Gamma ray constraints on the Galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.
1991-01-01
We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.
Gamma ray constraints on the galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.
1992-01-01
Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.
Detection of Neutrinos from Galactic and Cosmic Supernovae
NASA Astrophysics Data System (ADS)
Beacom, John
2010-11-01
Detecting neutrinos is the key to understanding core-collapse supernovae, but this is notoriously difficult due to the small interaction cross section of neutrinos and the low frequency of supernovae. The prospects for detecting Galactic supernovae depend almost completely on the probability of a fluctuation from the low supernova rate; the detection aspects are largely under control. The prospects for detecting Cosmic supernovae instead depend almost completely on the detection aspects, especially regarding reducing detector backgrounds; the supernova rate and neutrino flux of the universe are now rather well measured or predicted. After decades of effort and patience, we have good reasons to anticipate that detecting supernova neutrinos is within reach.
Einstein Observations of Galactic supernova remnants
NASA Technical Reports Server (NTRS)
Seward, Frederick D.
1990-01-01
This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.
Simulating Supernovae Driven Outflows in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Rodriguez, Jaimee-Ian
2018-01-01
Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.
Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS
NASA Astrophysics Data System (ADS)
Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration
2017-03-01
The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.
Observing the Next Galactic Supernova
NASA Astrophysics Data System (ADS)
Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.
2013-12-01
No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a total Galactic SN rate of 4.6^{+7.4}_{-2.7} per century is needed to account for the SNe observed over the last millennium, which implies a Galactic star formation rate of 3.6^{+8.3}_{-3.0} M ⊙ yr-1.
NASA Astrophysics Data System (ADS)
Zhang, Ming
2015-10-01
A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.
NASA Technical Reports Server (NTRS)
Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.
1980-01-01
Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.
Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos
2017-04-01
We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less
Supernovae-generated high-velocity compact clouds
NASA Astrophysics Data System (ADS)
Yalinewich, A.; Beniamini, P.
2018-05-01
Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.
NASA Technical Reports Server (NTRS)
Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck
1994-01-01
The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.
IceCube sensitivity for low-energy neutrinos from nearby supernovae
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2011-11-01
This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae
NASA Technical Reports Server (NTRS)
Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.;
2012-01-01
This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
2004-01-01
A LOW-FREQUENCY SURVEY OF THE GALACTIC PLANE NEAR l = 11: DISCOVERY OF THREE NEW SUPERNOVA REMNANTS C. L. Brogan,1,2 K. E. Devine,3,4 T. J. Lazio,5...230; Green 2002). This paucity is likely due in part to selection effects acting against the discovery of the more mature, faint, extended remnants...00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE A Low-Frequency Survey of the Galactic Plane Near l=11degrees: Discovery of Three New Supernova
Observing the Next Galactic Supernova with the NOvA Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasel, Justin A.; Sheshukov, Andrey; Habig, Alec
The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvAmore » detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.« less
NASA Technical Reports Server (NTRS)
Holt, S. S.; Mushotzky, R. F.
1979-01-01
An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.
Acceleration of petaelectronvolt protons in the Galactic Centre
NASA Astrophysics Data System (ADS)
HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.
2016-03-01
Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
Evolution of Supernova Remnants Near the Galactic Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, A.; Piran, T.; Sari, R.
Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less
On the search for Galactic supernova remnant PeVatrons with current TeV instruments
NASA Astrophysics Data System (ADS)
Cristofari, P.; Gabici, S.; Terrier, R.; Humensky, T. B.
2018-06-01
The supernova remnant hypothesis for the origin of Galactic cosmic rays has passed several tests, but the firm identification of a supernova remnant pevatron, considered to be a decisive step to prove the hypothesis, is still missing. While a lot of hope has been placed in next-generation instruments operating in the multi-TeV range, it is possible that current gamma-ray instruments, operating in the TeV range, could pinpoint these objects or, most likely, identify a number of promising targets for instruments of next generation. Starting from the assumption that supernova remnants are indeed the sources of Galactic cosmic rays, and therefore must be pevatrons for some fraction of their lifetime, we investigate the ability of current instruments to detect such objects, or to identify the most promising candidates.
On the radial oxygen distribution in the Galactic disc
NASA Astrophysics Data System (ADS)
Mishurov, Yu. N.; Tkachenko, R. V.
2018-01-01
The binned oxygen distribution, derived using new Cepheid observations, demonstrates wriggling radial pattern with different gradients in various ranges of Galactic radius, in particular a plateau distribution within 7 ≲ r ≲ 9 kpc (for the solar distance r⊙ = 7.9 kpc) where the mean Galactic abundance is about 0.2 dex higher than the solar one. Our modelling of oxygen synthesis in the Galactic disc is based on the refine theory that takes into account the combined effect of corotation resonance and turbulent diffusion on the disc enrichment. The theory fits to observations best of all if the time-scale (t_f=-f/\\dot{f}) of gas infall rate f(r, t) (where r and t are the Galactocentric radius and time, respectively) on to the disc is tf ∼ 2-3 Gyr whereas the fit is the worst if tf ∼ 6 Gyr (the last means that the high rate of gas infall at present epoch ∼1.5 M⊙ yr-1 does not satisfy the observed oxygen radial distribution). For inside-out scenario, further studies are necessary. Using the derived mean masses of newly synthesized oxygen ejected per core-collapsed supernova and theoretical oxygen yields, we compute the initial upper masses, mU, of stars that can explode as core-collapsed supernovae. Our estimates show that if tf ∼ 2 Gyr in the framework of rotating stars, their mU are no more than 24 M⊙, but if tf ∼ 3 Gyr in model of rotating stars or in the case of non-rotating star mU can be as high as 40-50 M⊙ like Wolf-Rayet stars that are considered as candidates for Types Ib/c supernovae.
Gamma-ray astronomy and the origin of cosmic rays
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.
Design, characterization, and sensitivity of the supernova trigger system at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin
2016-02-01
Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.
Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo
NASA Technical Reports Server (NTRS)
Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.
1993-01-01
We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).
Calculating Galactic Distances Through Supernova Light Curve Analysis (Abstract)
NASA Astrophysics Data System (ADS)
Glanzer, J.
2018-06-01
(Abstract only) The purpose of this project is to experimentally determine the distance to the galaxy M101 by using data that were taken on the type Ia supernova SN 2011fe at the Paul P. Feder Observatory. Type Ia supernovae are useful for determining distances in astronomy because they all have roughly the same luminosity at the peak of their outburst. Comparing the apparent magnitude to the absolute magnitude allows a measurement of the distance. The absolute magnitude is estimated in two ways: using an empirical relationship from the literature between the rate of decline and the absolute magnitude, and using sncosmo, a PYTHON package used for supernova light curve analysis that fits model light curves to the photometric data.
ANTARES and KM3NeT programs for the supernova neutrino detection
NASA Astrophysics Data System (ADS)
Kulikovskiy, Vladimir
2017-02-01
The currently working ANTARES neutrino telescope has capabilities to detect neutrinos produced in astrophysical transient sources. Neutrino alerts are regularly generated to trigger multi-wavelength observatories. Potential sources include gamma-ray bursts, core-collapse supernovae, and flaring active galactic nuclei. In particular, the neutrino detection together with the multi-wavelength observations may reveal hidden jets in the supernova explosions. Supernovae remnants are currently the most promising acceleration sites of the cosmic rays in our Galaxy. The neutrino emission is expected during the cosmic ray interaction with the surrounding matter. The neutrino telescopes in the Northern hemisphere have excellent visibility to the most of the galactic supernovae remnants. Recent results on the search for point-sources with the ANTARES detector and the prospects for the future KM3NeT detector are presented. Although ANTARES and KM3NeT detectors are mainly designed for high energy neutrino detection, the MeV neutrino signal from the supernova can be identified as a simultaneous increase of the counting rate of the optical modules in the detector. The noise from the optical background due to 40K decay in the sea water and the bioluminescence can be significantly reduced by using nanosecond coincidences between the nearby placed photomultipliers. This technique has been tested with the ANTARES storeys, each one consisting of three 10-inch photomultipliers, and it is further optimized for the KM3NeT telescope where the directional optical modules containing 31 3-inch photomultipliers provide very promising expectations.
44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X
NASA Astrophysics Data System (ADS)
Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.
2009-05-01
Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.
Cosmic rays from supernovae and comments on the Vela X pre-supernova
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.
A luminous, blue progenitor system for the type Iax supernova 2012Z
NASA Astrophysics Data System (ADS)
McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.
2014-08-01
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
A luminous, blue progenitor system for the type Iax supernova 2012Z.
McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D
2014-08-07
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
Direct Measurement of the Supernova Rate in Starburst Galaxies
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.
G25.5 + 0.2 - A very young galactic supernova remnant
NASA Technical Reports Server (NTRS)
Cowan, John J.; Ekers, R. D.; Goss, W. M.; Sramek, R. A.; Roberts, Douglas A.
1989-01-01
Radio emission has been detected from a compact source which satisfies the criteria for a very young galactic supernova remnant. The source, G25.5 + 0.2 has a partially-filled shell structure, a total integrated flux density at 20 cm of 315 mJy, and a flat spectrum between 2 and 20 cm. Observations at 843 and 327 MHz indicate thermal absorption at low frequencies with a turnover in the spectrum near 1 GHz. It is suggested that the lower limit for the age of the supernova remnant is 25 yr, while the upper limit is about 100 yr. It is concluded that G25.5 + 0.2 could be the youngest known supernova remnant in the Galaxy.
Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M
2008-11-21
Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.
The detectability of supernovae against elliptical galactic disks.
NASA Astrophysics Data System (ADS)
Pearce, E. C.
A 75 cm telescope has been automated with a Prime 300 mini-computer to search approximately 250 galaxies per hour for young supernovae. The high-speed star-location and comparison algorithms used in the Digitized Astronomy Supernova Search (DASS) system is described.
Very high-resolution observations of compact radio sources in the directions of supernova remnants
NASA Technical Reports Server (NTRS)
Geldzahler, B. J.; Shaffer, D. B.
1981-01-01
Compact radio sources whose positions lie within the outlines of supernova remnants may be the stellar remnants of supernova explosions and, if they are related to the supernova remnants, may be used to explore the nature of any morphological connection between the Galactic and extragalactic radio sources. Three such compact sources, G 127.11+0.54, CL 4, and 2051+433, have been observed at 10.65 GHz with an array of very long baseline interferometers having elements in the USA and West Germany. The radio source 2051+433 was also observed briefly at 5.01 GHz. The measured size of CL 4 at 10.65 GHz is about 0.0005 arcsec and seems to be dominated by the effects of interstellar scattering. No fringes were seen in 2051+433, and results indicate there is no compact component of 2051+433 smaller than 0.001 arcsec radiating at 10.65 GHz above a level of about 50 mJy. The possibility is presented that G 127.11+0.54 is a Galactic object. It is found to consist of two components separated by about 0.002 arcsec and oriented perpendicular to both the radio bridge of the supernova remnant G 127.1+0.5 and the underlying optical image. G 127.11+0.54, if Galactic, lies at the extreme low-luminosity end of an apparent continuum of Galactic and extragalactic compact radio source luminosities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy
Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon; ...
2017-07-10
Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less
Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon
We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo.more » The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less
Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon
Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less
Inhomogeneous chemical evolution of r-process elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B., E-mail: benjamin.wehmeyer@unibas.ch; Thielemann, F.-K.; Pignatari, M.
2016-06-21
We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model ”ICE”, which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of ”magneto-rotationally driven Supernovae” (”Jet-SNe”), their occurence rate in comparison to ”standard” Supernovae (SNe).
Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...
2008-11-21
Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, Aous A.; Ackermann, M.; Atwood, W.B.
Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less
Hot interstellar tunnels. 1: Simulation of interacting supernova remnants
NASA Technical Reports Server (NTRS)
Smith, B. W.
1976-01-01
The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.
Progress of the equation of state table for supernova simulations and its influence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumiyoshi, Kohsuke
2012-11-12
We describe recent progress of the EOS tables for numerical simulations of core-collapse supernovae and related astrophysical phenomena. Based on the Shen EOS table, which has been widely used in supernova simulations, there is systematic progress by extending the degrees of freedom such as hyperons and quarks. These extended EOS tables have been used, for example, to study the neutrino bursts from the gravitational collapse of massive stars leading to the black hole formation. Observations of such neutrinos from galactic events in future will provide us with the information on the EOS. Recently, studies of the supernova EOS with themore » multi-composition of nuclei under the nuclear statistical equilibrium have been made beyond the single nucleus approximation as used in the Shen EOS. It has been found that light elements including deuterons are abundant in wide regions of the supernova cores. We discuss that neutrino-deuteron reactions may have a possible influence on the explosion mechanism through modifications of neutrino heating rates.« less
A model for the origin of bursty star formation in galaxies
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-01-01
We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.
A cloud/particle model of the interstellar medium - Galactic spiral structure
NASA Technical Reports Server (NTRS)
Levinson, F. H.; Roberts, W. W., Jr.
1981-01-01
A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.
A connection between star formation activity and cosmic rays in the starburst galaxy M82.
2009-12-10
Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.
Galactic gamma-ray observations and galactic structure
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1975-01-01
Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.
Effect of Supernovae on the Local Interstellar Material
NASA Astrophysics Data System (ADS)
Frisch, Priscilla; Dwarkadas, Vikram V.
A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.
HD271791: dynamical versus binary-supernova ejection scenario
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2009-05-01
The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.
Investigating the Origin of the Supernova Remnant W49B
NASA Astrophysics Data System (ADS)
Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.
2018-01-01
W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.
How supernovae launch galactic winds?
NASA Astrophysics Data System (ADS)
Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André
2017-09-01
We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.
Fires of Galactic Youth Artist Animation
2004-12-22
This artist's animation shows a typical young galaxy, teeming with hot, newborn stars and exploding supernovas. The supernovas are seen as white flashes of light. NASA's Galaxy Evolution Explorer spotted three-dozen young galaxies like the one shown here in our corner of the universe. It was able to see them with the help of its highly sensitive ultraviolet detectors. Because newborn stars radiate ultraviolet light, young galaxies light up brilliantly when viewed in ultraviolet wavelengths. The findings came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. http://photojournal.jpl.nasa.gov/catalog/PIA07144
The Contribution of Stellar Winds to Cosmic Ray Production
NASA Astrophysics Data System (ADS)
Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu
2018-04-01
Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant
NASA Technical Reports Server (NTRS)
Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan;
2013-01-01
We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.
Amplification and polarization of supernovae by gravitational lensing
NASA Technical Reports Server (NTRS)
Schneider, P.; Wagoner, Robert V.
1987-01-01
The gravitational lensing of supernovae by individual masses which could comprise the dark matter is analyzed. Detailed predictions of the amplification and polarization are presented, including effects of a galactic environment. Their time dependence is produced by the expansion of the supernovae beam within the lens. The fraction of supernovae which might thus be identified as being lensed in surveys at proposed limiting magnitudes is estimated. These two effects could provide the only known unique signature of microlensing.
Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
NASA Astrophysics Data System (ADS)
Samland, M.; Hensler, G.; Theis, Ch.
1997-02-01
Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
A model of habitability within the Milky Way galaxy.
Gowanlock, M G; Patton, D R; McConnell, S M
2011-11-01
We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.
A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays
NASA Technical Reports Server (NTRS)
Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.
1986-01-01
Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.
Columbia/Einstein observations of galactic X-ray sources
NASA Technical Reports Server (NTRS)
Long, K. S.
1979-01-01
The imaging observations of galactic clusters are presented. These fall into three categories: pre-main-sequence stars in the Orion nebulae, isolated-main-and-post main-sequence stars, and supernova remnants SNR. In addition to SNR, approximately 30 sources were detected.
Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?
Basu, S; Stuart, F M; Schnabel, C; Klemm, V
2007-04-06
An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.
A model for the origin of high-energy cosmic rays
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Morfill, G. E.
1985-01-01
It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.
The HALO / HALO-2 Supernova Neutrino Detectors
NASA Astrophysics Data System (ADS)
Yen, Stanley; HALO Collaboration; HALO-2 Collaboration
2016-09-01
The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.
Sturm und Drang: The turbulent, magnetic tempest in the Galactic center
NASA Astrophysics Data System (ADS)
Lacki, Brian C.
2014-05-01
The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (˜ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ˜70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.
Radioactivity in the galactic plane
NASA Technical Reports Server (NTRS)
Walraven, G. D.; Haymes, R. C.
1976-01-01
The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.
Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources
NASA Astrophysics Data System (ADS)
D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale
2018-02-01
The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.
Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario
NASA Astrophysics Data System (ADS)
Liu, Zheng-Wei; Stancliffe, Richard J.
2018-04-01
The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermohaline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 × 10-3 yr-1, which is about 30 per cent of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analysing their pre-explosion images.
Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants
NASA Astrophysics Data System (ADS)
Uchiyama, Yasunobu
Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.
KEGS Discovery of 28 Supernova Candidates in the K2 Campaign 17 Field with DECam
NASA Astrophysics Data System (ADS)
Narayan, G.; Rest, A.; Strampelli, G. M.; Zenteno, A.; James, D. J.; Smith, R. C.; Tucker, B. E.; Garnavich, P.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Buron, F. Forster; Villar, V. A.
2018-05-01
The Kepler Extra-Galactic Survey (KEGS, see http://www.mso.anu.edu.au/kegs/ ) reports the discovery of 28 supernova candidates with the Dark Energy Camera (DECam, NOAO 2017B-0285) on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain
2017-06-01
Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less
Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2014-01-01
We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60 along the X-ray bright SE-NW axis from 0.84 plus or minus 0.06% yr(exp -1) to 0.52% plus or minus 0.03 yr(exp -1). This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% plus or minus 0.4% yr(exp -1). We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz
2015-03-01
In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.
Stellar feedback in galaxies and the origin of galaxy-scale winds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2012-04-01
Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.
A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region
NASA Technical Reports Server (NTRS)
Matthews, T. A.; Simonson, S. C., III
1971-01-01
From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.
Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations
NASA Astrophysics Data System (ADS)
Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix
2017-06-01
Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru
2012-01-01
We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.
Oscillation effects and time variation of the supernova neutrino signal
NASA Astrophysics Data System (ADS)
Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin
2008-02-01
The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.
Galacti chemical evolution: Hygrogen through zinc
NASA Technical Reports Server (NTRS)
Timmes, F. X.; Woosley, S. E.; Weaver, Thomas A.
1995-01-01
Using the output from a grid of 60 Type II supernova models (Woosley & Weaver 1995) of varying mass (11 approx. less than (M/solar mass) approx. less than 40) and metallicity (0, 10(exp -4), 0.01, and 1 solar metallicity), the chemical evolution of 76 stable isotopes, from hydrogen to zinc, is calculated. The chemical evolution calculation employs a simple dynamical model for the Galaxy (infall with a 4 Gyr e-folding timescale onto a exponential dsk and 1/r(exp 2) bulge), and standard evolution parameters, such as a Salpeter initial mass function and a quadratic Schmidt star formation rate. The theoretical results are compared in detail with observed stellar abundances in stars with metallicities in the range -3.0 approx. less than (Fe/H) approx. less than 0.0 dex. While our discussion focuses on the solar neighborhood where there are the most observations, the supernova rates, an intrinsically Galactic quality, are also discussed.
Supernova Neutrino-Process and Implication in Neutrino Oscillation
NASA Astrophysics Data System (ADS)
Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.
2012-08-01
We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.
DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz
2012-11-01
The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{supmore » )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.« less
Cosmic Ray Acceleration from Multiple Galactic Wind Shocks
NASA Astrophysics Data System (ADS)
Cotter, Cory; Bustard, Chad; Zweibel, Ellen
2018-01-01
Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
Super-AGB Stars and their Role as Electron Capture Supernova Progenitors
NASA Astrophysics Data System (ADS)
Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.
2017-11-01
We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.
A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.
2017-06-01
When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .
What Can We Learn By Observing Supernova Neutrinos?
NASA Astrophysics Data System (ADS)
Beacom, John
1999-10-01
A core-collapse supernova emits of the order of 10^58 neutrinos of all flavors over about 10 seconds, with an average energy of about 11 MeV for ν_e, 16 MeV for barν_e, and 25 MeV for ν_μ, ν_τ, barν_μ, and barν_τ. The present and near-term solar neutrino detectors can readily observe a supernova anywhere in our Galaxy. The expected supernova rate in our Galaxy is about 3 per century. What can we learn by observing the neutrinos from the next Galactic supernova? Besides the nuclear and astrophysical aspects of the collapse mechanism, there will be an unprecedented opportunity to measure neutrino properties, in particular their masses. The ν_μ and ν_τ masses can be measured by time-of-flight relative to the νe and barνe neutrinos, with a nearly model-independent sensitivity down to about 30 eV. If the time development of the supernova neutrino luminosities were better known from theory, this could be reduced to 10 eV or less. In either case, it will be essential to map out the neutrino energy spectra by measuring the signals on several different nuclear targets. Direct information on the absolute scale of the neutrino masses is especially crucial now since the apparently positive signals from neutrino oscillation experiments indicate nonzero differences in neutrino masses, with no information on the overall scale.
NASA Astrophysics Data System (ADS)
Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter
2018-04-01
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.
Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi
2018-01-01
Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.
Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Investigating the Galactic supernova remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Gamma Rays at Very High Energies
NASA Astrophysics Data System (ADS)
Aharonian, Felix
This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.
Star formation inside a galactic outflow.
Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E
2017-04-13
Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
Supernova neutrino three-flavor evolution with dominant collective effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene
2009-04-15
Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less
NASA Technical Reports Server (NTRS)
Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale
1997-01-01
Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.
What can be learned from a future supernova neutrino detection?
NASA Astrophysics Data System (ADS)
Horiuchi, Shunsaku; Kneller, James P.
2018-04-01
This year marks the 30th anniversary of the only supernova from which we have detected neutrinos—SN 1987A. The 20 or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order 10 000 neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at this physics.
NASA Astrophysics Data System (ADS)
Wang, Xilu; Fields, Brian D.; Lien, Amy Y.
2017-01-01
A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.
NASA Astrophysics Data System (ADS)
Brdar, Vedran; Kopp, Joachim; Liu, Jia
2017-03-01
Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.
Long term variability of the cosmic ray intensity
NASA Technical Reports Server (NTRS)
Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.
1985-01-01
In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.
Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination
NASA Technical Reports Server (NTRS)
Wargelin, B.
2003-01-01
The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.
NASA Astrophysics Data System (ADS)
Biernacki, Pawel; Teyssier, Romain
2018-04-01
We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.
Anisotropy and corotation of galactic cosmic rays.
Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X
2006-10-20
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
Dynamics of supernova remnants in the Galactic centre.
NASA Astrophysics Data System (ADS)
Bortolas, E.; Mapelli, M.; Spera, M.
The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.
Supernova Science with an Advanced Compton Telescope
2000-12-04
Older SNRs must be galactic, but the emission can be detected on decadal- millenial time-scales. SNR studies thus concentrate upon 57Co(122 keV), 22Na...early and is a probe of the mass overlying the outermost 56Ni- rich ejecta. The 847 keV line peaks later (at which time the ejecta for most models has... rich super-luminous SNe Ia will be detected to the largest distances, but the larger SN rate of normally-luminous SNe Ia make them the most frequently
Cosmic Ray Production in Supernovae
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.
2018-02-01
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.
Supernovae Discovery Efficiency
NASA Astrophysics Data System (ADS)
John, Colin
2018-01-01
Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2013-01-01
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario
NASA Astrophysics Data System (ADS)
Wright, Warren P.; Kneller, James P.; Ohlmann, Sebastian T.; Röpke, Friedrich K.; Scholberg, Kate; Seitenzahl, Ivo R.
2017-02-01
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernovae (SNe Ia) remains elusive. The leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal because the neutrinos from the different mechanisms possess distinct spectra as a function of time and energy. In this paper, we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube will see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE will see events if the supernova is closer than ˜0.3 kpc . The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2 σ if the distance to the supernova is less than 2.3 kpc for a normal mass ordering and 3.6 kpc for an inverted ordering.
G29.7-0.3: another supernova remnant with an identity crisis
NASA Technical Reports Server (NTRS)
Becker, R. H.; Helfand, D. J.; Szymkowiak, A. E.
1983-01-01
New radio and X-ray observations of the galactic supernova remnant G29.7-0.3 show that it is composed of two spectrally distinct components: a steep-spectrum, incomplete shell 3 arcmin in extent enclosing a flat-spectrum, X-ray emitting region 30 arcsec across. Thus, G29.7-0.3 joins the ranks of supernova remnants which exhibit a combination of Crab-like and shell remnant attributes. The Crab-like core has the highest ratio of X-ray radio luminosity of all the Crab-like remnants observed to date, suggesting that it is an extremely young object.
Measuring the Symmetry of Supernova Remnants in the Radio
NASA Astrophysics Data System (ADS)
Stafford, Jennifer; Lopez, Laura A.
2017-01-01
Nearly 300 supernova remnants (SNRs) are known in the MIlky Way galaxy, and they offer an important means to study the explosions and interactions of supernovae at sub-pc scales. In this poster, we present analysis of the morphology of Galactic SNRs at radio wavelengths. Specifically, we measure the symmetry of several tens of SNRs in 6- and 20-cm Very Large Array images using a multipole expansion technique, the power-ratio method. We explore how the SNRs' morphology changes as a function of their size and estimated dynamical ages, with the aim of probing how SNR shapes evolve with time.
Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe
Wallner, A.; Feige, J.; Kinoshita, N.; Paul, M.; Fifield, L.K.; Golser, R.; Honda, M.; Linnemann, U.; Matsuzaki, H.; Merchel, S.; Rugel, G.; Tims, S.G.; Steier, P.; Yamagata, T.; Winkler, S.R.
2016-01-01
The rate of supernovae (SNe) in our local galactic neighborhood within a distance of ~100 parsec from Earth (1 parsec (pc)=3.26 light years) is estimated at 1 SN every 2-4 million years (Myr), based on the total SN-rate in the Milky Way (2.0±0.7 per century1,2). Recent massive-star and SN activity in Earth’s vicinity may be evidenced by traces of radionuclides with half-lives t1/2 ≤100 Myr3-6, if trapped in interstellar dust grains that penetrate the Solar System (SS). One such radionuclide is 60Fe (t1/2=2.6 Myr)7,8 which is ejected in supernova explosions and winds from massive stars1,2,9. Here we report that the 60Fe signal observed previously in deep-sea crusts10,11, is global, extended in time and of interstellar origin from multiple events. Deep-sea archives from all major oceans were analyzed for 60Fe deposition via accretion of interstellar dust particles. Our results, based on 60Fe atom-counting at state-of-the-art sensitivity8, reveal 60Fe interstellar influxes onto Earth 1.7–3.2 Myr and 6.5–8.7 Myr ago. The measured signal implies that a few percent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ~10 Myr at nearby distances ≤100 pc. PMID:27078565
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, S. S.
1980-01-01
The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.
Discussion session on star formation, molecular clouds and the interstellar medium
NASA Technical Reports Server (NTRS)
Strom, Karen M.; Nordh, Lennart; Dwek, Eli
1994-01-01
In this panel discussion contributions were made by K. Strom, L. Nordh and H. Zinnecker on the contributions of surveys to the study of star formation regions, by B. Burton on a survey of galactic H I and by E. Dwek on the detection of galactic supernovae by infrared surveys. The contributions of K. Strom, L. Nordh and E. Dwek are summarized here.
NASA Astrophysics Data System (ADS)
Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo
2016-06-01
Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ
Gamma-ray spectroscopy: The diffuse galactic glow
NASA Technical Reports Server (NTRS)
Hartmann, Dieter H.
1991-01-01
The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.
Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil
1993-01-01
We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.
Planck intermediate results: XXXI. Microwave survey of Galactic supernova remnants
Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; ...
