted that black holes with masses greater than a million solar masses (M⊙) lurk at the centres of massive galaxies. The origins of such `supermassive' black holes (SMBHs) remain unknown1, although those of stellar-mass black holes are well understood. One possible scenario is that intermediate-mass black holes (IMBHs), which are formed by the runaway coalescence of stars in young compact star clusters2, merge at the centre of a galaxy to form a SMBH3. Although many candidates for IMBHs have been proposed, none is accepted as definitive. Recently, we discovered a peculiar molecular cloud, CO-0.40-0.22, with an extremely broad velocity width, near the centre of our Milky Way galaxy. Based on the careful analysis of gas kinematics, we concluded that a compact object with a mass of about 105M⊙ is lurking in this cloud4. Here we report the detection of a point-like continuum source as well as a compact gas clump near the centre of CO-0.40-0.22. This point-like continuum source (CO-0.40-0.22*) has a wide-band spectrum consistent with 1/500 of the Galactic SMBH (Sgr A*) in luminosity. Numerical simulations around a point-like massive object reproduce the kinematics of dense molecular gas well, which suggests that CO-0.40-0.22* is one of the most promising candidates for an intermediate-mass black hole.

  14. Exposing Black Holes Disguised in Dust

    NASA Image and Video Library

    2012-08-29

    This zoomed-in view of a portion of the all-sky survey from NASA Wide-field Infrared Survey Explorer shows a collection of quasar candidates shown in yellow circles. Quasars are supermassive black holes feeding off gas and dust.

  15. Through the elliptical haze

    NASA Image and Video Library

    2015-11-30

    Like a lighthouse in the fog the luminous core of NGC 2768 slowly fades outwards to a dull white haze in this image taken by the NASA/ESA Hubble Space Telescope. NGC 2768 is an elliptical galaxy in the constellation of Ursa Major (The Great Bear). It is a huge bundle of stars, dominated by a bright central region, where a supermassive black hole feasts on a constant stream of gas and dust being fed to it by its galactic host. The galaxy is also marked by a prominent plume of dust reaching out from the centre and lying perpendicular to the galaxy’s plane. This dust conceals a symmetrical, s-shaped pair of jets that are being produced by the supermassive black hole as it feeds.

  16. A Sky Chock-Full of Black Holes

    NASA Image and Video Library

    2012-08-29

    With its all-sky infrared survey, NASA Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun.

  17. Schwarzschild black holes can wear scalar wigs.

    PubMed

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  18. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  19. Infrared Space Astrometry missions: JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, Naoteru

    2015-08-01

    JASMINE is an abbreviation for Japan Astrometry Satellite Mission for INfrared Exploration. We are now focusing on the development of two projects, those are Nano-JASMINE and Small-JASMINE. The Nano-JASMINE micro-satellite project, with a primary mirror aperture of 5-cm class, is currently underway to test part of the technologies used for Small-JASMINE and to produce scientific results based on the astrometric information of bright objects in the neighboring space. Despite its small aperture, the satellite is capable of a level of observational precision comparable to the Hipparcos satellite, and the combination of the observational data from Nano-JASMINE and the Hipparcos Catalogue is expected to produce more precise data on proper motions and annual parallaxes. The satellite is scheduled for launch in the near future. An additional plan is underway to launch a small-scale JASMINE satellite (Small-JASMINE), with a primary mirror aperture of 30-cm class, in around FY 2021. This satellite will engage in observations of only a limited area around the bulge and certain specific astronomical objects.. The main scientific objective of Small-JASMINE is to clarify the dynamical structure of the Galactic nuclear bulge and search for observational relics of a sequential merger of multiple black holes to form the supermassive black hole at the Galactic center. In particular, our main goal is that Small-JASMINE will provide an understanding of the past evolution processes of the supermassive black hole and a prediction of the future activities of our Galactic center through knowledge of the gravitational potential in the Galactic nuclear bulge, and that this understanding can contribute to a better understanding of the co-evolution of the supermassive black holes and bulges in external galaxies. Next to this primary goal, Small-JASMINE will have many other scientific targets. Small-JASMINE can measure the same target every 100 minutes, so it is useful to resolve phenomena

