Sample records for galactose-fed rats inhibition

  1. Antioxidant potential of fungal metabolite nigerloxin during eye lens abnormalities in galactose-fed rats.

    PubMed

    Suresha, Bharathinagar S; Srinivasan, Krishnapura

    2013-10-01

    The role of osmotic and oxidative stress has been strongly implicated in the pathogenesis of cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibition and improved antioxidant defense system in lens of diabetic rats. In the present study, the beneficial influence of nigerloxin was investigated in galactose-induced cataract in experimental animals. Cataract was induced in Wistar rats by feeding 30% galactose in diet. Groups of galactose-fed rats were orally administered with nigerloxin (25 and 100 mg/kg body weight/day) for 24 days. Lens aldose reductase activity was increased significantly in galactose-fed animals. Lens lipid peroxides and advanced glycation end products were also significantly increased. Antioxidant molecule - reduced glutathione, total thiols and activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased in the lens of galactose-fed animals. Oral administration of nigerloxin once a day for 24 days at a dose of 100 mg/kg body weight, significantly decreased lens lipid peroxides and advanced glycation end products in galactose-fed rats. Lens aldose reductase activity was reduced and lens antioxidant molecules and antioxidant enzyme activities were elevated significantly by nigerloxin administration. The results suggest that alteration in polyol pathway and antioxidant defense system were countered by nigerloxin in the lens of galactose-fed animals, suggesting the potential of nigerloxin in ameliorating the development of galactose-induced cataract in experimental animals.

  2. Vascular filtration function in galactose-fed versus diabetic rats: The role of polyol pathway activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliese, G.; Tilton, R.G.; Speedy, A.

    1990-07-01

    These studies were undertaken to assess the effects of increased galactose (v increased glucose) metabolism via the polyol pathway on vascular filtration function in the kidneys, eyes, nerves, and aorta. Quantitative radiolabeled tracer techniques were used to assess glomerular filtration rate (GFR) and regional tissue vascular clearance of plasma 131I-bovine serum albumin (BSA) in five groups of male Sprague-Dawley rats: nondiabetic controls, streptozotocin-diabetic rats, nondiabetic rats fed a 50% galactose diet, diabetic rats treated with sorbinil (an aldose reductase inhibitor), and galactose-fed rats treated with sorbinil. Sorbinil was added to the diet to provide a daily dose of approximately .2more » mmol/kg body weight. After 2 months of diabetes or galactose ingestion, albumin clearance was increased twofold to fourfold in the eye (anterior uvea, choroid, and retina), sciatic nerve, aorta, and kidney; GFR was increased approximately twofold and urinary excretion of endogenous albumin and IgG were increased approximately 10-fold. Sorbinil treatment markedly reduced or completely prevented all of these changes in galactose-fed, as well as in diabetic rats. These observations support the hypothesis that increased metabolism of glucose via the sorbitol pathway is of central importance in mediating virtually all of the early changes in vascular filtration function associated with diabetes in the kidney, as well as in the eyes, nerves, and aorta. On the other hand, renal hypertrophy in diabetic rats and polyuria, hyperphagia, and impaired weight gain in galactose-fed and in diabetic rats were unaffected by sorbinil and therefore are unlikely to be mediated by increased polyol metabolism.« less

  3. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    PubMed Central

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395

  4. Mechanism of the anticataract effect of liposomal magnesium taurate in galactose-fed rats

    PubMed Central

    Iezhitsa, Igor; Saad, Sarah Diyana Bt; Zakaria, Fatin Kamilah Bt; Agarwal, Puneet; Krasilnikova, Anna; Rahman, Thuhairah Hasrah Abdul; Rozali, Khairul Nizam Bin; Spasov, Alexander; Ozerov, Alexander; Alyautdin, Renad; Ismail, Nafeeza Mohd

    2016-01-01

    Purpose Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. Methods The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca2+-ATPase, Na+,K+-ATPase, and calpain II activities. Results The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na+,K+-ATPase and Ca2+-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). Conclusions Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress. PMID:27440992

  5. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats.

    PubMed

    Stahel, Priska; Kim, Julie J; Xiao, Changting; Cant, John P

    2017-01-01

    Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut

  6. Influence of sialic acids on the galactose-recognizing receptor of rat peritoneal macrophages.

    PubMed

    Lee, H Y; Kelm, S; Michalski, J C; Schauer, R

    1990-04-01

    The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.

  7. Intestinal absorption of D-galactose and L-leucine and intestinal disaccharidase activities in growing chickens fed different raw legume diets.

    PubMed

    Santidrian, S; Lasheras, B; Cenarruzabeitia, M N; Bolufer, J; Larralde, J

    1981-04-01

    A significant (P less than .01) impairment in the rate of growth, along with a significant (P less than .01) inhibition in the rate of in vivo intestinal absorption of D-galactose and L-leucine, and in the in vitro intestinal absorption of D-galactose, was found in growing chickens fed ad libitum over a 60-day period, diets containing the raw legumes Vicia faba, Glycine soja, Vicia ervilia, and Phaseolus vulgaris as the main source of protein. Furthermore, a significant (P less than .01) reduction in the intestinal disaccharidase activity was found in the legume-fed chickens. The possible nature of these effects was discussed.

  8. Galactose inhibition of ovulation in mice.

    PubMed

    Swartz, W J; Mattison, D R

    1988-03-01

    Clinical evidence suggests an association between galactosemia and premature ovarian failure. In the present study, adult female mice were fed a diet consisting of 50% galactose for either 2, 4, or 6 weeks. At all times there was a decrease in the normal ovulatory response, as evidenced by a reduction in the number of corpora lutea when compared with controls. Additionally, the exposure of galactose-treated mice to a superovulatory regimen of pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) failed to induce an increased ovulatory response. Morphologic alterations, such as the increase in interstitial tissue and the appearance of lipofuscin, coupled with the failure to respond to exogenous gonadotropins, suggest that the reduced ovulatory response may be occurring at the level of the ovary. This effect, however, is reversible with cessation of galactose treatment.

  9. Extract of Fructus Cannabis Ameliorates Learning and Memory Impairment Induced by D-Galactose in an Aging Rats Model.

    PubMed

    Chen, Ning-Yuan; Liu, Cheng-Wu; Lin, Wei; Ding, Yi; Bian, Zhang-Ya; Huang, Ling; Huang, Hao; Yu, Kai-Hui; Chen, Si-Bang; Sun, Yu; Wei, Lei; Peng, Jun-Hua; Pan, Shang-Ling

    2017-01-01

    Hempseed ( Cannabis sativa L.) has been used as a health food and folk medicine in China for centuries. In the present study, we sought to define the underlying mechanism by which the extract of Fructus Cannabis (EFC) protects against memory impairment induced by D-galactose in rats. To accelerate aging and induce memory impairment in rats, D-galactose (400 mg/kg) was injected intraperitoneally once daily for 14 weeks. EFC (200 and 400 mg/kg) was simultaneously administered intragastrically once daily in an attempt to slow the aging process. We found that EFC significantly increased the activity of superoxide dismutase, while lowering levels of malondialdehyde in the hippocampus. Moreover, EFC dramatically elevated the organ indices of some organs, including the heart, the liver, the thymus, and the spleen. In addition, EFC improved the behavioral performance of rats treated with D-galactose in the Morris water maze. Furthermore, EFC inhibited the activation of astrocytes and remarkably attenuated phosphorylated tau and suppressed the expression of presenilin 1 in the brain of D-galactose-treated rats. These findings suggested that EFC exhibits beneficial effects on the cognition of aging rats probably by enhancing antioxidant capacity and anti-neuroinflammation, improving immune function, and modulating tau phosphorylation and presenilin expression.

  10. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats

    PubMed Central

    Chen, Jin-Shuen

    2017-01-01

    Renin–angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar–Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. PMID:28700686

  11. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats.

    PubMed

    Chou, Chu-Lin; Lin, Heng; Chen, Jin-Shuen; Fang, Te-Chao

    2017-01-01

    Renin-angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats.

  12. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  13. Saponins from Aralia taibaiensis Attenuate D-Galactose-Induced Aging in Rats by Activating FOXO3a and Nrf2 Pathways

    PubMed Central

    Li, Ying-Na; Guo, Yu; Xi, Miao-Miao; Yang, Pei; Zhou, Xue-Ying; Yin, Shuang; Hai, Chun-Xu; Li, Jin-Gang; Qin, Xu-Jun

    2014-01-01

    Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats. PMID:24669284

  14. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    PubMed Central

    Oliva, Joan; Dedes, Jennifer; Li, Jun; French, Samuel W; Bardag-Gorce, Fawzia

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption. PMID:19222094

  15. Influence of galactose cataract on erythrocytic and lenticular glutathione metabolism in albino rats.

    PubMed

    Jyothi, M; Sanil, R; Shashidhar, S

    2011-01-01

    Glutathione depletion has been postulated to be the prime reason for galactose cataract. The current research seeks the prospect of targeting erythrocytes to pursue the lens metabolism by studying the glutathione system. To study the activity of the glutathione-linked scavenger enzyme system in the erythrocyte and lens of rats with cataract. Experiments were conducted in 36 male albino rats weighing 80 ± 20 g of 28 days of age. The rats were divided into two major groups, viz. experimental and control. Six rats in each group were sacrificed every 10 days, for 30 days. Cataract was induced in the experimental group by feeding the rats 30% galactose (w/w). The involvement of reduced glutathione (GSH) and the linked enzymes was studied in the erythrocytes and lens of cataractous as well as control rats. Parametric tests like one-way ANOVA and Student's 't' test were used for comparison. Correlation linear plot was used to compare the erythrocyte and lens metabolism. The concentration of GSH and the activity of linked enzymes were found decreased with the progression of cataract, and also in comparison to the control. The same linear fashion was also observed in the erythrocytes. Depletion of GSH was the prime factor for initiating galactose cataract in the rat model. This depletion may in turn result in enzyme inactivation leading to cross-linking of protein and glycation. The correlation analysis specifies that the biochemical mechanism in the erythrocytes and lens is similar in the rat model.

  16. Effect of raw legume diets on intestinal absorption of D-galactose by chick.

    PubMed

    Lasheras, B; Bolufer, J; Cenarruzabeitia, M N; Lluch, M; Larralde, J

    1980-03-01

    The effect of four raw legume diets on the intestinal absorption of D-galactose and oxygen consumption were studied in chick. Field beans (Vicia faba), soybeans (Glycine soja), bitter vetch (Vicia ervilia), and navy beans (Phaseolus vulgaris), were used. The intestinal absorption was determined by both in vivo and in vitro techniques. In vivo, only navy beans and soybeans inhibit intestinal transport of D-galactose, while in vitro all the diets do. Oxygen consumption by intestinal rings increases in chicks fed on bitter vetch diet.

  17. Binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Galasinski, W.

    1987-10-01

    UDP-D-(U-/sup 14/C)galactose is decomposed to (U-/sup 14/C)galactose-1-phosphate and (U-/sup 14/C)galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-(U-/sup 14/C)galactose, at neutral pH, is also chemically degraded to the (U-/sup 14/C)galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-(U-/sup 14/C)galactose. It is a very important finding that products of the UDP-D-(U-/sup 14/C)galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended inmore » order to avoid incorrect interpretations of the results.« less

  18. The effect of enteric galactose on neonatal canine carbohydrate metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kliegman, R.M.; Miettinen, E.L.; Kalhan, S.C.

    1981-01-01

    Newborn pups were assigned to a fasting group or to a group receiving intravenous glucose alimentation. Glucose turnover was determined during steady state equilibration of simultaneously infused (6-/sup 3/H) glucose. Thereafter, pups from each group received 0.625 g/Kg of either oral (U-/sup 14/C) galactose or (U-/sup 14/C) glucose. In fasted or intravenously alimented pups enteric glucose resulted in a rapid and sustained elevation of blood glucose concentrations. Systemic appearance of /sup 14/C label from enteric glucose increased rapidly as did the enrichment of blood (/sup 14/C) glucose specific activity. In those pups given enteric galactose, blood glucose values were equivalentmore » to that in the glucose fed groups, however /sup 14/C appearing in blood glucose and blood glucose specific activity was significantly lower. The peak values for rates of appearance and disappearance of systemic glucose were significantly lower in pups fed galactose than among pups fed glucose. Glucose clearance was also significantly lower in these pups despite equivalent plasma insulin responses. Among fasting pups hepatic glycogen content was significantly higher in those given either oral glucose or galactose when compared to a completely starved control group. In contrast, among alimented pups galactose administration significantly enhanced hepatic glycogen content compared to those fed glucose. In addition, hepatic glycogen synthase (glucose-6-phosphate independent) activity was increased only among alimented pups fed galactose when compared to completely fasted pups. In conclusion these data suggest that following gastrointestinal galactose administration, hepatic carbohydrate uptake is augmented while glycogen synthesis may be enhanced. Augmented glycogen synthesis following galactose administration may reflect alterations in hepatic glycogen synthase activity or enhanced hepatic carbohydrate uptake.« less

  19. In utero and lactational β-carotene supplementation attenuates D-galactose-induced hearing loss in newborn rats.

    PubMed

    Yu, Fei; Hao, Shuai; Zhao, Yue; Yang, Hui; Fan, Xiao-Lan; Yang, Jun

    2011-08-01

    D-Galactose could give rise to free radical damage by disturbing the some maternal antioxidants. The oxidative stress induced by D-galactose is a potent inducer of apoptosis, which is accompanied by the activation of protein-splitting enzymes called caspases. Apoptosis is a crucial physiological determinant of embryonic and neonatal development, and play an essential role in the development of the inner ear structures. Recently the increasing of D-galactose exposure is due to high consumption of dairy foods or reduced galactose metabolism. An overwhelming presence of D-galactose is known to become highly ototoxicity to humans. The purpose of this study was to investigate whether supplementation of pregnant and lactational mothers with β-carotene could attenuate cochlear function damage and hair cells apoptosis induced by d-galactose in newborn rats. Pregnant rats were supplemented with D-galactose, or D-galactose and β-carotene from gestational day (GD) 7 until postnatal day (PND) 21. On PND 22, offspring were examined in the distortion product otoacoustic emission (DPOAE) task, cochleae were then harvested for assessment of apoptosis by immunohistochemical stain for cysteine-aspartic acid proteases 3 (caspase-3) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Maternal and offspring blood samples were then collected by direct cardiac puncture in heparin tubes, blood levels of D-galactose and β-carotene were measured, plasma was separated for malondialdehyde (MDA) analysis, erythrocytes were left for superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH). D-Galactose could significantly disturb the balance between maternal antioxidants and free radicals, and induce hearing loss in the offspring and cochlear hair cell apoptosis. In contrast, β-carotene supplementation, coincidentally with D-galactose exposure, ameliorated these changes. Our data offer a conceptual framework for designing

  20. The binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Gałasiński, W

    1987-10-01

    UDP-D-[U-14C]galactose is decomposed to [U-14C]galactose-1-phosphate and [U-14C]galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-[U-14C]galactose, at neutral pH, is also chemically degraded to the [U-14C]galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-[U-14C]galactose. It is a very important finding that products of the UDP-D-[U-14C]galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended in order to avoid incorrect interpretations of the results.

  1. Effects of calcium dobesilate on Nrf2, Keap1 and HO-1 in the lenses of D-galactose-induced cataracts in rats

    PubMed Central

    Sun, Jinfeng; Wang, Bin; Hao, Youjuan; Yang, Xueli

    2018-01-01

    This study investigated the effects of calcium dobesilate on Nrf2, Keap1 and HO-1 in the lenses of D-galactose-induced cataracts in rats. Thirty Sprague-Dawley rats were randomly divided into three groups: a blank control group, a model control group and a model administration group. A normal diet was given to the rats in the blank control group and the rats with D-galactose-induced cataracts of the model control group. Calcium dobesilate was also given to the rats with D-galactose-induced cataracts of the model administration group. A slit lamp microscope was used to check the degree of lens opacity. RT-PCR and western blot analysis were used to detect the mRNA and protein expression of Nrf2, Keap1 and HO-1 in the lenses of the three groups. There was a significant difference in the degree of lens opacity among the three groups (P<0.05). The model control group was the most turbid of the three groups, followed by the model administration group. Moreover, the mRNA and protein expression of Nrf2, Keap1 and HO-1 in the lenses of the three groups were also significantly different (P<0.05). The mRNA levels of Nrf2 and HO-1 were the highest in the model control group, followed by the model administration group, and were the lowest in the blank control group. However, the mRNA expression level of Keap1 among the three groups had an opposite trend. In conclusion, calcium dobesilate can effectively increase the levels of Nrf2 and HO-1 in the lenses of diabetic cataract rats and inhibit the level of Keap1. Therefore, the therapeutic effect of calcium dobesilate against cataracts is related to the improvement of the Nrf2-Keap1 signaling pathway. PMID:29399076

  2. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats.