2016-02-09
The all-sky Planck survey in 9 frequency bands was used in this paper to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evidentmore » for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S ν ∝ ν -α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. Finally, the break could be due to synchrotron losses.« less
Optical Emission Associated with the Galactic Supernova Remnant G179.0+2.6
NASA Astrophysics Data System (ADS)
How, Thomas G.; Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Outters, Nicolas
2018-04-01
Narrow passband optical images of the large Galactic supernova remnant G179.0+2.6 reveal a faint but nearly complete emission shell dominated by strong [O 3] 4959,5007 Å line emission. The remnant's optical emission, which consists of both diffuse and filamentary features, is brightest along its southern and northeastern limbs. Deep Hα images detect little coincidence emission indicating an unusually high [O 3]/Hα emission ratio for such a large and apparently old remnant. Low-dispersion optical spectra of several regions confirm large [O 3]/Hα line ratios with typical values around 10. The dominance of [O 3] emission for the majority of the remnant's optical filaments suggests shock velocities above 100 km s-1 are present throughout most of the remnant, likely reflecting a relatively low density ambient ISM. The remnant's unusually strong [O 3] emission adds to the remnant's interesting set of properties which include a thick radio emission shell, radial polarization of its radio emission like that typically seen in young supernova remnants, and an unusually slow-rotating gamma-ray pulsar with a characteristic spin-down age ≃ 50 kyr.
Neutrino astronomy with supernova neutrinos
NASA Astrophysics Data System (ADS)
Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie
2018-04-01
Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.
Galactic Winds and the Role Played by Massive Stars
NASA Astrophysics Data System (ADS)
Heckman, Timothy M.; Thompson, Todd A.
Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.
Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.
1991-01-01
Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.
A search for new supernova remnant shells in the Galactic plane with H.E.S.S.
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Bamba, A.; Fukui, Y.; Sano, H.; Yoshiike, S.
2018-04-01
A search for new supernova remnants (SNRs) has been conducted using TeV γ-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.
2018-01-01
We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 65° -1.3° < b < +1.3°), and a total of 79 SNRs are falling in the survey area. We have found 19 [Fe II]- and 19 H2-emitting SNRs, giving a detection rate of 24%. Eleven SNRs show both emission features. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. The brightest SNR in the both emission is W49B, contributing ~70% of the total [Fe II] luminosity of the detected SNRs. The total [Fe II] luminosity, however, is considerably less than what we would expect from the SN rate of our Galaxy.Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.
Study of the influence of Type Ia supernovae environment on the Hubble diagram
NASA Astrophysics Data System (ADS)
Henne, Vincent
2016-06-01
The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.
Supernova-regulated ISM. V. Space and Time Correlations
NASA Astrophysics Data System (ADS)
Hollins, J. F.; Sarson, G. R.; Shukurov, A.; Fletcher, A.; Gent, F. A.
2017-11-01
We apply correlation analysis to random fields in numerical simulations of the supernova-driven interstellar medium (ISM) with the magnetic field produced by dynamo action. We solve the magnetohydrodynamic (MHD) equations in a shearing Cartesian box representing a local region of the ISM, subject to thermal and kinetic energy injection by supernova explosions, and parameterized, optically thin radiative cooling. We consider the cold, warm, and hot phases of the ISM separately; the analysis mostly considers the warm gas, which occupies the bulk of the domain. Various physical variables have different correlation lengths in the warm phase: 40,50, and 60 {pc} for the random magnetic field, density, and velocity, respectively, in the midplane. The correlation time of the random velocity is comparable to the eddy turnover time, about {10}7 {year}, although it may be shorter in regions with a higher star formation rate. The random magnetic field is anisotropic, with the standard deviations of its components {b}x/{b}y/{b}z having approximate ratios 0.5/0.6/0.6 in the midplane. The anisotropy is attributed to the global velocity shear from galactic differential rotation and locally inhomogeneous outflow to the galactic halo. The correlation length of Faraday depth along the z axis, 120 {pc}, is greater than for electron density, 60{--}90 {pc}, and the vertical magnetic field, 60 {pc}. Such comparisons may be sensitive to the orientation of the line of sight. Uncertainties of the structure functions of synchrotron intensity rapidly increase with the scale. This feature is hidden in a power spectrum analysis, which can undermine the usefulness of power spectra for detailed studies of interstellar turbulence.
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.
Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton
NASA Astrophysics Data System (ADS)
Seo, Kyoung-Ae; Hui, Chung Yue
2013-06-01
We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×10^22 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.
NASA Astrophysics Data System (ADS)
Banik, Prabir; Bhadra, Arunava
2017-06-01
It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).
GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu
2017-01-10
Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less
NASA Astrophysics Data System (ADS)
Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique
2017-11-01
Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.
Frontiers of stellar evolution
NASA Technical Reports Server (NTRS)
Lambert, David L. (Editor)
1991-01-01
The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.
Recent results on celestial gamma radiation from SMM
NASA Technical Reports Server (NTRS)
Share, Gerald H.
1991-01-01
Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.
Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2006-02-09
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.
Limits on diffuse X-ray emission from M101
NASA Technical Reports Server (NTRS)
Mccammon, D.; Sanders, W. T.
1984-01-01
Observed limits on diffuse X-ray emission from M101 require that the temperature of any coronal or matrix hot gas which is radiating an appreciable part ( 10%) of the average supernova power be less than 10(5.7)K. Furthermore, the fraction of the galactic plane occupied by hot buttles similar to the one which apparently surrounds the Sun is at most 25% in the region between 10 kpc and 20 kpc from the galactic center.
THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu
2014-04-10
We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae.more » Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.« less
A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.
Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F
2001-09-13
Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.
REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments
NASA Astrophysics Data System (ADS)
Ryazhskaya, Ol'ga G.
2006-10-01
The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.
High Energy Astronomy Observatory
NASA Technical Reports Server (NTRS)
1980-01-01
An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.
NASA Astrophysics Data System (ADS)
Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.
2015-08-01
Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.
Long gamma-ray bursts and core-collapse supernovae have different environments.
Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E
2006-05-25
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R. B., E-mail: rbfirestone@lbl.gov
2014-07-01
Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less
Imaging the Heart of Our Galaxy
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the Galactic center. The bipolar radio structures appear to be due to winds emanating from Sgr A* itself, from a central cluster of massive stars, or from a combination of the two.Top: superposition of the JVLA image of Sgr A (blue) and a molecular line image (red) showingSgr A*s circumnuclear disk. Bottom left: molecular emission is shown in contours, and the Sigma Front is traced by blue lines. Bottom right: ageometrical model for the supernova explosion and resulting emission. [Zhao et al. 2016]Supernova StructuresThe outermost shape of Sgr A East which looks like an elliptical ring is thought to be an expanding spherical shell from a past supernova explosion, appearing as an ellipse because of our angle of view. In the newest JVLA images, Zhao and collaborators identify a new structure inside of the ring that they term the Sigma Front.The authors argue that this emission front which is shaped like the capital Greek letter sigma may be the reflection of the supernova blast wave bouncing off of the dense, clumpy circumnuclear molecular disk around Sgr A* (which encircles the mini-spiral, but isnt visible in radio wavelengths). Under this assumption, they use the Sigma Front to constrain the geometry of the supernova explosion.These new JVLA images contain a wealth of information in their detail, and analysis is only just beginning. Further examination of these images will continue to help us learn about the activity at the heart of our galaxy.CitationJun-Hui Zhao et al 2016 ApJ 817 171. doi:10.3847/0004-637X/817/2/171
The Neutrino: A Better Understanding Through Astrophysics: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneller, James P.
The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; tomore » study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.« less
G0.9 + 0.1 and the emerging class of composite supernova remnants
NASA Technical Reports Server (NTRS)
Helfand, D. J.; Becker, R. H.
1987-01-01
High-resolution, multifrequency maps of a bright extended radio source near the Galactic center have revealed it to be a classic example of a composite supernova remnant. A steep-spectrum shell of emission, about 8 arcmin in diameter, surrounds a flat-spectrum, highly polarized Crab-like core about 2 arcmin across. The two components have equal flux densities at about 6 cm, marking this source as having the highest core-to-shell ratio among the about 10 composite remnants identified to date. X-ray and far-infrared data on the source are used to constrain the energetics and evolutionary state of the remnant and its putative central pulsar. It is argued that the total energy contained in the Crab-like components requires that the pulsars powering them were all born with periods shorter than 50 ms, and that if a substantial number of neutron stars with slow initial rotation rates exist, their birthplaces have not yet been found.
Recombining plasma in the remnant of a core-collapsed supernova, Kes 17
NASA Astrophysics Data System (ADS)
Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji
2016-06-01
We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Lyα of Al XIII and Heα of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M⊙ progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.
Is the Eagle Nebula powered by a hidden supernova remnant ?
NASA Astrophysics Data System (ADS)
Boulanger, Francois
2008-10-01
Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation
Approximate supernova remnant dynamics with cosmic ray production
NASA Technical Reports Server (NTRS)
Voelk, H. J.; Drury, L. O.; Dorfi, E. A.
1985-01-01
Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.
X-Ray Ejecta Kinematics of the Galactic Core-Collapse Supernova Remnant G292.0+1.8
NASA Astrophysics Data System (ADS)
Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon
2015-02-01
We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 lsim vr lsim 1400 km s-1. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90'' (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 1051 erg, we estimate the total ejecta mass to be lsim8 M ⊙, and we propose an upper limit of lsim35 M ⊙ on the progenitor's mass.
Recent Results on SNRs and PWNe from the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Hays, Elizabeth
2010-01-01
Topics include: Fermi LAT Collaboration groups; galactic results from LAT; a GeV, wide-field instrument; the 1FGL catalog, the Fermi LAT 1FGL source catalog, unidentified gamma-ray sources; variability in 1FGL sources; curvature in 1FGL sources; spectral-variability classification; pulsars and their wind nebulae; gamma-ray pulsars and MSPs; GeV PWN search; Crab pulsar and nebula; Vela X nebular of Vela pulsar; MSH 15-52; supernova remnants, resolved GeV sources, galactic transients, LAT unassociated transient detections; gamma rays from a nova; V407 Cyngi - a symbiotic nova; V407 Cygni: a variable star; and March 11 - a nova. Summary slides include pulsars everywhere, blazars, LAT as an electron detector, cosmic ray spectrum, the Large Area Telescope, the Fermi Observatory, LAT sensitivity with time, candidate gamma-ray events, on-orbit energy calibration and rate, a 1 year sky map, LAT automated science processing, reported GeV flares, early activity and spectacular flare, gamma-ray transients near the galactic plane , two early unassociated transients, counter part search - Fermi J0910-5404; counterpart search 3EG J0903-3531, and a new LAT transient - J1057-6027.
NASA Technical Reports Server (NTRS)
1975-01-01
The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.
Enhanced momentum feedback from clustered supernovae
NASA Astrophysics Data System (ADS)
Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero
2017-02-01
Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.
Helium stars: Towards an understanding of Wolf-Rayet evolution
NASA Astrophysics Data System (ADS)
McClelland, Liam A. S.; Eldridge, J. J.
2017-11-01
Recent observational modelling of the atmospheres of hydrogen-free Wolf-Rayet stars have indicated that their stellar surfaces are cooler than those predicted by the latest stellar evolution models. We have created a large grid of pure helium star models to investigate the dependence of the surface temperatures on factors such as the rate of mass loss and the amount of clumping in the outer convection zone. Upon comparing our results with Galactic and LMC WR observations, we find that the outer convection zones should be clumped and that the mass-loss rates need to be slightly reduced. We discuss the implications of these findings in terms of the detectability of Type Ibc supernovae progenitors, and in terms of refining the Conti scenario.
Kinematics of the Galactic Supernova Remnant G109.1-1.0 (CTB 109)
NASA Astrophysics Data System (ADS)
Sánchez-Cruces, M.; Rosado, M.; Fuentes-Carrera, I.; Ambrocio-Cruz, P.
2018-01-01
We present direct images in the H α and [S II] λλ6717,6731 Å lines of the Galactic supernova remnant (SNR) G109.1-1.0 (CTB 109). We confirm that the filaments detected are the optical counterpart of the X-ray and radio SNR due to their high [S II]/H α line ratios. We study for the first time the kinematics of the optical counterpart of SNR CTB 109 using the Universidad Nacional Autónoma de México scanning Fabry-Perot interferometer PUMA. We estimate a systemic velocity of VLSR = -50 ± 6 km s-1 for this remnant and an expansion velocity of Vexp = 230 ± 5 km s-1. From this velocity and taking into account previous studies of the kinematics of objects at that Galactic longitude, we derive a distance to SNR CTB 109 of 3.1 ± 0.2 kpc, locating it in the Perseus arm. Using the [S II] λ6717/[S II] λ6731 line ratio, we find an electronic density value around ne = 580 cm-3. Considering that this remnant is evolving in a low-density medium with higher-density cloudlets responsible for the optical emission, we determine the age and energy deposited in the ISM by the supernova explosion (E0) in both the Sedov-Taylor phase and the radiative phase. For both cases, the age is thousands of years and E0 is rather typical of SNRs containing simple pulsars, so that the energy released to the ISM cannot be used to distinguish between SNRs hosting typical pulsars from those hosting powerful magnetars, like CTB 109.
On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind
NASA Astrophysics Data System (ADS)
Cardillo, Martina; Amato, Elena; Blasi, Pasquale
2015-09-01
While from the energetic point of view supernova remnants are viable sources of Galactic cosmic rays (CRs), the issue of whether they can accelerate protons up to a few PeV remains unsolved. Here we discuss particle acceleration at the forward shock of supernovae, and discuss the possibility that the current of escaping particles may excite a non-resonant instability that in turn leads to the formation of resonant modes that confine particles close to the shock, thereby increasing the maximum energy. This mechanism is at work throughout the expansion of the supernova explosion, from the ejecta dominated (ED) phase to the Sedov-Taylor (ST) phase. The transition from one stage to the other reflects in a break in the spectrum of injected particles. Because of their higher explosion rate, we focus our work on type II SNe expanding in the slow, dense wind, produced by the red super-giant progenitor stars. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. The highest energies are reached at even earlier times, when, however, a small fraction of the mass of ejecta has been processed. As a result, the spectrum of accelerated particles shows a break in the slope, at an energy that is the maximum energy (EM) achieved at the beginning of the ST phase. Above this characteristic energy, the spectrum becomes steeper but remains a power law rather than developing an exponential cutoff. An exponential cut is eventually present at much higher energies but it does not have a phenomenological relevance. We show that for parameters typical of type II supernovae, EM for protons can easily reach values in the PeV range, confirming that type II SNRs are the best candidate sources for CRs at the knee. From the point of view of implications of this scenario on the measured particle spectra, we have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any combination of the parameters that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at ∼ 650 TeV, appreciably below the knee in the overall spectrum. On one hand this finding would resolve the problem of reaching very high energies in supernovae, but on the other it would open a critical issue in the transition region between Galactic and extragalactic CRs.
Observations of the Non-Thermal X-ray Emission from the Galactic Supernova Remnant G347.3-0.5
NASA Technical Reports Server (NTRS)
Pannuti, Thomas G.; Allen, Glenn E.
2002-01-01
G347.3-0.5 (ALEX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 key) using archived data from observations made with two satellites, the R6ntgensatellit (ROSA I) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE) Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.30.5's diffuse emission with a corresponding energy of kT approx. = 1.4 key. We also obtain an estimate of 70 Texas for the maximum energy of the cosmic-ray electrons that, have been accelerated by this SNR.
RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra
2016-12-20
The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the largemore » orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.« less
NASA Astrophysics Data System (ADS)
Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Koyama, Katsuji; Yamauchi, Shigeo; Uchiyama, Hideki; Okon, Hiromichi; Tanaka, Takaaki; Uchida, Hiroyuki; Tsuru, Takeshi G.
2018-02-01
Supernova remnants (SNRs) have been prime candidates for Galactic cosmic-ray accelerators. When low-energy cosmic-ray protons (LECRp) collide with interstellar gas, they ionize neutral iron atoms and emit the neutral iron line (Fe I Kα) at 6.40 keV. We search for the iron K-shell line in seven SNRs from the Suzaku archive data of the Galactic plane in the 6^\\circ ≲ l≲ 40^\\circ ,| b| < 1^\\circ region. All of these SNRs interact with molecular clouds. We discover Fe I Kα line emissions from five SNRs (W28, Kes 67, Kes 69, Kes 78, and W44). The spectra and morphologies suggest that the Fe I Kα line is produced by interactions between LECRp and the adjacent cold gas. The proton energy density is estimated to be ≳10–100 eV cm‑3, which is more than 10 times higher than that in the ambient interstellar medium.
Calibration of the Galactic Cosmic Ray Flux
NASA Technical Reports Server (NTRS)
Mathew, K. J.; Marti, K.
2004-01-01
We report first Xe data on the cross-calibration of I-129-Xe-129(sub n) ages with conventional CRE ages, a method which is expected to provide information on the long-term constancy of the galactic cosmic ray (GCR) flux. We studied isotopic signatures of Xe released in stepwise heating, decomposition and melting of troilites in the Cape York iron meteorite to identify isotopic shifts in Xe-129 and Xe-131 due to neutron capture in Te-128 and Te-130. We also resolve components due to extinct 129I, spallation and fission Xe. There has recently been much speculation on the constancy of GCR over long time scales, as may be inferred from iron meteorites. If GCRs originate from supernova events, this provides the basis for postulating increased fluxes at locations with higher than average densities of supernovae, specifically in OB-associations. The solar system at present appears to be inside a local bubble between spiral arms and may experience an increased GCR flux.
SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana
2015-11-20
Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less
Fermi Large Area Telescope as a Galactic Supernovae Axionscope
Meyer, M.; Giannotti, M.; Mirizzi, A.; ...
2017-01-06
In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into γ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to g aγ ≃ 2 × 10 -13 GeV -1 for an ALP mass m a ≲ 10 -9 eV. Also, these values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probemore » large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to γ rays, stellar cooling anomalies, and cold dark matter. Lastly, if no γ-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN 1987A by more than 1 order of magnitude.« less
NASA Technical Reports Server (NTRS)
Strong, A. W.; Moskalenko, I. V.; Reimer, O.; Diehl, S.; Diehl, R.
2004-01-01
We present a solution to the apparent discrepancy between the radial gradient in the diffuse Galactic gamma-ray emissivity and the distribution of supernova remnants, believed to be the sources of cosmic rays. Recent determinations of the pulsar distribution have made the discrepancy even more apparent. The problem is shown to be plausibly solved by a variation in the Wco-to-N(H2) scaling factor. If this factor increases by a factor of 5-10 from the inner to the outer Galaxy, as expected from the Galactic metallicity gradient and supported by other evidence, we show that the source distribution required to match the radial gradient of gamma-rays can be reconciled with the distribution of supernova remnants as traced by current studies of pulsars. The resulting model fits the EGRET gamma-ray profiles extremely well in longitude, and reproduces the mid-latitude inner Galaxy intensities better than previous models.
The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae
NASA Astrophysics Data System (ADS)
Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim
2017-04-01
We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.
Supernova remnants in the GC region
NASA Astrophysics Data System (ADS)
Asvarov, Abdul
2016-07-01
Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, V.; Chirac, T.; Lasserre, T., E-mail: vincent.fischer@cea.fr, E-mail: tchirac@gmail.fr, E-mail: thierry.lasserre@cea.fr
2015-08-01
Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generationmore » of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.« less
The cosmic MeV neutrino background as a laboratory for black hole formation
NASA Astrophysics Data System (ADS)
Yüksel, Hasan; Kistler, Matthew D.
2015-12-01
Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.
Galactic Supernova Remnant Candidates Discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team
2018-01-01
There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
Chandra Observation of the X-ray Source Population of NGC 6946
NASA Technical Reports Server (NTRS)
Holt, S. S.; Schlegel, E. M.; Hwang, U.; Petre, R.
2003-01-01
We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.
The shock process and light-element production in supernova envelopes
NASA Technical Reports Server (NTRS)
Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin
1991-01-01
Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen enevlopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.
The shock process and light element production in supernovae envelopes. Ph.D. Thesis - Chicago Univ.
NASA Technical Reports Server (NTRS)
Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin
1990-01-01
Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen envelopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li-7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.
Are supernova remnants quasi-parallel or quasi-perpendicular accelerators
NASA Technical Reports Server (NTRS)
Spangler, S. R.; Leckband, J. A.; Cairns, I. H.
1989-01-01
Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.
Supernovae, neutrinos and the chirality of amino acids.
Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi
2011-01-01
A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.
On the radial oxygen distribution in the Galactic disc - II. Effects of local streams
NASA Astrophysics Data System (ADS)
Mishurov, Yu N.; Tkachenko, R. V.
2018-06-01
We analyse the idea that the local dips (˜1 kpc along the Galactic radius) observed in oxygen abundance are associated with the infall of intergalactic low-abundant gas (˜0.2 Z⊙) on to the Galactic disc during the last ˜100 Myr. We term such infall events local streams. The derived masses of the falling gas (of the order of several times 108 M⊙) are close to the observed ones (e.g. in the Magellanic Stream). Such local streams do not change the mean mass of oxygen ejected per core-collapse supernova (CC SN) event, so that our previous inference on probable upper initial masses for progenitors of CC SNe remains valid.
NASA Astrophysics Data System (ADS)
Walch, S.; Girichidis, P.; Naab, T.; Gatto, A.; Glover, S. C. O.; Wünsch, R.; Klessen, R. S.; Clark, P. C.; Peters, T.; Derigs, D.; Baczynski, C.
2015-11-01
The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of Σ _{_GAS} = 10 M_{⊙} pc^{-2}. The FLASH 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from <10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt-Schmidt, to 70-85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm-3) and delay H2 formation. Most of the volume is filled with hot gas (˜80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.
Detection of Another Molecular Bubble in the Galactic Center
NASA Astrophysics Data System (ADS)
Tsujimoto, Shiho; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Tokuyama, Sekito; Iwata, Yuhei; Roll, Justin A.
2018-04-01
The l=-1\\buildrel{\\circ}\\over{.} 2 region in the Galactic center has a high CO J = 3–2/J = 1–0 intensity ratio and extremely broad velocity width. This paper reports the detection of five expanding shells in the l=-1\\buildrel{\\circ}\\over{.} 2 region based on the CO J = 1–0, 13CO J = 1–0, CO J = 3–2, and SiO J = 8–7 line data sets obtained with the Nobeyama Radio Observatory 45 m telescope and James Clerk Maxwell Telescope. The kinetic energy and expansion time of the expanding shells are estimated to be {10}48.3{--50.8} erg and {10}4.7{--5.0} yr, respectively. The origin of these expanding shells is discussed. The total kinetic energy of 1051 erg and the typical expansion time of ∼105 yr correspond to multiple supernova explosions at a rate of 10‑5–10‑4 yr‑1. This indicates that the l=-1\\buildrel{\\circ}\\over{.} 2 region may be a molecular bubble associated with an embedded massive star cluster, although the absence of an infrared counterpart makes this interpretation somewhat controversial. The expansion time of the shells increases as the Galactic longitude decreases, suggesting that the massive star cluster is moving from Galactic west to east with respect to the interacting molecular gas. We propose a model wherein the cluster is moving along the innermost x 1 orbit and the interacting gas collides with it from the Galactic eastern side.
A single-degenerate channel for the progenitors of Type Ia supernovae with different metallicities
NASA Astrophysics Data System (ADS)
Meng, X.; Chen, X.; Han, Z.
2009-06-01
A single-degenerate channel for the progenitors of Type Ia supernovae (SNe Ia) is currently accepted, in which a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from its companion, increases its mass to the Chandrasekhar mass limit and then explodes as a SN Ia. Incorporating the prescription of Hachisu et al. for the accretion efficiency into Eggleton's stellar evolution code, and assuming that the prescription is valid for all metallicities, we performed binary stellar evolution calculations for more than 25000 close WD binaries with metallicities Z = 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.004, 0.001, 0.0003 and 0.0001. For our calculations, the companions are assumed to be unevolved or slightly evolved stars (WD + MS). As a result, the initial parameter spaces for SNe Ia at various Z are presented in the orbital period-secondary mass (logPi, Mi2) plane. Our study shows that both the initial mass of the secondary and the initial orbital period increase with metallicity. Thus, the minimum mass of the CO WD for SNe Ia decreases with metallicity Z. The difference in the minimum mass may be as large as 0.24Msolar for different Z. Adopting the results above, we studied the birth rate of SNe Ia for various Z via a binary population synthesis approach. If a single starburst is assumed, SNe Ia occur systemically earlier and the peak value of the birth rate is larger for a high Z. The Galactic birth rate from the WD + MS channel is lower than (but comparable to) that inferred from observations. Our study indicates that supernovae like SN2002ic will not occur in extremely low-metallicity environments, if the delayed dynamical-instability model is appropriate.
The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Cordes, J. M.; Chernoff, D.
1997-12-01
We present the results of a new simulation of the Galactic population of neutron stars: their birthrate, velocity distribution, luminosities, beaming characteristics, and spin evolution. The many simulations in the literature differ from one another primarily in their treatment of the selection effects associated with pulsar detection. Our method, the most realistic to date, goes beyond earlier efforts by retaining the full kinematic, rotational, luminosity, and beaming evolution of each simulated star: ``Monte-Carlo'' neutron stars are created according to assumed distributions (at birth) in spatial coordinates, kick velocity, and magnitudes and orientations of the spin and magnetic field vectors. The neutron stars spin down following an assumed braking law, and their Galactic trajectories are traced to the present epoch. For each star, a pulse waveform is generated using a phenomenological radio-beam model, obviating the need for an arbitrary beaming fraction. Luminosity is assumed to be a parameterized function of period and spin-down rate, with no intrinsic spread, and a parameterized death-line is applied. Interstellar dispersion and scattering consistent with survey instrumentation and the galactic locales of the neutron stars are applied to the pulse waveforms, which are Fourier analyzed and tested for detection following the techniques of real-world surveys. A unique algorithm is used to compare the populations of simulated and known, non-millisecond, pulsars in the multi-dimensional space of observables (any subset of galactic coordinates, dispersion measure, period, spin-down rate, flux, and proper motion). Model parameters are varied, and statistically independent neutron star populations are created until a maximum likelihood model is found. The highlight of this effort is an unbiased determination of the velocity distribution of neutron stars. We discuss the implications of our results for supernova physics, binary evolution, and the nature of gamma -ray transients.
Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations
NASA Astrophysics Data System (ADS)
Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.
2018-02-01
The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.
Walter Baade: Father of the Two Stellar Populations and Pioneer Supernova Researcher
NASA Astrophysics Data System (ADS)
Osterbrock, D. E.
2001-05-01
Walter Baade was the great observational astronomer of the middle part of the past century. He lived and worked in Pasadena, where he ``discovered" the two stellar populations and did outstanding pioneer research on supernovae at Mount Wilson and Palomar Observatories from 1931 until 1959, when he returned to his native Germany, and died the following year. Baade was born in a little town in northwest Germany, and educated at Goettingen University, where he received his Ph.D. in 1919, just after the end of World War I. He got a research position at Hamburg Observatory, and quickly jumped into globular cluster and galactic structure work with its 40-in reflector, then the largest telescope in Europe. Baade recognized very early the great importance of the extremely rare ``highly luminous novae" which Heber D. Curtis and Knut Lundmark isolated in 1919-21. In 1929 Baade called these ``Hauptnovae" the key to measuring distances of faint galaxies. We call them supernovae today, a term he and Fritz Zwicky began using in 1932. Similarly Baade's first inkling that there was a spherically symmetric distribution of stars in our Galaxy, which he named Population II in his two great 1944 papers, came when he began picking up field RR Lyrae variables in 1926. Baade's research on the two stellar populations and supernovae was extremely important in opening up the whole fields of stellar and galactic evolution. His invited lectures at meetings and symposia, and his courses as a visiting professor inspired a whole generation of research astrophysicists. Baade's attractive personality made it possible for him to make his great discoveries in a land in which he was officially an enemy alien during World War II.
Some consequences of shear on galactic dynamos with helicity fluxes
NASA Astrophysics Data System (ADS)
Zhou, Hongzhe; Blackman, Eric G.
2017-08-01
Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.