  20. Spectral and Temporal Properties of Galactic Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1997-01-01

    Kusunose, Mineshige & Yamada (1996; hereafter KMY) extended the model of Kusunose & Mineshige (1995) to the Galactic black hole candidates by considering nonthermal electron injection with gamma(EQ\\0(,\\s\\up2(less than),\\s\\do-l(_))) 10. The effects of pair escape and advection on the disk structure and general relativistic effects on the emission spectrum were also examined. They found that the energy spectral index (alpha)(sub x) of the power law X-rays is about-0.8 and-2.0 when 1(sub soft)/1 = 0.2 and 2, respectively, where 1(sub soft)/1 is the ratio of the compactness of the injected soft photons to that of the gravitational energy. The power law index was found to be nearly independent of the mass accretion which is consistent with the observed luminosity independence. The model with small 1(sub soft)/1 (less than 1) shows promise for explaining the low state observed in Galactic black hole candidates. Model fits were provided for GX339-4 and Cyg X- 1 data from COMPTEL and OSSE on the Compton Gamma Ray Observatory. The difference in emission spectra between thermal disks and the model of KMY appears only in the energy range greater than 100 keV. Li, Kusunose and Liang (1996) studied stochastic particle acceleration to produce nonthermal particle distributions which then were used in the model of Kusunose & Mineshige (1995) to model the spectrum above 1 Mev from GBHC's. Under certain conditions, stochastic electron acceleration overcame Coulomb and Compton losses resulting in a suprathermal electron population. Good fits were obtained by COMPTEL and OSSE observations of Cyg X-1 and GRO J0422+23. Kusunose & Mineshige (1996a) examined the role of electron-positron pairs in advection-dominated disks. They found that the results for advection-dominated disks without pairs are not qualitatively changed by including pairs. Summaries of work sponsored by this grant are given in Wheeler, Kim, Moscoso, Kusunose & Mineshige (1996) and Kusunose (1996) Work was also

  1. H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation

    NASA Astrophysics Data System (ADS)

    Fernandez, Ricardo; Bryan, Greg L.; Haiman, Zoltan; Li, Miao

    2014-04-01

    The presence of quasars at redshifts z > 6 indicates the existence of supermassive black holes (SMBHs) as massive as a few times 109 M⊙, challenging models for SMBH formation. One pathway is through the direct collapse of gas in Tvir ≳ 104 K haloes; however, this requires the suppression of H2 cooling to prevent fragmentation. In this paper, we examine a proposed new mechanism for this suppression which relies on cold-mode accretion flows leading to shocks at high densities (n > 104 cm-3) and temperatures (T > 104 K). In such gas, H2 is efficiently collisionally dissociated. We use high-resolution numerical simulations to test this idea, demonstrating that such haloes typically have lower temperature progenitors, in which cooling is efficient. Those haloes do show filamentary flows; however, the gas shocks at or near the virial radius (at low densities), thus preventing the proposed collisional mechanism from operating. We do find that if we artificially suppress H2 formation with a high-UV background, so as to allow gas in the halo centre to enter the high-temperature, high-density `zone of no return', it will remain there even if the UV flux is turned off, collapsing to high density at high temperature. Due to computational limitations, we simulated only three haloes. However, we demonstrate, using Monte Carlo calculations of 106 halo merger histories, that a few rare haloes could assemble rapidly enough to avoid efficient H2 cooling in all of their progenitor haloes, provided that the UV background exceeds J21 ˜ few at redshifts as high as z ˜ 20.

  2. Astrophysics: The MAD world of black holes

    NASA Astrophysics Data System (ADS)

    Gabuzda, Denise

    2014-06-01

    An analysis of optical and radio observations has revealed how powerful jets are launched from the centres of active galaxies, where supermassive black holes accrete matter through magnetically arrested disks, or MADs. See Letter p.126

  3. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  4. Are black holes with hair a normal state of matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieuwenhuizen, Th. M.

    Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

  5. Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.