    PubMed

    Li, Jian-Mei; Ge, Chen-Xu; Xu, Min-Xuan; Wang, Wei; Yu, Rong; Fan, Chen-Yu; Kong, Ling-Dong

    2015-02-01

    Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis, and inflammation were explored to address its improvement of fructose-induced metabolic syndrome. Rats or astrocytes were exposed to fructose and then treated with betaine. Neural injury, proinflammatory markers, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, and histone deacetylases 3 (HDAC3) expressions were evaluated. The reduction of pro-opiomelanocortin and melanocortin 4 receptor positive neurons in fructose-fed rats was ameliorated by betaine. Moreover, fructose induced astrogliosis and proinflammatory cytokine production by increasing TLR4, MyD88 (where MyD88 is myeloid differentiation factor 88), and NF-κB expression in rat hypothalamus and astrocytes. HDAC3 overexpression preserved the prolonged inflammation in fructose-stimulated astrocytes by regulating nuclear NF-κB-dependent transcription. Betaine suppressed TLR4/NF-κB pathway activation and HDAC3 expression, contributing to its inhibition of hypothalamic astrogliosis and inflammation in animal and cell models. These findings suggest that betaine inhibits fructose-caused astrogliosis and inflammation by the suppression of TLR4/NF-κB pathway activation and HDAC3 expression to protect against hypothalamic neural injury, which, at least partly, contributes to the improvement of fructose-induced metabolic syndrome. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rats fed only during the light period are resistant to stress-induced weight loss.

    PubMed

    Harris, Ruth B S; Zhou, Jun; Mitchell, Tiffany; Hebert, Sadie; Ryan, Donna H

    2002-08-01

    Repeated restraint stress (3 h/day for 3 days) causes a chronic down-regulation of body weight in rats. This study determined whether weight loss was influenced by the time of day that rats had access to food or that stress was applied. Groups of male Sprague-Dawley rats were fed a 40% kcal fat diet with food given ad libitum, only during the light phase or only during the dark phase. After 2 weeks of adaptation, rats within each feeding treatment were divided into four groups. One was exposed to repeated restraint at the start of the light phase, another was restrained at the start of the dark phase and the remaining groups were nonstressed controls for restrained rats. Body weight was significantly reduced in ad libitum- and dark-fed restrained rats, compared with nonstressed controls, from Day 2 of restraint, regardless of the time of day that they were stressed. There was no significant effect of restraint on weight change of light-fed rats. Food intake was inhibited by stress in ad libitum- and dark-fed rats, but it was not changed in light-fed rats. Serum corticosterone was increased by restraint in all rats irrespective of feeding schedule. This study demonstrates that stress-induced weight loss only occurs when rats have food available during their normal feeding period (dark phase) and is not determined by increased corticosterone release.

  4. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia

    PubMed Central

    Wang, Nuan; Chen, Xianming; Geng, Deqin; Huang, Hongli; Zhou, Hao

    2013-01-01

    Standardized Ginkgo biloba leaf extract has been used in clinical trials for its beneficial effects on brain functions, particularly in dementia. Substantial experimental evidences indicated that Ginkgo biloba leaf extract (EGB) protected neuronal cells from a variety of insults. We investigated the effect of EGB on cognitive ability and protein kinase B (PKB) activity in hippocampal neuronal cells of dementia model rats. Rats received an intraperitoneal injection of D-galactose to induce dementia. Forty-eight Spraque-Dawley rats were randomly divided into six groups, including the control group, D-galactose group (Gal), low-dose EGB group (EGB-L), mid-dose EGB group (EGB-M), high-dose EGB group (EGB-H) and treatment group. The EGB-L, EGB-M and EGB-H groups were administered with EGB and D-galactose simultaneously. Y-maze, cresyl violet staining, TUNEL assays and immunohistochemistry staining were performed to detect learning and memory abilities, morphological changes in the hippocampus, neuronal apoptosis and the expressing level of phospho-PKB, respectively. Rats in the Gal group showed decreased abilities of learning and memory, and hippocampal pyramidal cell layer was damaged, while EGB administration improved learning and memory abilities. The Gal group exhibited many stained, condensed nuclei and micronuclei, either isolated or within the cytoplasm of cells (39.5±1.4). Apoptotic cells decreased in the groups of EGB-L (35.9±0.9), EGB-M (16.8±1.0) and EGB-H (10.1±0.8), and there were statistical significances compared with the Gal group. Immunoreactivity of phospho-PKB was localized diffusely throughout the cytosol of cells in all groups, while the immunoreactivity of the Gal group was weak. EGB significantly attenuated learning and memory impairment in a dose-dependent manner, while it could decrease the nmber of TUNEL-positive cells, and increase the activity of PKB. Our results demonstrated that EGB attenuated memory impairment and cell apoptosis in

  5. Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants.

    PubMed

    Delwing-de Lima, Daniela; Fröhlich, Monique; Dalmedico, Leticia; Aurélio, Juliana Gruenwaldt Maia; Delwing-Dal Magro, Débora; Pereira, Eduardo Manoel; Wyse, Angela T S

    2017-04-01

    We evaluated the in vitro effects of galactose at 0.1, 3.0, 5.0 and 10.0 mM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, protein carbonyl content, on the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on acetylcholinesterase (AChE) activity in the cerebral cortex, cerebellum and hippocampus of rats. We also investigated the influence of the antioxidants (each at 1 mM), α-tocopherol, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Results showed that galactose, at a concentration of 3.0 mM, enhanced TBA-RS levels in the hippocampus, cerebral cortex and cerebellum of rats. In the cerebral cortex, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and protein carbonyl content, and at 10.0 mM increased CAT activity and decreased AChE activity. In the cerebellum, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS, SOD and GSH-Px activities. In the hippocampus, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and CAT activity and at 10.0 mM decreased GSH-Px. Data showed that at the pathologically high concentration (greater than 5.0 mM), galactose induces lipid peroxidation, protein carbonylation, alters antioxidant defenses in the cerebrum, and also alters cholinesterase activity. Trolox, ascorbic acid and glutathione addition prevented the majority of alterations in oxidative stress parameters and the decrease in AChE activity that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by galactose.

  6. Antioxidant status and mineral contents in tissues of rutin and baicalin fed rats.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Chen, Xiaojun; Chen, Hao

    2003-08-08

    The versatile benefit effects of flavonoids lead some nutritionists to believe that they are micronutrients. However, excess intake of flavonoids may cause side effects. In this paper, the effects produced by a higher intake of rutin and baicalin on antioxidant status as well as trace minerals such as iron, copper and zinc in rat tissues were studied. When rats were fed a rutin or baicalin containing diet (1%) for 20 days, the body weight gain was lower than that of the control group. Both rutin and baicalin caused significant a decrease of catalase activity and a moderate increase of total superoxide dismutase activity in the liver. The total antioxidant status of flavonoid fed rats was increased in the liver but decreased in the serum. In comparison to the control group, the lipid peroxidation level in the liver of the rutin fed group was significantly decreased; however, there was no statistical significance in the liver of the baicalin fed group and the brain of both flavonoids groups. The liver homogenates of both flavonoid fed rats significantly inhibited alkyl radical-induced lipid peroxidation. The iron contents in the liver of flavonoid fed rats were significantly decreased; rutin also caused zinc and copper decrease in the liver. These results indicated that high flavonoid intake can improve rat antioxidant systems in the liver; while it can also cause a trace mineral decrease and, in turn, reduce the activities of some metal-containing enzymes and may cause harmful effects on health.

  7. Cardiac lesions in rats fed rapeseed oils.

    PubMed Central

    Charlton, K M; Corner, A H; Davey, K; Kramer, J K; Mahadevan, S; Sauer, F D

    1975-01-01

    Fully refined rapeseed oils containing different amounts of erucic acid (1.6%, 4.3% and 22.3%) were fed, at 20% by weight of diet, to weanling male and female Sprague-Dawley rats for periods up to 112 days. Transient myocardial lipidosis characterized by accumulation of fat droplets in myocardial fibers was marked in male and female rats fed oxidized and unoxidized rapeseed oil containing 22.3% erucic acid, moderate with rapeseed oil containing 4.3% erucic acid and very slight in rats fed rapeseed oil containing 1.6% erucic acid. Peak intensity of myocardial lipidosis occurred at three to seven days and regressed thereafter. Focal myocardial necrosis and fibrosis occurred in male rats fed rapeseed oils containing different levels of erucic acid for 112 days. The incidence of myocardial necrosis and fibrosis was markedly lower in female rats, and the incidence of these lesions in either sex was not affected by the state of oxidation of these oils. In a second experiment, male rats were fed diets containing crude, partially refined or fully refined rapeseed oils. There was no correlation between the number of foci of myocardial necrosis and fibrosis and the state of refinement of the oils, but there were generally fewer lesions in rats fed those oils having the lowest levels of erucic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:1170010

  8. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats.

    PubMed

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya; Sahin, Kazim

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR- α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile ( P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats ( P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR- α , ACLY, FAS, and NF- κ B p65 expressions and enhanced the PPAR- α , IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers ( P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver.

  9. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats

    PubMed Central

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats (P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver. PMID:28396714

  10. Dietary intake of high-dose biotin inhibits spermatogenesis in young rats.

    PubMed

    Sawamura, Hiromi; Ikeda, Chieko; Shimada, Ryoko; Yoshii, Yui; Watanabe, Toshiaki

    2015-02-01

    To characterize a new function of the water-soluble vitamin, biotin, in reproduction and early growth in mammals, the effects of high dietary doses of biotin on early spermatogenesis were biochemically and histologically investigated in male rats. Weaned rats were fed a CE-2 (control) diet containing 0.00004% biotin, or a control diet supplemented with 0.01%, 0.1%, or 1.0% biotin. Pair-fed rats were fed a control diet that was equal in calories to the amount ingested by the 1.0% biotin group, because food intake was decreased in the 1.0% biotin group. Food intake and body weight gain were lower in the 1.0% biotin group than in the control group. The kidney, brain and testis weights were significantly lower in the 1.0% biotin group than in the pair-fed group after 6 weeks of feeding. The accumulation of biotin in the liver and testis increased in a dose-dependent manner. In the 1.0% biotin group, the number of mature sperm was markedly lower, that of sperm with morphologically abnormal heads, mainly consisting of round heads, had increased. In addition, the development of seminiferous tubules was inhibited, and few spermatogonia and no spermatocytes were histologically observed. These results demonstrated that the long-term intake of high-dose biotin inhibited spermatogenesis in young male rats. © 2014 Japanese Teratology Society.

  11. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats.

    PubMed

    Seif, A A

    2015-06-01

    Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.

  12. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver.

    PubMed

    Bijsterbosch, M K; Van Berkel, T J

    1990-08-15

    The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.

  13. The galactose-binding lectin isolated from Bauhinia bauhinioides Mart seeds inhibits neutrophil rolling and adhesion via primary cytokines.

    PubMed

    Girão, Deysen Kerlla Fernandes Bezerra; Cavada, Benildo Sousa; de Freitas Pires, Alana; Martins, Timna Varela; Franco, Álvaro Xavier; Morais, Cecília Mendes; Santiago do Nascimento, Kyria; Delatorre, Plinio; da Silva, Helton Colares; Nagano, Celso Shiniti; Assreuy, Ana Maria Sampaio; Soares, Pedro Marcos Gomes

    2015-05-01

    In this study, the amino acid sequence and anti-inflammatory effect of Bauhinia bauhinioides (BBL) lectin were evaluated. Tandem mass spectrometry revealed that BBL possesses 86 amino acid residues. BBL (1 mg/kg) intravenously injected in rats 30 min prior to inflammatory stimuli inhibited the cellular edema induced by carrageenan in only the second phase (21% - 3 h, 19% - 4 h) and did not alter the osmotic edema induced by dextran. BBL also inhibited carrageenan peritoneal neutrophil migration (51%), leukocyte rolling (58%) and adhesion (68%) and the neutrophil migration induced by TNF-α (64%). These effects were reversed by the association of BBL with galactose, demonstrating that the carbohydrate-binding domain is essential for lectin activity. In addition, BBL reduced myeloperoxidase activity (84%) and TNF-α (68%) and IL1-β (47%) levels. In conclusion, the present investigation demonstrated that BBL contains highly homologous isolectins, resulting in a total of 86 amino acid residues, and exhibits anti-inflammatory activity by inhibiting neutrophil migration by reducing TNF-α and IL1-β levels via the lectin domain. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: Evidence for a galactose-lactose antiporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutkins, R.W.; Ponne, C.

    1991-04-01

    Galactose-nonfermenting (Gal{sup {minus}}) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal{sup {minus}} cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated ({sup 14}C)lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloadedmore » cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force ({Delta}p) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a {Delta}p of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal{sup {minus}} S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.« less

  15. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethan...

  16. Anti-Cataract Potential of Heliotropium indicum Linn on Galactose-Induced Cataract in Sprague-Dawley Rats.

    PubMed

    Kyei, Samuel; Koffuor, George A; Ramkissoon, Paul; Abu, Emmanuel K; Sarpong, Josephine F

    2017-03-01

    To evaluate the anti-cataract potential of an aqueous whole plant extract of Heliotropium indicum (HIE) on galactose-induced cataract in Sprague-Dawley rats. Cataract scores were recorded in 3-week-old Sprague-Dawley rats in which cataract was being induced by an oral administration of 1500 mgkg -1 galactose twice daily for 4 weeks, and concurrently being treated with 30, 100, or 300 mgkg -1 HIE daily over the induction period. Fasting blood glucose was monitored at weekly intervals. Changes in body weight as well as total lens protein, lens glutathione, and superoxide dismutase (SOD) were determined initially, and at the end of the experimental period. Crystalline lens weight-to-body-weight ratio was also determined for the various treatment groups at the end of the experimental period. Preliminary phytochemical screening, total antioxidant capacity, and reducing power assays were conducted on HIE. The 30 and 100 mgkg -1 HIE-treated rats recorded significantly lower (p ≤ 0.05-0.001) cataract scores (indicating very significant delays in cataractogenesis by the 3 rd and 4 th weeks of treatment) and blood glucose levels. Rats with delayed cataractogenesis also exhibited significant (p ≤ 0.05-0.001) weight gain, and reduction in lens weight. Total lens proteins glutathione and SOD levels in the crystalline lens were also significantly preserved (p ≤ 0.01-0.001). HIE showed substantial antioxidant capacity and reducing power. The aqueous whole plant extract of Heliotropium indicum delays cataractogenesis at an optimum dose of 30 mgkg -1 in Sprague-Dawley rats.

  17. Naringin ameliorates endothelial dysfunction in fructose-fed rats.

    PubMed

    Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara

    2018-03-01

    High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.

  18. D-Galactose High-Dose Administration Failed to Induce Accelerated Aging Changes in Neurogenesis, Anxiety, and Spatial Memory on Young Male Wistar Rats.

    PubMed

    Cardoso, Armando; Magano, Sara; Marrana, Francisco; Andrade, José P

    2015-12-01

    The model of accelerated senescence with the prolonged administration of d-galactose is used in anti-aging studies because it mimics several aging-associated alterations such as increase of oxidative stress and decline of cognition. However, there is no standardized protocol for this aging model, and recently some reports have questioned its effectiveness. To clarify this issue, we used a model of high-dose d-galactose on 1-month-old male Wistar rats and studied the hippocampus, one of the most affected brain regions. In one group (n = 10), d-galactose was daily administered intraperitoneally (300 mg/kg) during 8 weeks whereas age-matched controls (n = 10) were injected intraperitoneally with saline. A third group (n = 10) was treated with the same dose of d-galactose and with oral epigallocatechin-3-gallate (EGCG) (2 grams/L), a green tea catechin with anti-oxidant and neuroprotective properties. After treatments, animals were submitted to open-field, elevated plus-maze and Morris water maze tests, and neurogenesis in the dentate gyrus subgranular layer was quantified. There were no significant alterations when the three groups were compared in the number of doublecortin- and Ki-67-immunoreactive cells, and also on anxiety levels, spatial learning, and memory. Therefore, d-galactose was not effective in the induction of accelerated aging, and EGCG administered to d-galactose-treated animals did not improve behavior and had no effects on neurogenesis. We conclude that daily 300 mg/kg of d-galactose administered intraperitoneally may not be a suitable model for inducing age-related neurobehavioral alterations in young male Wistar rats. More studies are necessary to obtain a reliable and reproducible model of accelerated senescence in rodents using d-galactose.