Recording of Supernovae in Rock Art, A Case Study at the Paint Rock Pictograph Site
NASA Astrophysics Data System (ADS)
Houston, Gordon L.; Simonia, Irakli; NA
2017-01-01
The Paint Rock pictographs in central Texas and their use as solar markers were formally reported for the first time by Dr. R. Robert Robbins at the 1999 AAS meeting #193 in Austin, Texas. He reported the operations of the winter solstice marker and suggested the possibility of more, including a summer solstice solar marker. Since this first report, there have been many informal studies of the Paint Rock site. In 1955, William C. Miller made the first interpretation of rock art as depicting images of the Crab supernova of AD 1054, which has produced many reports at other rock art sites in the American Southwest, including one at Paint Rock. All of these claims have a star and crescent configuration. Recently, these claims have been dismissed. We propose that the second panel at Paint Rock is representative of Tycho Brahe's supernovae SN1572. Miller set up a set of restrictions and criteria to evaluate these potential claims. We discuss Miller's criteria and two additional sets of criteria to evaluate representations of historical records of supernovae sightings. Two sets of characteristics of supernovae are provided, the first being galactic location and the second observational characteristics of naked eye supernovae. Employing astronomical software, we show that the panel at Paint Rock meets the restrictions and criteria discussed, that leads to high confidence in stating it records Tycho Brahe's supernova SN1572.
Supernovae, Neutrinos and the Chirality of Amino Acids
Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi
2011-01-01
A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686
r-process nucleosynthesis in the high-entropy supernova bubble
NASA Technical Reports Server (NTRS)
Meyer, B. S.; Mathews, G. J.; Howard, W. M.; Woosley, S. E.; Hoffman, R. D.
1992-01-01
We show that the high-temperature, high-entropy evacuated region outside the recent neutron star in a core-collapse supernova may be an ideal r-process site. In this high-entropy environment it is possible that most nucleons are in the form of free neutrons or bound into alpha particles. Thus, there can be many neutrons per seed nucleus even though the material is not particularly neutron rich. The predicted amount of r-process material ejected per event from this environment agrees well with that required by simple galactic evolution arguments. When averaged over regions of different neutron excess in the supernova ejecta, the calculated r-process abundance curve can give a good representation of the solar-system r-process abundances as long as the entropy per baryon is sufficiently high. Neutrino irradiation may aid in smoothing the final abundance distribution.
Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimerz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca
2017-01-01
The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded approximately 1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% per yr, but large spatial variations are present. Using the nonparametric 'Demons' method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0.''09 to 0.''44 per yr. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v(sub s) as low as 3600 km per sec (for an assumed distance of 8.5 kpc), much less than v(sub s) = 12,000-13,000 km per sec along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3% +/- 0.8% per yr. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.
Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Astrophysics Data System (ADS)
Borkowski, Kazimierz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca
2017-03-01
The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded ˜1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% yr-1, but large spatial variations are present. Using the nonparametric “Demons” method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0\\buildrel{\\prime\\prime}\\over{.} 09 to 0\\buildrel{\\prime\\prime}\\over{.} 44 yr-1. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v s as low as 3600 km s-1 (for an assumed distance of 8.5 kpc), much less than v s = 12,000-13,000 km s-1 along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3 % +/- 0.8 % yr-1. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.
Type II supernovae as a significant source of interstellar dust.
Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike
2003-07-17
Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.
NASA Astrophysics Data System (ADS)
Ostriker, Eve
Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar potentials and galactic rotation rates. Our simulations follow all thermal phases of the gas, the driving of turbulence, and the expulsion of material in high-velocity galactic winds as well as the circulation of lowervelocity material in galactic ``fountains.'' We resolve gravitational collapse and apply stellar population modeling to determine radiation emitted by star cluster particles, and both in situ and runaway O-star SN events. With time-dependent chemistry, we will be able to follow C+/C/CO transitions and assess the relationship between the observed molecular component and self-gravitating or diffuse clouds in varying galactic environments, also determining how cloud properties (e.g. distributions of mass, size, virial parameter, internal/external pressure, magnetization) and lifetimes depend on environment. We will also investigate the dependence on local galactic environment of: * mass and volume fractions, and turbulent and magnetic state, of each thermal and chemical ISM phase * star formation rate, and galactic wind mass loss rate in each ISM phase * metrics of ISM energy gain/loss, large-scale force balance, wind acceleration * roles of SN and radiation feedback in setting cloud SFEs, overall SFRs, and wind massloss rates Our models will be valuable for interpreting a wide range of observations with Chandra, Hubble, Spitzer, Herschel, Planck, and ground-based telescopes. Obtaining self-consistent solutions for the dynamical, thermal, magnetic, chemical, and radiative state of the star-forming ISM is a long-sought goal of galactic theory. Understanding why ISM and star formation properties vary among and within galaxies is essential for interpreting new multiwavelength extragalactic surveys. Connecting galactic winds to star formation via resolved physical mechanisms will provide a missing link in contemporary galaxy formation models. With our planned research program, we are in a position to achieve all of these advances.
The disk-halo connection and the nature of the interstellar medium
NASA Technical Reports Server (NTRS)
Norman, Colin A.; Ikeuchi, Satoru
1988-01-01
Some results on the nature of the interstellar medium that are specifically concerned with the disk-halo interaction are discussed. Over the last five years or so it has become clear that the supernovae rate in our Galaxy is spatially clumped and the consequences of such clumping are superbubbles and supershells fed by tens or hundreds of supernovae per shell. These objects evolve and expand rapidly and soon break out of the disk of the Galaxy, feeding the halo with very significant mass, energy, and momentum. As cooling occurs, gas will rain down onto the disk of the Galaxy completing the cycle. The basic flow of physical quantities from disk to halo and vice versa are discussed. Some of the many implications are noted including aspects of dynamo theory, quasar absorption lines, the theory of galactic coronae, and the nature of the x ray background. The essential difference here with the McKee-Ostriker (1977) theory is that the filling factor of the hot gas in the disk is significantly less than unity.
Population study of Galactic supernova remnants at very high γ-ray energies with H.E.S.S.
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.
2018-04-01
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 1015 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm-3 and electron-to-proton energy fractions above 10 TeV to ɛep ≤ 5 × 10-3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.
Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2018-04-01
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less
The first Fermi LAT supernova remnant catalog
Acero, F.
2016-05-16
To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less
Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less
THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.; Ballet, J.; Ackermann, M.
2016-05-01
To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identifiedmore » as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less
The Compton Observatory Science Workshop
NASA Technical Reports Server (NTRS)
Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)
1992-01-01
The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.
Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination
NASA Technical Reports Server (NTRS)
Wargelin, B.
2002-01-01
The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.
Binaries, cluster dynamics and population studies of stars and stellar phenomena
NASA Astrophysics Data System (ADS)
Vanbeveren, Dany
2005-10-01
The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.
Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope
NASA Astrophysics Data System (ADS)
Bartko, H.
The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.
Distribution of cosmic gamma rays in the galactic anticenter region as observed by SAS-2
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.; Ozel, M. E.; Tumer, T.; Bignami, G. F.; Ogelman, H.
1975-01-01
The high energy (above 35 MeV) gamma ray telescope flown on the second Small Astronomy Satellite has collected over one thousand gamma rays from the direction of the galactic anticenter. In addition to the diffuse galactic emission the distribution indicates a strong pulsed contribution from the Crab nebula with the same period and phase as the NP0532 pulsar. There also seems to be an excess in the direction of (gal. long. ? 195 deg; gal. lat ? +5 deg) where there is a region containing old supernova remnants. Search for gamma ray pulsations from other pulsars in the region do not show any statistically significant signal. The general intensity distribution of the gamma rays away from the plane appear to be similar to nonthermal radio emission brightness contours.
Discovery of Most Recent Supernova in Our Galaxy
NASA Astrophysics Data System (ADS)
2008-05-01
The most recent supernova in our Galaxy has been discovered by tracking the rapid expansion of its remains. This result, using NASA's Chandra X-ray Observatory and NRAO's Very Large Array (VLA), has implications for understanding how often supernovas explode in the Milky Way galaxy. The supernova explosion occurred about 140 years ago, making it the most recent supernova in the Milky Way as measured in Earth's time frame. Previously, the last known galactic supernova occurred around 1680, based on studying the expansion of its remnant Cassiopeia A. X-ray Image Radio and X-ray Images The recent supernova explosion was not seen in optical light about 140 years ago because it occurred close to the center of the Galaxy, and is embedded in a dense field of gas and dust. This made it about a trillion times fainter, in optical light, than an unobscured supernova. However, the supernova remnant it caused, G1.9+0.3, is now seen in X-ray and radio images. "We can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk we can miss them in our own cosmic backyard," said Stephen Reynolds of North Carolina State University, who led the Chandra study. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing." Astronomers regularly observe supernovas in other galaxies like ours, and based on those rates, estimate that about three should explode every century in our Milky Way, although these estimates have large margins of error. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Action Replay of Powerful Stellar Explosion Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions that are younger than Cassiopeia A," said David Green of the University of Cambridge in the United Kingdom, who led the VLA study. "It's great to finally track one of them down." The tracking of this source began in 1985 when astronomers, led by Green, used the VLA to identify G1.9+0.3 as the remnant of a supernova explosion near the center of our Galaxy. Based on its small size, it was thought to have resulted from a supernova that exploded about 400 to 1000 years ago. Twenty two years later, Chandra observations of this object revealed that the remnant had expanded by a surprisingly large amount, about 16% since 1985. This indicates that the supernova remnant is much younger than previously thought. The young age was confirmed when new radio observations from the VLA were made just within the past several weeks. This "apples to apples" comparison nails the age of the remnant to be about 140 years (less if it has been slowing down), making it the youngest on record in the Milky Way. Finding such a recent, obscured supernova is a vital first step in making a better estimate of the supernova rate in our Galaxy. Knowing this rate is important because supernovas heat and redistribute large amounts of gas, pump large amounts of heavy elements out into their surroundings, and can trigger the formation of new stars, closing the cycle of stellar death and rebirth. The explosion may also leave behind, in addition to the expanding remnant, a central neutron star or black hole. In addition to being a record holder for youth, G1.9+0.3 is of considerable interest for other reasons. The high expansion velocities and the extreme particle energies that have been generated are unprecedented and should stimulate deeper studies of this object with Chandra and the VLA. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath. Scientists can also use it to probe the environment into which it exploded. At perhaps only a few thousand light years from the center of the Galaxy, it appears to be embedded in the dense environment near the Milky Way's supermassive black hole. These results will appear in The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
The South African Astronomical Observatory
NASA Technical Reports Server (NTRS)
1989-01-01
Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.
NASA Astrophysics Data System (ADS)
Villanueva, Steven; Gaudi, B. Scott; Pogge, Richard; Stassun, Keivan G.; Eastman, Jason; Trueblood, Mark; Trueblood, Pat
2018-01-01
The DEdicated MONitor of EXotransits and Transients (DEMONEXT) is a 20 inch (0.5-m) robotic telescope that has been in operation since May 2016. Fully automated, DEMONEXT has observed over 150 transits of exoplanet candidates for the KELT survey, including confirmation observations of KELT-20b. DEMONEXT achieves 2-4 mmag precision with unbinned, 20-120 second exposures, on targets orbiting V<13 host stars. Millimagnitude precision can be achieved by binning the transits on 5-6 minute timescales. During observations of 8 hours with hundreds of consecutive exposures, DEMONEXT maintains sub-pixel (<0.5 pixels) target position stability on the CCD during good observing conditions, with degraded performance during poor observing conditions (<1 pixel). DEMONEXT achieves 1% photometry on targets with V<17 in 5 minute exposures, with detection limits of V~21. In addition to the 150 transits observed by DEMONEXT, 50 supernovae and transients haven been observed for the ASAS-SN supernovae group, as well as time-series observations of Galactic microlensing, active galactic nuclei, stellar variability, and stellar rotation.
Discovery of X-Ray-Emitting O-Ne-Mg-Rich Ejecta in the Galactic Supernova Remnant Puppis A
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Hwang, Una; Petre, Robert; Park, Sangwook; Mori, Koji; Tsunemi, Hiroshi
2010-01-01
We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be [approx]2, [approx]2, and <0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.
Revised Distances to 21 Supernova Remnants
NASA Astrophysics Data System (ADS)
Ranasinghe, S.; Leahy, D. A.
2018-05-01
We carry out a comprehensive study of H I 21 cm line observations and 13CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for H I absorption features to obtain kinematic distances in a consistent manner. The 21 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (H I 21 cm observations) and Galactic Ring Survey (13CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the H I and 13CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is ≃25%, i.e., a change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.
Revealing the Galactic Center in the Far-Infrared with SOFIA/FORCAST
NASA Astrophysics Data System (ADS)
Lau, Ryan M.; Herter, Terry; Morris, Mark; Li, Zhiyuan; Becklin, Eric; Adams, Joseph; Hankins, Matthew
2015-08-01
We present a summary of far-infrared imaging observations of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, massive star formation, and dust production around massive stars and in the Sgr A East supernova remnant. Observations of warm dust emission were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The Circumnuclear Ring (CNR) surrounding and heated by central cluster in the vicinity of Sgr A* shows no internal active star formation but does exhibit significant density “clumps,” a surprising result because tidal shearing should act quickly to smear out structure. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is site of the most recent confirmed star formation within ~10 pc of the Galactic center. Our observations reveal the dust morphologies and SEDs of the regions to constrain the composition and gas-to-dust mass ratios of the emitting dust and identify heating sources candidates from archival near-IR images. FORCAST observations Luminous Blue Variables (LBVs) located in and near the Quintuplet Cluster reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. These two LBV’s have nebulae with similar quantities of dust (~0.02 M⊙) but exhibit contrasting appearances due to the external influence of their different environments. Finally, the far-infrared observations indicate the presence of ~0.02 M⊙ of warm (~100 K) dust in the hot interior of the ~10,000 yr-old SgrA East supernova remnant indicating the dust has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.
The imprint of Gould's belt on the local cosmic ray electron spectrum
NASA Astrophysics Data System (ADS)
Pohl, M.; Perrot, C.; Grenier, I.
2001-08-01
In a recent paper Pohl and Esposito (1998) demonstrated that if the sources of cosmic-rays are discrete, as are Supernova Remnants (SNR), then the spectra of cosmic-ray electrons largely vary with location and time and the locally measured electron spectrum may not be representative of the electron spectra elsewhere in the Galaxy, which could be substantially harder than the local one. They have shown that the observed excess of γ-ray emission above 1 GeV can in fact be partially explained as a correspondingly hard inverse Compton component, provided the bulk of cosmic-ray electrons is produced in SNR. As part of a program to model the Galactic γ-ray foreground we have continued the earlier studies by investigating the impact of the star forming region Gould's Belt on the local electron spectrum. If the electron sources in Gould's Belt were continous, the local electron spectrum would be slightly hardened. If the electron sources are discrete, which is the more probable case, the variation in the local electron spectrum found by Pohl & Esposito persists. 1 The local cosmic-ray electron spectrum The recent detections of non-thermal X-ray synchrotron radiation from the supernova remnants SN1006 (Koyama et al., 1995), RX J1713.7-3946 (Koyama et al., 1997), IC443 (Keohane et al., 1997; Slane et al., 1999), Cas A (Allen et al., 1997), and RCW86 (Borkowski et al., 2001) and the subsequent detections of SN1006 (Tanimori et al., 1998), RX J1713.7-3946 (Muraishi et al., 2000), and Cas A (Aharonian et al., 2001) at TeV energies support the hypothesis that at least Galactic cosmic-ray electrons are accelerated predominantly in SNR. The Galactic distribution and spectrum of cosmic-ray electrons are intimately linked to the distribution and nature of their sources. Supernovae and hence their remnants are tran-
NASA Astrophysics Data System (ADS)
Kim, Chang-Goo; Ostriker, Eve C.
2018-02-01
Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.
The role of neutron star mergers in the chemical evolution of the Galactic halo
NASA Astrophysics Data System (ADS)
Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.
2015-05-01
Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r-process production of Sr, Zr, and Ba by neutron star mergers - complemented by an s-process production by spinstars - provide results that are compatible with our previous findings based on other r-process sites. We critically discuss the weak and strong points of both neutron star merging and supernova scenarios for producing Eu and eventually suggest that the best solution is probably a mixed one in which both sources produce Eu. In fact, this scenario reproduces the scatter observed in all the studied elements better. Warning, no authors found for 2015A&A...577A.131.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papatheodore, Thomas L.; Messer, Bronson
Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less
NASA Astrophysics Data System (ADS)
Hui, Chung-Yue
2013-09-01
Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.
Celestial paleontology: The legacy of dying stars
NASA Astrophysics Data System (ADS)
Hart, Alexa H.
2013-03-01
In their death throes, stars dole out their atmospheric material to the interstellar medium in dramatic stellar winds and spectacular explosions. The details of this profound metamorphosis, from star to remnant, play a key role in the next generation of star formation as well as the energetic and chemical evolution of galaxies and the universe as a whole. Dying stars are thought to be the source of all of the nuclei heavier than iron in the universe, as well as more complex molecules, such as carbon chains, which form the backbone of life as we know it. High mass Wolf-Rayet stars are likely progenitors of many types of Supernova, yet due to observational constraints we lack the most basic information about most of them: rather they are part of binary systems. This information is key to the determination of rather or not these stars will go supernova, since depending on its nature the companion can either draw mass off the Wolf-Rayet star, effectively quenching the march to explosion, or feed material onto the Wolf-Rayet star, speeding its demise as a supernova. Models of galactic evolution depend sensitively on the frequency of supernova for several reasons: they inject a great deal of energy into the Interstellar medium, they are the only known producers of nuclei heavier than nickel, and the shock waves that they create can stimulate star formation. In turn, the energy generated by supernova explosions drives the galactic wind, the heavier elements now present in the Interstellar Medium increase the efficiency of star formation, and the groups of new stars formed in the wake of a shock are thought to lead to the development of spiral arms in galaxies. In addition, because high mass stars are so short-lived, they can cycle through hundreds of generations in the time it takes one solar-type star's to evolve. Though intermediate mass stars merely fizzle out in comparison, they are pivotal to the evolution of the universe because they make up over 97% of the stars that have had enough time to evolve off the Main Sequence since the Big Bang. These stars produce more than half of the carbon in the universe as well as much of the nitrogen, oxygen, and more complex molecules such as aromatic rings of carbon. This process, often referred to as chemical enrichment, strongly affects the star formation rates and the characteristics of the next generation of stars. In this work, we explore the contributions of these two classes of stars to our own galaxy: we quantify the nature of the chemical enrichment to the Milky Way from a large sample of intermediate mass stars, and determine the binary status of a sample of Wolf-Rayet stars in the Milky Way.
NASA Astrophysics Data System (ADS)
Yoon, Sung-Chul
2017-10-01
Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.
The locations of recent supernovae near the Sun from modelling (60)Fe transport.
Breitschwerdt, D; Feige, J; Schulreich, M M; de Avillez, M A; Dettbarn, C; Fuchs, B
2016-04-07
The signature of (60)Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius-Centaurus stellar association. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The (60)Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago ((60)Fe has a half-life of 2.6 million years). There are uncertainties relating to the nucleosynthesis yields and the loss of (60)Fe during transport, but they do not influence the relative distribution of (60)Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.
NASA Astrophysics Data System (ADS)
Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.
2018-01-01
We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.
NASA Astrophysics Data System (ADS)
Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.
2004-08-01
Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.
Galactic supernova remnant candidates discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.
2017-09-01
Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and MIR data. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.
1986-01-01
The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence ofmore » Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.« less
Very High Energy Gamma Ray Extension of GRO Observations
NASA Technical Reports Server (NTRS)
Weekes, Trevor C.
1994-01-01
The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.
Very high gamma ray extension of GRO observations
NASA Astrophysics Data System (ADS)
Weekes, Trevor C.
1994-12-01
The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.
Modeling Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Mezzacappa, Anthony
2017-01-01
Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-03-01
SN 2006gy radiated far more energy in visual light than any other supernova so far, and potential explanations for its energy demands have implications for galactic chemical evolution and the deaths of the first stars. It remained bright for over 200 days, longer than any normal supernova, and it radiated more than 1051 ergs of luminous energy at visual wavelengths. I argue that this Type IIn supernova was probably the explosion of an extremely massive star like Eta Carinae that retained its hydrogen envelope when it exploded, having suffered relatively little mass loss during its lifetime. That this occurred at roughly Solar metallicity challenges current paradigms for mass loss in massive-star evolution. I explore a few potential explanations for SN2006gy's power source, involving either circumstellar interaction, or instead, the decay of 56Ni to 56Co to 56Fe. If SN 2006gy was powered by the conversion of shock energy into light, then the conditions must be truly extraordinary and traditional interaction models don't work. If SN 2006gy was powered by radioactive decay, then the uncomfortably huge 56Ni mass requires that the star exploded as a pair instability supernova. The mere possibility of this makes SN 2006gy interesting, especially at this meeting, because it is the first good candidate for a genuine pair instability supernova.
How to Find Gravitationally Lensed Type Ia supernovae
Goldstein, Daniel A.; Nugent, Peter E.
2016-12-29
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H 0, w, and Ω m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear tomore » be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less
RELATIVE CONTRIBUTIONS OF THE WEAK, MAIN, AND FISSION-RECYCLING r-PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibagaki, S.; Kajino, T.; Mathews, G. J.
There has been a persistent conundrum in attempts to model the nucleosynthesis of heavy elements by rapid neutron capture (the r-process). Although the locations of the abundance peaks near nuclear mass numbers 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. At the same time, there is a debate in the literature as to what degree the r-process elements are produced in supernovae or the mergers of binary neutron stars. In thismore » paper we propose a novel solution to both problems. We demonstrate that the underproduction of nuclides above and below the r-process peaks in main or weak r-process models (like magnetohydrodynamic jets or neutrino-driven winds in core-collapse supernovae) can be supplemented via fission fragment distributions from the recycling of material in a neutron-rich environment such as that encountered in neutron star mergers (NSMs). In this paradigm, the abundance peaks themselves are well reproduced by a moderately neutron-rich, main r-process environment such as that encountered in the magnetohydrodynamical jets in supernovae supplemented with a high-entropy, weakly neutron-rich environment such as that encountered in the neutrino-driven-wind model to produce the lighter r-process isotopes. Moreover, we show that the relative contributions to the r-process abundances in both the solar system and metal-poor stars from the weak, main, and fission-recycling environments required by this proposal are consistent with estimates of the relative Galactic event rates of core-collapse supernovae for the weak and main r-process and NSMs for the fission-recycling r-process.« less
Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.
Ahlers, Markus
2016-10-07
Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.
Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick
1998-01-01
Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.
Direct photography of the Gum Nebula
NASA Technical Reports Server (NTRS)
Brandt, J. C.; Roosen, R. G.; Thompson, J.; Ludden, D. J.
1976-01-01
The paper discusses a series of wide-angle photographs taken of the Gum Nebula in the traditional region including H-alpha with the aid of a 40-cm and an 80-cm lens in both the red and the green. The photographs support the large dimensions (75 deg in galactic longitude by 40 deg in galactic latitude) of the Gum Nebula suggested earlier, and the appearance is consistent with an origin due to photons from a supernova outburst. The relatively high-density gas has cooled and is visible on the red plates. The low-density gas has remained at a high temperature and may be visible as diffuse emission on the green plates.
DISCOVERY OF FIVE CANDIDATE ANALOGS FOR η CARINAE IN NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Rubab; Adams, Scott M.; Stanek, K. Z.
The late-stage evolution of very massive stars such as η Carinae may be dominated by episodic mass ejections that may later lead to Type II superluminous supernova (SLSN-II; e.g., SN 2006gy). However, as long as η Car is one of a kind, it is nearly impossible to quantitatively evaluate these possibilities. Here, we announce the discovery of five objects in the nearby (∼4–8 Mpc) massive star-forming galaxies M51, M83, M101, and NGC 6946 that have optical through mid-infrared (mid-IR) photometric properties consistent with the hitherto unique η Car. The Spitzer mid-IR spectral energy distributions of these L{sub bol} ≃ 3–8 × 10{sup 6} L{submore » ⊙} objects rise steeply in the 3.6–8 μm bands and then turn over between 8 and 24 μm, indicating the presence of warm (∼400–600 K) circumstellar dust. Their optical counterparts in HST images are ∼1.5–2 dex fainter than their mid-IR peaks and require the presence of ∼5–10 M{sub ⊙} of obscuring material. Our finding implies that the rate of η Car–like events is a fraction f = 0.094 (0.040 < f < 0.21 at 90% confidence) of the core-collapse supernova (ccSN) rate. If there is only one eruption mechanism and Type II superluminous supernovae are due to ccSNe occurring inside these dense shells, then the ejection mechanism is likely associated with the onset of carbon burning (∼10{sup 3}–10{sup 4} years), which is also consistent with the apparent ages of massive Galactic shells.« less
R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie, E-mail: amanda.karakas@anu.edu.au
2015-08-20
We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10{sup −3} yr{sup −1}) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, wemore » calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.« less
The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120-5453
NASA Astrophysics Data System (ADS)
Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.
2017-02-01
We present new Atacama Large Millimeter/submillimeter Array Band 7 (˜340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO+ (4-3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ˜1.2 yr-1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L ⊙ kpc-2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ˜40 K. IRAS 13120-5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.
X-Ray Mosaic of Milky Way Taken by the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
2001-01-01
The Chandra X-Ray Observatory (CXO) has made a sturning, high-energy panorama of the central regions of our Milky Way galaxy. The findings are an important step toward understanding the most active area of the Milky Way as well as other galaxies throughout the universe. This 400 by 900-light-year mosaic of several CXO images reveals hundreds of white dwarf stars, neutron stars, and black holes bathed in an incandescent fog of miltimillion-degree gas. The diffuse x-ray emission seems to be related to the turmoil and density of matter in the inner Milky Way. Stars are forming there at a much more rapid rate than in the galactic 'suburbs.' Many of the most massive stars in the galaxy are located in the galactic center and are furiously boiling off their outer layers in searing stellar winds. Supernova explosions are far more common in the region and send shock waves booming through the inner galaxy. The super massive black hole at the center of the galaxy is located inside the bright white patch in the center of the image. The colors indicate x-ray energy bands-red (low), green (medial), and blue (high). A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst. (Photo credit: NASA/UMass/D. Wang et al)
Identifying and quantifying recurrent novae masquerading as classical novae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotta, Ashley; Schaefer, Bradley E., E-mail: pagnotta@amnh.org
2014-06-20
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our Galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNemore » and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (1) outburst amplitude smaller than 14.5 – 4.5 × log (t {sub 3}), (2) orbital period >0.6 days, (3) infrared colors of J – H > 0.7 mag and H – K > 0.1 mag, (4) FWHM of Hα > 2000 km s{sup –1}, (5) high excitation lines, such as Fe X or He II near peak, (6) eruption light curves with a plateau, and (7) white dwarf mass greater than 1.2 M {sub ☉}. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction among the known CNe using three methods to get 24% ± 4%, 12% ± 3%, and 35% ± 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.« less
History of Chandra X-Ray Observatory
2001-07-01
The Chandra X-Ray Observatory (CXO) has made a sturning, high-energy panorama of the central regions of our Milky Way galaxy. The findings are an important step toward understanding the most active area of the Milky Way as well as other galaxies throughout the universe. This 400 by 900-light-year mosaic of several CXO images reveals hundreds of white dwarf stars, neutron stars, and black holes bathed in an incandescent fog of miltimillion-degree gas. The diffuse x-ray emission seems to be related to the turmoil and density of matter in the inner Milky Way. Stars are forming there at a much more rapid rate than in the galactic "suburbs." Many of the most massive stars in the galaxy are located in the galactic center and are furiously boiling off their outer layers in searing stellar winds. Supernova explosions are far more common in the region and send shock waves booming through the inner galaxy. The super massive black hole at the center of the galaxy is located inside the bright white patch in the center of the image. The colors indicate x-ray energy bands-red (low), green (medial), and blue (high). A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst. (Photo credit: NASA/UMass/D. Wang et al)
Supernova neutrinos and explosive nucleosynthesis
NASA Astrophysics Data System (ADS)
Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.