    2013-01-01

    The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.

  6. An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures

    NASA Astrophysics Data System (ADS)

    Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.

    2018-05-01

    A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).

  7. A Black Hole Choir.

    NASA Image and Video Library

    2016-07-28

    The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA's Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far. The other colored dots are galaxies that host black holes emitting lower-energy X-rays, and were spotted by NASA's Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA20865

  8. Multimessenger Signatures of Massive Black Holes in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Bellovary, Jillian; Cleary, Colleen; Tremmel, Michael; Munshi, Ferah

    2018-01-01

    Inspired by the recent discovery of several nearby dwarf galaxies hosting active galactic nuclei, we present results from a series of cosmological hydrodynamic simulations focusing on dwarf galaxies which host supermassive black holes (SMBHs). Cosmological simulations are a vital tool for predicting SMBH populations and merger events which will eventually be observed by LISA. Dwarf galaxies are the most numerous in the universe, so even though the occupation fraction of SMBHs in dwarfs is less than unity, their contribution to the gravitational wave background could be non-negligible. We find that electromagnetic signatures from SMBH accretion are not common among most SMBH-hosting dwarfs, but the gravitational wave signatures can be substantial. The most common mass ratio for SMBH mergers in low-mass galaxy environments is ~1:20, which is an unexplored region of gravitational waveform parameter space. We discuss the occupation fraction of SMBHs in low-mass galaxies as well as differences in field and satellite populations, providing clues to search for and characterize these elusive giants lurking in the dwarfs.

  9. NGC 3627: Revealing Hidden Black Holes

    NASA Image and Video Library

    2012-12-13

    The spiral galaxy NGC 3627, located about 30 million light years from Earth as seen by four NASA telescopes; inset shows the central region, which contains a bright X-ray source that is likely powered by material falling onto a supermassive black hole.

  10. Galaxies of all Shapes Host Black Holes Artist Concept

    NASA Image and Video Library

    2008-01-10

    Observations from NASA Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores in this artist concept.

  11. Does the Iron K and Alpha: Line of Active Galactic Nuclei Arise from the Cerenkov Line-like Radiation?

    NASA Technical Reports Server (NTRS)

    You, J. H.; Liu, D. B.; Chen, W. P.; Chen, L.; Zhang, S. N.

    2003-01-01

    When thermal relativistic electrons with isotropic distribution of velocities move in a gas region or impinge upon the surface of a cloud that consists of a dense gas or doped dusts, the Cerenkov effect produces peculiar atomic or ionic emission lines, which is known as the Cerenkov line - like radiation. This newly recognized emission mechanism may find wide applications in high-energy astrophysics. In this paper we tentatively adopt this new line emission mechanism to discuss the origin of the iron Kα feature of active galactic nuclei (AGNs). The motivation of this research is to attempt a solution to a problem encountered by the "disk fluorescence line" model, i.e. , the lack of temporal response of the observed iron Kα line flux to the changes of the X-ray continuum flux. If the Cerenkov line emission is indeed responsible significant ly for the iron Kα feature, the conventional scenario around the central supermassive black holes of AGNs would need to be modified to accomodate more energetic, more violent, and much denser environments than previously thought.

  12. Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems

    NASA Astrophysics Data System (ADS)

    Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki

    2018-04-01

    Formation of supermassive stars (SMSs) with mass ≳104 M⊙ is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al., where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disc systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disc, and more than 10 stars with masses of a few ×103 M⊙ are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disc system is formed. Only a few SMSs with masses ˜104 M⊙ are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive black holes at the end of their lives.

  13. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    PubMed

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

  14. Are Compton-thick AGNs the Missing Link between Mergers and Black Hole Growth?

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale D.; Brightman, Murray; Nandra, Kirpal; Koekemoer, Anton M.; Salvato, Mara; Aird, James; Bell, Eric F.; Hsu, Li-Ting; Kartaltepe, Jeyhan S.; Koo, David C.; Lotz, Jennifer M.; McIntosh, Daniel H.; Mozena, Mark; Rosario, David; Trump, Jonathan R.