  19. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    PubMed Central

    You, Li; Sheng, Zheng-yan; Tang, Chuan-ling; Chen, Lin; Pan, Ling; Chen, Jin-yu

    2011-01-01

    Aim: To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats. Methods: Female Sprague-Dawley rats were randomly separated into 3 groups: (1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food, 3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet. Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry. Serum levels of oestradiol (E2), osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA. Gene expression profile was determined with microarray. Mouse osteoblast cells (MC3T3-E1) were used for in vitro study. Proliferation, differentiation and oxidative stress of the osteoblasts were investigated using MTT, qRT-PCR and biochemical methods. Results: In high cholesterol fed rats, the femur BMD and serum BGP level were significantly reduced, while the CTX level was significantly increased. DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats. Of these genes, 1626 were also down-regulated and 1466 were up-regulated in OVX rats. In total, 370 genes were up-regulated in both groups, and 976 genes were down-regulated. Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways. The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions. Treatment of MC3T3-E1 cells with cholesterol (12.5-50 μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner. The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1, and increased the oxidative injury in MC3T3-E1 cells. Conclusion: The

  20. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    PubMed

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  1. Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat.

    PubMed

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing; Liu, Fangjun; Liu, Dalie

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  2. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    PubMed Central

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat. PMID:25133239

  3. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect.

  4. Selenite and ebselen supplementation attenuates D-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens.

    PubMed

    Dai, Jie; Zhou, Jun; Liu, Hongmei; Huang, Kaixun

    2016-12-01

    Selenite and ebselen supplementation has been shown to possess anti-cataract potential in some experimental animal models of cataract, however, the underlying mechanisms remain unclear. The present study was designed to evaluate the anti-cataract effects and the underlying mechanisms of selenite and ebselen supplementation on galactose induced cataract in rats, a common animal model of sugar cataract. Transmission electron microscopy images of lens fiber cells (LFC) and lens epithelial cells (LEC) were observed in D-galactose-induced experimental cataractous rats treated with or without selenite and ebselen, also redox homeostasis and expression of proteins such as selenoprotein R (SELR), 15kD selenoprotein (SEP15), superoxide dismutase 1 (SOD1), catalase (CAT), β-crystallin protein, aldose reductase (AR) and glucose-regulated protein 78 (GRP78) were estimated in the lenses. The results showed that D-galactose injection injured rat lens and resulted in cataract formation; however, selenite and ebselen supplementation markedly alleviated ultrastructural injury of LFC and LEC. Moreover, selenite and ebselen supplementation could mitigate the oxidative damage in rat lens and increase the protein expressions of SELR, SEP15, SOD1, CAT and β-crystallin, as well as decrease the protein expressions of AR and GRP78. Taken together, these findings for the first time reveal the anti-cataract potential of selenite and ebselen in galactosemic cataract, and provide important new insights into the anti-cataract mechanisms of selenite and ebselen in sugar cataract.

  5. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats.

    PubMed

    Wang, Sheng; Li, Qian; Zang, Yue; Zhao, Yang; Liu, Nan; Wang, Yifei; Xu, Xiaotao; Liu, Li; Mei, Qibing

    2017-06-01

    The saying "An apple a day keeps the doctor away" has been known for over 150 years, and numerous studies have shown that apple consumption is closely associated with reduced risks of chronic diseases. It has been well accepted that dysbiosis is the reflection of various chronic diseases. Therefore, this study investigates the effects of apple polysaccharides (AP) on gut dysbiosis. High-fat diet (HFD) fed rats were treated for 14 weeks with AP. The microbiota composition, microbiota-generated short chain fatty acids (SCFAs), gut permeability and chronic inflammation were analyzed. AP treatment showed higher abundance of Bacteroidetes and Lactobacillus while lower Firmicutes and Fusobacteium. AP significantly increased total SCFAs level that contributed by acetic acid and isobutyric acid. Moreover, AP dramatically alleviated dysbiosis-associated gut permeability and chronic inflammation with decreased plasma LBP, up-regulation of Occludin, down-regulation of tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), chemokine ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). The potential mechanism is due to the fact that AP reduces gut permeability, which involves the induction of autophagy in goblet cells. Therefore, AP exerts health benefits through inhibiting gut dysbiosis and chronic inflammation and modulating gut permeability in HFD-induced dysbiosis rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Energy intake of rats fed a cafeteria diet.

    PubMed

    Prats, E; Monfar, M; Castellà, J; Iglesias, R; Alemany, M

    1989-02-01

    The proportion of lipid, carbohydrate and protein energy self-selected by male and female rats from a cafeteria diet has been studied for a 48-day period (36-day in female rats). The diet consisted in 12 different items and was offered daily, in excess and under otherwise standard conditions, to rats--caged in groups of three--from weaning to adulthood. Groups of control animals were studied in parallel and compared with the cafeteria groups. Cafeteria diet fed groups of rats ingested more energy and lowered their metabolic efficiency with age. Male rats ate more than females and increased their body weight even after female practically stopped growing. There was a wide variation in the aliments consumed each day by the cafeteria-fed rats. However, the proportion of lipid, protein and carbohydrate the rats ate remained constant. Male rats ingested more lipid than females. Carbohydrate consumption was constant in control and cafeteria fed groups of rats independently of sex. Protein consumption was higher in cafeteria rats than in controls, but the differences were not so important as with liquid. Fiber content of the cafeteria diet was lower than that of the control diet. The cafeteria diet selected by the rats was, thus, hypercaloric and hyperlipidic, with practically the same amount of carbohydrate than the control diet, slightly hyperproteic and, nevertheless, remarkably constant in its composition with respect to time. Cafeteria rats had a higher water intake than controls. All these trends were maintained despite the observed changes in the animals' tastes and their differential consumption of the ailments of the diet.

  7. Copper status in weanling rats fed low levels of inorganic tin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, J.I.; Hight, S.C.

    1991-03-15

    The metabolism of Cu and Fe is adversely affected by ingestion of tin (Sn). In the present study, weanling male rats were fed 33 ug Sn/g in purified Cu-adequate or Cu-deficient diets for 14 or 28 days. Diets were based upon diet AIN-76A and contained 55% glucose and 15% starch. Ceruloplasmin was undetectable in serum of rats fed diets 2, 3 and 4 for 14 or 28 days. Superoxide dismutase (SOD) and Cu in liver decreased when 33 ug Sn/g was included in +Cu diets. Wt. gain, relative heart wt., SOD, and Cu and Fe in liver were sensitive indicesmore » of copper depletion in rats fed {minus}Cu diets. Cu status in rats fed {minus}Cu diets for 14 or 28 days was adversely affected by inclusion of Sn as indicated by changes in hemoglobin (HGB) and relative heart wt. Ingestion of low levels of inorganic tin causes Cu depletion in rats fed +Cu diets and accelerated the appearance of signs of copper deficiency in those fed {minus}Cu diets.« less

  8. Anthocyanin-rich Phytochemicals from Aronia Fruits Inhibit Visceral Fat Accumulation and Hyperglycemia in High-fat Diet-induced Dietary Obese Rats.

    PubMed

    Takahashi, Azusa; Shimizu, Hisae; Okazaki, Yukako; Sakaguchi, Hirohide; Taira, Toshio; Suzuki, Takashi; Chiji, Hideyuki

    2015-01-01

    Aronia fruits (chokeberry: Aronia melanocarpa E.) containing phenolic phytochemicals, such as cyanidin 3-glycosides and chlorogenic acid, have attracted considerable attention because of their potential human health benefits in humans including antioxidant activities and ability to improved vision. In the present study, the effects of anthocyanin-rich phytochemicals from aronia fruits (aronia phytochemicals) on visceral fat accumulation and fasting hyperglycemia were examined in rats fed a high-fat diet (Experiment 1). Total visceral fat mass was significantly lower in rats fed aronia phytochemicals than that in both the control group and bilberry phytochemicals-supplemented rats (p < 0.05). Moreover, perirenal and epididymal adipose tissue mass in rats fed aronia phytochemicals was significantly lower than that in both the control and bilberry phytochemicals group. Additionally, the mesenteric adipose tissue mass in aronia phytochemicals-fed rats was significantly low (p < 0.05). Furthermore, the fasting blood glucose levels significantly decreased in rats fed aronia phytochemicals for 4 weeks compared to that in the control rats (p < 0.05). Therefore, we investigated the effects of phytochemicals on postprandial hyperlipidemia after corn oil loading in rats, pancreatic lipase activity in vitro, and the plasma glycemic response after sucrose loading in order to elucidate the preventive factor of aronia phytochemical on visceral fat accumulation. In the oral corn oil tolerance tests (Experiment 2), aronia phytochemicals significantly inhibited the increases in plasma triglyceride levels, with a half-maximal inhibitory concentration (IC(50)) of 1.50 mg/mL. However, the inhibitory activity was similar to that of bilberry and tea catechins. In the sucrose tolerance tests (Experiment 3), aronia phytochemicals also significantly inhibited the increases in blood glucose levels that were observed in the control animals (p < 0.05). These results suggest that anthocyanin

  9. Triglyceride kinetics in fasted and fed E. coli septic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza-Jacoby, S.; Tabares, A.

    1990-02-26

    The mechanism for the development of hypertriglyceridemia during gram-negative sepsis was studies by examining the liver production and clearance of very-low-density lipoprotein (VLDL) triglyceride (TG). To assess the liver output and peripheral clearance the kinetics of VLDL-TG were determined by a constant intravenous infusion of (2-{sup 3}H) glycerol-labeled VLDL in fasted control, fasted E. coli-treated, fed control, and fed E.coli-treated rats. Lewis inbred rats, 275-300 g, were made septic with 8 {times} 10{sup 7} live E.coli colonies per 100 g body weight. Twenty-four hours following E.coli injection serum TG of fasted E.coli-treated rats was elevated by 170% which was attributedmore » to a 67% decrease in the clearance rate of VLDL-TG in fasted E.coli-treated rats compared with their fasted controls. The secretion of VLDL-TG declined by 31% in the livers of the fasted E.coli-treated rats which was accompanied by a 2-fold increase in the composition of liver TG. In a second series of experiments control and E.coli-treated rats were fed intragastrically (IG) a balanced solution containing glucose plus fat as the sources of nonprotein calories. Serum TG were 26% lower in the fed E.coli-treated rats because the clearance rate increased by 86%. The secretion of TG in the fed septic rats increased by 40% but this difference was not significant. In the septic rat the ability to clear triglycerides from the plasma depends upon the nutritional state.« less

  10. Antioxidative and Neuroprotective Effects of Curcumin in an Alzheimer's Disease Rat Model Co-Treated with Intracerebroventricular Streptozotocin and Subcutaneous D-Galactose.

    PubMed

    Huang, Han-Chang; Zheng, Bo-Wen; Guo, Yu; Zhao, Jian; Zhao, Jiang-Yan; Ma, Xiao-Wei; Jiang, Zhao-Feng

    2016-04-05

    Epidemiological data imply links between the increasing incidences of Alzheimer's disease (AD) and type 2 diabetes mellitus. In this study, an AD rat model was established by combining treatments with intracerebroventricular streptozotocin (icv-STZ) and subcutaneous D-galactose, and the effects of curcumin on depressing AD-like symptoms were investigated. In the AD model group, rats were treated with icv-STZ in each hippocampus with 3.0 mg/kg of bodyweight once and then were subcutaneously injected with D-galactose daily (125 mg/kg of bodyweight) for 7 weeks. In the curcumin-protective group, after icv-STZ treatment, rats were treated with D-galactose (the same as in the AD model group) and intraperitoneally injected with curcumin daily (10 mg/kg of bodyweight) for 7 weeks. Vehicle-treated rats were treated as control. Compared with the vehicle control, the amount of protein carbonylation and glutathione in liver, as well as malondialdehyde in serum, were upregulated but glutathione peroxidase activity in blood was downregulated in the AD model group. The shuttle index and locomotor activity of rats in the AD model group were decreased compared with the vehicle control group. Furthermore, AD model rats showed neuronal damage and neuron loss with formation of amyloid-like substances and neurofibrillary tangles, and the levels of both β-cleavage of AβPP and phosphorylation of tau (Ser396) were significantly increased compared with the vehicle control group. Notably, compared with the AD model group, oxidative stress was decreased and the abilities of active avoidance and locomotor activity were improved, as well as attenuated neurodegeneration, in the curcumin-protective group. These results imply the applications of this animal model for AD research and of curcumin in the treatment of AD.

  11. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose,more » insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty

  12. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    PubMed

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  13. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    PubMed Central

    2012-01-01

    Background Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). Method EAL-I (100 mg·kg−1/day), EAL-II (200 mg·kg−1/day), and fluvastatin (3 mg·kg−1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation. PMID:22866890

  14. Exaggerated response to mild stress in rats fed high-fat diet.

    PubMed

    Legendre, Ariadne; Harris, Ruth B S

    2006-11-01

    It has been suggested that high-fat (HF) diet exaggerates the stress-induced release of glucocorticoids due to activation of the hypothalamic-pituitary-adrenal (HPA) axis. In an initial experiment, in which rats were fed HF diet for 4 days, we found that HF-fed controls stopped gaining weight, indicating that they were hyperresponsive to the mild stress of tail bleeding but responded the same as low-fat (LF)-fed rats to the more severe stress of restraint. A second experiment confirmed these results when rats fed a HF diet for 4 days showed an exaggerated corticosterone release in response to an intraperitoneal injection of saline and movement to a novel cage, compared with LF-fed rats. Experiment 3 tested the same parameters as experiment 2 but interchanged the diets. This allowed us to differentiate between the effects of the dietary fat and the novelty of the diet. Additionally, this experiment determined whether hyperresponsiveness to mild stress in HF-fed rats was sustained during a prolonged exposure to diet. The results confirmed that a HF diet, not novelty, exaggerated the endocrine stress response after 9 days on the diet but that the effect was no longer present after 23 days on the diet. The hyperresponsiveness of the HPA axis in HF-fed rats is similar to that observed in animals that have been exposed to a significant chronic or acute stress, suggesting that the HF diet may initially be perceived as a stressor.

  15. Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats.

    PubMed

    Rehman, Shafiq Ur; Shah, Shahid Ali; Ali, Tahir; Chung, Jong Il; Kim, Myeong Ok

    2017-01-01

    Aging is a major factor involved in neurological impairments, decreased anti-oxidant activities, and enhanced neuroinflammation. D-galactose (D-gal) has been considered an artificial aging model which induces oxidative stress and inflammatory response resulting in memory and synaptic dysfunction. Dietary supplementation exerts valuable effects against oxidative stress and neuroinflammation. Polyphenolic flavonoids, such as anthocyanins, have been reported as an anti-inflammatory and anti-oxidant agents against various neurodegenerative diseases. Recently, our group reported anthocyanin neuroprotection of the developing rat brain against ethanol-induced oxidative stress and neurodegenaration and ethanol-induced neuronal apoptosis via GABA B1 receptor intracellular signaling in prenatal rat hippocampus. Here, we examined the protective effect of anthocyanin neuroprotection against D-gal-induced oxidative and inflammatory response in the hippocampus and cortex regions and explore the potential mechanism of its action. Our results indicated that anthocyanins treatment significantly improved behavioral performance of D-gal-treated rats in Morris water maze and Y-maze tests. One of the potential mechanisms of this action was decreased expression of the receptor for advance glycation end product, reduced level of reactive oxygen species (ROS) and lipid peroxidation as well as markers of the Alzheimer's disease. Furthermore, the results also indicated that anthocyanins inhibited activated astrocytes and neuroinflammation via suppression of various inflammatory markers including p-NF- K B, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α) in the hippocampus and cortex regions of D-gal-treated rats brain. Moreover, anthocyanins abrogated neuroapoptosis via C-jun N-terminal kinase (p-JNK) suppression and improved deregulated synaptic proteins including synaptophysin, synaptosomal-associated protein (SNAP)-23, SNAP-25, and phosphorylated CREB

  16. Inhibitor of apoptosis proteins and ovarian dysfunction in galactosemic rats.

    PubMed

    Lai, K W; Cheng, L Y L; Cheung, A L M; O, W S

    2003-03-01

    Galactosemia is a genetic disease with deficiency of galactose-1-uridyltransferase, resulting in the accumulation of galactose or galactose-1-phosphate in the blood and tissues. Rats were fed with normal rat chow and with a high-galactose diet for 4 weeks to give control and galactosemic groups, and their ovarian function was studied. The two groups of rats were injected with pregnant mare's serum gonadotrophin (PMSG) and were killed at different time points after human chorionic gonadotrophin (hCG) injection. The number of oocytes ovulated in the controls was significantly higher than in the galactosemic group. Morphometric studies of the ovaries also showed a higher number of corpora lutea in the controls. Western blot analysis of granulosa cells showed that the overall expressions of Fas and FasL were lower in the control group and their expressions of inhibitor of apoptosis proteins (IAPs) were higher than in the galactosemic group, especially at 8 h post hCG injection. TDT-mediated dUTP-biotin nick end-labeling (TUNEL) and immunohistochemical staining of ovarian sections with Ki-67 and IAPs showed more apoptotic granulosa cells in the galactosemic group and the expressions of IAPs in granulosa cells also confirmed the result of the Western blot. These findings support our hypothesis that ovarian dysfunction in galactosemic rats is due to increased apoptosis in granulosa cells of maturing follicles.