2014-05-01
Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.
Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei
NASA Astrophysics Data System (ADS)
Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan
2017-11-01
We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo
We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less
Distance Probes of Dark Energy
Kim, A. G.; Padmanabhan, N.; Aldering, G.; ...
2015-03-15
We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.
An XMM-Newton Study of the Mixed-morphology Supernova Remnant G346.6-0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auchettl, Katie; Lopez, Laura; Ng, C-Y.
We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology supernova remnant G346.6–0.2 using XMM-Newton . The X-ray spectrum of the remnant is well described by a recombining plasma that most likely arises from adiabatic cooling and has subsolar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of ∼2 or an additional thermal component with a temperature of ∼2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, anmore » unidentified pulsar wind nebula, or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high-resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment, and its association with a dense molecular cloud, G346.6–0.2 most likely arises from a massive progenitor that underwent core collapse.« less
The discovery and nature of the optical transient CSS100217:102913+404220
Drake, A. J.; Djorgovski, S. G.; Mahabal, A.; ...
2011-06-22
We report on the discovery and observations of the extremely luminous optical transient CSS100217:102913+404220 (CSS100217 hereafter). Spectroscopic observations showed that this transient was coincident with a galaxy at redshift z = 0.147 and reached an apparent magnitude of V ~ 16.3. After correcting for foreground Galactic extinction we determine the absolute magnitude to be M V = –22.7 approximately 45 days after maximum light. Over a period of 287 rest-frame days, this event had an integrated bolometric luminosity of 1.3 × 10 52 erg based on time-averaged bolometric corrections of ~15 from V- and R-band observations. Analysis of the pre-outburstmore » Sloan Digital Sky Survey (SDSS) spectrum of the source shows features consistent with a narrow-line Seyfert 1 galaxy. High-resolution Hubble Space Telescope and Keck follow-up observations show that the event occurred within 150 pc of the nucleus of the galaxy, suggesting a possible link to the active nuclear region. However, the rapid outburst along with photometric and spectroscopic evolution are much more consistent with a luminous supernova. Line diagnostics suggest that the host galaxy is undergoing significant star formation. We use extensive follow-up of the event along with archival Catalina Sky Survey NEO search and SDSS data to investigate the three most likely sources of such an event: (1) an extremely luminous supernova, (2) the tidal disruption of a star by the massive nuclear black hole, and (3) variability of the central active galactic nucleus (AGN). We find that CSS100217 was likely an extremely luminous Type IIn supernova and occurred within the range of the narrow-line region of an AGN. Here, we discuss how similar events may have been missed in past supernova surveys because of confusion with AGN activity.« less
Nuclear Reactions and the ν p-Process
NASA Astrophysics Data System (ADS)
Fröhlich, Carla; Hatcher, Daniel; Perdikakis, Georgios; Nikas, Stylianos
In understanding the origin of the heavy elements, the "light heavy elements" pose a particular challenge: The two neutron-capture processes, r- and s-process, cannot explain the abundances patterns seen in very old galactic halo stars. A proposed solution to this problem is the ν p-process, which takes place in the strong neutrino-driven winds of core-collapse supernovae. In the ν p-process, a sequence of (n, p) and (p, γ ) reactions allows for the synthesis of elements with atomic numbers A > 64, which includes Sr, Y, Zr, and others possibly up to Sn. The relevant reaction rates are all based on statistical model predictions and carry some uncertainty. Here, the sensitivity of the final ν p-process abundance pattern on modifications of (n, p), (p, γ ), and (n, γ ) reactions are characterized. Only few reactions affect the final abundance pattern and hence warrant a more detailed study of the reaction rate.
Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles
NASA Technical Reports Server (NTRS)
Barghouty, Nasser F.
2014-01-01
High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro
2014-08-01
Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka
2014-08-01
Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.« less
The binary fraction, separation distribution, and merger rate of white dwarfs from SPY
NASA Astrophysics Data System (ADS)
Maoz, Dan; Hallakoun, Na'ama
2017-05-01
From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor Survey (SPY), we measure the maximal changes in radial velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin = 0.10 ± 0.02 (1σ, random) +0.02 (systematic), in the separation range ≲4 au within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power law, dN/da ∝ aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1-80) × 10-13 yr^{-1} M_{⊙}^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_{⊙}^{-1} (1σ). The Milky Way's specific Type Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_{⊙}^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.
The 4-m International Liquid Mirror Telescope
NASA Astrophysics Data System (ADS)
Surdej, Jean; Hickson, Paul; Borra, Hermanno; Swings, Jean-Pierre; Habraken, Serge; Akhunov, Talat; Bartczak, Przemyslaw; Chand, Hum; De Becker, Michaël; Delchambre, Ludovic; Finet, François; Kumar, Brajesh; Pandey, Anil; Pospieszalska, Anna; Pradhan, Bikram; Sagar, Ram; Wertz, Olivier; De Cat, Peter; Denis, Stefan; de Ville, Jonathan; Jaiswar, Mukesh Kumar; Lampens, Patricia; Nanjappa, Nandish; Tortolani, Jean-Marc
2018-04-01
The 4-m International Liquid Mirror Telescope (ILMT) is presently (March-June 2017) being erected on the ARIES site in Devasthal (Uttarakhand). We describe and illustrate in the present paper its different components. The ILMT will be used in the Time Delayed Integration (TDI) mode to carry out a deep survey and high S/N photometric and astrometric observations of solar system, galactic and extra-galactic objects within a narrow (24') strip of sky. In principle, the ILMT should detect and regularly monitor more than 50 multiply imaged quasars. It will also detect numerous supernovae (see Kumar et al., these proceedings) as well as space debris (see Pradhan et al., also in these proceedings).
A galactic chimney in the Perseus arm of the Milky Way.
Normandeau, M; Taylor, A R; Dewdney, P E
1996-04-25
Galaxies are surrounded by large haloes of hot gas which must be replenished as the gas cools. This has led to the concept of galactic 'chimneys'--cavities in the interstellar medium, created by multiple supernova explosions, that can act as conduits for the efficient transport of hot gas from a galaxy's disk to its halo. Here we present a high-resolution map of atomic hydrogen in the Perseus arm of our galaxy, which shows clear evidence for the existence of such a chimney. This chimney appears to have been formed by the energetic winds from a cluster of young massive stars, and may currently have reached the stage of bowing out into the halo.
Highlights of GeV Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Very high energy observations of the Galactic Centre: recent results and perspectives with CTA
NASA Astrophysics Data System (ADS)
Terrier, Regis
2016-07-01
The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.
Stardust, Supernovae and the Chirality of the Amino Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R N; Kajino, T; Onaka, T
A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereofmore » on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyutoku, Koutarou; Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp
We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta withmore » observed cosmic rays lighter than the iron.« less
ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix
NASA Astrophysics Data System (ADS)
Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.
2018-04-01
During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.
The Merger Rate of Binary White Dwarfs in the Galactic Disk
NASA Astrophysics Data System (ADS)
Badenes, Carles; Maoz, Dan
2012-04-01
We use multi-epoch spectroscopy of ~4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of ΔRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, f bin, and the power-law index in the separation distribution at the end of the common-envelope phase, α. Although there is some degeneracy between f bin and α, the 15 high-ΔRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4+3.4 -1.0 × 10-13 yr-1 M -1 ⊙ (1σ limits). This is remarkably similar to the measured rate of Type Ia supernovae (SNe Ia) per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0+1.6 -0.6 × 10-14 yr-1 M -1 ⊙. We conclude that there are not enough close binary white dwarf systems to reproduce the observed SN Ia rate in the "classic" double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to SNe Ia, as has been recently suggested by some studies, they could make a major contribution to the overall SN Ia rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high-ΔRVmax systems.
Circumnuclear media of quiescent supermassive black holes
NASA Astrophysics Data System (ADS)
Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.
2015-10-01
We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.
Dense magnetized plasma associated with a fast radio burst.
Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K
2015-12-24
Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.
On relative supernova rates and nucleosynthesis roles
NASA Technical Reports Server (NTRS)
Arnett, W. David; Schramm, David N.; Truran, James W.
1988-01-01
It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.
Assessing the link between recent supernovae near Earth and the iron-60 anomaly in a deep-sea crust
NASA Astrophysics Data System (ADS)
Schulreich, Michael M.; Breitschwerdt, Dieter
2016-06-01
Some time ago, an enhanced concentration of the radionuclide 60Fe was discovered in a deep-sea ferromanganese crust, isolated in layers dating from about 2.2, Myr ago. Since 60Fe (half-life of 2.6, Myr) is not naturally produced on Earth, such an excess can only be attributed to extraterrestrial sources, particularly one or several nearby supernovae in the recent past. It has been speculated that these supernovae might have been involved in the formation of the Local Superbubble, our Galactic habitat. The aim of this talk is to provide a quantitative evidence for this scenario. For that purpose, I will present results from high-resolution hydrodynamical simulations of the Local Superbubble and its neighbour Loop I in different environments, including a self-consistently evolved supernova-driven interstellar medium. For the superbubble modelling, the time sequence and locations of the generating core-collapse supernova explosions are taken into account, which are derived from the mass spectrum of the perished members of certain, carefully preselected stellar moving groups. The release and turbulent mixing of 60Fe is followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision.
Towards a realistic astrophysical interpretation of the gamma-ray Galactic center excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro
2015-12-01
A spherical-symmetric gamma-ray emission from (the inner region of the Galaxy (at least up to roughly 10° in latitude and longitude)) has been recently identified in Fermi-LAT data, and initially associated to dark matter particle annihilations. Guided by the evidence for a high gas density in the inner kpc of the Galaxy correlated with a very large Supernova rate, and hence with ongoing cosmic-ray acceleration, we investigate instead the possibility of addressing this excess in terms of ordinary cosmic-ray sources and standard steady-state diffusion. We (alter the source term, and consistently the correlated gamma-ray emissions, in the context of amore » template-fitting analysis. We focus on a region of interest (ROI) defined as: |l| < 20°; 2° < |b| < 20°, with l and b the Galactic longitude and latitude coordinates.) We analyze in detail the overall goodness of the fit of our framework, and perform a detailed direct comparison against data examining profiles in different directions. Remarkably, the test statistic of the fit related to our scenario turns out to be as good as the Dark Matter one in the ROI here considered.« less
A New Type of Transient High-Energy Source in the Direction of the Galactic Centre
NASA Technical Reports Server (NTRS)
Kouveliotou, C.; VanParadijs, J.; Fishman, G. J.; Briggs, M. S.; Kommers, J.; Harmon, B. A.; Meegan, C. A.; Lewin, W. H. G.
1996-01-01
Sources of high-energy (greater than 20 keV) bursts fall into two distinct types: the non-repeating gamma-ray bursters, several thousand of which have been detected but whose origin remains unknown, and the soft gamma-ray repeaters (SGRs), of which there are only three. The SGRs are known to be associated with supernova remnants, suggesting that the burst events most probably originate from young neutron stars. Here we report the detection of a third type of transient high-energy source. On 2 December 1995, we observed the onset of a sequence of hard X-ray bursts from a direction close to that of the Galactic Center. The interval between bursts was initially several minutes, but after two days, the burst rate had dropped to about one per hour and has been largely unchanged since then. More than 1,000 bursts have now been detected, with remarkably similar light curves and intensities; this behaviour is unprecendented among transient X-ray and gamma-ray sources. We suggest that the origin of these bursts might be related to the spasmodic accretion of material onto a neutron star.
Habitability in the Local Universe
NASA Astrophysics Data System (ADS)
Mason, Paul A.
2017-01-01
Long term habitability on the surface of planets has as a prerequisite a minimum availability of elements to build rocky planets, their atmospheres, and for life sustaining water. They must be within the habitable zone and avoid circumstances that cause them to lose their atmospheres and water. However, many astrophysical sources are hazardous to life on the surfaces of planets. Planets in harsh environments may require strong magnetic fields to protect their biospheres from high energy particles from the host star(s). Planets in harsh environments may additionally require a strong astrosphere to be sufficiently able to deflect galactic cosmic-rays. Supernovae (SNe) play a central role in the habitability of planets in the disks of star forming galaxies. Currently, the SNe rate maintains a relativistic galactic wind shielding planets in the disk from extragalactic cosmic rays. However, if the density of SNe in the disk of the galaxy were significantly higher, as it was 6-8 GYA, the frequency of nearby catastrophic events and often prolonged harsh environment may have strongly constrained life in the early history of the Milky Way. Active galactic nuclei (AGN) may remain quiescent for hundreds of millions of years only to activate for some time due extraordinary accretion episode due to for instance a galactic merger. The starburst galaxy M82 is currently undergoing a merger, probably strongly compromising habitability within that galaxy. The giant elliptical M87 resides in the center of the Virgo supercluster and has probably consumed many such spiral galaxies. We show that super-Eddington accretion onto the supermassive black hole in M87, even for a short while, could compromise the habitability for a large portion of the central supercluster. We discuss environments where these effects may be mitigated.
Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas
NASA Astrophysics Data System (ADS)
Shelton, Robin L.; Henley, D. B.; Kwak, K.
2012-05-01
High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.
Supernova 2007bi as a pair-instability explosion.
Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J
2009-12-03
Stars with initial masses such that 10M[symbol: see text]
A more direct measure of supernova rates in starburst galaxies
NASA Technical Reports Server (NTRS)
Van Buren, Dave; Greenhouse, Matthew A.
1994-01-01
We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.
Formation of double neutron star systems as implied by observations
NASA Astrophysics Data System (ADS)
Beniamini, Paz; Piran, Tsvi
2016-03-01
Double Neutron Stars (DNS) have to survive two supernovae (SNe) and still remain bound. This sets strong limits on the nature of the second collapse in these systems. We consider the masses and orbital parameters of the DNS population and constrain the two distributions of mass ejection and kick velocities directly from observations with no a priori assumptions regarding evolutionary models and/or the types of the SNe involved. We show that there is strong evidence for two distinct types of SNe in these systems, where the second collapse in the majority of the observed systems involved small mass ejection (ΔM ≲ 0.5 M⊙) and a corresponding low-kick velocity (vk ≲ 30 km s-1). This formation scenario is compatible, for example, with an electron-capture SN. Only a minority of the systems have formed via the standard SN scenario involving larger mass ejection of ˜2.2 M⊙ and kick velocities of up to 400 km s-1. Due to the typically small kicks in most DNS (which are reflected by rather low proper motion), we predict that most of these systems reside close to the Galactic disc. In particular, this implies that more NS-NS mergers occur close to the Galactic plane. This may have non-trivial implications to the estimated merger rates of DNS and to the rate of LIGO/VIRGO detections.
Cosmic ray driven outflows in an ultraluminous galaxy
NASA Astrophysics Data System (ADS)
Fujita, Akimi; Mac Low, Mordecai-Mark
2018-06-01
In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.
Star formation across cosmic time and its influence on galactic dynamics
NASA Astrophysics Data System (ADS)
Freundlich, Jonathan
2015-12-01
Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.
Variability-selected active galactic nuclei from supernova search in the Chandra deep field south
NASA Astrophysics Data System (ADS)
Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.
2008-09-01
Context: Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also because the low luminosity population consists of a mixture of different object types. LLAGNs can be detected by the nuclear optical variability of extended objects. Aims: Several variability surveys have been, or are being, conducted for the detection of supernovae (SNe). We propose to re-analyse these SNe data using a variability criterion optimised for AGN detection, to select a new AGN sample and study its properties. Methods: We analysed images acquired with the wide field imager at the 2.2 m ESO/MPI telescope, in the framework of the STRESS supernova survey. We selected the AXAF field centred on the Chandra Deep Field South where, besides the deep X-ray survey, various optical data exist, originating in the EIS and COMBO-17 photometric surveys and the spectroscopic database of GOODS. Results: We obtained a catalogue of 132 variable AGN candidates. Several of the candidates are X-ray sources. We compare our results with an HST variability study of X-ray and IR detected AGNs, finding consistent results. The relatively high fraction of confirmed AGNs in our sample (60%) allowed us to extract a list of reliable AGN candidates for spectroscopic follow-up observations. Table [see full text] is only available in electronic form at http://www.aanda.org
A Systematic Survey for Broadened CO Emission toward Galactic Supernova Remnants
NASA Astrophysics Data System (ADS)
Kilpatrick, Charles D.; Bieging, John H.; Rieke, George H.
2016-01-01
We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in 12CO J = 2 - 1. These observations are part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). We detected BML regions toward 19 SNRs, including 9 newly identified BML regions associated with SNRs (G08.3-0.0, G09.9-0.8, G11.2-0.3, G12.2+0.3, G18.6-0.2, G23.6+0.3, 4C-04.71, G29.6+0.1, and G32.4+0.1). The remaining 10 SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, and IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) H II region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR-MC interactions. One of the targets (G54.1+0.3) had previous indications of a BML region, but we did not detect broadened emission toward it. Although broadened 12CO J = 2 - 1 line emission should be detectable toward virtually all SNR-MC interactions, we find relatively few examples; therefore, the number of interactions is low. This result favors mechanisms other than supernova feedback as the basic trigger for star formation. In addition, we find no significant association between TeV gamma-ray sources and MC interactions, contrary to predictions that SNR-MC interfaces are the primary venues for cosmic ray acceleration.
Future science issues for Galactic very-high-energy gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Torres, Diego F.
2008-12-01
This work intends to provide a brief summary of some of the Galactic science issues for the next generation of very high energy (VHE) instruments. The latter is here generically understood, as an instrument or set of instruments providing about one order of magnitude more sensitivity at its central energy (at about 1 TeV), but extending the observational window to have a real broadband capability (from a few tens of GeV up to tens of TeV) exceeding at low energies the current VHE threshold for observations set by MAGIC as well as the few-tens-of-GeV sensitivity set by Fermi. Science topics regarding populations of emitters, pulsars and their nebula, binaries, supernova remnants, stars, and their associations, are discussed.
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, David J.; Baldini, L.; Uchiyama, Y.
2012-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Baldini, L.; Uchiyama, Y.
2011-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
On the Origin of Hyperfast Neutron Stars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.
2008-05-01
We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.
Changes in interstellar atomic abundances from the galactic plane to the halo
NASA Technical Reports Server (NTRS)
Jenkins, E. B.
1982-01-01
A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.
NASA Technical Reports Server (NTRS)
1990-01-01
The Objectives of NASA's participation in the ROSAT mission are to: a) measure the spatial, spectral, and temporal characteristics of discrete cosmic sources including normal stars, collapsed stellar objects, and active galactic nuclei; b) perform spectroscopic mapping of extended X-ray sources including supernova remnants, galaxies, and clusters of galaxies; and c) conduct the above observations of cosmic sources with unprecedented sensitivity and spatial resolution over the 0.1 - 2.0 keV energy band.
Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S.
NASA Astrophysics Data System (ADS)
Gottschall, D.; Capasso, M.; Deil, C.; Djannati-Atai, A.; Donath, A.; Eger, P.; Marandon, V.; Maxted, N.; Pühlhofer, G.; Renaud, M.; Sasaki, M.; Terrier, R.; Vink, J.; H.E.S.S. Collaboration
2017-01-01
Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.
NASA Astrophysics Data System (ADS)
Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.
Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts
NASA Astrophysics Data System (ADS)
Whalen, Daniel J.; Norman, Michael L.
2011-11-01
Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.
Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)
NASA Astrophysics Data System (ADS)
Eger, Peter
2015-08-01
The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
Absolute proper motion of IRAS 00259+5625 with VERA: Indication of superbubble expansion motion
NASA Astrophysics Data System (ADS)
Sakai, Nobuyuki; Sato, Mayumi; Motogi, Kazuhito; Nagayama, Takumi; Shibata, Katsunori M.; Kanaguchi, Masahiro; Honma, Mareki
2014-02-01
We present the first measurement of the absolute proper motions of IRAS 00259+5625 (CB3, LBN594) associated with the H I loop called the "NGC 281 superbubble" that extends from the Galactic plane over ˜ 300 pc toward decreasing galactic latitude. The proper motion components measured with VLBI Exploration of Radio Astrometry (VERA) are (μαcos δ, μδ) = (-2.48 ± 0.32, -2.85 ± 0.65) mas yr-1, converted into (μlcos b, μb) = (-2.72 ± 0.32, -2.62 ± 0.65) mas yr-1 in the Galactic coordinates. The measured proper motion perpendicular to the Galactic plane (μb) shows vertical motion away from the Galactic plane with a significance of about ˜ 4 σ. As for the source distance, the distance measured with VERA is marginal, 2.4^{+1.0}_{-0.6} kpc. Using the distance, an absolute vertical motion (vb) of -17.9 ± 12.2 km s-1 is determined with ˜ 1.5 σ significance. The tendency towards the large vertical motion is consistent with previous very long baseline interferometry (VLBI) results for NGC 281 associated with the same superbubble. Thus, our VLBI results indicate superbubble expansion motion whose origin is believed to be sequential supernova explosions.
TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, A.; Buckley, J. H.; Bugaev, V.
2016-04-20
The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less
NASA Astrophysics Data System (ADS)
Nishimura, N.; Rauscher, T.; Hirschi, R.; Murphy, A. St J.; Cescutti, G.; Travaglio, C.
2018-03-01
Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of p nuclides. Such nuclei are produced during the explosion, in layers enriched with seed nuclei coming from prior strong s processing. These seeds are transformed into proton-richer isotopes mainly by photodisintegration reactions. Several thousand trajectories from a 2D explosion model were used in a Monte Carlo approach. Temperature-dependent uncertainties were assigned individually to thousands of rates varied simultaneously in post-processing in an extended nuclear reaction network. The uncertainties in the final nuclear abundances originating from uncertainties in the astrophysical reaction rates were determined. In addition to the 35 classical p nuclides, abundance uncertainties were also determined for the radioactive nuclides 92Nb, 97, 98Tc, 146Sm, and for the abundance ratios Y(92Mo)/Y(94Mo), Y(92Nb)/Y(92Mo), Y(97Tc)/Y(98Ru), Y(98Tc)/Y(98Ru), and Y(146Sm)/Y(144Sm), important for Galactic Chemical Evolution studies. Uncertainties found were generally lower than a factor of 2, although most nucleosynthesis flows mainly involve predicted rates with larger uncertainties. The main contribution to the total uncertainties comes from a group of trajectories with high peak density originating from the interior of the exploding white dwarf. The distinction between low-density and high-density trajectories allows more general conclusions to be drawn, also applicable to other simulations of white dwarf explosions.
No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase
NASA Astrophysics Data System (ADS)
Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard
2011-10-01
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.
No collective neutrino flavor conversions during the supernova accretion phase.
Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard
2011-10-07
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.
High-energy particle acceleration in the shell of a supernova remnant.
Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J
2004-11-04
A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.
Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants
NASA Astrophysics Data System (ADS)
Reynolds, S. P.
1999-04-01
One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.
Recent high energy gamma-ray results from SAS-2
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.
1977-01-01
Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.
The violent interstellar medium in Milky-Way like disk galaxies
NASA Astrophysics Data System (ADS)
Karoline Walch, Stefanie
2015-08-01
Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.
Investigating Galactic Supernova Remnant Candidates Using LOFAR
NASA Astrophysics Data System (ADS)
Driessen, Laura N.; Domček, Vladimír; Vink, Jacco; Hessels, Jason W. T.; Arias, Maria; Gelfand, Joseph D.
2018-06-01
We investigate six supernova remnant (SNR) candidates—G51.21+0.11, G52.37–0.70, G53.07+0.49, G53.41+0.03, G53.84–0.75, and the possible shell around G54.1+0.3—in the Galactic plane using newly acquired Low-Frequency Array High-band Antenna observations, as well as archival Westerbork Synthesis Radio Telescope and Very Large Array Galactic Plane Survey mosaics. We find that G52.37–0.70, G53.84–0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of α = ‑ 0.7 ± 0.21, but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of α = ‑ 0.6 ± 0.2 and it has the X-ray spectral characteristics of a 1000–8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a nonequilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but placed stringent upper limits on the flux density of such a source if it was beamed toward Earth.
The e-ASTROGAM gamma-ray space mission
NASA Astrophysics Data System (ADS)
Tatischeff, V.; Tavani, M.; von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; Bykov, A.; Campana, R.; Caraveo, P.; Cardillo, M.; Coppi, P.; De Angelis, A.; Diehl, R.; Donnarumma, I.; Fioretti, V.; Giuliani, A.; Grenier, I.; Grove, J. E.; Hamadache, C.; Hartmann, D.; Hernanz, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Marisaldi, M.; McBreen, S.; McEnery, J. E.; Mereghetti, S.; Mirabel, F.; Morselli, A.; Nakazawa, K.; Peyré, J.; Piano, G.; Pittori, C.; Sabatini, S.; Stawarz, L.; Thompson, D. J.; Ulyanov, A.; Walter, R.; Wu, X.; Zdziarski, A.; Zoglauer, A.
2016-07-01
e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 { 100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.
The bird: A pressure-confined explosion in the interstellar medium
NASA Technical Reports Server (NTRS)
Lane, A. P.; Stark, A. A.; Helfand, D. J.
1986-01-01
The non-thermal radio continuum source G5.3-1.0, mapped at 20 cm with the Very Large Array (VLA) by Becker and Helfand, has an unusual bird-like shape. In order to determine possible interaction of this source with adjacent cold gas, we have mapped this region in the J=1-0 line of CO using the AT and T Bell Laboratories 7m antenna and the FCRAO 14m antenna. The map shown contains 1859 spectra sampled on a 1.5 arcminute grid; each spectrum has an rms noise of 0.2 K in 1 MHz channels. There are several molecular clouds at different velocities along the line of sight. The outer regions of a previously unknown Giant Molecular Cloud (GMC) at l=4.7 deg., b=-0.85 deg., v=200 km s(-1) appears to be interacting with G5.3-10: the molecular cloud has a bird-shaped hole at the position of the continuum source, except that the brightest continuum point (the bird's head) appears to be embedded in the cloud. The velocity of this GMC indicates it is within 2 kpc of the galactic center. The morphology suggests that a supernova or other explosive event occurred near the outside of the GMC, in a region where (n) is approximately 300 cm(-3), and expanded into a region of lower density and pressure. The pressures, densities, and velocity gradients of molecular clouds near the galactic center are on average higher than those of clouds near the Sun. We therefore expect that Type II supernovae near the galactic center would be distorted by their interactions with their parent molecular clouds.
NASA Astrophysics Data System (ADS)
Naiman, Jill P.; Pillepich, Annalisa; Springel, Volker; Ramirez-Ruiz, Enrico; Torrey, Paul; Vogelsberger, Mark; Pakmor, Rüdiger; Nelson, Dylan; Marinacci, Federico; Hernquist, Lars; Weinberger, Rainer; Genel, Shy
2018-06-01
The distribution of elements in galaxies provides a wealth of information about their production sites and their subsequent mixing into the interstellar medium. Here we investigate the elemental distributions of stars in the IllustrisTNG simulations. We analyse the abundance ratios of magnesium and europium in Milky Way-like galaxies from the TNG100 simulation (stellar masses log (M⋆/M⊙) ˜ 9.7-11.2). Comparison of observed magnesium and europium for individual stars in the Milky Way with the stellar abundances in our more than 850 Milky Way-like galaxies provides stringent constraints on our chemical evolutionary methods. Here, we use the magnesium-to-iron ratio as a proxy for the effects of our SNII (core-collapse supernovae) and SNIa (Type Ia supernovae) metal return prescription and as a comparison to a variety of galactic observations. The europium-to-iron ratio tracks the rare ejecta from neutron star-neutron star mergers, the assumed primary site of europium production in our models, and is a sensitive probe of the effects of metal diffusion within the gas in our simulations. We find that europium abundances in Milky Way-like galaxies show no correlation with assembly history, present-day galactic properties, and average galactic stellar population age. We reproduce the europium-to-iron spread at low metallicities observed in the Milky Way, and find it is sensitive to gas properties during redshifts z ≈ 2-4. We show that while the overall normalization of [Eu/Fe] is susceptible to resolution and post-processing assumptions, the relatively large spread of [Eu/Fe] at low [Fe/H] when compared to that at high [Fe/H] is quite robust.