    2015-12-01

    We examine the host morphologies of heavily obscured active galactic nuclei (AGNs) at z∼ 1 to test whether obscured super-massive black hole growth at this epoch is preferentially linked to galaxy mergers. Our sample consists of 154 obscured AGNs with {N}{{H}}\\gt {10}23.5 {{cm}}-2 and z\\lt 1.5. Using visual classifications, we compare the morphologies of these AGNs to control samples of moderately obscured (1022 cm{}-2\\lt {N}{{H}}\\lt {10}23.5 {{cm}}-2) and unobscured ({N}{{H}}\\lt {10}22 {{cm}}-2) AGN. These control AGNs have similar redshifts and intrinsic X-ray luminosities to our heavily obscured AGN. We find that heavily obscured AGNs are twice as likely to be hosted by late-type galaxies relative to unobscured AGNs ({65.3}-4.6+4.1% versus {34.5}-2.7+2.9%) and three times as likely to exhibit merger or interaction signatures ({21.5}-3.3+4.2% versus {7.8}-1.3+1.9%). The increased merger fraction is significant at the 3.8σ level. If we exclude all point sources and consider only extended hosts, we find that the correlation between the merger fraction and obscuration is still evident, although at a reduced statistical significance (2.5σ ). The fact that we observe a different disk/spheroid fraction versus obscuration indicates that the viewing angle cannot be the only thing differentiating our three AGN samples, as a simple unification model would suggest. The increased fraction of disturbed morphologies with obscuration supports an evolutionary scenario, in which Compton-thick AGNs are a distinct phase of obscured super-massive black hole (SMBH) growth following a merger/interaction event. Our findings also suggest that some of the merger-triggered SMBH growth predicted by recent AGN fueling models may be hidden among the heavily obscured, Compton-thick population.

  15. Penrose pair production as a power source of quasars and active galactic nuclei. [black hole mechanisms

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Leiter, D.

    1979-01-01

    Penrose pair production in massive canonical Kerr black holes (those with a/M equal to 0.998) is proposed as a way to explain the nature of the vast fluctuating energy production associated with active galactic nuclei and quasars. It is assumed that a Kerr black hole with a mass of the order of 100 million solar masses lies at the center of an active nucleus and that an accretion disk is formed. Penrose pair production in the inner ergosphere of such a massive canonical Kerr black hole is analyzed. The results indicate that: (1) particle pairs are ejected within a 40 deg angle relative to the equator; (2) the particle energy is of the order of 1 GeV per pair; (3) the pressure of the electron-positron relativistic gas is proportional to the electron-positron number density; (4) pair production may occur in bursts; and (5) the overall lifetime of an active nucleus would depend on the time required to exhaust the disk of its matter content. A test of the theory is suggested which involves observation of the 0.5-MeV pair-annihilation gamma rays that would be generated by annihilating particle pairs.

  16. LOOKING ALONG A FUNNEL OF LIGHT FROM A HIDDEN BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In a single Hubble Space Telescope Imaging Spectrograph (STIS) CCD observation, astronomers have measured the velocities of hundreds of gas blobs caught up in a twin-cone beam of radiation emanating from a supermassive black hole at the core of galaxy NGC 4151. Further observations using STIS's Multi-Anode Microchannel Plate Array (MAMA) detectors reveal hot gas from deep within the throat of the beam, near the vicinity of the black hole, as well as unique details of absorbing clouds along our line of sight to it. Besides revealing fast-moving knots of gas in unprecedented detail, down to a resolution of four light-years (0.05 arc seconds), STIS also simultaneously measured the motions of all of blobs through the shift in the color of their light (Doppler effect) due to their motion toward or away from us. In the standard model for such an active galactic nucleus, a black hole devours gas and dust, and some of the material is converted into energy and radiated into space. The rotation of the 'central engine' also focuses radiation along two powerful and oppositely directed beams. The velocities measured by STIS show for the first time the details of its geometry and motions in the twin beam of particles and radiation coming from an active galactic nucleus: they also reveal some unexpected new puzzles at odds with the model. The inner region of compact bright knots fits the twin-cone model for the behavior of material around supermassive black holes. STIS shows that the material in the knots is moving away from the nucleus. The material lies on the inner surface of the cones rather than filling them. This means the beams illuminate the inside of the cone which has been cleared of material, perhaps by the high speed jets seen in ground-based radio pictures. Using STIS, astronomers can trace the shape and orientation of the cones, and find that the illuminated material is moving at several hundred thousand miles per hour. However, the velocities are reversed for more