  17. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    PubMed

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  18. Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids.

    PubMed Central

    Rustan, A C; Christiansen, E N; Drevon, C A

    1992-01-01

    Rats were fed, for 3 weeks, high-fat (20% w/w) diets containing sunflower-seed oil, linseed oil or fish oil. Chow-fed rats were used as a low-fat reference. The high-fat diets markedly reduced non-fasting-rat serum triacylglycerol as compared with the low-fat reference, and the highest reduction (85%) was observed with the fish-oil group, which was significantly lower than that of the other high-fat diets. The serum concentration of phospholipids was significantly reduced (30%) only in the fish-oil-fed animals, whereas serum non-esterified fatty acids were reduced 40-50% by both the fish-oil- and linseed-oil-fed groups. The liver content of triacylglycerol showed a 1.7-fold increase with the fish-oil diet and 2-2.5-fold with the other dietary groups when compared with rats fed a low-fat diet, whereas the hepatic content of phospholipids was unchanged. Peroxisomal fatty acid oxidation (acyl-CoA oxidase) was 2-fold increased for the rats fed fish oil; however this was not significantly higher when comparison was made with rats fed the linseed-oil diet. There was no difference in phosphatidate hydrolysis (microsomal and cytosolic fractions) among animals fed the various diets. Acyl-CoA:diacylglycerol acyltransferase activity was increased by all high-fat diets, but the fish-oil-diet-fed group showed a significantly lower enzyme activity than did rats fed the other high-fat diets. A linear correlation between acyl-CoA:diacylglycerol acyltransferase activity and liver triacylglycerol was observed, and the microsomal enzyme activity was decreased 40-50% by incubation in the presence of eicosapentaenoyl-CoA. CoA derivatives of arachidonic, linolenic and linoleic acid had no inhibitory effect when compared with the control. These results indicate that dietary fish oil may have greater triacylglycerol-lowering effect than other polyunsaturated diets, owing to decreased triacylglycerol synthesis caused by inhibition of acyl-CoA:diacylglycerol acyltransferase. In addition

  19. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    PubMed

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  20. Protective Effects of Ellagitannin-Rich Strawberry Extracts on Biochemical and Metabolic Disturbances in Rats Fed a Diet High in Fructose.

    PubMed

    Fotschki, Bartosz; Juśkiewicz, Jerzy; Kołodziejczyk, Krzysztof; Jurgoński, Adam; Kosmala, Monika; Milala, Joanna; Ognik, Katarzyna; Zduńczyk, Zenon

    2018-04-04

    The present study compares the effects of two dietary strawberry extracts rich in monomeric (ME) or dimeric (DE) ellagitannins (ETs) on gastrointestinal, blood and tissue biomarkers in Wistar rats fed high-fructose diets. Both strawberry extracts beneficially affect the antioxidant status and lipid profile of the liver and serum. The ME extract shows a greater ability to inhibit lipid peroxidation in kidneys, more effectively decreases serum and liver triglycerides, and exerts greater anti-inflammatory effects in blood serum than the DE extract. The DE extract significantly reduces the activity of microbial enzymes in the cecum. These effects might be associated with higher cecum and urine levels of ET metabolites in rats fed with ME than in rats fed with DE. In conclusion, the diet-induced fructose-related disturbances observed in biochemical parameters are regulated by both extracts; nevertheless, the beneficial effects of the ME extract are mostly associated with systemic parameters, while those of the DE extracts are associated with local microbial activity.

  1. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  2. Brain electrophysiology in Sprague-Dawley rats fed low copper diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penland, J.G.; Sawler, B.G.; Klevay, L.M.

    1986-03-01

    Electrical activity of the brain was assessed in 38 unanesthetized male rats fed a Cu deficient diet for c.100 days after weaning. Rats were supplemented with drinking solutions containing 0, 0.75, or 2 ..mu..g Cu/ml and 10 ..mu..g Zn/ml (as sulfate and acetate, respectively). Three weeks prior to recording, dural ball electrodes were placed bilaterally 1 mm anterior to the lambda and 4 mm lateral to the midline, with a midline reference 2 mm anterior to the bregma. Cu deficiency was verified by atomic absorption spectroscopy of plasma Cu (p < .0001). The electroencephalogram revealed dietary effects on both logmore » power and arcsin percent-total power in each of four frequency bands (1-3, 4-7, 8-12, 13-18 Hz). Low dietary Cu resulted in less log power and percent-total power in the lowest frequencies, and log power evidenced lateralized effects in the higher frequencies. Rats fed the diet most deficient in Cu had lower left and higher right hemisphere power than did rats fed the more adequate Cu diets. Percent-total power was higher in the mid-range frequencies in both hemispheres for rats fed the Cu deficient diets, compared to rats supplemented with the largest amount of Cu. The findings confirm a previous experiment (unpublished) and suggest that dietary Cu influences the electrical activity of the brain in a select (i.e., frequency and location specific) rather than undifferentiated manner.« less

  3. Mixed-culture H2 fermentation performance and the relation between microbial community composition and hydraulic retention times for a fixed bed reactor fed with galactose/glucose mixtures.

    PubMed

    Anburajan, Parthiban; Park, Jong-Hun; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Kumar, Gopalakrishnan; Choi, Chang-Su; Kim, Sang-Hyoun

    2017-09-01

    This study examined the mesophilic continuous biohydrogen fermentation from galactose and glucose mixture with an initial substrate concentration of 15 g/L (galactose 12 g/L and glucose 3 g/L) as a resembling carbon source of pretreated red algal hydrolyzate. A fixed bed reactor was fed with the sugar mixture at various hydraulic retention times (HRTs) ranging 12 to 1.5 h. The maximum hydrogen production rate of 52.6 L/L-d was found at 2 h HRT, while the maximum hydrogen yield of 2.3±0.1 mol/mol hexose added, was achieved at 3 h HRT. Microbial communities and species distribution were analyzed via quantitative polymerase chain reaction (qPCR) and the dominant bacterial population was found as Clostridia followed by Lactobacillus sp. Packing material retained higher 16S rRNA gene copy numbers of total bacteria and Clostridium butyricum fraction compared to fermentation liquor. The finding of the study has demonstrated that H 2 production from galactose and glucose mixture could be a viable approach for hydrogen production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Acidic Polysaccharide Extracts from Gastrodia Rhizomes Suppress the Atherosclerosis Risk Index through Inhibition of the Serum Cholesterol Composition in Sprague Dawley Rats Fed a High-Fat Diet

    PubMed Central

    Kim, Kui-Jin; Lee, Ok-Hwan; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    Obesity is associated with a broad spectrum of cardio-metabolic disturbances, including atherosclerosis and cardiovascular disease (CDV). A high-fat diet has been shown to cause an elevation of the plasma cholesterol levels in humans, and the control of serum cholesterol has been demonstrated to be important in the prevention of CVD and atherosclerosis. The aims of this study were to demonstrate that crude and acidic polysaccharide extracts from Gastrodia rhizomes suppress atherosclerosis through the regulation of serum lipids in Sprague Dawley (SD) rats fed a high-fat diet. We examined the concentrations of serum lipids, including total cholesterol, triglycerides, high-density lipoproteins (HDL) cholesterol, and low-density lipoproteins (LDL) cholesterol, in SD rats fed a high-fat diet and evaluated the atherogenic index. Here, we show that both crude and acidic polysaccharide extracts from Gastrodia rhizomes inhibited the total cholesterol and LDL levels. Moreover, there was a significantly suppressed atherosclerosis risk due to the acidic polysaccharide extract from Gastrodia rhizome. Taken together, our results suggested that acidic polysaccharide extracts from Gastrodia rhizomes might be beneficial for lowering the incidence of CVD and atherosclerosis by reducing the de novo synthesis of total cholesterol and the LDL levels. PMID:22408412

  5. Acidic polysaccharide extracts from Gastrodia Rhizomes suppress the atherosclerosis risk index through inhibition of the serum cholesterol composition in Sprague Dawley rats fed a high-fat diet.

    PubMed

    Kim, Kui-Jin; Lee, Ok-Hwan; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    Obesity is associated with a broad spectrum of cardio-metabolic disturbances, including atherosclerosis and cardiovascular disease (CDV). A high-fat diet has been shown to cause an elevation of the plasma cholesterol levels in humans, and the control of serum cholesterol has been demonstrated to be important in the prevention of CVD and atherosclerosis. The aims of this study were to demonstrate that crude and acidic polysaccharide extracts from Gastrodia rhizomes suppress atherosclerosis through the regulation of serum lipids in Sprague Dawley (SD) rats fed a high-fat diet. We examined the concentrations of serum lipids, including total cholesterol, triglycerides, high-density lipoproteins (HDL) cholesterol, and low-density lipoproteins (LDL) cholesterol, in SD rats fed a high-fat diet and evaluated the atherogenic index. Here, we show that both crude and acidic polysaccharide extracts from Gastrodia rhizomes inhibited the total cholesterol and LDL levels. Moreover, there was a significantly suppressed atherosclerosis risk due to the acidic polysaccharide extract from Gastrodia rhizome. Taken together, our results suggested that acidic polysaccharide extracts from Gastrodia rhizomes might be beneficial for lowering the incidence of CVD and atherosclerosis by reducing the de novo synthesis of total cholesterol and the LDL levels.

  6. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    PubMed

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  7. Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber.

    PubMed

    Prescha, Anna; Krzysik, Monika; Zabłocka-Słowińska, Katarzyna; Grajeta, Halina

    2014-06-01

    This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5% cellulose (CEL), 5% pectin (PEC), or 2.5% cellulose and 2.5% pectin (CEL+PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL+PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL+PEC+Cr diet compared to the rats fed FF+Cr diet. The rats consuming the PEC+Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.

  8. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    PubMed

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  9. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  10. /sup 54/Mn absorption and excretion in rats fed soy protein and casein diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.Y.; Johnson, P.E.

    1989-02-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interactionmore » between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.« less

  11. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats.

    PubMed

    Sandhya, V G; Rajamohan, T

    2006-01-01

    The purpose of this study was to determine the effect of coconut water feeding in cholesterol-fed rats. Male albino rats were fed tender coconut water and mature coconut water at a dose level of 4 mL/100 g of body weight. Cholesterol feeding caused a marked increase in total cholesterol, very low-density lipoprotein (VLDL) + low-density lipoprotein (LDL) cholesterol, and triglycerides in serum. Administration of coconut water counteracts the increase in total cholesterol, VLDL + LDL cholesterol, and triglycerides, while high-density lipoprotein cholesterol was higher. Lipid levels in the tissues viz. liver, heart, kidney, and aorta were markedly decreased in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased activities of 3-hydroxy-3-methylglutaryl-CoA reductase in liver, lipoprotein lipase in heart and adipose tissue, and plasma lecithin:cholesterol acyl transferase, while lipogenic enzymes showed decreased activities. An increased rate of cholesterol conversion to bile acid and an increased excretion of bile acids and neutral sterols were observed in rats fed coconut water. Histopathological studies of liver and aorta revealed much less fatty accumulation in these tissues in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased plasma L-arginine content, urinary nitrite level, and nitric oxide synthase activity. These results indicate that both tender and mature coconut water has beneficial effects on serum and tissue lipid parameters in rats fed cholesterol-containing diet.

  12. Antioxidative activity of microencapsulated gamma-oryzanol on high cholesterol-fed rats.

    PubMed

    Suh, Mun-Hee; Yoo, Sang-Ho; Chang, Pahn-Shick; Lee, Hyeon Gyu

    2005-12-14

    The effectiveness of microencapsulated gamma-oryzanol (M-gamma-OZ) was evaluated as an antioxidant in Sprague-Dawley rats. Lard containing 100 ppm of gamma-OZ (HCD III) or 100 ppm of M-gamma-OZ (HCD IV) was heated in an oven for 7 days, and the heat-treated lard as an ingredient in a high cholesterol diet (HCD) formulation was tested for analyzing in vivo cholesterol and lipid profiles. The HCDs containing fresh lard (HCD I) and heat-treated lard (HCD II) were fed to the rats for 4 weeks as control groups A and B, respectively, in this experiment. The liver thiobarbituric acid reactive substances values of group C (fed with HCD III) and group D (with HCD IV) were significantly lower (p < 0.05) than that of negative control, group B. One of the cholesterol oxidation products, 7-ketocholesterol, was not detected from group D, indicating that microencapsulation preserved antioxidative activity effectively. The levels of serum total cholesterol and lipoproteins, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein were also affected by heat-induced lipid oxidation.The M-gamma-OZ evidently decreased LDL-cholesterol content and increased HDL-cholesterol in blood samples of tested rats. These results suggested that the M-gamma-OZ was not only effective in inhibiting the hypercholesterolemia of serum and liver but also reduced the oxidation degree of lipids and cholesterol. Therefore, this microencapsulation can be a good potential technique to protect the antioxidant activity of gamma-OZ from heat-induced lipid oxidation.

  13. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet

    PubMed Central

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    Purpose This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. Methods The rats were randomly separated into three groups: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. Results NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. Conclusion From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue. PMID:24403834

  14. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet.

    PubMed

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. THE RATS WERE RANDOMLY SEPARATED INTO THREE GROUPS: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue.

  15. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    PubMed

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine.

    PubMed

    Marzo, F; Milagro, F I; Urdaneta, E; Barrenetxe, J; Ibañez, F C

    2011-10-01

    The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and α-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate. © 2010 Blackwell Verlag GmbH.

  17. Gliclazide inhibits diabetic neuropathy irrespective of blood glucose levels in streptozotocin-induced diabetic rats.

    PubMed

    Qiang, X; Satoh, J; Sagara, M; Fukuzawa, M; Masuda, T; Miyaguchi, S; Takahashi, K; Toyota, T

    1998-08-01

    N-acetylcysteine and pentoxifylline, free radical scavengers and inhibitors of tumor necrosis factor-alpha (TNF-alpha) production, inhibit the development of peripheral neuropathy in streptozotocin (STZ)-induced diabetic rats. This study was designed to elucidate the effect of gliclazide, an oral hypoglycemic sulfonylurea, on diabetic neuropathy, because it has been indicated to be a free radical scavenger and TNF-alpha inhibitor. Rats were fed with powder chow mixed with gliclazide or glibenclamide as a control ad libitum. Blood glucose levels and body weight were remarkably higher and lower in diabetic than in nondiabetic rats, respectively, while gliclazide and glibenclamide had no effect on these in both diabetic and nondiabetic rats throughout a 24-week experiment. Serum lipoperoxide levels and lipopolysaccharide (LPS)-induced serum TNF-alpha activities were significantly increased in diabetic rats, whereas these were significantly inhibited in gliclazide-treated rats. Motor nerve conduction velocity (MNCV) of the tibial nerve significantly slowed in diabetic rats compared with nondiabetic rats. On the other hand, the slowed MNCV was significantly inhibited in gliclazide-treated diabetic rats after 16 experimental weeks. Morphometric analysis showed that gliclazide prevented decreased myelinated fiber area (P < .05), increased fiber density (P < .001), and decreased axon/myelin ratio (P < .05) in diabetic rats. Glibenclamide treatment did not affect serum lipoperoxide, TNF-alpha, MNCV, or nerve morphology in this experiment. These results indicate that gliclazide has a beneficial effect on peripheral neuropathy in STZ-induced diabetic rats, irrespective of blood glucose levels.

  18. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.

    PubMed

    Sen, Sarbattama; Simmons, Rebecca A

    2010-12-01

    Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.

  19. Enhancement of in vivo antioxidant ability in the brain of rats fed tannin.

    PubMed

    Nakajima, Akira; Ueda, Yuto; Matsuda, Emiko; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2013-07-01

    The effect of the oral administration of mimosa tannin (MMT) on the rat intra-hippocampal antioxidant ability was examined. Wistar rats at the age of 6 weeks were reared for 8 weeks with the rodent diet (RD) consisting of 0.1 g/kg of MMT (RD-MMT). The antioxidant ability of rat brain was evaluated from the decay of a brain-blood-barrier permeable stable nitroxide, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) measured by the microdialysis-electron spin resonance system under a freely moving state. The decay rate of PCAM in the brain of rats fed RD-MMT was significantly larger than that of rats fed control rodent diet, which indicates the increase of the antioxidant ability in the brain of rats fed RD-MMT. In vitro study showed that MMT did not reduce PCAM directly but enhanced the reduction of PCAM by ascorbic acid. These results indicate that MMT is a potent antioxidant in vitro and in vivo.