The e-astrogam Gamma-Ray Space Mission
NASA Technical Reports Server (NTRS)
Tatischeff, V.; Tavani, M.; Von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.;
2016-01-01
e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2-100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.
Neutrino oscillations in magnetically driven supernova explosions
NASA Astrophysics Data System (ADS)
Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei
2009-09-01
We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Stephenson, F. Richard
2014-01-01
F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of rotation -- as revealed by both timed and untimed eclipse observations -- and (ii) historical supernovae. These subjects will form the main theme of his AAS lecture.
No hot and luminous progenitor for Tycho's supernova
NASA Astrophysics Data System (ADS)
Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.
2017-11-01
Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.
The role of fission in Supernovae r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant
2001-10-01
The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).
An Investigation Of The Metallicity Dependence Of The Sn Type Ii Mn Production
NASA Astrophysics Data System (ADS)
Kim, Yeunjin; Sobeck, J.; Frohlich, C.; Truran, J.
2010-01-01
Element abundance trends over the history of our Galaxy serve as important guides in establishing relative contributions from supernovae of Types Ia and II. In particular, spectroscopic studies have revealed a deficiency of manganese (Mn) relative to the abundances of neighboring iron-peak nuclei in metal-poor stars. However, more recent analyses of the observational data have found a constant Mn/Fe abundance ratio over a wide range of metallicity and hence, contradict these previous findings. In this project, we will study the nucleosynthetic yields of Type II supernovae as a function of metallicity by parameterizing the initial properties of the shock. We will compare our results with the two distinct manganese abundance trends identified above. Once we study the metallicity dependency of Type II yields as reflected in observations at lower metallicities, we will explore the constraints this imposes on Type Ia supernova contributions to Mn in different stellar and galactic populations. We acknowledge the financial support by the National Science Foundation for the Frontier Center Joint Institute for Nuclear Astrophysics (JINA). C.F. acknowledges an Enrico Fermi Fellowship.
X-ray imaging and spectroscopic study of the SNR Kes 73 hosting the magnetar 1E 1841-045
NASA Astrophysics Data System (ADS)
Kumar, H. S.; Safi-Harb, S.; Slane, P. O.; Gotthelf, E. V.
2014-01-01
We present the first detailed Chandra and XMM-Newton study of the young Galactic supernova remnant (SNR) Kes 73 associated with the anomalous X-ray pulsar (AXP) 1E 1841-045. Images of the remnant in the radio (20 cm), infrared (24 μm), and X-rays (0.5-7 keV) reveal a spherical morphology with a bright western limb. High-resolution Chandra images show bright diffuse emission across the remnant, with several small-scale clumpy and knotty structures filling the SNR interior. The overall Chandra and XMM-Newton spectrum of the SNR is best described by a two-component thermal model with the hard component characterized by a low ionization timescale, suggesting that the hot plasma has not yet reached ionization equilibrium. The soft component is characterized by enhanced metal abundances from Mg, Si, and S, suggesting the presence of metal-rich supernova ejecta. We discuss the explosion properties of the supernova and infer the mass of its progenitor star. Such studies shed light on our understanding of SNRs associated with highly magnetized neutron stars.
Supernova nucleosynthesis and the physics of neutrino oscillation
NASA Astrophysics Data System (ADS)
Kajino, Toshitaka
2012-11-01
We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.
Chandra Turns Up the Heat in the Milky Way Center
NASA Astrophysics Data System (ADS)
2004-06-01
A long look by NASA's Chandra X-ray Observatory has revealed new evidence that extremely hot gas exists in a large region at the center of the Milky Way. The intensity and spectrum of the high-energy X-rays produced by this gas present a puzzle as to how it is being heated. The discovery came to light as a team of astronomers, led by Michael Muno of UCLA used Chandra's unique resolving power to study a region about 100 light years across and painstakingly remove the contributions from 2,357 point-like X-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies. What remained was an irregular, diffuse glow from a 10-million-degree Celsius gas cloud, embedded in a glow of higher-energy X-rays with a spectrum characteristic of 100-million-degree gas. Animation of Galactic Center Animation of Galactic Center "The best explanation for the Chandra data is that the high-energy X-rays come from an extremely hot gas cloud," says Muno, lead author on a paper describing the results to appear in the September 20, 2004 issue of The Astrophysical Journal. "This would mean that there is a significant shortcoming in our understanding of heat sources in the center of our Galaxy." The combined gravity from the known objects in the center of the Milky Way -- all the stars and the supermassive black hole in the center - is not strong enough to prevent the escape of the 100 million degree gas from the region. The escape time would be about 10,000 years, a small fraction of the 10-billion-year lifetime of the Galaxy. This implies that the gas would have to be continually regenerated and heated. The gas could be replenished by winds from massive stars, but the source of the heating remains a puzzle. The high-energy diffuse X-rays from the center of the Galaxy appear to be the brightest part of a ridge of X-ray emission observed by Chandra and previous X-ray observatories to extend for several thousand light years along the disk of the Galaxy. The extent of this hot ridge implies that it is probably not being heated by the supermassive black hole at the center of the Milky Way. VLA Radio Image of Galactic Center VLA Radio Image of Galactic Center Scientists have speculated that magnetic turbulence produced by supernova shock waves can heat the gas to 100 million degrees. Alternatively, high-energy protons and electrons produced by supernova shock waves could be the heat source. However, both these possibilities have problems. The spectrum is not consistent with heating by high-energy particles, the observed magnetic field in the Galactic center does not have the proper structure, and the rate of supernova explosions does not appear to be frequent enough to provide the necessary heating. The team also considered whether the high-energy X-rays only appear to be diffuse, and are in fact due to the combined glow of an as yet undetected population of point-like sources, like the diffuse lights of a city seen at a great distance. The difficulty with this explanation is that 200,000 sources would be required in the observed region. Although the total number of stars in this region is about 30 million, the number of stars of the type expected to produce X-rays at the required power and energy is estimated to be only 20 thousand. Further, such a large unresolved population of sources would produce a much smoother X-ray glow than is observed. Chandra Broadband X-ray Image of Galactic Center Chandra Broadband X-ray Image of Galactic Center, Without Point Sources "There is no known class of objects that could account for such a large number of high-energy X-ray sources at the Galactic center," said Fred Baganoff of the Massachusetts Institute of Technology (MIT) in Cambridge, a coauthor of the study. These results were based on over 170 hours of observations of a 17-by-17-arcminute region around the Milky Way's center using Chandra's Advanced CCD Imaging Spectrometer instrument. Other team members from UCLA, MIT, and Penn State are also co-authors on the upcoming paper in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. http://chandra.harvard.edu and http://chandra.nasa.gov
The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120–5453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Privon, G. C.; Treister, E.; Aalto, S.
2017-02-01
We present new Atacama Large Millimeter/submillimeter Array Band 7 (∼340 GHz) observations of the dense gas tracers HCN, HCO{sup +}, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120–5453. We find centrally enhanced HCN (4–3) emission, relative to HCO{sup +} (4–3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ∼1.2 yr{sup −1}, the high HCN/HCO{sup +} ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds maymore » also contribute additional mechanical heating. The starburst size implies a high Σ{sub IR} of 4.7 × 10{sup 12} L {sub ⊙} kpc{sup −2}, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H{sub 2}O lines and find a nuclear dust temperature of ∼40 K. IRAS 13120–5453 has a lower dust temperature and Σ{sub IR} than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120–5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.« less
The Distant Type Ia Supernova Rate
DOE R&D Accomplishments Database
Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.
2002-05-28
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.
First Direct Measurement of C 12 ( C 12 , n ) Mg 23 at Stellar Energies
Bucher, B.; Tang, X. D.; Fang, X.; ...
2015-06-25
Neutrons produced by the carbon fusion reaction 12C( 12C,n) 23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. Here in this paper, we present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C( 12C,p) 23Na . The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate,more » we find that 12C ( 12C,n) 23Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s -process elements, as well as in the production of the important galactic γ-ray emitter 60Fe.« less
Sagittarius A* as an origin of the Galactic PeV cosmic rays?
NASA Astrophysics Data System (ADS)
Fujita, Yutaka; Murase, Kohta; Kimura, Shigeo S.
2017-04-01
Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ("Pevatron"). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 107 yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.
Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy /abs/0809.1648 Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space /0804.4142 A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope
X-ray observations of Galactic H.E.S.S. sources: an update
NASA Astrophysics Data System (ADS)
Puehlhofer, G.; Eger, P.; Sasaki, M.; Gottschall, D.; Capasso, M.; H. E. S. S. Collaboration
2016-06-01
X-ray diagnostics of TeV sources continues to be an important tool to identify the nature of newly detected sources as well as to pinpoint the physics processes that are at work in these highly energetic objects. The contribution aims at giving a review of recent studies that we have performed on TeV sources with H.E.S.S. and XMM-Newton and also other X-ray facilities. Here, we will mainly focus on Galactic objects such as gamma-ray binaries, pulsar wind nebulae, and supernova remnants (SNRs). Particular emphasis will be given to SNR studies, including recently identified SNRs such as HESS J1731-347 and HESS J1534-571 as well as a revisit of RX J1713.7-3946.
Cosmic physics data analysis program
NASA Technical Reports Server (NTRS)
Wilkes, R. Jeffrey
1993-01-01
A data analysis program was carried out to investigate the intensity, propagation, and origin of primary Cosmic Ray Galactic electrons. Scanning was carried out on two new balloon flight experiments as well as the border area of previous experiments. The identification and evaluation of the energies of the primary electrons were carried out. A new analysis of these data were incorporated into an overall evaluation of the roll of electrons in the problem of the origin of cosmic rays. Recent measurements indicate that the earth may be within the expanding Geminga supernova shock wave which is expected to have a major effect upon the propagation and the energy spectrum of galactic electrons. Calculations with the Geminga model indicate that the cut-off energy may be very close to the observed highest energy electrons in our analysis.
A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.
Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S
2011-11-25
The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.
NASA Astrophysics Data System (ADS)
Ranasinghe, S.; Leahy, D. A.
2018-06-01
Accurate distances to supernova remnants (SNRs) are crucial in determining their size, age, luminosity, and evolutionary state. To determine distances, we chose three SNRs from the VLA (Very Large Array) Galactic Plane Survey for extraction of H I absorption spectra. Analysing H I absorption spectra, 13CO emission spectra, and H I and 13CO channel maps, kinematic velocities (or their limits) to the three SNRs were calculated. The three SNRs are probably associated with molecular clouds and the new distance to G20.4 + 0.1, G24.7 - 0.6, and G28.6 - 0.1 are 7.8 ± 0.5 kpc, 3.8 ± 0.2 kpc, and 9.6 ± 0.3 kpc, respectively.
Progenitor Masses for Every Nearby Historic Core-Collapse Supernova
NASA Astrophysics Data System (ADS)
Williams, Benjamin
2016-10-01
Some of the most energetic explosions in the Universe are the core-collapse supernovae (CCSNe) that arise from the death of massive stars. They herald the birth of neutron stars and black holes, are prodigious emitters of neutrinos and gravitational waves, influence galactic hydrodynamics, trigger further star formation, and are a major site for nucleosynthesis, yet even the most basic elements of CCSN theory are poorly constrained by observations. Specifically, there are too few observations to constrain the progenitor mass distribution and fewer observations still to constrain the mapping between progenitor mass and explosion type (e.g. IIP IIL, IIb, Ib/c, etc.). Combining previous measurements with 9 proposed HST pointings covering 13 historic CCSNe, we plan to obtain progenitor mass measurements for all cataloged historic CCSNe within 8 Mpc, optimizing observational mass constraints for CCSN theory.
An Astronomical Time Machine: Light Echoes from Historic Supernovae and Stellar Eruptions
NASA Astrophysics Data System (ADS)
Rest, Armin
2014-01-01
Tycho Brahe's observations of a supernova in 1572 challenged the dogma that the celestial realm was unchanging. Now, 440 years later we have once again seen the light that Tycho saw as simple reflections from walls of Galactic dust. These light echoes, as well as ones detected from other historical events such as Cas A and Eta Carinae's Great Eruption, give us a rare opportunity in astronomy: the direct observation of the cause (the explosion/eruption) and the effect (the remnant) of the same astronomical event. But we can do more: the light echoes let us look at the explosion from different angles, and permit us to map the asymmetries in the explosion. I will discuss how the unprecedented three-dimensional view of these exciting events allows us to unravel some of their secrets.
A dynamical model for gas flows, star formation and nuclear winds in galactic centres
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.
2017-04-01
We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.
NASA Astrophysics Data System (ADS)
Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.
2018-01-01
This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.
HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Daniel A.; Nugent, Peter E.
2017-01-01
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovaemore » that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.« less
Expansion of Kes 73, A Shell Supernova Remnant Containing a Magnetar
NASA Astrophysics Data System (ADS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.
2017-09-01
Of the 30 or so Galactic magnetars, about 8 are in supernova remnants (SNRs). One of the most extreme magnetars, 1E 1841-045, is at the center of the SNR Kes 73 (G27.4+0.0), whose age is uncertain. We measure its expansion using three Chandra observations over 15 years, obtaining a mean rate of 0.023 % +/- 0.002 % yr-1. For a distance of 8.5 kpc, we obtain a shell velocity of 1100 km s-1 and infer a blast wave speed of 1400 km s-1. For Sedov expansion into a uniform medium, this gives an age of 1800 years. Derived emission measures imply an ambient density of about 2 cm-3 and an upper limit on the swept-up mass of about 70 {M}⊙ , with lower limits of tens of {M}⊙ , confirming that Kes 73 is in an advanced evolutionary stage. Our spectral analysis shows no evidence for enhanced abundances as would be expected from a massive progenitor. Our derived total energy is 1.9× {10}51 erg, giving a very conservative lower limit to the magnetar’s initial period of about 3 ms, unless its energy was lost by non-electromagnetic means. We see no evidence of a wind-blown bubble as would be produced by a massive progenitor, or any evidence that the progenitor of Kes 73/1E 1841-045 was anything but a normal red supergiant producing a Type IIP supernova, though a short-lived stripped-envelope progenitor cannot be absolutely excluded. Kes 73's magnetar thus joins SGR 1900+14 as magnetars resulting from relatively low-mass progenitors.
Very-high energy observations of the galactic center region by VERITAS in 2010-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, A.; Beilicke, M.; Buckley, J. H.
2014-08-01
The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significancemore » by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.« less
The variable sky of deep synoptic surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgway, Stephen T.; Matheson, Thomas; Mighell, Kenneth J.
2014-11-20
The discovery of variable and transient sources is an essential product of synoptic surveys. The alert stream will require filtering for personalized criteria—a process managed by a functionality commonly described as a Broker. In order to understand quantitatively the magnitude of the alert generation and Broker tasks, we have undertaken an analysis of the most numerous types of variable targets in the sky—Galactic stars, quasi-stellar objects (QSOs), active galactic nuclei (AGNs), and asteroids. It is found that the Large Synoptic Survey Telescope (LSST) will be capable of discovering ∼10{sup 5} high latitude (|b| > 20°) variable stars per night atmore » the beginning of the survey. (The corresponding number for |b| < 20° is orders of magnitude larger, but subject to caveats concerning extinction and crowding.) However, the number of new discoveries may well drop below 100 per night within less than one year. The same analysis applied to GAIA clarifies the complementarity of the GAIA and LSST surveys. Discovery of AGNs and QSOs are each predicted to begin at ∼3000 per night and decrease by 50 times over four years. Supernovae are expected at ∼1100 per night, and after several survey years will dominate the new variable discovery rate. LSST asteroid discoveries will start at >10{sup 5} per night, and if orbital determination has a 50% success rate per epoch, they will drop below 1000 per night within two years.« less
Nucleosynthesis in Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.
2018-01-01
The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further uncertainties introduced by post-processing. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, and the National Science Foundation Nuclear Theory Program (PHY-1516197).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausegger, Sebastian von; Liu, Hao; Sarkar, Subir
Cosmology has made enormous progress through studies of the cosmic microwave background, however the subtle signals being now sought such as B-mode polarisation due to primordial gravitational waves are increasingly hard to disentangle from residual Galactic foregrounds in the derived CMB maps. We revisit our finding that on large angular scales there are traces of the nearby old supernova remnant Loop I in the WMAP 9-year map of the CMB and confirm this with the new SMICA map from the Planck satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, R.; Conway, J. E.; Aalto, S.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less
Inhomogeneous galactic chemical evolution of r-process elements
NASA Astrophysics Data System (ADS)
Wehmeyer, Benjamin
2018-01-01
Stars provide a fundamental contribution to the cosmic life cycle. Gas clouds form and collapse to stars, experiencing different evolutionary stages according to their properties like mass and metal content. Small stars like our Sun end their life as planetary nebulae, while more massive stars end their evolution with violent explosions like supernovae or hypernovae, leaving behind either a neutron star or a black hole. These compact objects may also merge, leading to a new ejection of material. Today the origin of the heaviest elements is still matter of debate. The relative contributions of the proposed sources of r-process elements (e.g., Supernovae, Neutron Star Mergers) in the early galaxy as well as in the Sun is one of the main uncertainties. We use the inhomogeneous chemical evolution tool “ICE” [1, 2] to study the role of some of the main parameters of the cosmic life cycle. With ICE's high resolution (≥ 20parsec/cell) runs, we are able to get converged simulations of the inhomogeneities in the early Galactic evolution stages, and of the observed scatter of r-process elements in metal-poor stars [3].[1] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2015 MNRAS 452, 1970–1981[2] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2016 AIPC 1743, 040009[3] I. Roederer et al., 2010 ApJ 724:975–993
Fermi-LAT Observations of Supernova Remnants Kesteven 79
NASA Astrophysics Data System (ADS)
Auchettl, Katie; Slane, Patrick; Castro, Daniel
2014-03-01
In this paper, we report on the detection of γ-ray emission coincident with the Galactic supernova remnant (SNR) Kesteven 79 (Kes 79). We analyzed approximately 52 months of data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds, based on the presence of strong 12CO J = 1 → 0 and HCO+ J = 1 → 0 emission and the detection of 1720 MHz line emission toward the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analyzing the production of γ-rays from the decay of π0 into two γ-ray photons. This analysis investigates γ-ray emission coincident with Kes 79, which has a detection significance of ~7σ. Additionally, we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the γ-ray background model, no conclusion can be made about an excess of GeV γ-ray associated with the remnant.
Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B
NASA Astrophysics Data System (ADS)
Pearson, Sarah; Lopez, L. A.; Ramirez-Ruiz, E.; Castro, D.; Yamaguchi, H.; Slane, P. O.; Smith, R. K.
2013-04-01
In this presentation, I present maps of overionized plasma in the Galactic supernova remnant (SNR) W49B based on a recent 220 ks Chandra Advanced CCD Imaging Spectrometer observation. Overionized plasmas (those where ions are stripped of more electrons than they should be for a given electron temperature) have been found recently in several SNRs, and the physical origin of the rapid cooling necessary to produce them remains uncertain. To assess the cooling scenario responsible for overionization, we performed a spatially-resolved spectroscopic analysis of W49B, measuring the elec- tron temperature by modeling the bremsstrahlung continuum and comparing it to the temperature given by the flux ratio of He-like to H-like lines of sulfur, argon, and calcium. Using these results, we find that the west region of W49B is the most overionized, with a gradient of increasing overionization from East to West. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma instead of thermal conduction. Furthermore, we find calcium has the greatest degree of overionization relative to argon and sulfur; this result arises because calcium has a longer recombination timescale. Thus, we caution that measurement of overionization is dependent on which elements one employs in their line ratio analysis.
Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.
The distant type Ia supernova rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pain, R.; Fabbro, S.; Sullivan, M.
2002-05-20
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less
NASA Astrophysics Data System (ADS)
Winteler, Christian
2014-02-01
In this dissertation we present the main features of a new nuclear reaction network evolution code. This new code allows nucleosynthesis calculations for large numbers of nuclides. The main results in this dissertation are all obtained using this new code. The strength of standard big bang nucleosynthesis is, that all primordial abundances are determined by only one free parameter, the baryon-to-photon ratio η. We perform self consistent nucleosynthesis calculations for the latest WMAP value η = (6.16±0.15)×10^-10 . We predict primordial light element abundances: D/H = (2.84 ± 0.23)×10^-5, 3He/H = (1.07 ± 0.09)×10^-5, Yp = 0.2490±0.0005 and 7Li/H = (4.57 ± 0.55)×10^-10, in agreement with current observations and other predictions. We investigate the influence of the main production rate on the 6 Li abundance, but find no significant increase of the predicted value, which is known to be orders of magnitude lower than the observed. The r-process is responsible for the formation of about half of the elements heavier than iron in our solar system. This neutron capture process requires explosive environments with large neutron densities. The exact astrophysical site where the r-process occurs has not yet been identified. We explore jets from magnetorotational core collapse supernovae (MHD jets) as possible r-process site. In a parametric study, assuming adiabatic expansion, we find good agreement with solar system abundances for a superposition of components with different electron fraction (Ye ), ranging from Ye = 0.1 to Ye = 0.3. Fission is found to be important only for Ye ≤ 0.17. The first postprocessing calculations with data from 3D MHD core collapse supernova simulations are performed for two different simulations. Calculations are based on two different methods to extract data from the simulation: tracer particles and a two dimensional, mass weighted histogram. Both results yield almost identical results. We find that both simulations can reproduce the global solar r-process abundance pattern. The ejected mass is found to be in agreement with galactic chemical evolution for a rare event rate of one MHD jet every hundredth to thousandth supernova.
New Hubble Observations of Supernova 1987A Trace Shock Wave
2017-12-08
Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Supernova Remnants in the UWIFE and UWISH2 Surveys
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon
2016-06-01
We have searched for near-infrared [Fe II] (1.644 µm) and H2 1-0 S(1) (2.122 µm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 62°; -1.5° < b < +1.5°), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10-19 W m-2 arcsec-2 which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2-emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R ˜ 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).
Supernova Remnants in the UWIFE and UWISH2 Surveys
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun
2016-06-01
We have searched for near-infrared [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2 ). Both surveys cover about 180 square degrees of the first Galactic quadrant (7 {circ} < l < 62 {circ} ; -1.5 {circ} < b < +1.5 {circ} ), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10^(-19) W m^(-2) arcsec^(-2) which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2 -emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).
Low-z Type Ia Supernova Calibration
NASA Astrophysics Data System (ADS)
Hamuy, Mario
The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp
2017-04-01
We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
Hubble views a spectacular supernova with interstellar material over 160,000 light-years away
2017-12-08
This NASA/ESA Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionized gas, named DEM L316A, are located some 160,000 light-years away within one of the Milky Way’s closest galactic neighbors — the Large Magellanic Cloud (LMC). The explosion that formed DEM L316A was an example of an especially energetic and bright variety of supernova, known as a Type Ia. Such supernova events are thought to occur when a white dwarf star steals more material than it can handle from a nearby companion, and becomes unbalanced. The result is a spectacular release of energy in the form of a bright, violent explosion, which ejects the star’s outer layers into the surrounding space at immense speeds. As this expelled gas travels through the interstellar material, it heats up and ionizes it, producing the faint glow that Hubble’s Wide Field Camera 3 has captured here. The LMC orbits the Milky Way as a satellite galaxy and is the fourth largest in our group of galaxies, the Local Group. DEM L316A is not the only supernova remnant in the LMC; Hubble came across another one in 2010 with SNR 0509, and in 2013 it snapped SNR 0519. Image credit: ESA (European Space Agency)/Hubble & NASA, Y. Chu
Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.
1977-01-01
The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
The Low-luminosity Type IIP Supernova 2016bkv with Early-phase Circumstellar Interaction
NASA Astrophysics Data System (ADS)
Nakaoka, Tatsuya; Kawabata, Koji S.; Maeda, Keiichi; Tanaka, Masaomi; Yamanaka, Masayuki; Moriya, Takashi J.; Tominaga, Nozomu; Morokuma, Tomoki; Takaki, Katsutoshi; Kawabata, Miho; Kawahara, Naoki; Itoh, Ryosuke; Shiki, Kensei; Mori, Hiroki; Hirochi, Jun; Abe, Taisei; Uemura, Makoto; Yoshida, Michitoshi; Akitaya, Hiroshi; Moritani, Yuki; Ueno, Issei; Urano, Takeshi; Isogai, Mizuki; Hanayama, Hidekazu; Nagayama, Takahiro
2018-06-01
We present optical and near-infrared observations of a low-luminosity (LL) Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to ≳140 days since the explosion, indicating that this SN takes one of the longest times to finish the plateau phase among Type IIP SNe (SNe IIP), including LL SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1000–1500 km s‑1, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied by a narrow Hα emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta–CSM interaction scenario, the mass loss rate is estimated to be ∼ 1.7× {10}-2 {M}ȯ yr‑1 within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants (∼ {10}-3 {M}ȯ yr‑1 for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.
The double-degenerate model for the progenitors of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Liu, D.; Wang, B.; Han, Z.
2018-02-01
The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of Type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from an He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in the SN Ia production grid. According to our standard model, the Galactic birth rate of SNe Ia is about 2.4 × 10- 3 yr- 1 for the WD+He subgiant channel of the DD model; the total birth rate is about 3.7 × 10- 3 yr- 1 for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times < 1 Gyr and > 8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions are comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may contribute to at most 16 per cent of all SNe Ia.
Supernova Driving. IV. The Star-formation Rate of Molecular Clouds
NASA Astrophysics Data System (ADS)
Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke; Frimann, Søren
2017-05-01
We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range of cloud physical parameters with realistic statistical distributions, which is an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, SFRff, on the virial parameter, α vir, found in previous simulations, and compare a revised version of our turbulent fragmentation model with the numerical results. The dependences on Mach number, { M }, gas to magnetic pressure ratio, β, and compressive to solenoidal power ratio, χ at fixed α vir are not well constrained, because of random scatter due to time and cloud-to-cloud variations in SFRff. We find that SFRff in MCs can take any value in the range of 0 ≤ SFRff ≲ 0.2, and its probability distribution peaks at a value of SFRff ≈ 0.025, consistent with observations. The values of SFRff and the scatter in the SFRff-α vir relation are consistent with recent measurements in nearby MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs.
Chemical enrichment in isolated barred spiral galaxies
NASA Astrophysics Data System (ADS)
Martel, Hugo; Carles, Christian; Robichaud, Fidèle; Ellison, Sara L.; Williamson, David J.
2018-07-01
To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and active galactic nucleus (AGN) feedback models. The presence of a bar drives a substantial amount of gas towards the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.
NASA Astrophysics Data System (ADS)
Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.
2017-10-01
We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.
Cosmic Explosions in Three Dimensions
NASA Astrophysics Data System (ADS)
Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig
2011-08-01
Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.
NASA Astrophysics Data System (ADS)
MØller, Klaes; Suliga, Anna M.; Tamborra, Irene; Denton, Peter B.
2018-05-01
The detection of the diffuse supernova neutrino background (DSNB) will preciously contribute to gauge the properties of the core-collapse supernova population. We estimate the DSNB event rate in the next-generation neutrino detectors, Hyper-Kamiokande enriched with Gadolinium, JUNO, and DUNE. The determination of the supernova unknowns through the DSNB will be heavily driven by Hyper-Kamiokande, given its higher expected event rate, and complemented by DUNE that will help in reducing the parameters uncertainties. Meanwhile, JUNO will be sensitive to the DSNB signal over the largest energy range. A joint statistical analysis of the expected rates in 20 years of data taking from the above detectors suggests that we will be sensitive to the local supernova rate at most at a 20‑33% level. A non-zero fraction of supernovae forming black holes will be confirmed at a 90% CL, if the true value of that fraction is gtrsim20%. On the other hand, the DSNB events show extremely poor statistical sensitivity to the nuclear equation of state and mass accretion rate of the progenitors forming black holes.