  17. ON THE COMPLEMENTARITY OF PULSAR TIMING AND SPACE LASER INTERFEROMETRY FOR THE INDIVIDUAL DETECTION OF SUPERMASSIVE BLACK HOLE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spallicci, Alessandro D. A. M., E-mail: spallicci@cnrs-orleans.fr

    2013-02-20

    Gravitational waves coming from supermassive black hole binaries (SMBHBs) are targeted by both the Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring-down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10{sup -9}more » to p Multiplication-Sign 10{sup -7} Hz (p = 4, 8), and SLI, which operates from s Multiplication-Sign 10{sup -5} up to 1 Hz (s = 1, 3). An SMBHB in the range of 2 Multiplication-Sign 10{sup 8}-2 Multiplication-Sign 10{sup 9} M {sub Sun} (the masses are normalized to a (1 + z) factor, the redshift lying between z = 0.2 and z = 1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three supermassive black hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating 27 cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 Multiplication-Sign 10{sup -4} yr{sup -2} or 3.3 Multiplication-Sign 10{sup -6} yr{sup -2} (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. The spread in the

  18. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen

    2017-02-01

    We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{I}\\prime ) versus ({I}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.

  19. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-06-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  20. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-05-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  1. Multi-scale simulations of black hole accretion in barred galaxies. Self-gravitating disk models

    NASA Astrophysics Data System (ADS)

    Jung, M.; Illenseer, T. F.; Duschl, W. J.

    2018-06-01

    Due to the non-axisymmetric potential of the central bar, in addition to their characteristic arms and bar, barred spiral galaxies form a variety of structures within the thin gas disk, such as nuclear rings, inner spirals, and dust lanes. These structures in the inner kiloparsec are extremely important in order to explain and understand the rate of black hole feeding. The aim of this work is to investigate the influence of stellar bars in spiral galaxies on the thin self-gravitating gas disk. We focus on the accretion of gas onto the central supermassive black hole and its time-dependent evolution. We conducted multi-scale simulations simultaneously resolving the galactic disk and the accretion disk around the central black hole. In all the simulations we varied the initial gas disk mass. As an additional parameter we chose either the gas temperature for isothermal simulations or the cooling timescale for non-isothermal simulations. Accretion was either driven by a gravitationally unstable or clumpy accretion disk or by energy dissipation in strong shocks. Most of the simulations show a strong dependence of the accretion rate at the outer boundary of the central accretion disk (r < 300 pc) on the gas flow at kiloparsec scales. The final black hole masses reach up to 109 M⊙ after 1.6 Gyr. Our models show the expected influence of the Eddington limit and a decline in growth rate at the corresponding sub-Eddington limit.

  2. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  3. A periodicity of approximately 1 hour in X-ray emission from the active galaxy RE J1034+396.

    PubMed

    Gierliński, Marek; Middleton, Matthew; Ward, Martin; Done, Chris

    2008-09-18

    Active galactic nuclei and quasars are thought to be scaled-up versions of Galactic black hole binaries, powered by accretion onto supermassive black holes with masses of 10(6)-10(9) M[symbol: see text], as opposed to the approximately 10 M [symbol: see text] in binaries (here M [symbol: see text] is the solar mass). One example of the similarities between these two types of systems is the characteristic rapid X-ray variability seen from the accretion flow. The power spectrum of this variability in black hole binaries consists of a broad noise with multiple quasi-periodic oscillations superimposed on it. Although the broad noise component has been observed in many active galactic nuclei, there have hitherto been no significant detections of quasi-periodic oscillations. Here we report the discovery of an approximately 1-hour X-ray periodicity in a bright active galaxy, RE J1034+396. The signal is highly statistically significant (at the 5.6 sigma level) and very coherent, with quality factor Q > 16. The X-ray modulation arises from the direct vicinity of the black hole.