  20. Changes in cardiac energy metabolic pathways in overweighed rats fed a high-fat diet.

    PubMed

    Modrego, Javier; de las Heras, Natalia; Zamorano-León, Jose J; Mateos-Cáceres, Petra J; Martín-Fernández, Beatriz; Valero-Muñoz, Maria; Lahera, Vicente; López-Farré, Antonio J

    2013-03-01

    Heart produces ATP through long-chain fatty acids beta oxidation. To analyze whether in ventricular myocardium, high-fat diet may modify the expression of proteins associated with energy metabolism before myocardial function was affected. Wistar Kyoto rats were divided into two groups: (a) rats fed standard diet (control; n = 6) and (b) rats fed high-fat diet (HFD; n = 6). Proteins from left ventricles were analyzed by two-dimensional electrophoresis, mass spectrometry and Western blotting. Rats fed with HFD showed higher body weight, insulin, glucose, leptin and total cholesterol plasma levels as compared with those fed with standard diet. However, myocardial functional parameters were not different between them. The protein expression of 3-ketoacyl-CoA thiolase, acyl-CoA hydrolase mitochondrial precursor and enoyl-CoA hydratase, three long-chain fatty acid β-oxidation-related enzymes, and carnitine-O-palmitoyltransferase I was significantly higher in left ventricles from HFD rats. Protein expression of triosephosphate isomerase was higher in left ventricles from HFD rats than in those from control. Two α/β-enolase isotypes and glyceraldehyde-3-phosphate isomerase were significantly increased in HFD rats as compared with control. Pyruvate and lactate contents were similar in HFD and control groups. Expression of proteins associated with Krebs cycle and mitochondrial oxidative phosphorylation was higher in HFD rats. Expression of proteins involved in left ventricle metabolic energy was enhanced before myocardial functionality was affected in rats fed with HFD. These findings may probably indicate higher cardiac energy requirement due to weight increase by HFD.

  1. Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats.

    PubMed

    Mühlbauer, Roman C; Lozano, Annemarie; Reinli, Andreas; Wetli, Herbert

    2003-11-01

    To make a broad survey of the effect of components of the human diet on bone resorption, a few items from the following categories were added to rat diets: vegetables, fruits, beans, nuts and seeds, mushrooms, carbohydrate sources and beverages. The effect on bone resorption was measured by the urinary excretion of tritium released from bones of 9-wk-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. The number of rats per experiment was 26--6, 5, 5, 5 and 5 in the untreated control group fed the plain semipurified diet, the positive control group fed onions and three groups fed one of the newly investigated items, respectively. New experiments were added until 10 rats were fed each item in each of two separate experiments. The results for each item were compared to those for the untreated control group (n = 12) investigated simultaneously. We found that feeding rats 1 g/d of dry fennel, celeriac, oranges, prunes, French beans and farmed and wild mushrooms (Agaricus hortensis and Boletus edulis) as well as the freeze-dried residue from red wine significantly (P < 0.05 or lower) inhibited bone resorption. Eighteen items had no significant effect. To date we have found 25/53 items that exhibit inhibitory activity. Activity appears to be restricted to the following categories: vegetables, salads, herbs, mushrooms, fruits and red wine residue (25/36 items effective). Furthermore, as assessed in a similar experimental design with various doses of a mixture of active items, we determined the minimum effective dose of the dry items to be 170 mg/d. These results open the possibility for targeted interventions in humans.

  2. Quantitative microlocalization of diffusible ions in normal and galactose cataractous rat lens by secondary ion mass spectrometry.

    PubMed

    Burns, M S; File, D M

    1986-11-01

    Secondary ion mass spectrometry (SIMS) is a surface analytical technique with high sensitivity for elemental detection and microlocalization capabilities within the micrometre range. Quantitative analysis of epoxy resins and gelatin have been reported (Burns-Bellhorn & File, 1979). We report here the first application of this technique to quantitative microlocalization in the context of a physiological problem--analyses of sodium, potassium and calcium in normal and galactose-induced cataract in rat lens. It is known that during the development of galactose-induced cataract the whole lens content of potassium is decreased, sodium is increased and, in late stages, calcium concentration increases. Whether these alterations in diffusible ions occur homogeneously or heterogeneously is not known. Standard curves were generated from epoxy resins containing known concentrations of sodium, potassium or calcium organometallic compounds using the Cameca IMS 300 Secondary Ion Mass Spectrometer. Normal and cataractous lenses were prepared by freezing in isopentane in a liquid nitrogen bath followed by freeze-drying at -30 degrees C. After dry embedding in epoxy resin, 10 microns thick sections of lens were pressure mounted on silicon wafers, overcoated with gold, and ion emission measured under the same instrumental conditions used to obtain the standard curves. Quantitative analysis of an area 27 microns in diameter, or a total analysed volume of 1.1 microns3, was performed by using a mechanical aperture in the ion optical system. Ion images provided qualitative microanalysis with a lateral resolution of 1 micron. Control rat lenses gave values for sodium and potassium content with a precision of +/- 17% or less. These values were compared to flame photometry and atomic absorption measurements of normal lenses and were accurate within 25%. Analysis of serum and blood also gave accurate and precise measurements of these elements. Normal rat lenses had a gradient of sodium, and

  3. Fed, but not Fasted, Adrenalectomized Rats Survive the Stress of Hemorrhage and Hypovolemia

    NASA Technical Reports Server (NTRS)

    Darlington, Daniel N.; Neves, Robert B.; Ha, Taryn; Chew, Gordon; Dallman, Mary F.

    1990-01-01

    We have recently shown that conscious adrenalectomized rats exhibit nearly normal recovery of arterial blood pressure during the 5 h after hemorrhage. In those experiments, it appeared that a previous reduction in food intake might have compromised the recovery of blood pressure and increased mortality. These experiments were designed to test in conscious sham-adrenalectomized (control) and adrenalectomized rats prepared with indwelling arterial and venous cannulae: 1. The effects of a 20- to 24-h fast (compared to rats fed ab libitum) on the mobilization of plasma substrates and recovery of arterial blood pressure after a 15 ml/kg - 5 min hemorrhage, and 2. Vascular responsivity to pressor agents in fed or fasted groups before or 2 h after hemorrhage. In all rats hemorrhage resulted in decreased arterial pressure and heart rate. Arterial pressure recovered to near normal in both fed and fasted control groups and in the led adrenalectomized rats, and all of these rats survived for 24 h after stress. By contrast, in the fasted adrenalectomized rats, arterial pressure recovered only during the first 1.5 - 2 h and then failed, resulting in 100% mortality by 3-5 h. Compared to the other three groups, in which substrate levels either increased or remained fairly stable, plasma glucose and beta-hydoxybutyrate concentrations fell steadily, from 1.5-2 h after hemorrhage until death occurred in the fasted adrenalectomized rats. Basal ACTH concentrations were elevated cormpared to control values in both adrenalectomized groups (fed and fasted). Hemorrhage caused increases in plasma ACTH in all groups; the magnitude of the responses did not differ among the groups. The dilution of Evans' blue dve after hemorrhage (used as an index of fluid movement into the vascular space) was not different in contol and adrenalectomized rats (either fed or fasted). There were no differences in pressor responses to phenylephrine, vasopressin, or angiotensin-II between the fed and fasted

  4. Palm tocotrienol-rich fraction inhibits methionine-induced cystathionine β-synthase in rat liver.

    PubMed

    Kamisah, Yusof; Norsidah, Ku-Zaifah; Azizi, Ayob; Faizah, Othman; Nonan, Mohd Rizal; Asmadi, Ahmad Yusof

    2015-12-01

    Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1%) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine β-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine β-synthase.

  5. Hypolipidemic effect of fruit fibers in rats fed with high dietary fat.

    PubMed

    Esmael, O A; Sonbul, S N; Kumosani, T A; Moselhy, S S

    2015-03-01

    The hypolipidemic effect of 10% fruit fibers in rats fed with high-fat diet (HFD) was evaluated. This study was conducted on a total of 50 male Albino rats divided into 10 equal groups fed with different types of dietary fruits. The feeding period lasted for 24 weeks. Fasting blood samples were collected and sera separated and subjected to lipid profile assay and atherogenic index. In addition, total antioxidant activity of different fruits was determined. The results obtained showed that pomegranate had higher content of antioxidants followed by apple, strawberry and guava compared with other fruits. Rats fed with 20% coconut oil showed a highly significant elevation in the levels of serum total cholesterol, low-density lipoprotein cholesterol and atherogenic factor while the level of high-density lipoprotein cholesterol was significantly decreased when compared with control rats. Histological examination revealed that there was a large lipid and cholesterol deposition in the livers of rats fed with HFD. The potential in lowering the levels of plasma total cholesterol and triglyceride is in the following order: pomegranate > apple > strawberry > guava > papaya > mandarin and orange. Accumulation of hepatic lipid droplets was diminished when compared with the HFD group. Also, antiatherogenic is better than the untreated groups. Accordingly these hypolipidemic effects may be due to high-fiber content and antioxidant activity of these fruits. © The Author(s) 2012.

  6. Acute oral safety study of sodium caseinate glycosylated via maillard reaction with galactose in rats.

    PubMed

    Anadón, Arturo; Martínez, Maria A; Ares, Irma; Castellano, Victor; Martínez-Larrañaga, Maria R; Corzo-Martínez, Marta; Moreno, F Javier; Villamiel, Mar

    2014-03-01

    In order to potentially use sodium caseinate (SC) glycated with galactose (Gal) in the food industry as a new functional ingredient with proved technological and biological properties, an evaluation of oral acute toxicity has been carried out. An acute safety study with SC-Gal glycoconjugates in the Wistar rat with a single oral gavage dose of 2,000 mg/kg of body weight was conducted. The SC-Gal glycoconjugates were well tolerated; no adverse effects or mortality was observed during the 2-week observation period. No abnormal signs, behavioral changes, body weight changes, or alterations in food and water consumption occurred. After this period, no changes in hematological and serum chemistry parameters, organ weights, or gross pathology or histopathology were detected. It was concluded that SC-Gal glycoconjugates obtained via the Maillard reaction were well tolerated in rats at an acute oral dose of 2,000 mg/kg of body weight. The SC-Gal glycoconjugates have a low order of acute toxicity, and the oral 50 % lethal dose for male and female rats is in excess of 2,000 mg/kg of body weight.

  7. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.

    PubMed

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip

    2017-01-01

    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg -1  day -1 , 50 mg kg -1  day -1 , and 200 mg kg -1  day -1 ) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

  8. Deposition of dietary fatty acids in young Zucker rats fed a cafeteria diet.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1992-10-01

    The content and accretion of fatty acids in 30, 45 and 60-day-old Zucker lean Fa/? and obese fa/fa rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during each period. Diet had little overall effect on the pattern of deposition of fatty acids, but quantitatively the deposition of fat was much higher in cafeteria-fed rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into the rat lipids, whilst chow feeding activated lipogenesis and the deposition of a shorter chain and more saturated pattern of fatty acids. Genetic, obesity induced a significant expansion of net lipogenesis when compared with lean controls. Cafeteria-fed obese rats accrued a high proportion of fatty acids, which was close to that ingested, but nevertheless showed a net de novo synthesis of fatty acids. It is postulated that the combined effects of genetic obesity and a fat-rich diet result in high rates of fat accretion with limited net lipogenesis. Lean Zucker rats show a progressive impairment of their delta 5-desaturase system, a situation also observed in obese rats fed a reference diet. In Zucker obese rats, cafeteria feeding resulted in an alteration of the conversion of C18:2 into C20:3. The cafeteria diet fully compensated for these drawbacks by supplying very high amounts of polyunsaturated fatty acids.

  9. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    PubMed

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  10. Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat.

    PubMed

    Qu, Zhuo; Zhang, Jingze; Yang, Honggai; Huo, Liqin; Gao, Jing; Chen, Hong; Gao, Wenyuan

    2016-02-01

    Aging is associated with Alzheimer's disease (AD), cardiovascular disease and cancer. Oxidative stress is considered as a major factor that accelerates the aging process. d-galactose (d-gal), a reducing sugar, induces oxidative stress resulting in alteration in mitochondrial dynamics and apoptosis of neurons. To understand the ability of tetrahydropalmatine (THP) to ameliorate memory impairment caused by aging, we investigated the effect of THP on d-gal induced memory impairment in rats. Subcutaneous injection of d-gal (100mg/kg/d) for 8weeks caused memory loss as detected by the Morris water maze and morphologic abnormalities of neurons in the hippocampus regions and cortex of rat brain. THP treatment ameliorated d-gal induced memory impairment associated with the decrease of malondialdehyde (MDA) and nitric oxide (NO) contents, as well as the increase of glutathione (GSH) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. THP treatment was also found to reverse the abnormality of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activities. In addition, treatment with THP could decrease the expression of nuclear factor κ (NF-κB) and glial fibrillary acidic protein (GFAP) which prevented the neuroinflammation and memory impairment in the d-gal treated rats. Taken together, these results clearly demonstrated that subcutaneous injection of d-gal produced memory deficits, meanwhile THP could protect neuron from d-gal insults and improve cognition. This study provided an experimental basis for clinical application of THP in AD therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline.

    PubMed

    Pinto, J; Huang, Y P; Rivlin, R S

    1981-05-01

    Prompted by recognition of the similar structures of riboflavin (vitamin B(2)), phenothiazine drugs, and tricyclic antidepressants, our studies sought to determine effects of drugs of these two types upon the conversion of riboflavin into its active coenzyme derivative, flavin adenine dinucleotide (FAD) in rat tissues. Chlorpromazine, a phenothiazine derivative, and imipramine and amitriptyline, both tricyclic antidepressants, each inhibited the incorporation of [(14)C]riboflavin into [(14)C]FAD in liver, cerebrum, cerebellum, and heart. A variety of psychoactive drugs structurally unrelated to riboflavin were ineffective. Chlorpromazine, imipramine, and amitriptyline in vitro inhibited hepatic flavokinase, the first of two enzymes in the conversion of riboflavin to FAD. Evidence was obtained that chlorpromazine administration for a 3- or 7-wk period at doses comparable on a weight basis to those used clinically has significant effects upon riboflavin metabolism in the animal as a whole: (a) the activity coefficient of erythrocyte glutathione reductase, an FAD-containing enzyme used as an index of riboflavin status physiologically, was elevated, a finding compatible with a deficiency state, (b) the urinary excretion of riboflavin was more than twice that of age- and sex-matched pair-fed control rats, and (c) after administration of chlorpromazine for a 7-wk period, tissue levels of flavin mononucleotide and FAD were significantly lower than those of pair-fed littermates, despite consumption of a diet estimated to contain 30 times the recommended dietary allowance. The present study suggests that certain psychotropic drugs interfere with riboflavin metabolism at least in part by inhibiting the conversion of riboflavin to its coenzyme derivatives, and that as a consequence of such inhibition, the overall utilization of the vitamin is impaired.

  12. Monitoring of changes in hepatic fatty acid and glycerolipid metabolism during the starved-to-fed transition in vivo. Studies on awake, unrestrained rats.