The chemical evolution of Dwarf Galaxies with galactic winds - the role of mass and gas distribution
NASA Astrophysics Data System (ADS)
Hensler, Gerhard; Recchi, Simone
2015-08-01
Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies (DGs), due to their shallower potential wells, are assumed to be more vulnera-ble to these energetic processes. Metal loss through galactic winds is also commonly invoked to explain the low metal content of DGs.Our main aim in this presentation is to show that galactic mass cannot be the only pa-rameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simula-tions of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to lose metals more easily than roundish ones. Consequently, also the final element abundances attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly pro-duced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shal-lower potential wells) more easily develop large-scale outflows; therefore, the fraction of lost metals tends to be higher.Another important issue is that the invoked mechanism to transform central cusps to cored dark-matter distributions by baryon loss due to strong galactic winds cannot work in general, must be critically tested, and should be clearly discernible by the chemical evolution of DGs.
Spectral Modeling of the EGRET 3EG Gamma Ray Sources Near the Galactic Plane
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.; Lin, Y. C.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Reimer, O.; Sreekumar, P.
1999-01-01
The third EGRET catalog lists 84 sources within 10 deg of the Galactic Plane. Five of these are well-known spin-powered pulsars, 2 and possibly 3 others are blazars, and the remaining 74 are classified as unidentified, although 6 of these are likely to be artifacts of nearby strong sources. Several of the remaining 68 unidentified sources have been noted as having positional agreement with supernovae remnants and OB associations. Others may be radio-quiet pulsars like Geminga, and still others may belong to a totally new class of sources. The question of the energy spectral distributions of these sources is an important clue to their identification. In this paper, the spectra of the sources within 10 deg of Galactic Plane are fit with three different functional forms; a single power law, two power laws, and a power law with an exponential cutoff. Where possible, the best fit is selected with statistical tests. Twelve, and possibly an additional 5 sources, are found to have spectra that are fit by a breaking power law or by the power law with exponential cutoff function.
NASA Technical Reports Server (NTRS)
Heckman, Timothy M.
1997-01-01
We have analysed ROSAT X-ray data for a small sample of starburst galaxies in order to understand the physical origin of the X-ray emission and probe the physics and phenomenology of galactic-scale outflows of hot gas ('superwinds') that are driven by tile mechanical energy supplied by the ensemble of supernovae in the starbursts. We have found that the X-ray emission in the ROSAT energy band comes from a population of compact hard sources (most likely X-ray binaries) and hot diffuse gas with a temperature ranging from a few to ten million K. This gas is spatially-extended on galactic scales and its properties are entirely consistent with theoretical expectations for a starburst-driven superwind. The starbursts studied span a range of roughly 1000 in bolometric luminosity and are hosted by galaxies ranging from dwarfs through L* spirals through ma,ior galactic mergers. The X-ray properties of these o@jecls scale in a natural way with the luminosity of tile starburst: more powerful starbursts are more X-ray luminous and create hot outflowing gas whose energy content is likewise larger.
The Astronomical Zoo in MIPSGAL I and II
NASA Astrophysics Data System (ADS)
Kuchar, Thomas A.; Mizuno, D.; Shenoy, S.; Paladini, R.; Kraemer, K.; Price, S.; Marleau, F.; Padgett, D.; Indebetouw, R.; Ingalls, J.; Ali, B.; Berriman, B.; Boulanger, F.; Cutri, R.; Latter, W.; Miville-Deschenes, M.; Molinari, S.; Rebull, L.; Testi, L.; Shipman, R.; Martin, P.; Carey, S.; Noriega-Crespo, A.
2006-12-01
The view of the Galactic Plane at 24 µm is breathtaking. A great part of this beauty arises from the complexity of the Interstellar Medium shaped by endless energetic events driven by HII regions, supernova explosions, Wolf-Rayets, Luminous Blue Variables, and evolved and new born massive stars. A sample of these objects is presented in this poster, gathered from the Multiband Imaging Photometer for Spitzer (MIPS) Survey of the Galactic Plane I and II (MIPSGAL; see Carey et al. 2006, this meeting). The global color properties of these objects are derived by combining the data at 24 and 70um with that from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), and following similar schemes as those used in the Spitzer Surveys of the Magellanic Clouds (Bolatto et al. 2006, astroph-0608561; Meixner et al. 2006, astroph-0606356). This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech.
Abundances and Evolution of Lithium in the Galactic Halo and Disk
NASA Astrophysics Data System (ADS)
Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina
2001-03-01
We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).
Constraints on cosmic ray propagation in the galaxy
NASA Technical Reports Server (NTRS)
Cordes, James M.
1992-01-01
The goal was to derive a more detailed picture of magnetohydrodynamic turbulence in the interstellar medium and its effects on cosmic ray propagation. To do so, radio astronomical observations (scattering and Faraday rotation) were combined with knowledge of solar system spacecraft observations of MHD turbulence, simulations of wave propagation, and modeling of the galactic distribution to improve the knowledge. A more sophisticated model was developed for the galactic distribution of electron density turbulence. Faraday rotation measure data was analyzed to constrain magnetic field fluctuations in the ISM. VLBI observations were acquired of compact sources behind the supernova remnant CTA1. Simple calculations were made about the energies of the turbulence assuming a direct link between electron density and magnetic field variations. A simulation is outlined of cosmic ray propagation through the galaxy using the above results.
Exploring the Dust Content of Galactic Winds with MIPS
NASA Astrophysics Data System (ADS)
Martin, Crystal; Engelbracht, Charles; Gordon, Karl
2005-06-01
This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.
Fermi bubbles as a source of cosmic rays above 1015 eV
NASA Astrophysics Data System (ADS)
Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.
2014-11-01
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, Young Chol; Liu, Hauyu Baobab; Ho, Paul T. P.
2013-08-10
Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include thosemore » previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.« less
SNR-shock impact on star formation
NASA Astrophysics Data System (ADS)
Sasaki, M.; Dincel, B.
2016-06-01
While stars form out of cores of molecular clouds due to gravitational collapse of the clouds, external pressure caused by shock waves of stellar winds or supernovae are believed to be responsible for triggering star formation. However, since massive stars evolve fast and their supernova remnants (SNRs) can only be observed up to an age of around 10^5 years, SNRs found near star-forming regions have most likely resulted from the same generation of stars as the young stellar objects (YSOs). Shock waves of these SNRs might show interaction with the existing YSOs and change their nature. We study YSO candidates in Galactic SNRs CTB 109, IC 443 and HB21, which are known to show interaction with molecular clouds and have associated infrared emission. By photometric and spectroscopic studies of YSOs in the optical and the near-infrared, we aim to find clear observational evidences for an interaction of SNR-shocks with YSOs.
Testing the anisotropy of cosmic acceleration from Pantheon supernovae sample
NASA Astrophysics Data System (ADS)
Sun, Z. Q.; Wang, F. Y.
2018-05-01
In this paper, we study the anisotropy of cosmic acceleration the using Pantheon sample, which includes 1049 spectroscopically confirmed type Ia supernovae (SNe Ia) covering the redshift range 0.01 < z < 2.3. In hemisphere comparison method, we find the dipole direction is (l = 110 ± 11°, b = 15 ± 19°) with the maximum anisotropy level of δ =0.105 {}^{+0.002}_{-0.005}. From the dipole fitting method, we find that the magnitude of anisotropy is A = (2.6 ± 2.6) × 10-4, and the direction of the dipole (l = 108.2°+43.0°-76.9°, b = 7.1°+41.2°-77.5°) in the galactic coordinate system. The result is weakly dependent on redshift from the redshift tomography analysis. The anisotropy is small and the isotropic cosmological model is an excellent approximation.
Proper motion of the radio pulsar B1727-47 and its association with the supernova remnant RCW 114
NASA Astrophysics Data System (ADS)
Shternin, P. S.; Yu, M.; Kirichenko, A. Yu; Shibanov, Yu A.; Danilenko, A. A.; Voronkov, M. A.; Zyuzin, D. A.
2017-12-01
We report preliminary results of the analysis of the proper motion of the bright radio pulsar B1727-47. Using archival Parkes timing data, as well as original and archival ATCA interferometry observations, we, for the first time, constrain the pulsar proper motion at the level of 148±11 mas yr-1. The backward extrapolation of the proper motion vector to the pulsar birth epoch points at the center of the Galactic supernova remnant RCW 114 suggesting the genuine association between the two objects. We discuss the implications of the association and argue that the distance to the system is less than 1 kpc. This value is at least two times lower than the dispersion measure distance estimates. This suggests that the existing Galaxy electron density models are incomplete in the direction to the pulsar.
History of Hubble Space Telescope (HST)
2004-01-01
This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its "star factories" are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.
Nearby Galaxy is a Hotbed of Star Birth Activity
NASA Technical Reports Server (NTRS)
2004-01-01
This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.
Supernovae and the origin of the solar system
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1979-01-01
This review concentrates on recent ideas involving a relationship between the early solar system and supernova explosions. It summarizes briefly the data that has helped inspire those ideas. Because the true relationship is still unknown and generates controversy, the distinct ideas are introduced singly in the historical context of their origins, and the active sense of surprise and controversy is visible. Quotations from pivotal papers are used as part of the exposition. The subject involves equally the isotopic anomalies detected in meteorites and the dynamic events of galactic evolution, nucleosynthesis, and protosolar collapse. Whatever the correct situation is, new connections have been found between the origin of the elements and the formation of the solar system. The objective of this review is to enable interested space scientists to quickly identify the competing points of view and the experiments and theories that have led to them.
Stellar dynamics. The fastest unbound star in our Galaxy ejected by a thermonuclear supernova.
Geier, S; Fürst, F; Ziegerer, E; Kupfer, T; Heber, U; Irrgang, A; Wang, B; Liu, Z; Han, Z; Sesar, B; Levitan, D; Kotak, R; Magnier, E; Smith, K; Burgett, W S; Chambers, K; Flewelling, H; Kaiser, N; Wainscoat, R; Waters, C
2015-03-06
Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ~1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova. Copyright © 2015, American Association for the Advancement of Science.
New possibilities in supernova accretion phase from dense matter effect
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Mirizzi, A.; Saviano, N.
2012-07-01
We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb <= 500 ms), characterizing the SN ν signal by recent hydrodynamical simulations. We find that trajectory-dependent multi-angle effects, associated with the dense ordinary matter suppress collective oscillations, that would have been induced by ν-ν interactions in the deepest SN regions. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.
A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae
NASA Astrophysics Data System (ADS)
Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya
2016-09-01
We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.
The separation distribution and merger rate of double white dwarfs: improved constraints
NASA Astrophysics Data System (ADS)
Maoz, Dan; Hallakoun, Na'ama; Badenes, Carles
2018-05-01
We obtain new and precise information on the double white dwarf (DWD) population and on its gravitational-wave-driven merger rate by combining the constraints on the DWD population from two previous studies on radial velocity variation. One of the studies is based on a sample of white dwarfs (WDs) from the Sloan Digital Sky Survey (SDSS, which with its low spectral resolution probes systems at separations a < 0.05 au) and the other is based on the ESO-VLT Supernova-Ia Progenitor surveY (SPY, which with its high spectral resolution is sensitive to a < 4 au). From a joint likelihood analysis, the DWD fraction among WDs is fbin = 0.095 ± 0.020 (1σ, random) +0.010 (systematic) in the separation range ≲4 au. The index of a power-law distribution of initial WD separations (at the start of solely gravitational-wave-driven binary evolution), N(a)da ∝ aαda, is α = -1.30 ± 0.15 (1σ) +0.05 (systematic). The Galactic WD merger rate per WD is Rmerge = (9.7 ± 1.1) × 10-12 yr-1. Integrated over the Galaxy lifetime, this implies that 8.5-11 per cent of all WDs ever formed have merged with another WD. If most DWD mergers end as more-massive WDs, then some 10 per cent of WDs are DWD-merger products, consistent with the observed fraction of WDs in a `high-mass bump' in the WD mass function. The DWD merger rate is 4.5-7 times the Milky Way's specific Type Ia supernova (SN Ia) rate. If most SN Ia explosions stem from the mergers of some DWDs (say, those with massive-enough binary components) then ˜15 per cent of all WD mergers must lead to a SN Ia.
Particle components of dark matter
Ellis, John
1998-01-01
Particle candidates for astrophysical dark matter are reviewed, with particular emphasis on the lightest supersymmetric particle and the axion. The former is now constrained by accelerator experiments to have a mass above about 40 GeV, and ongoing searches at accelerators, in space, and in underground experiments have a good chance to detect it. A reevaluation of the constraint on the axion from supernova 1987a leaves open an interesting window where it may be detected if it constitutes the galactic halo. PMID:9419324
High-Energy Cosmic Rays from Supernovae
NASA Astrophysics Data System (ADS)
Morlino, Giovanni
Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ˜ 1017 eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.
TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, W. W.; Leahy, D. A., E-mail: tww@bao.ac.cn
The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. Thismore » new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.« less
Type Ia supernova rate studies from the SDSS-II Supernova Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilday, Benjamin
2008-08-01
The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less
ALPACA: An Inexpensive but Uniquely Powerful Imaging Survey Telescope
NASA Astrophysics Data System (ADS)
Crotts, Arlin P.; ALPACA Consortium
2006-12-01
ALPACA (Advanced Liquid-mirror Probe of Astrophysics, Cosmology and Asteroids) is an 8-meter optical telescope destined for Cerro Tololo and designed to scan a strip of sky passing overhead and extending over 1000 square degrees. The imaging survey will be conducted in five photometric bands covering the optical waveband and allow for photometric descrimination of many source types, including supernova types and asteroid categories, and allow photometric redshift determination for both galaxies and supernovae. The ALPACA is intended to extend over at least a three years and reach a cumulative point-source detection of about 28th magnitude AB at 10-sigma. ALPACA will deliver nightly photometry for many classes of variable and moving objects. Most crucial, perhaps, will be the exquisitely deep, numerous and well-sampled multiband lightcurve sample for supernova, particularly SNe Ia to redshifts z 0.8. This is an excellent redshift range for dark energy model descrimination, but also can be used for unprecedentedly sensitive tests and improvements of the SN Ia standard candle relation. There are many other superlative projects that will be conducted with ALPACA data, including studies of high redshift galaxies, quasars and AGN, large scale structure, novae, variable stars, Galactic Bulge microlensing, Galactic structure, stellar populations, extrasolar planets, Kuiper Belt objects, Near-Earth objects and many other classes of targets. ALPACA is based on the 6-meter LZT (Large Zenith Telescope), which is currently operating in British Columbia and producing largely seeing-limited imaging. ALPACA has undergone conceptual design review and is now under design. Seeing tests are underway at sites on Cerro Tololo. We hope to achieve first light on ALPACA by late 2009. Proto-ALPACA is a stage of the project with the full-sized telescope with a smaller field of view, and will be first operational. ALPACA might eventually add instrumentation; a multiobject spectrograph is under study.
Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum
NASA Astrophysics Data System (ADS)
Hidaka, J.; Kajino, T.; Mathews, G. J.
2016-08-01
Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}⊙ , while the standard theoretical value is as much as 25{M}⊙ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}⊙ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.
Stellar Populations. A User Guide from Low to High Redshift
NASA Astrophysics Data System (ADS)
Greggio, Laura; Renzini, Alvio
2011-09-01
This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.
Role of Turbulent Damping in Cosmic Ray Galactic Winds
NASA Astrophysics Data System (ADS)
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
Global Studies of Molecular Clouds in the Galaxy, The Magellanic Clouds, and M31
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick
1999-01-01
Over the course of this grant we used various spacecraft surveys of the Galaxy and M31 in conjunction with our extensive CO spectral line surveys to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective. Our CO surveys of GMCs (Galactic Molecular Clouds) were crucial for interpreting Galactic continuum surveys from satellites such as GRO (Gamma Ray Observatory), ROSAT (Roentgen Satellite), IRAS (Infrared Astronomy Satellite), and COBE (Cosmic Background Explorer Satellite) because they provided the missing dimension of velocity or kinematic distance. GMCs are a well-defined and widespread population of objects whose velocities we could readily measure throughout the Galaxy. Through various emission and absorption mechanisms involving their gas, dust, or associated Population I objects, GMCs modulate the galactic emission in virtually every major wavelength band. Furthermore, the visibility. of GMCs at so many wavelengths provided various methods of resolving the kinematic distance ambiguity for these objects in the inner Galaxy. Summaries of our accomplishments in each of the major wavelength bands discussed in our original proposal are given
A Speeding Binary in the Galactic Halo
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a cool (4,800 K) companion star in a wide orbit, likely separated by several AU.An Unknown Past and FutureWhy are these new observations of J1211 such a big deal? Because all the acceleration scenarios for a star originating in the Galactic disk fail in the case of J1211. The authors find by modeling J1211s motion that the system cant have originated in the Galactic center, so interactions with the supermassive black hole are out. And supernova explosions or dynamical interactions would tear the wide binary apart in the process of accelerating it. Nmeth and collaborators suggest instead that J1211 was either born in the halo population or accreted later from the debris of a destroyed satellite galaxy.J1211s speed is so extreme that its orbit could be either bound or unbound. Interestingly, when the authors model the binarys orbit, they find that the assumed mass of the Milky Ways dark-matter halo determines whether J1211s orbit is bound. This means that future observations of J1211 may provide a new way to probe the Galactic potential and determine the mass of the dark matter halo, in addition to revealing unexpected origins of high-velocity halo stars.CitationPter Nmeth et al 2016 ApJ 821 L13. doi:10.3847/2041-8205/821/1/L13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampadarath, H.; Morgan, J. S.; Tingay, S. J.
2014-01-01
The results of multi-epoch observations of the southern starburst galaxy, NGC 253, with the Australian Long Baseline Array at 2.3 GHz are presented. As with previous radio interferometric observations of this galaxy, no new sources were discovered. By combining the results of this survey with Very Large Array observations at higher frequencies from the literature, spectra were derived and a free-free absorption model was fitted of 20 known sources in NGC 253. The results were found to be consistent with previous studies. The supernova remnant, 5.48-43.3, was imaged with the highest sensitivity and resolution to date, revealing a two-lobed morphology.more » Comparisons with previous observations of similar resolution give an upper limit of 10{sup 4} km s{sup –1} for the expansion speed of this remnant. We derive a supernova rate of <0.2 yr{sup –1} for the inner 300 pc using a model that improves on previous methods by incorporating an improved radio supernova peak luminosity distribution and by making use of multi-wavelength radio data spanning 21 yr. A star formation rate of SFR(M ≥ 5 M {sub ☉}) < 4.9 M {sub ☉} yr{sup –1} was also estimated using the standard relation between supernova and star formation rates. Our improved estimates of supernova and star formation rates are consistent with studies at other wavelengths. The results of our study point to the possible existence of a small population of undetected supernova remnants, suggesting a low rate of radio supernova production in NGC 253.« less
The SN 393-SNR RX J1713.7-3946 (G347.3-0.5) Connection
NASA Astrophysics Data System (ADS)
Fesen, Robert A.; Kremer, Richard; Patnaude, Daniel; Milisavljevic, Dan
2012-02-01
Although the connection of the Chinese "guest" star of 393 AD with the Galactic supernova remnant RX J1713.7-3946 (G347.3-0.5) made by Wang et al. in 1997 is consistent with the remnant's relatively young properties and the guest star's projected position within the "tail" of the constellation Scorpius, there are difficulties with such an association. The brief Chinese texts concerning the 393 AD guest star make no comment about its apparent brightness, stating only that it disappeared after eight months. However, at the remnant's current estimated 1-1.3 kpc distance and A V ~= 3, its supernova (SN) should have been a visually bright object at maximum light (-3.5 to -5.0 mag) if MV = - 17 to -18 and would have remained visible for over a year. The peak brightness sime0 mag adopted by Wang et al. and others would require the RX J1713.7-3946 supernova to have been a very subluminous event similar to or fainter than SN 2005cs in M51. We also note problems connecting SN 393 with a European record in which the Roman poet Claudian describes a visually brilliant star in the heavens around 393 AD that could be readily seen even in midday. Although several authors have suggested this account may be a reference to the Chinese supernova of 393, Scorpius would not be visible near midday in March when the Chinese first reported the 393 guest star. We review both the Chinese and Roman accounts and calculate probable visual brightnesses for a range of SN subtypes and conclude that neither the Chinese nor the Roman descriptions are easily reconciled with an expected RX J1713.7-3946 supernova brightness and duration.
Simulated star formation rate functions at z ˜ 4-7, and the role of feedback in high-z galaxies
NASA Astrophysics Data System (ADS)
Tescari, E.; Katsianis, A.; Wyithe, J. S. B.; Dolag, K.; Tornatore, L.; Barai, P.; Viel, M.; Borgani, S.
2014-03-01
We study the role of feedback from supernovae (SN) and black holes in the evolution of the star formation rate function (SFRF) of z ˜ 4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulations), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both SN-driven galactic winds and active galactic nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z > 5, meaning that it cannot be used to discriminate between feedback models during reionization. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN-driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of `strong' SN winds and early AGN feedback in low-mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z ≳ 4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.
NASA Astrophysics Data System (ADS)
van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André
2015-02-01
We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.
A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations
NASA Astrophysics Data System (ADS)
Rieder, Michael; Teyssier, Romain
2017-12-01
Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.
NASA Astrophysics Data System (ADS)
Villanueva, Steven, Jr.; Gaudi, B. Scott; Pogge, Richard W.; Eastman, Jason D.; Stassun, Keivan G.; Trueblood, Mark; Trueblood, Patricia
2018-01-01
We report on the design and first year of operations of the DEdicated MONitor of EXotransits and Transients (DEMONEXT). DEMONEXT is a 20-inch (0.5-m) robotic telescope using a PlaneWave CDK20 telescope on a Mathis instruments MI-750/1000 fork mount. DEMONEXT is equipped with a 2048 × 2048 pixel Finger Lakes Instruments (FLI) detector; a 10-position filter wheel with an electronic focuser and B, V, R, and I, g\\prime , r\\prime , i\\prime , z\\prime ; and clear filters. DEMONEXT operates in a continuous observing mode and achieves 2-4 mmag raw, unbinned, precision on bright V< 13 targets with 20-120 second exposures, and 1 mmag precision achieved by binning on 5-6 minute timescales. DEMONEXT maintains sub-pixel (< 0.5 pixels) target position stability on the CCD over 8 hours in good observing conditions, with degraded performance in poor weather (< 1 pixel). DEMONEXT achieves 1%-10% photometry on single-epoch targets with V< 17 in 5 minute exposures, with detection thresholds of V≈ 21. The DEMONEXT automated software has produced 143 planetary candidate transit light curves for the KELT collaboration and 48 supernovae and transient light curves for the ASAS-SN supernovae group in the first year of operation. DEMONEXT has also observed for a number of ancillary science projects including Galactic microlensing, active galactic nuclei, stellar variability, and stellar rotation.
Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1
NASA Astrophysics Data System (ADS)
Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji
2014-02-01
We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.
ROSAT-IUE observations of symbiotic stars. The x ray morphology of high latitude associations
NASA Technical Reports Server (NTRS)
Stencel, Robert E.
1993-01-01
The purposes of this grant included: to provide for continuing investigations of the x-ray properties of a class of interacting binaries known as symbiotic stars through analysis of their detection statistics in the ROSAT All-Sky Survey and simultaneous IUE observations; and to obtain and analyze ROSAT images of selected high latitude OB star associations, in order to permit multi-wavelength dissection of their contents and energetics. The first study is expected to result in enhanced information on mass transfer and accretion in such systems, and provide a more quantitative basis for interpretation of the spectra of these and similar stellar and extragalactic systems. This particular effort represents NASA support for an approved collaboration between the PI and the ROSAT Team at MPE Garching. In the second study, we seek to correlate the strength with which the diffuse clouds have been shocked and the recent star formation triggered, namely, the O and B stars of the Association, as well as nearby T Tauri stars. The large scale X-ray emission in deep ROSAT PSPC images will be compared with the optical, infrared, and radio topology of nearby supernova remnants, molecular clouds, and the distribution of massive stars in the regions. This should enable us to test whether the star formation triggering shocks originate from in the galactic plane (nearby supernovae) or from the collision of infalling matter with the disk material (galactic fountain dynamics).
NASA Astrophysics Data System (ADS)
Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.
2017-08-01
Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.
Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution
Lund, Tina; Kneller, James P.
2013-07-16
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein conversion due to the shock wave passage throughmore » the star, and the impact of turbulence. In the Oxygen-Neon-Magnesium supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. Thus the spectral features of collective and shock effects in the neutrino signals from ONeMg supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.« less
Shocked molecular gas and the origin of cosmic rays
NASA Astrophysics Data System (ADS)
Reach, William; Gusdorf, Antoine; Richter, Matthew
2018-06-01
When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.
The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble
NASA Astrophysics Data System (ADS)
Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya
2014-07-01
We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.
Is High Primordial Deuterium Consistent with Galactic Evolution?
NASA Astrophysics Data System (ADS)
Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina
1998-05-01
Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.
NASA Astrophysics Data System (ADS)
Borka Jovanović, V.; Jovanović, P.; Borka, D.
2017-04-01
We use radio-continuum all-sky surveys at 1420 and 408 MHz with the aim to investigate properties of the Galactic radio source Lupus Loop. The survey data at 1435 MHz, with the linear polarization of the southern sky, are also used. We calculate properties of this supernova remnant: the brightness temperature, surface brightness and radio spectral index. To determine its borders and to calculate its properties, we use the method we have developed. The non-thermal nature of its radiation is confirmed. The distribution of spectral index over its area is also given. A significant correlation between the radio spectral index distribution and the corresponding polarized intensity distribution inside the loop borders is found, indicating that the polarization maps could provide us information about the distribution of the interstellar medium, and thus could represent one additional way to search for new Galactic loops.
Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX
NASA Technical Reports Server (NTRS)
Schwadron, N. A.; Adams, F. C.; Christian, E. R.; Desiati, P.; Frisch, P.; Funsten, H. O.; Jokipii, J. R.; McComas, D. J.; Moebius, E.; Zank, G. P.
2014-01-01
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center
NASA Astrophysics Data System (ADS)
Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj
2017-01-01
We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.
Global anisotropies in TeV cosmic rays related to the Sun's local galactic environment from IBEX.
Schwadron, N A; Adams, F C; Christian, E R; Desiati, P; Frisch, P; Funsten, H O; Jokipii, J R; McComas, D J; Moebius, E; Zank, G P
2014-02-28
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc
NASA Astrophysics Data System (ADS)
Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.
2018-02-01
Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38
White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution
NASA Technical Reports Server (NTRS)
Nomoto, K.
1980-01-01
Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.
Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center
NASA Astrophysics Data System (ADS)
2004-06-01
An astronomer using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered that two prominent features rising out of the center of the Milky Way Galaxy are actually the distant edges of the same superstructure. This object, which has the appearance of a "lobe," may have been formed during an epoch of furious star formation. Lobe Galactic center radio image with lobe feature shown in outline. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click for Image w/o lines) Astronomer Casey Law of Northwestern University presented his results at the Denver, Colorado, meeting of the American Astronomical Society. "The center of our Galaxy is an incredibly dynamic place and morphologically very difficult to untangle" said Law. "Among the many features we see there, including supernova remnants, hot star-forming regions, and massive molecular clouds, are two very prominent columns of radio-emitting material that seem to erupt out of the plane of the Galaxy. The nature and origin of these features have been the subjects of much speculation, but with the new data from the Green Bank Telescope we're finally able to discern that they are in fact part of the same superstructure." Much of what we know about the center of our Galaxy has come from studies conducted on radio telescopes. The center of the Milky Way is, in fact, hidden from view to optical telescopes due to intervening clouds of dust and gas. Radio waves, however, are able to pass through the obscuring material and reveal details about the core of our Galaxy. Astronomers now know that this area of the Milky Way -- approximately 26,000 light-years from Earth -- is a densely packed region brimming with hot , young stars, supernova remnants, and more esoteric features -- like long radio-emitting filaments. At the center of it all is a remarkably radio-bright region known as Sagittarius A* (pronounced A-star), which is known to contain a supermassive black hole. Deciphering what all these features are and how they are formed are particularly difficult tasks. To help better understand the nature and possible connection of the columns in this study, Law studied data taken by a team of astronomers who used the GBT to create what is being called "the best single-dish survey of the Galactic center." The team made several maps of the Galactic center at multiple wavelengths, from as short as 3.6 centimeters to as long as 90 centimeters. By comparing an object at multiple radio frequencies (known as the spectral index), astronomers can produce a more complete picture of that object and also determine how the radio waves were produced. Hot bodies, such as stellar nurseries and even our Sun, generate radio waves across the radio spectrum. This is known as thermal emission, and it is characterized by stronger emission at shorter wavelengths. Other radio waves are generated by the acceleration of electrons within a magnetic field, which is the same process that causes quasars and pulsars to emit radio waves. This is known as non-thermal emission and it is characterized by stronger emission at longer wavelengths. "By looking at the features in the Galactic center at multiple frequencies," said Farhad Yusef-Zadeh of Northwestern University and a member of the observation team, "we can not only distinguish between thermal and non-thermal processes, but we can also compare and contrast different features to see if they are related." In looking at the lobe, which rises approximately 450 light-years above the Galactic center, Law determined that the spectral index of both sides of the lobe matched almost identically. "Early radio surveys of the galactic center suggested that the two columns eventually connected above the plane of the Galaxy," said Law. "But the clear correlation we now see between these two distant features strongly suggests that they are part of the same structure and produced by the same process." One of the leading explanations of how these features were produced is by a wind of energetic particles driven by an epoch of starburst near the Galactic center. Law speculates that approximately 10 million years ago, there was a furious period of star formation, with many stars being born and quickly dying in a series of supernovae. "At that time, something caused an acceleration of star formation near the very center of our Galaxy that thrust this material out of the plane of the Galaxy. The hot, young stars would have generated a lot of wind, and the supernovae would have contributed more energy," added Law. "This collective energy would have blown a lot of gas out of the disk for an extended period, eventually producing the features we see today." As the hot gas and particles shot out of the plane they would have "shocked" or energized the gas in the interstellar medium, which would have concentrated and amplified the ambient magnetic fields. The magnetic fields would then have accelerated electrons in the interstellar medium, producing the non-thermal radio profiles of the lobe. Earlier work done by other researchers estimates that this feature could contain approximately 5,000,000 solar masses of material, and that -- in the starburst model -- it would take the energy of possibly 10,000 supernovae to eject that amount of material out of the plane of the Galaxy and produce the feature seen in the lobe. In addition to Law and Yusef-Zadeh, the team that conducted the multiwavelength GBT survey included Douglas Roberts and Jack Hewitt of Northwestern University, and William Cotton and Ron Maddalena of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Additional image without outline is here.
Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium
NASA Astrophysics Data System (ADS)
Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.
2014-06-01
ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.
Initial statistics from the Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-08-01
The Perth Automated Supernova Search uses the 61-cm PLAT (Perth Lowell Automated Telescope) at Perth Observatory, Western Australia. Since 1993 January 1, five confirmed supernovae have been found by the search. The analysis of the first three years of data is discussed, and preliminary results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units'. These values are for a Hubble constant of 75 km per sec per Mpc.
Active galactic nucleus outflows in galaxy discs
NASA Astrophysics Data System (ADS)
Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar
2018-05-01
Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.
NASA Astrophysics Data System (ADS)
Kim, Chang-Goo; Ostriker, Eve C.
2017-09-01
We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.
THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisciunas, Kevin; Gooding, Samuel D.; Li Weidong, E-mail: krisciunas@physics.tamu.edu, E-mail: sam.gooding86@gmail.com, E-mail: weidong@astro.berkeley.edu
2011-09-15
We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s{sup -1}, while Si III and S II showed velocities of 9000 km s{sup -1}. There is also evidence for some unburned carbon at 12,000 km s{sup -1}. SN 2001ay exhibited a decline-rate parameter of {Delta}m{sub 15}(B) = 0.68 {+-} 0.05 mag; this and the B-band photometry at t {approx}> +25 day past maximum make it the most slowlymore » declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M{sub B} = -19.19 and M{sub V} = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2{sigma} level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied {sup 56}Ni yield was (0.58 {+-} 0.15)/{alpha} M{sub sun}, with {alpha} = L{sub max}/E{sub Ni} probably in the range 1.0-1.2. The {sup 56}Ni yield is comparable to that of many Type Ia SNe. The 'normal' {sup 56}Ni yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of {gamma} rays in the inner regions.« less
Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations
NASA Astrophysics Data System (ADS)
Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.
2014-01-01
The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.
The search for faint radio supernova remnants in the outer Galaxy: five new discoveries
NASA Astrophysics Data System (ADS)
Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert
2014-06-01
Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer Galaxy second quadrant of longitude (90° < ℓ < 180°), and suggests that deep mining of other current and future Milky Way surveys will find even more objects and help to reconcile the difference between expected numbers of Galactic SNRs and the smaller number of currently known SNRs.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on image for larger graph This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals. When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions. At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form. How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur. Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches. The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates. Spitzer detected the same crystals in 20 additional galaxies, all belonging to a class called ultraluminous infrared galaxies. These extremely bright and dusty galaxies usually consist of two galaxies in the process of smashing into each other. Astronomers believe massive stars at the hearts of the galaxies are churning out clouds of silicate crystals. This phenomenon may represent a short-lived phase in the evolution of galactic mergers.Detectability and Uncertainties of the Supernova Relic Neutrino Background
NASA Astrophysics Data System (ADS)
Nakazato, Ken'ichiro; Mochida, Eri; Niino, Yuu; Suzuki, Hideyuki
The spectrum of the supernova relic neutrino (SRN) background from past stellar core collapses is calculated and its detectability at SK-Gd (Super-Kamiokande experiment with gadolinium-loaded water) is investigated. Several uncertainties on the flux of SRNs are considered. The core collapse rate at each redshift depends on the cosmic star formation rate, initial mass function and mass range of progenitors that end with a core collapse. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. Furthermore, since the neutrino luminosity of black-hole-forming failed supernovae is higher than that of ordinary supernovae, their contribution to SRNs is quantitatively estimated. Assuming the mass and metallicity ranges of their progenitors, the redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. As a result, it is found that the expected event rate of SRNs is comparable with other backgrounds at SK-Gd. Therefore, the required observation time to detect SRNs at SK-Gd depends strongly on the core collapse rate and it is 10-300 years.
NASA Technical Reports Server (NTRS)
Kistiakowsky, V.; Helfand, D. J.
1993-01-01
Narrow-band near-infrared imaging observations at wavelengths corresponding to forbidden S III 9069,9532 A have been carried out at the MDM 1.3 m telescope for 23 radio sources near the Galactic plane in an attempt to detect emission associated with nebulae marking the endpoints of stellar evolution. While none of the known remnants or remnant candidates were detected, 10 of the 11 PN candidates from a new radio imaging survey of the Galactic plane were clearly seen in the forbidden S III 9532 A line. We present a calculation of the relative efficacy of searching for PNe in the forbidden O III and forbidden S III lines; for the majority of all PNe, the observed forbidden S III 9532 A line is predicted to be stronger than forbiden O III 5007 A whenever the visual extinction exceeds 3 magnitudes. This makes forbidden S III the superior tracer of PNe at distances exceeding a few kpc. We briefly comment on the significance of this approach to defining the spatial distribution of the PN population of the Galaxy.
NASA Technical Reports Server (NTRS)
2005-01-01
This artist's concept illustrates one possible answer to the puzzle of the 'giant galactic blobs.' These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept.Impact of Cosmic-Ray Transport on Galactic Winds
NASA Astrophysics Data System (ADS)
Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.
2018-04-01
The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.
Galactic Cosmic Rays: From Earth to Sources
NASA Technical Reports Server (NTRS)
Brandt, Theresa J.
2012-01-01
For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.
Spectra of Cas A's Highest Velocity Ejecta
NASA Astrophysics Data System (ADS)
Fesen, Robert A.; Milisavljevic, Dan
2010-08-01
The young age and close distance of the Galactic supernova remnant Cassiopeia A (Cas A) make it perhaps our best case study and clearest look at the explosion dynamics of a core-collapse supernova (CCSN). Interestingly, Cas A exhibits two nearly opposing streams of high velocity ejecta or `jets' in its NE and SW regions racing outward at speeds more than twice that of the main shell. The nature of these jets, however, and their possible association with an aspherical supernova explosion mechanism is controversial. A handful of existing low-resolution spectra of outer knots in the NE jet display chemical abundances hinting at an origin from the S-Si-Ca- Ar rich layer deep inside the progenitor. If these abundances could be firmly established in both the NE and SW jets, it would be very strong evidence in support of a highly asymmetrical explosion engine for Cas A's progenitor and, in turn, for CCSNe in general. We request KPNO 4m telescope + MARS time to obtain high quality multi-object spectroscopy of Cas A's highest velocity ejecta to measure their nitrogen, sulfur, oxygen, calcium, and argon abundances. These spectra will be analyzed with the metal-rich shock models of J. Raymond and then compared to current sets of CCSN models paying particular attention to knot composition vs. ejection velocity and ejecta mixing.
Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Shi, Chun-Hui
2014-07-01
We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.
A galactic cloak for an exploding star
2015-02-23
The galaxy pictured here is NGC 4424, located in the constellation of Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above you would be able to see the arms of the galaxy wrapping around its centre to give the characteristic spiral form . In 2012 astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.
Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E
2015-03-06
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.
A Decade of Hubble Space Telescope Science
NASA Astrophysics Data System (ADS)
Livio, Mario; Noll, Keith; Stiavelli, Massimo
2003-06-01
1. HST studies of Mars J. F. Bell; 2. HST images of Jupiter's UV aurora J. T. Clarke; 3. Star formation J. Bally; 4. SN1987A: the birth of a supernova remnant R. McCray; 5. Globular clusters: the view from HST W. E. Harris; 6. Ultraviolet absorption line studies of the Galactic interstellar medium with the Goddard High Resolution Spectrograph B. D. Savage; 7. HST's view of the center of the Milky Way galaxy M. J. Rieke; 8. Stellar populations in dwarf galaxies: a review of the contribution of HST to our understanding of the nearby universe E. Tolstoy; 9. The formation of star clusters B. C. Whitmore; 10. Starburst galaxies observed with the Hubble Space Telescope C. Leitherer; 11. Supermassive black holes F. D. Macchetto; 12. The HST Key Project to measure the Hubble Constant W. L. Freedman, R. C. Kennicutt, J. R. Mould and B. F. Madore; 13. Ho from Type Ia Supernovae G. A. Tammann, A. Sandage and A. Saha; 14. Strong gravitational lensing: cosmology from angels and redshifts A. Tyson.
A high-resolution X-ray image of Puppis A - Inhomogeneities in the interstellar medium
NASA Technical Reports Server (NTRS)
Petre, R.; Kriss, G. A.; Winkler, P. F.; Canizares, C. R.
1982-01-01
Eleven HRI exposures from the Einstein Observatory are assembled into an 0.1-4 keV image of the Puppis A supernova remnant which displays a complex morphology that may reflect the structure of the shocked interstellar medium. In addition to showing a density gradient of a factor greater than four across the approximately 30 pc diameter of the remnant perpendicular to the galactic plane, a shell of X-ray emission is seen surrounding the northern half of Puppis A, coincident with the radio shell, whose edge brightness profile indicates direct hot plasma heating by the blast wave rather than evaporation from clouds. The interior structure of the supernova remnant suggests inhomogeneities whose sizes range over 0.1-5 pc, but with moderate density contrast. Although isolated clouds of 10-30/cu cm density are responsible for the two brightest X-ray features, they represent only a small fraction of the Puppis A mass.
Spallative nucleosynthesis in supernova remnants. II. Time-dependent numerical results
NASA Astrophysics Data System (ADS)
Parizot, Etienne; Drury, Luke
1999-06-01
We calculate the spallative production of light elements associated with the explosion of an isolated supernova in the interstellar medium, using a time-dependent model taking into account the dilution of the ejected enriched material and the adiabatic energy losses. We first derive the injection function of energetic particles (EPs) accelerated at both the forward and the reverse shock, as a function of time. Then we calculate the Be yields obtained in both cases and compare them to the value implied by the observational data for metal-poor stars in the halo of our Galaxy, using both O and Fe data. We find that none of the processes investigated here can account for the amount of Be found in these stars, which confirms the analytical results of Parizot & Drury (1999). We finally analyze the consequences of these results for Galactic chemical evolution, and suggest that a model involving superbubbles might alleviate the energetics problem in a quite natural way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruderman, M.
1984-09-01
The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, amore » substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.« less
XMM-Newton observations of the non-thermal supernova remnant HESS J1731-347 (G353.6-0.7)
NASA Astrophysics Data System (ADS)
Doroshenko, V.; Pühlhofer, G.; Bamba, A.; Acero, F.; Tian, W. W.; Klochkov, D.; Santangelo, A.
2017-12-01
We report on the analysis of XMM-Newton observations of the non-thermal shell-type supernova remnant HESS J1731-347 (G353.6-0.7). For the first time the complete remnant shell has been covered in X-rays, which allowed direct comparison with radio and TeV observations. We carried out a spatially resolved spectral analysis of XMM-Newton data and confirmed the previously reported non-thermal power-law X-ray spectrum of the source with negligible variations of spectral index across the shell. On the other hand, the X-ray absorption column is strongly variable and correlates with the CO emission thus confirming that the absorbing material must be in the foreground and reinforcing the previously suggested lower limit on distance. Finally, we find that the X-ray emission of the remnant is suppressed towards the Galactic plane, which points to lower shock velocities in this region, likely due to the interaction of the shock with the nearby molecular cloud.
Toward the first stars: hints from the CEMP-no stars
NASA Astrophysics Data System (ADS)
Choplin, A.
2017-12-01
CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.
Do supernovae of type 1 paly a role in cosmic-ray production?
NASA Technical Reports Server (NTRS)
Shapiro, M. M.
1985-01-01
A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.
WISEGAL. WISE for the Galactic Plane
NASA Astrophysics Data System (ADS)
Noriega-Crespo, Alberto
There is truly a community effort to study on a global scale the properties of the Milky Way, like its structure, its star formation and interstellar medium, and to use this knowledge to create accurate templates to understand the properties of extragalactic systems. A testimony of this effort are the multi-wavelength surveys of the Galactic Plane that have been recently carried out or are underway from both the ground (e.g. IPHAS, ATLASGAL, JCMT Galactic Plane Survey) or space (GLIMPSE, MIPSGAL, HiGAL). Adding to this wealth of data is the recent release of approximately 57 percent of the whole sky by the Wide-field Infrared Survey Explorer (WISE) team of their high angular resolution and sensitive mid-IR (3.4, 4.6, 12 and 22 micron) images and point source catalogs, encompassing nearly three quarters of the Galactic Plane, including the less studied regions of the Outer Galaxy. The WISE Atlas Images are spectacular, but to take full advantage of them, they need to be transformed from their default Data Number (DN) units into absolute surface brightness calibrated units. Furthermore, to mitigate the contamination effect of the point sources on the extended/diffuse emission, we will remove them and create residual images. This processing will enable a wide range of science projects using the Atlas Images, where measuring the spectral energy distribution of the extended emission is crucial. In this project we propose to transform the W3 (12 micron) and W4 (22 micron) images of the Galactic Plane, in particular of the Outer Galaxy where WISE provides an unique data set, into a background-calibrated, point-source subtracted images using IRIS (DIRBE IRAS Calibrated data). This transformation will allow us to carry out research projects on Massive star formation, the properties of dust in the diffuse ISM, the three dimensional distribution of the dust emission in the Galaxy and the mid/far infrared properties of Supernova Remnants, among others, and to perform a detailed comparison between the characteristics (e.g. star formation rate, dust properties) a of the Inner and Outer Galaxy. The background-calibrated point-source subtracted images will be released to the astronomical community to be fully exploited and to be used in many other science projects, beyond those proposed in this proposal.
Radioactive decay of the late-time light curves of GRB-SNe
NASA Astrophysics Data System (ADS)
Misra, Kuntal; Fruchte, Andrew Steven
2018-04-01
We present the late-time Hubble Space Telescope observations of two GRB associated supernovae, GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data upto ˜ 320 days after the burst, we constrain the late-time decay nature of these supernovae. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB supernovae, GRB 980425/SN 1998bw and the supernova associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co?56Fe radioactive decay rate (0.0098 mag day-1) indicating that there is some leakage of gamma-rays.
Young star clusters in the circumnuclear region of NGC 2110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au
2014-03-20
High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (Hemore » I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.« less
NASA Astrophysics Data System (ADS)
Randriamanakoto, Zara; Väisänen, Petri
2017-03-01
Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.
Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium
NASA Astrophysics Data System (ADS)
Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.
2010-10-01
We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujimoto, Takuji; Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp
Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration γ-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15.more » This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ≳ +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.« less
NASA Astrophysics Data System (ADS)
Wada, Keiichi; Schartmann, Marc; Meijerink, Rowin
2016-09-01
The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2× {10}6{M}⊙ ) black hole using three-dimensional (3D) radiation-hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray-dominated region in the “radiation-driven fountain” with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick “torus” around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳ 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (\\lt 100 {{K}}), dense (\\gt {10}3 {{cm}}-3) phase. The velocity dispersion of H2 in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μm), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.
Supernova kicks and dynamics of compact remnants in the Galactic Centre
NASA Astrophysics Data System (ADS)
Bortolas, Elisa; Mapelli, Michela; Spera, Mario
2017-08-01
The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.
Dissipative hidden sector dark matter
NASA Astrophysics Data System (ADS)
Foot, R.; Vagnozzi, S.
2015-01-01
A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.
On the Energy Spectra of GeV/TeV Cosmic Ray Leptons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe
2011-08-19
Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution ormore » particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic {gamma}-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of supernova remnants. A possible solution to this problem may be that cosmic rays undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, cosmic ray-driven turbulence.« less
OGLE-2014-SN-073 as a fallback accretion powered supernova
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.
2018-03-01
We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.
Search for core-collapse supernovae using the MiniBooNE neutrino detector
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fisher, M.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2010-02-01
We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.
Solar sailing for radio astronomy and seti: An extrasolar mission to 550 AU
NASA Astrophysics Data System (ADS)
Matloff, Gregory L.
1994-11-01
Current or near-term technology is capable of propelling small payloads to 550 Astronomical Units (AU) on flights of decades duration. Beyond 550 AU, natural or artificial electromagnetic (EM) radiation emitted by galactic objects occulted by the Sun is greatly amplified by solar gravitational focusing. Propulsion systems capable of launching such an extrasolar probe include Jupiter gravity-assist, flat or inflatable solar sails unfurled from parabolic solar orbits sunward of the Earth, and the proton-reflecting 'Magsail'. Best performance for a near-future probe is obtained using the solar sail; a superconducting Magsail has great potential for course-correction purposes. A properly configured solar sail can also serve as a radio telescope and as a solar-energy collector to power the probe's instrumentation. The best direction for the probe's trajectory is towards the galactic anti-center. This is because of the astrophysical interest in amplified EM radiation from the galactic center and the large number of Sunlike stars in the galactic arm. Many of these stars could be surveyed for artificial radio emissions using the proposed probe by astronomers engaged in SETI (Search for ExtraTerrestrial Intelligence). By chance, the anti-galactic-center is not too far from the positions on the celestial sphere of the nearby Sunlike stars Tau Ceti and Epsilon Eridani. This random celestial arrangement increases the potential interest of the proposed mission. While focused on or near the galactic center, the probe could also examine a number of objects of astrophysical interest. These include supernova remnants, HI and HIII regions, and neutron stars or black holes near the galctic center. A number of alternative directions for probes of this type exists. Missions could be flown to sample amplified radio emissions from globular clusters such as M13 and M22 and extra-galactic objects such as the Magellanic Clouds and the Great Spiral Galaxy (M31) in Andromeda. For a number of reasons, the galactic center is superior to these objects, at least for the first flights of the SETI-sail.
Terrestrial effects of high energy cosmic rays
NASA Astrophysics Data System (ADS)
Atri, Dimitra
On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.
Terrestrial Effects of High Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Atri, Dimitra
2011-01-01
On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.
NASA Astrophysics Data System (ADS)
Lucas, William Evan
2015-06-01
The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molecular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to be subject to such extreme tidal forces that a single cloud of gas is extended to form a long stream. The ribbon grows to the point that it self-intersects and forms a ring-like structure. Its complexity depends on the orbit of the original cloud. The position-velocity data is compared with observations, and similarities are noted.
Catalog of Interstellar HI Shells Discovered in the SETHI Database
NASA Astrophysics Data System (ADS)
Sallmen, Shauna; Korpela, E. J.; Lo, C.; Tennyson, E.; Bellehumeur, B.; Douglas, K. A.
2013-01-01
The interstellar medium (ISM) plays a key role in the development and evolution of galaxies, including our own. The effects of supernovae and stellar winds from generations of stars produce a turbulent, multiphase medium filled with complex interacting structures. As hot gas expands outward, it sweeps up cold neutral material into a shell. Over time, the shells expand and cool, mixing with the ambient material. Shells and other features are therefore evidence of how energy and matter released by stars are redistributed, eventually resulting in the formation of new generations of stars. Several models have contributed to our broad understanding of the physical state and evolution of gas phases in our Galaxy, but a complete, detailed picture remains elusive. In general, random supernovae result in a turbulent ISM with hot, low-density gas surrounding warm & cool clouds. However, the extent to which supernovae disrupt the ambient medium is controversial, the energy inputs of shells are poorly understood, and the role of magnetic fields is unclear. Clearly, HI (neutral hydrogen) shells are central to our understanding of the ISM, so we need to study as many as possible, at all stages of evolution. Our census of Galactic HI shells ISM is incomplete because: (1) Many searches for shells use expansion as key criterion for shell identification, biasing against older, more evolved shells. (2) Shells with broken outlines are missed in most computer-based searches. The human eye is better at searching for such large, irregular features. (3) Most searches carried out in high-resolution data are restricted to the Galactic plane. We have visually examined the SETHI (Search for Extraterrestrial HI) database, searching for shell-like structures. This 21-cm radio survey has an angular resolution of 0.03° and a velocity resolution of 1.5 km/s. We present basic information (location, radial velocity, angular size, shape) for over 70 previously unidentified HI shells. We also discuss the kinematic distances and expansion velocities of shells in the catalog, and its completeness. This work has been supported by NSF grants AST/RUI-0507326, AST-0307596, and AST-0709347, Research Corporation award CC6476/6255, and a WSGC seed grant.
NASA Astrophysics Data System (ADS)
Fischer, John Arthur
For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no significant evidence of a delayed fraction at all in our photometric sample.
The Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-12-01
An automated search for supernovae in late spiral galaxies has been established at Perth Observatory, Western Australia. This automated search uses three low-cost PC-clone computers, a liquid nitrogen cooled CCD camera built locally, and a 61-cm telescope automated for the search. The images are all analysed automatically in real-time by routines in Perth Vista, the image processing system ported to the PC architecture for the search system. The telescope control software written for the project, Teljoy, maintains open-loop position accuracy better than 30" of arc after hundreds of jumps over an entire night. Total capital cost to establish and run this supernova search over the seven years of development and operation was around US$30,000. To date, the system has discovered a total of 6 confirmed supernovae, made an independent detection of a seventh, and detected one unconfirmed event assumed to be a supernova. The various software and hardware components of the search system are described in detail, the analysis of the first three years of data is discussed, and results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units', expressed in supernovae per 10^10 solar blue luminosity galaxy per century. These values are for a Hubble constant of 75 km/s per Mpc, and scale as (H0/75)^2. The small number of discoveries has left large statistical uncertainties, but our strategy of frequent observations has reduced systematic errors - altering detection threshold or peak supernova luminosity by +/- 0.5 mag changes estimated rates by only around 20%. Similarly, adoption of different light curve templates for Type Ia and Type IIP supernovae has a minimal effect on the final statistics (2% and 4% change, respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablimit, Iminhaji; Maeda, Keiichi; Li, Xiang-Dong
Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering bothmore » gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower SNe Ia rate than is observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Yutaka; Murase, Kohta; Kimura, Shigeo S., E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: murase@psu.edu, E-mail: szk323@psu.edu
Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ('Pevatron'). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 10{sup 7} yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galacticmore » halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.« less
The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.
There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances formore » a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.« less
NASA Astrophysics Data System (ADS)
Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.
2008-12-01
The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.
A window on first-stars models from studies of dwarf galaxies and galactic halo stars
NASA Astrophysics Data System (ADS)
Venkatesan, Aparna
2018-06-01
Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.
The First Reported Infrared Emission from the SN1006 Remnant
NASA Technical Reports Server (NTRS)
Winkler, P. Frank; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.
2012-01-01
We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 m image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 m emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lowera relic effect from an earlier epoch when the shock was encountering a lower densitybut higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SNIa remnants, SN1006 shows no evidence for dust grain formation in the supernova ejecta.
COSMIC-LAB: unveling the true nature of Terzan 5, a pristine fragment of the Galactic bulge
NASA Astrophysics Data System (ADS)
Ferraro, Francesco
2012-10-01
We have discovered that Terzan5, a stellar system in the Galactic bulge, harbors two stellar populations with different iron content {Delta[Fe/H] 0.5 dex} and possibly different ages {Ferraro et al. 2009, Nature 462, 483}. Moreover, the observed chemical patterns {Origlia et al. 2011, ApJ 726, L20} significantly differ from those observed in any known genuine GC. These evidences demonstrate that, similarly to omega Centauri in the halo, Terzan5 is NOT a genuine globular cluster {GC}, but a stellar system that was able to retain the gas ejected by violent supernova {SN} explosions.Indeed the striking chemical similarity with the bulge stars suggests that Terzan5 and the Galactic bulge shared the same star formation and chemical enrichment processes, driven by an exceptional amount of SNeII explosions {this is also the key to understand the origin of the extraordinary population of millisecond pulsars in Terzan5}. A quite intriguing scenario is emerging from these observations: Terzan5 could be the relic of one of the massive clumps that contributed {through strong dynamical interactions with other pre-formed and internally-evolved sub-structures} to the formation of the Galactic bulge.Here we propose to use the WFC3 to accurately measure the age of the two populations directly from the main sequence turn-off luminosities. Precisely dating the first and second burst of star formation is a crucial step for the correct reconstruction of the evolutionary history of Terzan5, with a significant impact on our comprehension of the formation processes of the Milky Way bulge and, more in general, of galactic spheroids.
Searching for fossil fragments of the Galactic bulge formation process
NASA Astrophysics Data System (ADS)
Ferraro, Francesco
2017-08-01
We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.
Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustard, Chad; Zweibel, Ellen G.; Cotter, Cory, E-mail: bustard@wisc.edu
2017-01-20
There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, maymore » accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.« less
A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars
NASA Astrophysics Data System (ADS)
Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge
2018-04-01
We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 < [Fe/H] < ‑0.9 and 4200 < T eff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ ‑1.4 ± 0.1. The data with [Fe/H] > ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
O'Connor, Evan Patrick
Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.
THE SN 393-SNR RX J1713.7-3946 (G347.3-0.5) CONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fesen, Robert A.; Milisavljevic, Dan; Kremer, Richard
Although the connection of the Chinese 'guest' star of 393 AD with the Galactic supernova remnant RX J1713.7-3946 (G347.3-0.5) made by Wang et al. in 1997 is consistent with the remnant's relatively young properties and the guest star's projected position within the 'tail' of the constellation Scorpius, there are difficulties with such an association. The brief Chinese texts concerning the 393 AD guest star make no comment about its apparent brightness, stating only that it disappeared after eight months. However, at the remnant's current estimated 1-1.3 kpc distance and A{sub V} {approx_equal} 3, its supernova (SN) should have been amore » visually bright object at maximum light (-3.5 to -5.0 mag) if M{sub V} = - 17 to -18 and would have remained visible for over a year. The peak brightness {approx_equal}0 mag adopted by Wang et al. and others would require the RX J1713.7-3946 supernova to have been a very subluminous event similar to or fainter than SN 2005cs in M51. We also note problems connecting SN 393 with a European record in which the Roman poet Claudian describes a visually brilliant star in the heavens around 393 AD that could be readily seen even in midday. Although several authors have suggested this account may be a reference to the Chinese supernova of 393, Scorpius would not be visible near midday in March when the Chinese first reported the 393 guest star. We review both the Chinese and Roman accounts and calculate probable visual brightnesses for a range of SN subtypes and conclude that neither the Chinese nor the Roman descriptions are easily reconciled with an expected RX J1713.7-3946 supernova brightness and duration.« less
The Origin of Cosmic Rays: What can GLAST Say?