  4. SuperMassive Blackholes grow from stellar BHs of star formation history?

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    The origin of the supermassive black hole masses M SMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of M SMBH with bulge luminosities L V , extended on several magnitude orders, confirms a common physical process linking small (<= 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass M sBH reach up to several 109M⊙, similar to M SMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation M SMBH -L V .

  5. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  6. "Survivor" Black Holes May Be Mid-Sized

    NASA Astrophysics Data System (ADS)

    2010-04-01

    New evidence from NASA's Chandra X-ray Observatory and ESA's XMM-Newton strengthens the case that two mid-sized black holes exist close to the center of a nearby starburst galaxy. These "survivor" black holes avoided falling into the center of the galaxy and could be examples of the seeds required for the growth of supermassive black holes in galaxies, including the one in the Milky Way. For several decades, scientists have had strong evidence for two distinct classes of black hole: the stellar-mass variety with masses about ten times that of the Sun, and the supermassive ones, located at the center of galaxies, that range from hundreds of thousands to billions of solar masses. But a mystery has remained: what about black holes that are in between? Evidence for these objects has remained controversial, and until now there were no strong claims of more than one such black hole in a single galaxy. Recently, a team of researchers has found signatures in X-ray data of two mid-sized black holes in the starburst galaxy M82 located 12 million light years from Earth. "This is the first time that good evidence for two mid-sized black holes has been found in one galaxy," said Hua Feng of the Tsinghua University in China, who led two papers describing the results. "Their location near the center of the galaxy might provide clues about the origin of the Universe's largest black holes - supermassive black holes found in the centers of most galaxies." One possible mechanism for the formation of supermassive black holes involves a chain reaction of collisions of stars in compact star clusters that results in the buildup of extremely massive stars, which then collapse to form intermediate-mass black holes. The star clusters then sink to the center of the galaxy, where the intermediate-mass black holes merge to form a supermassive black hole. In this picture, clusters that were not massive enough or close enough to the center of the galaxy to fall in would survive, as would any

  7. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may

  8. 360-degree video and X-ray modeling of the Galactic center's inner parsec

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post; Wang, Daniel; Cuadra, Jorge

    2017-08-01

    360-degree videos, which render an image over all 4pi steradian, provide a unique and immersive way to visualize astrophysical simulations. Video sharing sites such as YouTube allow these videos to be shared with the masses; they can be viewed in their 360° nature on computer screens, with smartphones, or, best of all, in virtual-reality (VR) goggles. We present the first such 360° video of an astrophysical simulation: a hydrodynamics calculation of the Wolf-Rayet stars and their ejected winds in the inner parsec of the Galactic center. Viewed from the perspective of the super-massive black hole (SMBH), the most striking aspect of the video, which renders column density, is the inspiraling and stretching of clumps of WR-wind material as they makes their way towards the SMBH. We will brielfy describe how to make 360° videos and how to publish them online in their desired 360° format. Additionally we discuss computing the thermal X-ray emission from a suite of Galactic-center hydrodynamic simulations that have various SMBH feedback mechanisms, which are compared to Chandra X-ray Visionary Program observations of the region. Over a 2-5” ring centered on Sgr A*, the spectral shape is well matched, indicating that the WR winds are the dominant source of the thermal X-ray emission. Furthermore, the X-ray flux depends on the SMBH feedback due to the feedback's ability to clear out material from the central parsec. A moderate outburst is necessary to explain the current thermal X-ray flux, even though the outburst ended ˜100 yr ago.