    PubMed Central

    Moir, A M; Zammit, V A

    1993-01-01

    1. The technique of selective labelling of hepatic fatty acids in vivo [Moir and Zammit (1992) Biochem. J. 283, 145-149] has been used to monitor non-invasively the metabolism of fatty acids in the livers of awake unrestrained rats during the starved-to-refed transition. Values for the incorporation of labelled fatty acid into liver and plasma glycerolipids and into exhaled carbon dioxide after injection of labelled lipoprotein and Triton WR 1339 into rats with chronically cannulated jugular veins were obtained for successive 1 h periods from the start of refeeding of 24 h-starved rats. 2. Starvation for 24 h resulted in marked and reciprocal changes in the incorporation of label into glycerolipids and exhaled 14CO2, such that a 4-fold higher value was obtained for the oxidation/esterification ratio in livers of starved rats compared with fed animals. 3. Refeeding of starved rats did not return this ratio to the value observed for fed animals for at least 7 h; during the first 3 h of refeeding the ratio was at least as high as that for starved rats. Between 4 h and 6 h of refeeding the ratio was still approx. 70% of that in starved animals, and 2.5-fold higher than in fed rats. 4. These data support the hypothesis that the capacity of the liver to oxidize fatty acids is maintained at a high level during the initial stages of refeeding [Grantham and Zammit (1986) Biochem. J. 239, 485-488] and that control of the flux of hepatic fatty acids into the oxidative pathway is largely lost from the reaction catalysed by mitochondrial overt carnitine palmitoyltransferase (CPT I) during this phase of recovery from the starved state. 5. Refeeding also resulted in a rapid (< 1 h) increase in hepatic malonyl-CoA concentrations to values intermediate between those in livers of fed and starved animals. The sensitivity of CPT I to malonyl-CoA inhibition in isolated liver mitochondria was only partially reversed even after 5 h of refeeding. 6. Refeeding resulted in an acute 35

  13. Grape skin improves antioxidant capacity in rats fed a high fat diet

    PubMed Central

    Lee, Su-Jin; Choi, Soo-Kyong

    2009-01-01

    This study was conducted to investigate the effect of dietary grape skin on lipid peroxidation and antioxidant defense system in rats fed high fat diet. The Sprague-Dawley rats were fed either control (5% fat) diet or high fat (25% fat) diet which was based on AIN-93 diet for 2 weeks, and then they were grouped as control group (C), control + 5% grape skin group (CS), high-fat group (HF), high fat + 5% grape skin group (HFS) with 10 rats each and fed corresponding diets for 4 weeks. The hepatic thiobarbituric acid reacting substances (TBARS) were increased in high fat group as compared with control group, but reduced by grape skin. The serum total antioxidant status, and activities of hepatic catalase and superoxide dismutase, xanthine oxidase and glucose-6-phosphatase were increased by supplementation of grape skin. Glutathione peroxidase activity was significantly higher in CS group than in C group. Grape skin feeding tended to increase the concentration of total glutathione, especially in control group. The ratio of reduced glutathione to oxidized glutathione was lower in high fat groups than in control groups. The ratio was increased by dietary supplementation of grape skin in control group. These results suggest that dietary supplementation of grape skin would be effective on protection of oxidative damage by lipid peroxidation through improvement of antioxidant defense system in rats fed high fat diet as well as rats with low fat diet. PMID:20098580

  14. Decreased insulin secretion in pregnant rats fed a low protein diet.

    PubMed

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  16. Attenuation of liver pro-inflammatory responses by Zingiber officinale via inhibition of NF-kappa B activation in high-fat diet-fed rats.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C-Y; Nammi, Srinivas; Heather, Alison K; Roufogalis, Basil D

    2012-03-01

    The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 μg/mL) for 24 hr prior to interleukin-1β (IL-1β, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  17. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  18. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  19. Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea.

    PubMed

    Sato, D

    1999-02-01

    Recently, the anticarcinogenic effects of green tea have been studied in sites other than the urinary tract. The present study examined the inhibition by green tea of vesical tumors induced in rats by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). In the first series of experiments, 0.05% BBN was added to the drinking water of rats and remained present for 5 weeks. In one experiment, six groups of animals received either tap water, green tea, matcha, hojicha, oolong tea or black tea from week 6. In a second experiment, three groups of rats received either tap water, green tea extract or powdered green tea mixed into a pellet diet from week 6. In a third experiment, five groups of rats were fed a pellet diet with addition of either 0, 0.15, 1.5 or 3.0% powdered green tea from week 6. All rats were killed and examined at 40 weeks. Green tea, particularly green tea leaves, dose-dependently inhibited the growth of BBN-induced urinary bladder tumors when given after the carcinogen. Green tea may inhibit bladder tumor growth.

  20. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.

    PubMed

    Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching

    2011-03-01

    The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Amygdalin metabolism and effect on reproduction of rats fed apricot kernels.

    PubMed

    Miller, K W; Anderson, J L; Stoewsand, G S

    1981-01-01

    Diets containing 10% ground apricot kernels were fed to young and breeding male and female Sprague-Dawley rats. The kernels werE obtained from 35 specific apricot cultivars and divided into groups containing low amygdalin (less than 50 mg cyanide per 100 g), moderate amygdalin (100-200 mg cyanide per 100 g), or high amygdalin (more than 200 mg cyanide per 100 g). Growth of young male rats was greatest in the low- or moderate-amygdalin group which may indicate only that they were more sensitive to the bitter taste of the kernels with high amygdalin contents. In female rats, but not males, liver rhodanese activity and thiocyanate (SCN) blood levels were increased with the high-amygdalin diet, but both male and females efficiently excreted thiocyanate, indicating efficient detoxication and clearance of cyanide hydrolyzed from the dietary amygdalin. No changes in blood chemistry were observed. Although parturition and 3-d survival indices were poor in pups from dams fed a basal semisynthetic diet, offspring of breeding rats fed the high-amygdalin diet for 18 wk had lower 3-d survival indices, lactation indices, and weaning weights than those in the low-amygdalin group. This may indicate that the cyanide present in the milk may not be efficiently detoxified to SCN and excreted by neonates.

  2. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  3. Inhibition of rat mammary carcinogenesis by short dietary exposure to retinyl acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1980-04-01

    This study was designed to determine whether retinyl acetate was an effective inhibitor when given for short periods at the time of and after the administration of the carcinogen. Virgin female Lewis rats were given 20 mg 7,12-dimethylbenz(a)anthracene intragastrically at 50 days of age. The rats were fed Purina laboratory chow supplemented with 250 ppM retinyl acetate in groups of 20 for various lengths of time. At 30 weeks all groups receiving retinyl acetate except one showed a significant decrease in tumor multiplicity in comparison to non-retinyl acetate-treated controls. In the +1 to +12 group, the inhibition of tumor developmentmore » was temporary, inasmuch as tumor values returned to control levels by Week 30. These results indicate that retinyl acetate inhibition of mammary cancer is not limited to the late stage of the disease, because the retinoid was almost equally effective when given for a short period at the time of carcinogen availability.« less

  4. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  5. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Modifications of hepatic drug metabolizing enzyme activities in rats fed baobab seed oil containing cyclopropenoid fatty acids.

    PubMed

    Andrianaivo-Rafehivola, A A; Siess, M H; Gaydou, E M

    1995-05-01

    The effects on drug metabolizing enzymes of cyclopropenoid fatty acids present in baobab seed oil were evaluated in rats fed either a diet with baobab seed oil (1.27% cyclopropenoid fatty acids in the diet) or a diet with heated baobab seed oil (0.046% cyclopropenoid fatty acids in the diet). Comparison was made with rats fed a mixture of oils that contained no cyclopropenoid fatty acid. Rats fed baobab oil showed retarded growth. In comparison with the other groups, the relative liver weights were markedly increased whereas cytochrome P-450 content and NADPH cytochrome c reductase and NADH cytochrome c reductase activities were decreased. In rats fed the heated baobab oil the relative liver weight was decreased and the cytochrome P-450 level and reductase activities were increased relative to levels in rats fed the unheated oil. Ethoxycoumarin deethylase, ethoxyresorufin deethylase and pentoxyresorufin depentylase activities, expressed on the basis of cytochrome P-450, were greater in the group fed unheated baobab seed oil. Cytosolic glutathione transferase activity was markedly decreased in rats fed fresh baobab seed oil and heating the oil, which reduced the content of cyclopropenoid fatty acids, led to a considerable increase of this activity. UDP-glucuronyl transferase activities were not modified by the type of oil included in the diet. It is possible that the mechanisms of action of cyclopropenoid fatty acids are related to alterations of membrane lipid composition or microsomal proteins.

  7. Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs

    PubMed Central

    2015-01-01

    Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by thermal energy analysis on days 1–4 after nitrite or hot dog treatment was stopped. For two rats fed 480 mg NaNO2/L drinking water, mean urinary ANC excretion on days 1–4 was 30, 5.2, 2.5, and 0.8 nmol/day, respectively. For two to eight rats/dose given varied NaNO2 doses, mean urinary ANC output on day 1 increased from 0.9 (for no nitrite) to 37 (for 1000 mg NaNO2/L drinking water) nmol ANC/day. Urine samples of four rats fed 40–60% hot dogs contained 12–13 nmol ANC on day 1. Linear regression analysis showed highly significant correlations between urinary ANC excretion on day 1 after stopping treatment and varied (a) NaNO2 level in drinking water for rats fed semipurified or commercials diet and (b) hot dog levels in the diet. Some correlations remained significant up to 4 days after nitrite treatment was stopped. Urinary output of ANC precursors (compounds that yield ANC after mild nitrosation) for rats fed semipurified or commercial diet was 11–17 or 23–48 μmol/day, respectively. Nitrosothiols and iron nitrosyls were not detected in urinary ANC and ANCP. Excretion of urinary ANC was about 60% of fecal ANC excretion for 1 to 2 days after NaNO2 was fed. Administered NaNO2 was not excreted unchanged in rat urine. We conclude that urinary ANC excretion in humans could usefully be surveyed to indicate exposure to N-nitroso compounds. PMID:25183213

  8. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    PubMed Central

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  9. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    PubMed

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  10. α-Lipoic acid reduced weight gain and improved the lipid profile in rats fed with high fat diet.

    PubMed

    Seo, Eun Young; Ha, Ae Wha; Kim, Woo Kyoung

    2012-06-01

    The purpose of this study was to investigate the effects of α-lipoic acid on body weight and lipid profiles in Sprague-Dawley rats fed a high fat diet (HFD). After 4 weeks of feeding, rats on the HFD were divided into three groups by randomized block design; the first group received the high-fat-diet (n = 10), and the second group received the HFD administered with 0.25% α-lipoic acid (0.25LA), and the third group received the high-fat diet with 0.5% α-lipoic acid (0.5LA). The high fat diet with α-lipoic acid supplemented groups had significantly inhibited body weight gain, compared to that in the HFD group (P < 0.05). Organ weights of rats were also significantly reduced in liver, kidney, spleen, and visible fat tissues in rats supplemented with α-lipoic acid (P < 0.05). Significant differences in plasma lipid profiles, such as total lipids, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein, were observed between the HFD and 0.5LA groups. The atherogenic index and the plasma high density lipoprotein-cholesterol/total cholesterol ratio improved significantly with α-lipoic acid supplementation in a dose-dependent manner (P < 0.05). Total hepatic cholesterol and total lipid concentration decreased significantly in high fat fed rats supplemented with α-lipoic acid in a dose-dependent manner (P < 0.05), whereas liver triglyceride content was not affected. In conclusion, α-lipoic acid supplementation had a positive effect on weight gain and plasma and liver lipid profiles in rats.

  11. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P < 0.001). Plasma parathyroid hormone concentrations of S rats were twice that of R rats. S rats fed 2% salt had higher plasma 1,25-dihydroxyvitamin D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P < 0.001) and did not exhibit the expected calciuric response to salt. Proteinuria of the S rats was three times that of the R rats, suggesting kidney damage in the S rats. Low plasma 25-OHD and 24,25-dihydroxyvitamin D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  12. Energy utilization of a low carbohydrate diet fed genetically obese rats and mice.

    PubMed

    Thenen, S W; Mayer, J

    1977-02-01

    Genetically obese Zucker rats, ob/ob mice and non-obese littermates were fed low carbohydrate (2%, 48%, and 50% of energy as carbohydrate, protein, and fat, respectively) and control (60%, 19%, and 21%, as carobhydrate, protein, and fat) diets. The oxidation of the energy components of these diets was measured by adding D-[U-14C]glucose, L-[U-14C]glutamic acid, and glyceryl tri-[1-14C]oleate to test meals given intragastrically and collecting respiratory CO2 for 4 hours. The animals responded to the low carbohydrate diet by oxidizing less glucose and more glutamic acid, but these amounts were proportional to dietary carbohydrate and protein composition, In contrast, the animals oxidized both higher amounts and percentages of glyceryl trioleate when fed the low carbohydrate diet. Obese Zucker rats oxidized less fat than non-obese rats when fed both diets, while obese mice oxidized fat to the same extent as non-obese mice. Feeding the low carbohydrate diet significantly increased body weight in the obese mice, but not in obese rats and non-obese mice and rats. The effect of obesity and the low carbohydrate diet on food intake, serum glucose and lipid values and CO2 production are also reported.

  13. Simultaneous delivery of antibiotics neomycin and ampicillin in drinking water inhibits fermentation of resistant starch in rats.

    PubMed

    Carvajal-Aldaz, Diana G; Guice, Justin L; Page, Ryan C; Raggio, Anne M; Martin, Roy J; Husseneder, Claudia; Durham, Holiday A; Geaghan, James; Janes, Marlene; Gauthier, Ted; Coulon, Diana; Keenan, Michael J

    2017-03-01

    Antibiotics ampicillin 1 g/L and neomycin 0.5 g/L were added to drinking water before or during feeding of resistant starch (RS) to rats to inhibit fermentation. In a preliminary study, antibiotics and no RS were given prior to rats receiving a transplant of cecal contents via gavage from donor rats fed RS (without antibiotics) or a water gavage before feeding resistant starch to both groups. Antibiotics given prior to feeding RS did not prevent later fermentation of RS regardless of either type of gavage. In the second study, antibiotics were given simultaneously with feeding of RS. This resulted in inhibition of fermentation of RS with cecal contents pH >8 and low amounts of acetate and butyrate. Rats treated with antibiotics had reduced Bifidobacteria spp., but similar Bacteroides spp. to control groups to reduce acetate and butyrate and preserve the production of propionate. Despite reduced fermentation, rats given antibiotics had increased glucagon-like peptide 1 (GLP-1) and cecum size, measures that are usually associated with fermentation. A simultaneous delivery of antibiotics inhibited fermentation of RS. However, increased GLP-1 and cecum size would be confounding effects in assessing the mechanism for beneficial effects of dietary RS by knocking out fermentation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rats socially-reared and full fed learned an autoshaping task, showing less levels of fear-like behaviour than fasted or singly-reared rats.

    PubMed

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2004-07-01

    During the learning of instrumental tasks, rats are usually fasted to increase reinforced learning. However, fasting produces several undesirable side effects. The aim of this study was to test the hypothesis that control rats, i.e. full-fed and group-reared rats, will learn an autoshaping task to the same level as fasted or singly-reared rats. The interaction between fasting and single-rearing of rats was also tested. Results showed that control rats and fasted rats acquired the autoshaping task similarly, independently of rearing condition or gender. However, fasted or singly-reared rats produced fear-like behaviour, since male rats group-reared and fasted (85% body/wt, P <0.05), male rats singly-reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05), female rats group-reared (12 h fasted, P <0.05; 85% body/wt, P <0.05) and female rats singly reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05) displayed reduced amounts of time exploring the open arms of the elevated plus-maze. In conclusion, control rats learned the autoshaping task to the same level as fasted or singly-reared rats. However, fasting or single-rearing produced fear-like behaviour. Thus, the training of control rats in autoshaping tasks may be an option that improves animal welfare.

  15. Mutations in GAL2 or GAL4 alleviate catabolite repression produced by galactose in Saccharomyces cerevisiae.

    PubMed

    Rodríguez; Flores

    2000-06-01

    Galactose does not allow growth of pyruvate carboxylase mutants in media with ammonium as a nitrogen source, and inhibits growth of strains defective in phosphoglyceromutase in ethanol-glycerol mixtures. Starting with pyc1, pyc2, and gpm1 strains, we isolated mutants that eliminated those galactose effects. The mutations were recessive and were named dgr1-1 and dgr2-1. Strains bearing those mutations in an otherwise wild-type background grew slower than the wild type in rich galactose media, and their growth was dependent on respiration. Galactose repression of several enzymes was relieved in the mutants. Biochemical and genetic evidence showed that dgr1-1 was allelic with GAL2 and dgr2-1 with GAL4. The results indicate that the rate of galactose consumption is critical to cause catabolite repression.

  16. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats[S

    PubMed Central

    Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K.; Pacheco-López, Gustavo; Turnbull, Andrew V.; Langhans, Wolfgang; Mansouri, Abdelhak

    2013-01-01

    Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect. PMID:23449193

  17. Veratric acid ameliorates hyperlipidemia and oxidative stress in Wistar rats fed an atherogenic diet.

    PubMed

    Raja, Boobalan; Saravanakumar, Murugesan; Sathya, Gopal

    2012-07-01

    An investigation was made to reveal the protective effects of veratric acid (VA), a phenolic acid against atherogenic diet-induced hyperlipidemic rats. Male albino Wistar rats were fed with atherogenic diet (4% cholesterol, 1% cholic acid, and 0.5% 2-thiouracil) daily for 30 days and treated with VA (40 mg/kg body weight) daily for a period of 30 days. Rats fed with atherogenic diet showed significant (P < 0.05) elevation in the level of plasma lipids, systolic and diastolic blood pressure, oxidative stress markers (thiobarbituric acid reactive substances, lipid peroxides) and significant (P < 0.05) reduction in the activities of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (vitamin C, vitamin E, and reduced glutathione) antioxidants in erythrocytes, plasma, and tissues (liver, kidney, and aorta). Oral administration of VA (40 mg/kg body weight) for 30 days to atherogenic diet fed rats markedly attenuates systolic, diastolic blood pressure and lipid peroxidation products. Further, VA treatment significantly improved enzymatic and non-enzymatic antioxidants levels and showed beneficial effects on lipid profile in atherogenic diet rats. All the above alterations were supported by histopathological observations. These results indicate that oral administration of VA ameliorates atherogenic diet-induced hyperlipidemia in rats by its free radical scavenging; improving the antioxidants and lipid lowering properties.