NASA Technical Reports Server (NTRS)
Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger
2000-01-01
Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.
High-Energy Astrophysics. American and Soviet Perspectives
NASA Technical Reports Server (NTRS)
Lewin, Walter H. G. (Editor); Clark, George W. (Editor); Sunyaev, Rashid A. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)
1991-01-01
The proceedings of the American-Soviet high energy astrophysics workshop, which was held at the Institute for Space Research in Moscow and the Abastumani Laboratory and Observatory in the republic of Georgia from June 18 to July 1, 1989, is presented. Topics discussed at the workshop include the inflationary universe; the large scale structure of the universe, the diffuse x-ray background; gravitational lenses, quasars, and active galactic nuclei (AGNs); infrared galaxies (results from IRAS); Supernova 1987A; millisecond radio pulsars; quasi-periodic oscillations in the x-ray flux of low mass X-ray binaries; and gamma ray bursts.
A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2009-01-01
Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.
Black holes, quasars, and the universe /2nd edition/
NASA Technical Reports Server (NTRS)
Shipman, H. L.
1980-01-01
Topics of astronomy are discussed in terms of black holes, galaxies, quasars, and models of the universe. Black holes are approached through consideration of stellar evolution, white dwarfs, supernovae, neutron stars, pulsars, the event horizon, Cygnus X-1, white holes, and worm holes. Attention is also given to radio waves from high speed electrons, the radiation emitted by quasars, active galaxies, galactic energy sources, and interpretations of the redshift. Finally, the life cycle of the universe is deliberated, along with the cosmic time scale, evidence for the Big Bang, and the future of the universe.
Peculiar Hot Spots in the Monogem Ring Region
NASA Technical Reports Server (NTRS)
Plucinsky, Paul
2000-01-01
The subject grant is for the analysis of an ASCA observation of a bright extended object detected during the ROSAT All-sky Survey. The purpose of the proposal is to identify the nature of the source. The likely possibilities are a galactic supernova remnant and nearby cluster. There has been no progress on writing the paper for this analysis given that the PI has been consumed with the first year of Chandra operations. Nevertheless, these observations and the followup optical observations confirm that the source is a cluster of galaxies. The PI hopes to finish the analysis and the paper this year.
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
CGM Evolution of a Simulated Dwarf Galaxy
NASA Astrophysics Data System (ADS)
Sheehan-Klenk, Patrick; Christensen, Charlotte
2018-06-01
The circumgalactic medium (CGM), which is fed by galactic outflows, is intrinsically connected to star formation and galactic evolution. We followed the evolution of the CGM of a simulated dwarf galaxy of mass 4.75 × 1010 solar masses., through five timesteps corresponding to z = 3, 2, 1, 0.5, 0.15. The simulation includes metal line cooling, metal diffusion, and supernova feedback, and the resulting galaxy has a realistic stellar mass and metallicity. We measured the surface densities of HI, CIV and OVI in the CGM gas composition and analyzed their trends in relation to the galaxy's evolution. Additionally, we created mock absorption line spectra, which we used to find the mean equivalent width for sight lines spaced 0.1R/Rvir apart. From this analysis, we saw there was high metallicity at large radii, and over time the CGM cooled and became more ordered. We note the impact of a merger with a smaller galaxy at z = 0.5. We compare these results to observations.
Microscopic Processes in Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.;
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Fractionation of uranium isotopes in minerals screened by gamma spectrometry.
NASA Astrophysics Data System (ADS)
Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.
2008-03-01
At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.
r-process enhanched metal-poor stars
NASA Astrophysics Data System (ADS)
Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.
2002-12-01
Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.
The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.
2016-08-01
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.
THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less
Radiation from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Gamma-ray Astrophysics with AGILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Francesco; Tavani, M.; Barbiellini, G.
2007-07-12
AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
Integral luminosities of radio pulsars
NASA Astrophysics Data System (ADS)
Malov, I.; Malov, O.
The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period P<0.1 s (fast pulsars) are calculated using new data on their compilated spectra. The values of L lie in the range 10^27-10^30 erg/s for 88% of the normal pulsars and in the range 10^28-10^31 erg/s for 88% of the fast objects. The high correlation between L and estimates l=S x d^2 from the known catalogues is detected. It is shown that the coefficient K of a transformation of the neutron star rotation energy into radio emission increases when P grows for normal pulsars and falls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.
HESS J1640-465 - an exceptionally luminous TeV gamma-ray SNR
NASA Astrophysics Data System (ADS)
Eger, Peter; Ohm, Stefan
HESS J1640-465 is among the brightest Galactic TeV gamma-ray sources ever discovered by the High Energy Stereoscopic System (H.E.S.S.). Its likely association with the shell-type supernova remnant (SNR) G338.3-0.0 at a distance of ˜10 kpc makes it the most luminous Galactic source in the TeV regime. Our recent analysis of follow-up observations with H.E.S.S. reveal a significantly extended TeV morphology with a substantial overlap with the northern part of the SNR shell. Furthermore, the source features a seamless powerlaw spectrum over four orders of magnitude from GeV to TeV energies, with a spectral index of Gamma = 2.15± 0.10_mathrm{stat}± 0.10_mathrm{sys} and a cut-off energy of E_c = 7.3(+2.5}_{-1.8) TeV. These new spectral and morphological results suggest that a significant fraction of the TeV emission is likely of hadronic origin where the product of total proton energy and mean target density could be as high as W_p n_H ˜ 4 × 10(52}(d/10mathrm{kpc) )(2) erg cm(-3) . This would make HESS J1640-465 one of the most extreme and efficient Galactic particle accelerators.
At the Heart of Blobs Artist Concept
2005-01-11
This artist's concept illustrates one possible answer to the puzzle of the "giant galactic blobs." These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept. http://photojournal.jpl.nasa.gov/catalog/PIA07221
Broadband Observations and Modeling of the Shell-Type Supernova Remnant G347.3-0.5
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Slane, Patrick O.; Gaensler, Bryan M.
2002-01-01
The supernova remnant G347.3-0.5 emits a featureless power law in X-rays, thought to indicate shock acceleration of electrons to high energies. We here produce a broadband spectrum of the bright northwest limb of this source by combining radio observations from the Australia Telescope Compact Array (ATCA), X-ray observations from the Advanced Satellite for Cosmology and Astrophysics (ASCA), and TeV gamma-ray observations from the CANGAROO imaging Cerenkov telescope. We assume that this emission is produced by an electron population generated by diffusive shock acceleration at the remnant forward shock. The nonlinear aspects of the particle acceleration force a connection between the widely different wavelength bands and between the electrons and the unseen ions, presumably accelerated simultaneously with the electrons. This allows us to infer the relativistic proton spectrum and estimate ambient parameters such as the supernova explosion energy, magnetic field, matter density in the emission region, and efficiency of the shock acceleration process. We find convincing evidence that the shock acceleration is efficient, placing greater than 25% of the shock kinetic energy flux into relativistic ions. Despite this high efficiency, the maximum electron and proton energies, while depending somewhat on assumptions for the compression of the magnetic field in the shock, are well below the observed 'knee' at 10(exp 15) eV in the Galactic cosmic-ray spectrum.
The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less
The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2018-04-01
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less
Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae
NASA Technical Reports Server (NTRS)
DiStefano, R.
1996-01-01
In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.
Neutrino Flavor Evolution in Turbulent Supernova Matter
NASA Astrophysics Data System (ADS)
Lund, Tina; Kneller, James P.
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.
NASA Technical Reports Server (NTRS)
Shaw, R. L.
1979-01-01
A sample of 228 supernovae that occurred in galaxies with known redshifts is used to show that the mean projected linear supernova distance from the center of the parent galaxy increases with increasing redshift. This effect is interpreted as an observational bias: the discovery rate of supernovae is reduced in the inner parts of distant, poorly resolved galaxies. Even under the optimistic assumption that no selection effects work in galaxies closer than 33 Mpc, about 50% of all supernovae are lost in the inner regions of galaxies beyond 150 Mpc. This observational bias must be taken into account in the derivation of statistical properties of supernovae.
An extremely luminous X-ray outburst at the birth of a supernova
NASA Astrophysics Data System (ADS)
Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.
2008-05-01
Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.
An extremely luminous X-ray outburst at the birth of a supernova.
Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G
2008-05-22
Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.
Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.
Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai
2016-07-28
Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-07-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.
Modeling for Stellar Feedback in Galaxy Formation Simulations
NASA Astrophysics Data System (ADS)
Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena
2017-02-01
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.
Is Molecular Cloud Turbulence Driven by External Supernova Explosions?
NASA Astrophysics Data System (ADS)
Seifried, Daniel; Walch, Stefanie; Haid, Sebastian; Girichidis, Philipp; Naab, Thorsten
2018-03-01
We present high-resolution (∼0.1 pc), hydrodynamical and magnetohydrodynamical simulations to investigate whether the observed level of molecular cloud (MC) turbulence can be generated and maintained by external supernova (SN) explosions. The MCs are formed self-consistently within their large-scale galactic environment following the non-equilibrium formation of H2 and CO, including (self-) shielding and important heating and cooling processes. The MCs inherit their initial level of turbulence from the diffuse ISM, where turbulence is injected by SN explosions. However, by systematically exploring the effect of individual SNe going off outside the clouds, we show that at later stages the importance of SN-driven turbulence is decreased significantly. This holds for different MC masses as well as for MCs with and without magnetic fields. The SN impact also decreases rapidly with larger distances. Nearby SNe (d ∼ 25 pc) boost the turbulent velocity dispersions of the MC by up to 70% (up to a few km s‑1). For d > 50 pc, however, their impact decreases fast with increasing d and is almost negligible. For all probed distances the gain in velocity dispersion decays rapidly within a few 100 kyr. This is significantly shorter than the average timescale for an MC to be hit by a nearby SN under solar neighborhood conditions (∼2 Myr). Hence, at these conditions SNe are not able to sustain the observed level of MC turbulence. However, in environments with high gas surface densities and SN rates, like the Central Molecular Zone, observed elevated MC dispersions could be triggered by external SNe.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-04-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
NASA Astrophysics Data System (ADS)
Wu, C.; Wang, B.; Liu, D.; Han, Z.
2017-07-01
Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.
Galactic fly-bys: New source of lithium production
NASA Astrophysics Data System (ADS)
Prodanović, Tijana; Bogdanović, Tamara; Urošević, Dejan
2013-05-01
Observations of low-metallicity halo stars have revealed a puzzling result: the abundance of Li7 in these stars is at least three times lower than their predicted primordial abundance. It is unclear whether the cause of this disagreement is a lack of understanding of lithium destruction mechanisms in stars or the non-standard physics behind the big bang nucleosynthesis (BBN). Uncertainties related to the destruction of lithium in stars can be circumvented if lithium abundance is measured in the “pristine” gas of the low metallicity systems. The first measurement in one such system, the small magellanic cloud (SMC), was found to be at the level of the pure expected primordial value, but is on the other hand, just barely consistent with the expected galactic abundance for the system at the SMC metallicity, where important lithium quantity was also produced in interactions of galactic cosmic rays and presents an addition to the already present primordial abundance. Because of the importance of the SMC lithium measurement for the resolution of the lithium problem, we here draw attention to the possibility of another post-BBN production channel of lithium, which could present an important addition to the observed SMC lithium abundance. Besides standard galactic cosmic rays, additional post-BBN production of lithium might come from cosmic rays accelerated in galaxy-galaxy interactions. This might be important for a system such is the SMC, which has experienced galaxy harassment in its history. Within a simplified but illustrative framework we demonstrate that large-scale tidal shocks from a few galactic fly-bys can possibly produce lithium in amounts comparable to those expected from the interactions of galactic cosmic-rays produced in supernovae over the entire history of a system. In case of the SMC, we find that only two such fly-bys could possibly account for as much lithium as the standard, galactic cosmic ray production channel. However, adding any a new mechanism for post-BBN production of lithium, like the one proposed here, would contribute to the observed SMC lithium abundance, causing this measurement to be more in tension with the primordial abundance predicted by the standard BBN.
Multi-species first-principles simulations of particle acceleration at shocks
NASA Astrophysics Data System (ADS)
Caprioli, Damiano
Astrophysical shocks are known to be prominent sources of non-thermal particles and emission. In particular, strong shocks at supernova remnant blast waves are thought to accelerate Galactic cosmic rays (CRs) up to about 10^17eV via diffusive shock acceleration (DSA). The chemical composition of Galactic CRs, now measured with great accuracy by payloads and satellites, is reminiscent of that of the typical interstellar medium, although with some significant deviations. Observations reveal: 1) an electron/proton ratio of about 1% at about 10 GeV, (2) a general enhancement of the refractory elements relative to the volatile ones, (3) among the volatile elements, an enhancement of the heavier elements relative to the lighter ones, and (4) a discrepant hardening of CR nuclei heavier than hydrogen. Such peculiar trends contain precious information about the dependence of the acceleration process on the particle mass/charge ratio, a trend that has no theoretical counterpart in the DSA theory, yet. Building on our recent successes in modeling electron and proton DSA at non-relativistic astrophysical shocks via first-principles kinetic simulations, we will perform multispecies particle-in-cells simulations of such systems also including nuclei heavier than hydrogen, in order to investigate thermalization, injection, and acceleration of species with different mass/charge ratio. We will also analyze how the simulation outputs compare with the observed CR abundances, in order to build a model for DSA that accounts for the relative acceleration efficiency of energetic electrons, protons, and heavier ions. Finally, we will assess the possible contribution of accelerated heavy ions, especially helium, to the generation of magnetic turbulence via CR-driven instabilities - crucial to foster rapid particle energgization- and to the hadronic gamma-ray emission from young supernova remnants.
J-GEM follow-up observations of the gravitational wave source GW151226*
NASA Astrophysics Data System (ADS)
Yoshida, Michitoshi; Utsumi, Yousuke; Tominaga, Nozomu; Morokuma, Tomoki; Tanaka, Masaomi; Asakura, Yuichiro; Matsubayashi, Kazuya; Ohta, Kouji; Abe, Fumio; Chimasu, Sho; Furusawa, Hisanori; Itoh, Ryosuke; Itoh, Yoichi; Kanda, Yuka; Kawabata, Koji S.; Kawabata, Miho; Koshida, Shintaro; Koshimoto, Naoki; Kuroda, Daisuke; Moritani, Yuki; Motohara, Kentaro; Murata, Katsuhiro L.; Nagayama, Takahiro; Nakaoka, Tatsuya; Nakata, Fumiaki; Nishioka, Tsubasa; Saito, Yoshihiko; Terai, Tsuyoshi; Tristram, Paul J.; Yanagisawa, Kenshi; Yasuda, Naoki; Doi, Mamoru; Fujisawa, Kenta; Kawachi, Akiko; Kawai, Nobuyuki; Tamura, Yoichi; Uemura, Makoto; Yatsu, Yoichi
2017-02-01
We report the results of optical-infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with the Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 d after the GW event and covered 778 deg2 centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from ˜12 d after the event and covered an area of 63.5 deg2 of the highest probability region of the northern sky with limiting magnitudes of 24.6 and 23.8 for the i and z bands, respectively. MOA-cam3 covered 145 deg2 of the skymap with the MOA-red filter ˜2.5 mon after the GW alert. The total area covered by the wide-field surveys was 986.5 deg2. The integrated detection probability for the observed area was ˜29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 d after the event. A total of 238 nearby (≤100 Mpc) galaxies were observed with a typical I band limiting magnitude of ˜19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two thirds of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.
Probing the neutrino mass hierarchy with the rise time of a supernova burst
NASA Astrophysics Data System (ADS)
Serpico, Pasquale D.; Chakraborty, Sovan; Fischer, Tobias; Hüdepohl, Lorenz; Janka, Hans-Thomas; Mirizzi, Alessandro
2012-04-01
The rise time of a Galactic supernova (SN) ν¯e light curve, observable at a high-statistics experiment such as the Icecube Cherenkov detector, can provide a diagnostic tool for the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ13. Thanks to the combination of matter suppression of collective effects at early post-bounce times on one hand and the presence of the ordinary Mikheyev-Smirnov-Wolfenstein effect in the outer layers of the SN on the other hand, a sufficiently fast rise time on O(100)ms scale is indicative of an inverted mass hierarchy. We investigate results from an extensive set of stellar core-collapse simulations, providing a first exploration of the astrophysical robustness of these features. We find that for all the models analyzed (sharing the same weak interaction microphysics) the rise times for the same hierarchy are similar not only qualitatively, but also quantitatively, with the signals for the two classes of hierarchies significantly separated. We show via Monte Carlo simulations that the two cases should be distinguishable at IceCube for SNe at a typical Galactic distance 99% of the time. Finally, a preliminary survey seems to show that the faster rise time for inverted hierarchy as compared to normal hierarchy is a qualitatively robust feature predicted by several simulation groups. Since the viability of this signature ultimately depends on the quantitative assessment of theoretical/numerical uncertainties, our results motivate an extensive campaign of comparison of different code predictions at early accretion times with implementation of microphysics of comparable sophistication, including effects such as nucleon recoils in weak interactions.
Expansion of Kes 73, a shell supernova remnant containing a magnetar
NASA Astrophysics Data System (ADS)
Borkowski, Kazimierz
2014-09-01
Formation and evolution of highly magnetized neutron stars (magnetars) remain poorly understood. We can learn about magnetars by studying their remnants. Kes 73 is a young supernova remnant containing a magnetar. But basic properties of Kes 73, including its age, remain poorly known. We propose a third-epoch observation of Kes 73 with Chandra. When combined with the 2000 and 2006 observations, this will allow for determination of the remnant's age through expansion rate measurements. We will also search for spatial variations in expansion rate that will help in understanding of the remnant's dynamics. New observations will also be used to determine abundances of heavy-element supernova ejecta, placing further constraints on the supernova that produced Kes 73.
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1994-01-01
An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.
History of Chandra X-Ray Observatory
1999-12-01
This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The dozens of bright pointy-like sources are neutron stars or black holes pulling gas off nearby stars. The bright fuzzy patches are multimillion degree gas superbubbles, thousands of light years in diameter that were produced by the accumulated power of thousands of supernovae. The remaining glow of x-ray emission could be due to many faint x-ray sources or to clouds of hot gas in the galaxies. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the galaxies. Although it is rare for stars to hit each other during a galactic collision, clouds of dust and gas do collide. Compression of these clouds can lead to the rebirth of millions of stars, and a few million years later, to thousands of supernovae.
NASA Astrophysics Data System (ADS)
Chen, B.-Q.; Liu, X.-W.; Ren, J.-J.; Yuan, H.-B.; Huang, Y.; Yu, B.; Xiang, M.-S.; Wang, C.; Tian, Z.-J.; Zhang, H.-W.
2017-12-01
We present a three-dimensional (3D) extinction analysis in the region towards the supernova remnant (SNR) S147 (G180.0-1.7) using multiband photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognized dust structure likely to be associated with SNR S147. The structure, which we term as 'S147 dust cloud', is estimated to have a distance d = 1.22 ± 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
NASA Astrophysics Data System (ADS)
Pooley, David Aaron
2003-09-01
This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the circumstellar medium (CSM) established by the pre-SN stellar wind, and the nature of the shock interaction. SN 1999em is the first Type II-P detected at both X-ray and radio wavelengths. It is the least radio luminous and one of the least X-ray luminous SNe ever detected (except for the unusual and very close SN 1987A). My analysis of the Chandra X- ray data indicate non-radiative interaction of SN ejecta with a power-law density profile (ρ ∝ r-n with n ˜ 7) for a pre-SN wind with a low mass-loss rate of ˜2 × 10-6 M⊙ yr-1 for a wind velocity of 10 km s-1 , in agreement with radio mass-loss rate estimates. The Chandra data show an unexpected, temporary rise in the 0.4 2.0 keV X-ray flux at ˜100 days after explosion. My analysis of SN 1998S yielded the first X-ray spectrum of a supernova in which numerous heavy element emission features (Ne, Al, Si, S, Ar, Fe) were present. Spectral fits to the Chandra data show that these heavy elements are overabundant with respect to solar values. I compare the observed elemental abundances and abundance ratios to theoretical calculations and find that our data are consistent with a progenitor mass of approximately 15 20 M⊙ if the heavy element ejecta are radially mixed out to a high velocity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)
The life cycle of starbursting circumnuclear gas discs
NASA Astrophysics Data System (ADS)
Schartmann, M.; Mould, J.; Wada, K.; Burkert, A.; Durré, M.; Behrendt, M.; Davies, R. I.; Burtscher, L.
2018-01-01
High-resolution observations from the submm to the optical wavelength regime resolve the central few 100 pc region of nearby galaxies in great detail. They reveal a large diversity of features: thick gas and stellar discs, nuclear starbursts, inflows and outflows, central activity, jet interaction, etc. Concentrating on the role circumnuclear discs play in the life cycles of galactic nuclei, we employ 3D adaptive mesh refinement hydrodynamical simulations with the RAMSES code to self-consistently trace the evolution from a quasi-stable gas disc, undergoing gravitational (Toomre) instability, the formation of clumps and stars and the disc's subsequent, partial dispersal via stellar feedback. Our approach builds upon the observational finding that many nearby Seyfert galaxies have undergone intense nuclear starbursts in their recent past and in many nearby sources star formation is concentrated in a handful of clumps on a few 100 pc distant from the galactic centre. We show that such observations can be understood as the result of gravitational instabilities in dense circumnuclear discs. By comparing these simulations to available integral field unit observations of a sample of nearby galactic nuclei, we find consistent gas and stellar masses, kinematics, star formation and outflow properties. Important ingredients in the simulations are the self-consistent treatment of star formation and the dynamical evolution of the stellar distribution as well as the modelling of a delay time distribution for the supernova feedback. The knowledge of the resulting simulated density structure and kinematics on pc scale is vital for understanding inflow and feedback processes towards galactic scales.
On the origin of the warm-hot absorbers in the Milky Way's halo
NASA Astrophysics Data System (ADS)
Marasco, A.; Marinacci, F.; Fraternali, F.
2013-08-01
Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (|vLSR| < 400 km s-1) warm-hot absorption features observed towards extra-Galactic sources or halo stars are consistent with being produced by the cooling of the Milky Way's corona. In our scheme, cooling occurs at the interface between the disc and the corona and it is triggered by positive supernova feedback. We combine hydrodynamical simulations with a dynamical 3D model of the galactic fountain to predict the all-sky distribution of this cooling material, and we compare it with the observed distribution of detections for different `warm' (Si III, Si IV, C II, C IV) and `hot' (O VI) ionized species. The model reproduces the position-velocity distribution and the column densities of the vast majority of warm absorbers and about half of O VI absorbers. We conclude that the warm-hot gas responsible for most of the detections lies within a few kiloparsec from the Galactic plane, where high-metallicity material from the disc mixes efficiently with the hot corona. This process provides an accretion of a few M⊙ yr- 1 of fresh gas that can easily feed the star formation in the disc of the Galaxy. The remaining O VI detections are likely to be a different population of absorbers, located in the outskirts of the Galactic corona and/or in the circumgalactic medium of nearby galaxies.
Gamow-Teller Strength Distributions for pf-shell Nuclei and its Implications in Astrophysics
NASA Astrophysics Data System (ADS)
Rahman, M.-U.; Nabi, J.-U.
2009-08-01
The {pf}-shell nuclei are present in abundance in the pre-supernova and supernova phases and these nuclei are considered to play an important role in the dynamics of core collapse supernovae. The B(GT) values are calculated for the {pf}-shell nuclei 55Co and 57Zn using the pn-QRPA theory. The calculated B(GT) strengths have differences with earlier reported shell model calculations, however, the results are in good agreement with the experimental data. These B(GT) strengths are used in the calculations of weak decay rates which play a decisive role in the core-collapse supernovae dynamics and nucleosynthesis. Unlike previous calculations the so-called Brink's hypothesis is not assumed in the present calculation which leads to a more realistic estimate of weak decay rates. The electron capture rates are calculated over wide grid of temperature ({0.01} × 109 - 30 × 109 K) and density (10-1011 g-cm-3). Our rates are enhanced compared to the reported shell model rates. This enhancement is attributed partly to the liberty of selecting a huge model space, allowing consideration of many more excited states in the present electron capture rates calculations.
An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
Gilfanov, Marat; Bogdán, Akos
2010-02-18
There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-han; Allen, R. J.; Hu, Fu-xing
1987-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-Han; Allen, R. J.; Hu, Fu-Xing
1986-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
High-Resolution Spectroscopy with the Chandra X-ray Observatory
Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States
2017-12-09
The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.
Summer School on Interstellar Processes: Abstracts of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)
1986-01-01
The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and
The impact and evolution of magnetic confinement in hot stars
NASA Astrophysics Data System (ADS)
Keszthelyi, Z.; Wade, G. A.; Petit, V.; Meynet, G.; Georgy, C.
2018-01-01
Magnetic confinement of the winds of hot, massive stars has far-reaching consequences on timescales ranging from hours to Myr. Understanding the long-term effects of this interplay has already led to the identification of two new evolutionary pathways to form `heavy' stellar mass black holes and pair-instability supernova even at galactic metallicity. We are performing 1D stellar evolution model calculations that, for the first time, account for the surface effects and the time evolution of fossil magnetic fields. These models will be thoroughly confronted with observations and will potentially lead to a significant revision of the derived parameters of observed magnetic massive stars.
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
NASA Astrophysics Data System (ADS)
Katsuda, Satoru; Maeda, Keiichi; Nozawa, Takaya; Pooley, David; Immler, Stefan
2014-01-01
We report on the X-ray spectral evolution of the nearby Type IIn supernova (SN) 2005ip based on Chandra and Swift observations covering ~1-6 yr after explosion. X-ray spectra in all epochs are well fitted by a thermal emission model with kT >~ 7 keV. The somewhat high temperature suggests that the X-ray emission mainly arises from the circumstellar medium (CSM) heated by the forward shock. We find that the spectra taken two to three years after the explosion are heavily absorbed (N H ~ 5 × 1022 cm-2), but the absorption gradually decreases to the level of the Galactic absorption (N H ~ 4 × 1020 cm-2) at the final epoch. This indicates that the SN went off in a dense CSM and that the forward shock has overtaken it. The intrinsic X-ray luminosity stays constant until the final epoch, when it drops by a factor of ~2. The intrinsic 0.2-10 keV luminosity during the plateau phase is measured to be ~1.5 × 1041 erg s-1, ranking SN 2005ip as one of the brightest X-ray SNe. Based on the column density, we derive a lower limit of a mass-loss rate to be \\dot{M}˜ 1.5× 10-2 (Vw /100 km s-1) M ⊙ yr-1, which roughly agrees with that inferred from the X-ray luminosity, \\dot{M}˜ 2× 10-2 (Vw /100 km s-1) M ⊙ yr-1, where Vw is the circumstellar wind speed. Such a high mass-loss rate suggests that the progenitor star had eruptive mass ejections similar to a luminous blue variable star. The total mass ejected in the eruptive period is estimated to be ~15 M ⊙, indicating that the progenitor mass is >~ 25 M ⊙.
How supernovae became the basis of observational cosmology
NASA Astrophysics Data System (ADS)
Pruzhinskaya, Maria Victorovna; Lisakov, Sergey Mikhailovich
2016-12-01
This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.