  9. How Supermassive Black Hole Feedback Might Work

    NASA Astrophysics Data System (ADS)

    Donahue, Megan

    2017-01-01

    How black holes regulate their own growth and the growth of their host galaxy is an unsolved problem in galaxy evolution. The problem is particularly acute in the centers of clusters of galaxies, where the largest and most massive galaxies in the universe are found. That is, coincidentally, also where the interaction between the black hole and the surrounding gas is the easiest to study because the gas is sufficiently hot and dense to emit X-rays. The massive central galaxies of clusters of galaxies (BCGs) exhibit striking patterns in their relationships between star formation, radio AGN activity, and the thermodynamic state of the hot, X-ray emitting intracluster gas (ICM) surrounding the galaxies. The AGN jets excavate giant, kpc-scale cavities in the hot gas, in principle, supplying enough heat to the ICM to replace energy lost to radiative cooling. Simulations suggest (by elimination) that AGN feedback must be required to explain the luminosity and colors of these galaxies, but cosmological simulations still struggle with modeling how AGN feedback works in detail. In clusters of galaxies with active AGN and star-forming BCGs, the AGN somehow regulates the gaseous atmosphere to be marginally critical, with a ratio of the cooling time to the free fall time of ~ 5-20. This behavior is also seen in elliptical galaxies, where the feedback is mostly coming from stars. I will discuss the observations that motivated this model. The precipitation model in BCGs is a class of models known as "preventative" feedback, regulated by jets in BCGs. Further, the complex behaviour seen in recent idealized simulations seem to follow emergent patterns predicted by this model, while reproducing the scatter and the time scales inferred from the observations. The link between the thermal instabilities and the depth of the gravitational potential may explain scaling laws such as the black hole mass-velocity dispersion relation, the galaxy mass-metallicity relation and the baryonic

  10. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; hide

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  11. Extended Hard-X-Ray Emission in the Inner Few Parsecs of the Galaxy

    NASA Technical Reports Server (NTRS)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barriere, Nicholas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2015-01-01

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems2, 3, 4, 5.

  12. The Hunt for Low-Mass Black Holes in the JWST Era

    NASA Astrophysics Data System (ADS)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  13. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  14. Stars Form Surprisingly Close to Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2005-10-01

    million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for

  15. Supernova kicks and dynamics of compact remnants in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Bortolas, Elisa; Mapelli, Michela; Spera, Mario

    2017-08-01

    The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.

  16. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  17. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less

  18. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    -exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.

  19. Ancient Black Hole Speeds Through Sun's Galactic Neighborhood, Devouring Companion Star

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found an ancient black hole speeding through the Sun's Galactic neighborhood, devouring a small companion star as the pair travels in an eccentric orbit looping to the outer reaches of our Milky Way Galaxy. The scientists believe the black hole is the remnant of a massive star that lived out its brief life billions of years ago and later was gravitationally kicked from its home star cluster to wander the Galaxy with its companion. "This discovery is the first step toward filling in a missing chapter in the history of our Galaxy," said Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission. "We believe that hundreds of thousands of very massive stars formed early in the history of our Galaxy, but this is the first black hole remnant of one of those huge primeval stars that we've found." "This also is the first time that a black hole's motion through space has been measured," Mirabel added. A black hole is a dense concentration of mass with a gravitational pull so strong that not even light can escape it. The research is reported in the Sept. 13 issue of the scientific journal Nature. XTE J1118+480 The object is called XTE J1118+480 and was discovered by the Rossi X-Ray satellite on March 29, 2000. Later observations with optical and radio telescopes showed that it is about 6,000 light-years from Earth and that it is a "microquasar" in which material sucked by the black hole from its companion star forms a hot, spinning disk that spits out "jets" of subatomic particles that emit radio waves. Most of the stars in our Milky Way Galaxy are within a thin disk, called the plane of the Galaxy. However, there also are globular clusters, each containing hundreds of thousands of the oldest stars in the Galaxy which orbit the Galaxy's center in paths that take them far from the Galaxy's plane. XTE J

  20. Mass Chart for Dead Stars and Black Holes

    NASA Image and Video Library

    2014-10-08

    This chart illustrates relative masses of super-dense cosmic objects, ranging from white dwarfs to supermassive black holes encased in the cores of most galaxies. The first three dead stars left all form when stars more massive than our sun explode.