  18. Inhibition of warm ischemic injury to rat liver, pancreas, and heart grafts by controlling the nutritional status of both donor and recipient.

    PubMed

    Nishihara, V; Sumimoto, R; Fukuda, Y; Southard, J H; Asahara, T; Dohi, K

    1997-01-01

    In this study, we tested the effect of donor fasting with or without the use of an essential fatty acids deficiency (EFAD) diet in the recipient using rat heart, pancreas, and liver transplant models. We then compared the survivals, tumor necrosis factor alpha (TNF-alpha) response, and white cell accumulation in rats in order to clarify the mechanisms of the beneficial effect of donor fasting and recipient EFAD. It was found that when the grafts were obtained from fasted donors and then transplanted into fed recipients, the survival rate was significantly higher for all three grafts than for those obtained from fed rats and transplanted into fed rats. The best survival was seen for pancreas grafts obtained from fasted donors and then transplanted into EFAD recipients. TNF-alpha secretion was significantly suppressed in both fasted and EFAD rats, and both the total cell count and neutrophil count were suppressed in EFAD rats. These results clearly indicate that in addition to liver grafts, both heart and pancreas grafts obtained from fasted animals are more tolerant to warm ischemic injury. Furthermore, the combination of donor fasting and recipient EFAD acts synergistically to inhibit the post-transplantation inflammatory reaction (through decreased TNF-alpha secretion and white cell accumulation), thus resulting in an improved survival.

  19. Study of antidiarrheal and hematology profile of laboratory rat fed with yogurt containing local probiotic and purple sweet potato extract

    NASA Astrophysics Data System (ADS)

    Tari, A. I. N.; Handayani, C. B.; Hartati, S.

    2018-03-01

    The aim of this study was to evaluate the effectiveness of local probiotic in yogurt with purple sweet potato extract supplementation on the hematological parameters of albino rats (Spraque dawley). The study was conducted using a Completely Randomized Design with 30 rats divided into 6 groups. In group K-, rats were fed with distilled water from day 1 to 21. In group YTP, Rats were fed with yogurt without probiotics from day 1 to 21. YDP group was rats were fed with probiotic yogurt from day 1 to 21. In group YTP+E, rats were fed with yogurt without probiotic from day 1 to 7, interspersed with exposure to enteropathogenic Escherichia coli (EPEC) on day 8 to 14. In group YDP+E, rats were fed with probiotic yogurt from day 1 to 7, interspersed by EPEC on day 8 to 24. In group K +, rats were fed with water from day 1 to 7, then fed with EPEC on day 8 to 14, after which water was given back on day 15 to 21. The result showed that probiotic yogurt treatment with supplement of purple sweet potato extract had a significant effect (P<0,05) on feces water content, number of erythrocyte, leucocyte, and hemoglobin. The treatment of YDP had water content in feces 48.422% and the number of erythrocyte, leucocytes, and hemoglobin were 8.578 106/μl, 14.152 106/μl and 13.98 g/dL respectively.

  20. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis.

    PubMed

    Kawasaki, Takahiro; Igarashi, Kanji; Koeda, Tatsuki; Sugimoto, Keiichiro; Nakagawa, Kazuya; Hayashi, Shuichi; Yamaji, Ryoichi; Inui, Hiroshi; Fukusato, Toshio; Yamanouchi, Toshikazu

    2009-11-01

    Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease are increasing in adults and are likely to be increasing in children. Both conditions are hepatic manifestations of metabolic syndrome. Experimental animals fed fructose-enriched diets are widely recognized as good models for metabolic syndrome. However, few reports have described the hepatic pathology of these experimental animals. In this study, 5-wk-old Wistar specific pathogen-free rats, which are a normal strain, were fed experimental diets for 5 wk. We then evaluated the degree of steatohepatitis. The 5 diet groups were as follows: cornstarch (70% wt:wt) [control (C)], high-fructose (70%) (HFr), high-sucrose (70%) (HS), high-fat (15%) (HF), and high-fat (15%) high-fructose (50%) (HFHFr) diets. The macrovesicular steatosis grade, liver:body weight ratio, and hepatic triglyceride concentration were significantly higher in the HFr group than in the other 4 groups. However, the HFr group had a significantly lower ratio of epididymal white fat:body weight than the other 4 groups and had a lower final body weight than the HF and HFHFr groups. The HF group had a greater final body weight than the C, HFr, and HS groups, but no macrovesicular steatosis was observed. The HFr group had a significantly higher grade of lobular inflammation than the other 4 groups. The distribution of lobular inflammation was predominant over portal inflammation, which is consistent with human NASH. In conclusion, rats fed fructose-enriched diets are a better model for NASH than rats fed fat-enriched diets.

  1. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    PubMed Central

    Hwang, Seung Hwan; Kang, Il-Jun

    2017-01-01

    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement. PMID:28303158

  2. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    PubMed

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  3. Methionine deficiency in rats fed soy protein induces hypercholesterolemia and potentiates lipoprotein susceptibility to peroxidation.

    PubMed

    Moundras, C; Rémésy, C; Levrat, M A; Demigné, C

    1995-09-01

    A number of studies have provided evidence that plant proteins, especially soy protein, have a cholesterol-lowering effect as compared with casein. However, dietary supply of sulfur amino acids may be deficient when soy protein is present in the diet at a suboptimal level, which could affect lipid metabolism. Accordingly, in rats fed 13% protein diets, soy protein feeding resulted in a cholesterol-increasing effect (+18%), which could be counteracted by methionine supplementation (0.4%). In contrast, soy protein was effective in decreasing plasma triglyceride, as compared with levels in rats fed casein; this triglyceride-lowering effect was entirely abolished by methionine supplementation. The hypercholesterolemic effect of soy protein was characterized by a higher cholesterol content in low-density lipoprotein (LDL) and high-density lipoprotein 1 (HDL1) fractions, together with a marked induction of hepatic hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase activity and to a lesser extent cholesterol 7 alpha-hydroxylase. There was practically no induction of these enzymes, as compared with levels in rats fed casein diets, when the soy protein diet was supplemented with methionine. Very-low-density lipoprotein (VLDL) plus LDL susceptibility to peroxidation was higher in rats fed soy protein than in casein-fed rats, which could reflect in part the lack of sulfur amino acid availability, since methionine supplementation led to a partial recovery of lipoprotein resistance to peroxidation. These findings suggest that amino acid imbalance could be atherogenic by increasing circulating cholesterol and leading to a higher lipoprotein susceptibility to peroxidation.

  4. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    PubMed

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  5. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    PubMed

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56-75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is

  6. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    PubMed

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  7. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    PubMed Central

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  8. Intraventricular Injection of LKB1 Inhibits the Formation of Diet-Induced Obesity in Rats by Activating the AMPK-POMC Neurons-Sympathetic Nervous System Axis.

    PubMed

    Xi, Pengjiao; Du, Jianying; Liang, Huimin; Han, Jie; Wu, Zhaoxia; Wang, Haomin; He, Lu; Wang, Qiming; Ge, Haize; Li, Yongmei; Xue, Jie; Tian, Derun

    2018-01-01

    Obesity is increasingly becoming a major public health problem worldwide. Peripheral LKB1 inhibits white fat generation, but the effect of central LKB1 on diet-induced obesity (DIO) is unknown. Therefore, we examined whether LKB1 over-expression in the hypothalamus can inhibit the development of obesity. Adult male Sprague-Dawley rats were anesthetized and placed in a stereotaxic apparatus. LKB1-AAV-EGFP (2.0 × 108 or 2.0 × 1010 vector genomes) or Control-AAV-EGFP (2.0 × 108 vector genomes) was injected into the third ventricle. After administration, the rats were fed a high-fat diet (HFD) for 9 weeks to induce obesity. Rats fed a chow fat diet were used as normal controls. LKB1 delivery decreased body weight, energy intake, fat mass, and serum lipid levels. LKB1 also improved HFD-induced hepatic fatty degeneration. Interestingly, LKB1 over-expression in the hypothalamus activated the AMPK-POMC neurons-sympathetic nervous system (SNS) axis, which can release epinephrine to promote white fat browning. Conversely, the elevated expression of MC3R/MC4R inhibited food intake. These two factors worked together to inhibit the development of obesity. LKB1 in the hypothalamus may have therapeutic potential for DIO through the activation of the AMPK-POMC neurons-SNS axis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. The soluble fiber complex PolyGlycopleX lowers serum triglycerides and reduces hepatic steatosis in high-sucrose-fed rats.

    PubMed

    Reimer, Raylene A; Grover, Gary J; Koetzner, Lee; Gahler, Roland J; Lyon, Michael R; Wood, Simon

    2011-04-01

    Viscous soluble fibers have been shown to reduce risk factors associated with type 2 diabetes and cardiovascular disease. The novel functional fiber, PolyGlycopleX (PGX) (InovoBiologic Inc, Calgary, Alberta, Canada) displays greater viscosity than other currently identified soluble fibers. The objective of this study was to determine if PGX lowers serum and hepatic triglycerides (TGs) in a high-sucrose-fed rat model. In this rodent model, feeding a high-sucrose diet consistently increases serum TGs. We hypothesized that consumption of PGX would attenuate hypertriglyceridemia and reduce hepatic steatosis compared with cellulose in rats fed a high-sucrose background diet. Male Sprague-Dawley rats were fed diets containing 65% sucrose and supplemented with either 5% cellulose (control) or 5% PGX (wt/wt) for 43 weeks. At study termination, serum insulin and TGs, hepatic steatosis, and hepatocellular injury were assessed. Body weight increased over time in both groups, but weight gain was attenuated in rats fed PGX vs cellulose in weeks 2 through 22 (P < .05). Serum TGs did not differ from baseline for the first half of the study but consistently increased in the cellulose group thereafter. PolyGlycopleX significantly reduced serum TG to near-baseline levels. At study termination, rats fed PGX had significantly lower hepatic steatosis scores (measured by Sudan black staining) compared with rats fed cellulose. Hepatocellular injury scores did not differ between the groups. In conclusion, PGX reduced serum TG and lipid accumulation in the liver of sucrose-fed rats. Further examination of its potential as a fiber supplement aimed at lessening the burden of hepatic steatosis is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    PubMed

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  11. Galactose metabolism and toxicity in Ustilago maydis.

    PubMed

    Schuler, David; Höll, Christina; Grün, Nathalie; Ulrich, Jonas; Dillner, Bastian; Klebl, Franz; Ammon, Alexandra; Voll, Lars M; Kämper, Jörg

    2018-05-01

    In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    PubMed

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was

  13. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    PubMed

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  14. Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Sato, Yuzo; Adeli, Khosrow; Anderson, Richard A

    2009-11-01

    We have reported previously that a cinnamon extract (CE), high in type A polyphenols, prevents fructose feeding-induced decreases in insulin sensitivity and suggested that improvements of insulin sensitivity by CE were attributable, in part, to enhanced insulin signaling. In this study, we examined the effects of CE on postprandial apolipoprotein (apo) B-48 increase in fructose-fed rats, and the secretion of apoB48 in freshly isolated intestinal enterocytes of fructose-fed hamsters. In an olive oil loading study, a water-soluble CE (Cinnulin PF, 50 mg/kg body weight, orally) decreased serum triglyceride (TG) levels and the over production of total- and TG-rich lipoprotein-apoB48. In ex vivo (35)S labeling study, significant decreases were also observed in apoB48 secretion into the media in enterocytes isolated from fructose-fed hamsters. We also investigated the molecular mechanisms of the effects of CE on the expression of genes of the insulin signaling pathway [insulin receptor (IR), IR substrate (IRS)1, IRS2 and Akt1], and lipoprotein metabolism [microsomal TG transfer protein (MTP), sterol regulatory element-binding protein (SREBP1c) in isolated primary enterocytes of fructose-fed hamsters, using quantitative real-time polymerase chain reaction. The CE reversed the expression of the impaired IR, IRS1, IRS2 and Akt1 mRNA levels and inhibited the overexpression of MTP and SREBP1c mRNA levels of enterocytes. Taken together, our data suggest that the postprandial hypertriglycerides and the overproduction of apoB48 can be acutely inhibited by a CE by a mechanism involving improvements of insulin sensitivity of intestinal enterocytes and regulation of MTP and SREBP1c levels. We present both in vivo and ex vivo evidence that a CE improves the postprandial overproduction of intestinal apoB48-containing lipoproteins by ameliorating intestinal insulin resistance and may be beneficial in the control of lipid metabolism.

  15. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature-induced periodontitis.

    PubMed

    Dundar, Serkan; Eltas, Abubekir; Hakki, Sema S; Malkoc, Sıddık; Uslu, M Ozay; Tuzcu, Mehmet; Komorowski, James; Ozercan, I Hanifi; Akdemir, Fatih; Sahin, Kazim

    2016-01-01

    The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation.

  16. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    PubMed

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    PubMed

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  18. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol.

    PubMed

    Jørgensen, Henry; Hansen, Christina Hørup; Mu, Huiling; Jakobsen, Kirsten

    2010-08-01

    Twelve 4-week-old male Wistar rats weighing 100 g were fed diets semi-ad libitum for 22 d containing either 1.5% conjugated linoleic acid (CLA-diet) or high oleic sunflower oil (Control-diet). The CLA was structured triacylglycerol with predominantly cis-9, trans-11 and trans-10, cis-12 fatty acid isomers in the inner position and oleic acid in the other positions of the glycerol molecule. The rats were kept individually in metabolic cages. From days 8-16 energy, nitrogen (N) and carbon (C) balances as well as gas exchange measurements in open-air circuit respiration chambers were performed. CLA had no significant influence on feed intake, daily gain in weight or feed conversion efficiency, but the digestibility of nutrients and energy was significantly reduced (except for fat). CLA did not affect N-balance, but reduced the level of daily retained fat (RQ-method: 0.107 vs. 0.417 g/d, p < 0.01) and consequently energy retention in fat. This was explained by increased heat production (HP, RQ-method: 224.6 vs. 214.6 kJ/d, p < 0.001) caused by a higher fat oxidation (28.9% vs. 22.3%, p < 0.001) at the expense of oxidation of carbohydrates (65.6% vs. 71.4%, p < 0.001), while there was no significant effect on the oxidation of protein (5.5% vs. 6.3%). Consequently, the non-protein respiratory quotient (RQnp) was lower in the rats fed the CLA-diet than in the rats fed the Control-diet (0.907 vs. 0.928, p < 0.001). Plasma total lipids of the CLA-fed rats had higher concentrations of the cis-9, trans-11 than the trans-10, cis-12 CLA-isomer. This study shows that young male Wistar rats respond to CLA fed as structured triacylglycerol.

  19. Deficient prepulse inhibition of acoustic startle in Hooded-Wistar rats compared with Sprague-Dawley rats.

    PubMed

    van den Buuse, Maarten

    2003-04-01

    1. Prepulse inhibition of acoustic startle has been suggested as a model of sensorimotor gating and central sensory information processing. Prepulse inhibition is impaired in patients with schizophrenia and responses can be restored by antipsychotic drug treatment. In the present study, startle and prepulse inhibition of startle were compared in different rat strains. 2. Sprague-Dawley rats showed robust inhibition of startle responses by increasing intensities of prepulse delivered just before the startle stimulus. In contrast, at both 4 and 10 weeks of age, rats of the Hooded-Wistar line had markedly reduced prepulse inhibition, although startle responses were not different. 3. Treatment with the dopamine receptor agonist apomorphine (0.1 mg/kg) or the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) caused disruption of prepulse inhibition in Sprague-Dawley rats. In Hooded-Wistar rats, apomorphine further reduced the already low level of prepulse inhibition, but MK-801 treatment had no significant effect. This suggests that the impaired prepulse inhibition in Hooded-Wistar rats could be caused by changes in glutamatergic activity and/or NMDA receptors in these rats. 4. In photocell cages, spontaneous exploratory activity and inner zone activity were significantly lower in Hooded-Wistar rats than in Sprague-Dawley rats. Similarly, on the elevated plus-maze, Hooded-Wistar rats showed a lower propensity to visit the open arms. In contrast, amphetamine (0.5 mg/kg)-induced locomotor hyperactivity, an animal model of psychosis, was enhanced in Hooded-Wistar rats. 5. These data suggest that the Hooded-Wistar line could be a useful genetic animal model to study the interaction of glutamatergic and dopaminergic mechanisms in anxiety and schizophrenia.

  20. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  1. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats

    PubMed Central

    Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji

    2015-01-01

    Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892

  2. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  3. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods.

    PubMed

    Schild, Laura J; Phillips, David H; Osborne, Martin R; Hewer, Alan; Beland, Frederick A; Churchwell, Mona I; Brown, Karen; Gaskell, Margaret; Wright, Elizabeth; Poirier, Miriam C

    2005-03-01

    Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.

  4. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet.

    PubMed

    Yamamoto, Yukiko; Aoyama, Sakiko; Hamaguchi, Noriko; Rhi, Gyou-Sei

    2005-07-01

    The effects of Welsh onion on the development of hypertension and autoxidation were studied in 6-week-old male Sprague-Dawley rats. The rats were fed with a control diet or a high-fat high-sucrose (HFS) diet with or without 5% Welsh onion (green-leafy type or white-sheath type) for 4 weeks. The systolic blood pressure was elevated and the thiobarbituric acid reactive substances (TBARS) in plasma were increased in the rats fed with the HFS diet without Welsh onion. The rats fed with the HFS diet containing Welsh onion, especially the green-leafy type, had lower blood pressure. They also had a higher level of nitric oxide (NO) metabolites in both the urine and plasma, lower activity of NADH/NADPH oxidase in the aorta, and suppressed angiotensin II production. The effect of white Welsh onion on decreasing the blood pressure was not significant, although the effects on increasing NO metabolites in the urine and decreasing NADH oxidase activity in the aorta were significant. The TBARS value in the plasma was lowered in the rats fed with either green or white Welsh onion, but the in vitro radical scavenging and ferric reducing antioxidative activities were much higher with green Welsh onion than with the white type. These results suggest that the green-leafy Welsh onion, but not the white type, reduced superoxide generation by suppressing the angiotensine II production and then the NADH/NADPH oxidase activity, increasing the NO availability in the aorta, and consequently lowering the blood pressure in the rats fed with the HFS diet. The radical scavenging and reducing antioxidative activities of green Welsh onion may also be effective in decreasing superoxide.

  5. Immune functions in the Fisher rat fed beluga whale (Delphinapterus leucas) blubber from the contaminated St. Lawrence estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapierre, P.; Guise, S. De; Muir, D.C.G.

    1999-02-01

    In order to assess the immunotoxic potential of food naturally contaminated with PCBs and other organohalogens, Fisher rats were fed a diet in which the lipids originated from the blubber of either a highly polluted St. Lawrence beluga or a relatively uncontaminated Arctic beluga. After a period of 2 months, different immune functions were evaluated, including lymphoblastic transformation, natural killer cell activity, plaque-forming cells, phagocytosis, oxidative burst, and immunophenotyping. For all assays, rats fed at St. Lawrence beluga blubber diet or a mixture of Arctic and St. Lawrence beluga blubber diet were not different from control rats fed a dietmore » containing Arctic beluga blubber. These results are inconsistent with the well-known immunosuppressive effects of organochlorines in numerous species and with the lesions suggestive of organochlorine-related immunosuppression that are observed in St. Lawrence belugas. The lack of observable immunotoxic effects in rats fed contaminated beluga blubber might be explained by antagonistic effects in the organohalogen mixture, by a response specific to the rat, by a strain-related lack of sensitivity to organochlorines, or by insufficient dose due to the shortness of the exposure period or the route of exposure.« less

  6. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose.

    PubMed

    Morisset, M; Richard, C; Astier, C; Jacquenet, S; Croizier, A; Beaudouin, E; Cordebar, V; Morel-Codreanu, F; Petit, N; Moneret-Vautrin, D A; Kanny, G

    2012-05-01

    Carbohydrate-specific IgE antibodies present on nonprimate mammalian proteins were incriminated recently in delayed meat anaphylaxis. The aim of this study was to explore whether anaphylaxis to mammalian kidney is also associated with galactose-α-1,3-galactose (αGal)-specific IgE. Fourteen patients with anaphylaxis to pork or beef kidney underwent prick tests to meat and kidney. Some patients also underwent skin tests to Erbitux(®) (cetuximab). IgE antibodies to αGal, swine urine proteins, beef and pork meat, serum albumin proteins, cat, and rFel d 1 were measured by ImmunoCAP(®). The αGal levels were estimated in meats and kidney by ELISA inhibition assay. Cross-reactivity between αGal and pork kidney was studied with the ImmunoCAP(®) inhibition assay. Among the 14 patients, 12 presented with anaphylactic shock. Reactions occurred within 2 h from exposure in 67% of patients. Associated risk factors were observed in 10 cases, and alcohol was the main cofactor. Three patients underwent an oral challenge to pork kidney, and anaphylaxis occurred after ingestion of small quantities (1-2 g). Prick tests to kidney were positive in 54% of patients. All tested patients showed positive skin tests to Erbitux(®). All patients tested positive for IgE to αGal, with levels ranging from 0.4 to 294 kU/l. IgE binding to αGal was inhibited by raw pork kidney extract (mean, 77%; range, 55-87%), which showed a high amount of αGal determinants. Pork or beef kidney anaphylaxis is related to αGal IgE. Its peculiar severity could be due to an elevated content of αGal epitopes in kidney. © 2012 John Wiley & Sons A/S.

  7. Effect of hepatocyte growth factor on endogenous hepatocarcinogenesis in rats fed a choline-deficient L-amino acid-defined diet.

    PubMed

    Nakanishi, Chihiro; Moriuchi, Akihiro; Ido, Akio; Numata, Masatsugu; Kim, Il-Deok; Kusumoto, Kazunori; Hasuike, Satoru; Abe, Hiroo; Nagata, Kenji; Akiyama, Yutaka; Uto, Hirofumi; Kataoka, Hiroaki; Tsubouchi, Hirohito

    2006-07-01

    Hepatocyte growth factor (HGF) is a promising agent for the treatment of intractable liver disease, due to its mitogenic, anti-apoptotic, and anti-fibrotic effects. We investigated the effect of recombinant human HGF (rh-HGF) on the development of both hepatocellular carcinoma (HCC) and preneoplastic nodules in rats fed a choline-deficient L-amino acid-defined (CDAA) diet, an animal model of hepatocarcinogenesis resembling human development of HCC with cirrhosis. From weeks 13 to 48 of the CDAA diet, rh-HGF (0.1 or 0.5 mg/kg/day) was administered intravenously to rats in four-week cycles, with treatment for five consecutive days of each week for two weeks, followed by a two-week washout period. Treatment with rh-HGF significantly inhibited the development of preneoplastic nodules in a dose-dependent manner at 24 weeks. Although the numbers and areas of the preneoplastic nodules in rats treated with rh-HGF were equivalent to those in mock-treated rats by 60 weeks, the incidence of HCC was reduced by HGF treatment. Although one rat treated with low-dose rh-HGF exhibited a massive HCC, which occupied almost the whole liver, and lung metastases, HGF treatment did not increase the overall frequency of HCC. Administration of high-dose rh-HGF, however, induced an increase in the urinary excretion of albumin, leading to decreased serum albumin at 60 weeks. These results indicate that long-term administration of rh-HGF does not accelerate hepatocarcinogenesis in rats fed a CDAA diet. However, these findings do not completely exclude the potential of HGF-induced hepatocarcinogenesis; this issue must be resolved before rh-HGF can be used for patients with intractable liver diseases, especially those with cirrhosis.

  8. Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid

    PubMed Central

    Gaetke, Lisa M.; McClain, Craig J.; Toleman, C. Jean; Stuart, Mary A.

    2010-01-01

    The purpose of this study was to determine the affects of adding yogurt to animal diets which were high in phytic acid (PA) and adequate in zinc (38 μg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, 6 groups (n=6) of Sprague-Dawley weanling rats were fed one of the following AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. Diets: (without PA) 1) AIN, 2) AIN with active yogurt, 3) AIN and inactive yogurt; and (with PA) 4) AIN with PA, 5) AIN with PA plus active yogurt, and 6) AIN with PA plus inactive yogurt. Body weight, weight gain, and zinc concentration in bone and plasma were measured, and feed efficiency ratio (FER) was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (p<0.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (p<0.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats, however, zinc concentration in bone and plasma was still sub-optimal. PMID:19269152

  9. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat--high-sucrose diet-fed rats.

    PubMed

    Aoun, Manar; Michel, Francoise; Fouret, Gilles; Schlernitzauer, Audrey; Ollendorff, Vincent; Wrutniak-Cabello, Chantal; Cristol, Jean-Paul; Carbonneau, Marie-Annette; Coudray, Charles; Feillet-Coudray, Christine

    2011-08-01

    Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.

  10. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

    PubMed Central

    Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074

  11. High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats.

    PubMed

    Veeramachaneni, Sudipta; Ausman, Lynne M; Choi, Sang Woon; Russell, Robert M; Wang, Xiang-Dong

    2008-07-01

    Recent in vitro evidence suggests that the antioxidant lycopene can prevent alcohol-induced oxidative stress and inflammation. However, knowledge of possible interactions in vivo between escalating doses of lycopene and chronic alcohol ingestion are lacking. In this study, we investigated potential interactions between alcohol ingestion and lycopene supplementation and their effect on hepatic lycopene concentration, cytochrome P4502E1 (CYP2E1) induction, and inflammation. Fischer 344 rats (6 groups, n = 10 per group) were fed either a liquid ethanol Lieber-DeCarli diet or a control diet (isocaloric maltodextrin substituted for ethanol) with or without lycopene supplementation at 2 doses (1.1 or 3.3 mg x kg body weight(-1) x d(-1)) for 11 wk. Plasma and hepatic concentrations of lycopene isomers were assessed by HPLC analysis. We examined expressions of hepatic CYP2E1 and tumor necrosis factor-alpha (TNFalpha) and the incidence of hepatic inflammatory foci. Both plasma and hepatic lycopene concentrations were greater in alcohol-fed rats than in control rats supplemented with identical doses of lycopene. In contrast, alcohol-fed rats had a lower percentage of lycopene cis isomers in the plasma and the liver compared with control rats fed the same dose of lycopene. Notably, lycopene supplementation at the higher dose significantly induced hepatic CYP2E1 protein, TNFalpha mRNA, and the incidence of inflammatory foci in the alcohol-fed rats but not in the control rats. These data indicate an interaction between chronic alcohol ingestion and lycopene supplementation and suggest a need for caution among individuals consuming high amounts of both alcohol and lycopene.

  12. Transplanted Adipose-Derived Stem Cells Ameliorate Testicular Dysfunction In A D-Galactose-Induced Aging Rat Model.

    PubMed

    Yang, Chun; Du, Yi-Kuan; Wang, Jun; Luan, Ping; Yang, Qin-Lao; Huang, Wen-Hua; Yuan, Lin

    2015-10-01

    Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis. © 2015 Wiley Periodicals, Inc.

  13. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats.

    PubMed

    Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C

    2016-01-01

    Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.

  14. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    PubMed Central

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  15. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  16. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    PubMed

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  17. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mgmore » protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.« less

  18. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats.

    PubMed

    Kopf, Thomas; Schaefer, Hans-Ludwig; Troetzmueller, Martin; Koefeler, Harald; Broenstrup, Mark; Konovalova, Tatiana; Schmitz, Gerd

    2014-01-01

    Fenofibrate (FF) lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o.) was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS) on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5) increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0) increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS) may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.

  19. Teratological studies in defatted jojoba meal-supplemented rats.

    PubMed

    Cokelaere, M; Flo, G; Lievens, S; Van Boven, M; Vermaut, S; Decuypere, E

    2001-03-01

    To look for possible developmental effects in the offspring of jojoba meal-treated Wistar rats, and to distinguish between the effects of reduced food intake and the specific developmental effects of jojoba meal itself, mated female rats were divided into three groups of 20 rats. They received during gestation: (a) normal rodent food (control group); (b) normal rodent food supplemented with 3% defatted jojoba meal (jojoba group); or (c) normal rodent food pair-fed with the jojoba group (pair-fed group). The jojoba meal group showed approximately 30% inhibition of food intake. Ten rats from each group were killed on gestation day 21. Compared to the control group, foetal body weight was reduced in both the jojoba and pair-fed groups, with a greater reduction in the jojoba group. Skeletal ossification was retarded to the same extent in both the jojoba and pair-fed groups. The other 10 rats from each group were left to produce litters. Compared with controls, the body weight of the pups was lower in both the jojoba and pair-fed groups; the reduction was slightly greater in the jojoba group, but this difference disappeared after 1 week. The offspring showed no other abnormalities and reproduced normally. We conclude that, at the dose used, the retardation in foetal skeletal ossification, induced by jojoba meal supplementation during gestation, is due to food intake inhibition. Moreover, the lower birth weight of the young of jojoba-treated dams compared with the pair-fed group is merely due to a lower body weight gain during gestation.

  20. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet

    PubMed Central

    2012-01-01

    Background Rats fed a high-fat and high-sucrose (HF) diet develop hepatic steatosis and hyperlipidemia. There are several reports that a change in nutritional status affects hepatic levels of drug-metabolizing enzymes. Synthetic inulin is a dietary component that completely evades glucide digestion. Supplementing a HF diet with inulin ameliorates hypertriglycemia and hepatic steatosis, but not hypercholesterolemia. This study aimed at distinguishing the effects of synthetic inulin and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin), which inhibit cholesterol biosynthesis. Methods We examined effects of co-treatment with synthetic inulin (5%) and fluvastatin (0, 4, and 8 mg/kg, per os) on body weight, epidydimal white adipose tissue weight, serum and hepatic lipid profiles, and hepatic cytochrome P450 (CYP) mRNA and protein profiles in rats fed a standard diet or a HF diet for 3 weeks. Results Treatment with the synthetic inulin (5%) or fluvastatin at 4 mg/kg (lethal dose in rats fed the HF diet, 8 mg/kg) ameliorated the elevation in hepatic triacylglycerol and total cholesterol levels in rats fed the HF diet. Whereas co-treatment with the inulin (5%) and fluvastatin (4 mg/kg) had a tendency to more strongly suppress the elevation in serum levels of very low density lipoprotein triacylglycerol than either treatment alone, no additive or synergistic effect was found in decrease in hepatic lipid levels. Hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein and methoxyresorufin O-demethylase and ethoxyresorufin O-deethylase activities were reduced in rats fed the HF diet. The synthetic inulin alleviated the reduction in hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein more strongly than fluvastatin, and no synergistic effects were observed on co-treatment. Furthermore, hepatic levels of aryl hydrocarbon receptor mRNA were decreased in rats fed the HF diet and recovered to near normal values with the intake of dietary inulin, which correlated

  1. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  2. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content.

    PubMed

    Laing, William A; Wright, Michele A; Cooney, Janine; Bulley, Sean M

    2007-05-29

    The gene for one postulated enzyme that converts GDP-L-galactose to L-galactose-1-phosphate is unknown in the L-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes D-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-L-galactose to L-galactose-1-P. The expressed protein is best described as a GDP-L-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely D-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-L-galactose-D-mannose-1-phosphate guanyltransferase activity.

  3. The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content

    PubMed Central

    Laing, William A.; Wright, Michele A.; Cooney, Janine; Bulley, Sean M.

    2007-01-01

    The gene for one postulated enzyme that converts GDP-l-galactose to l-galactose-1-phosphate is unknown in the l-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes d-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-l-galactose to l-galactose-1-P. The expressed protein is best described as a GDP-l-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely d-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-l-galactose-d-mannose-1-phosphate guanyltransferase activity. PMID:17485667

  4. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet.

    PubMed

    Sandhya, V G; Rajamohan, T

    2008-12-01

    The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (P<0.05) reduced hyperlipidemia in cholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (P<0.05). Coconut water feeding decreased activities of hepatic lipogenic enzymes and increased HMG CoA reductase and lipoprotein lipase activity (P<0.05). Incorporation of radioactive acetate into free and ester cholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (P<0.05). Coconut water has lipid lowering effect similar to the drug lovastatin in rats fed fat-cholesterol enriched diet.

  5. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet.

    PubMed

    Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark

    2015-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P< .05). C-reactive protein levels were significantly lower in watermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (P< .05). Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase were significantly lower in DSS-treated rats when watermelon was consumed (P< .05). Fatty acid synthase, 3-hydroxy-3methyl-glutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, and cyclooxygenase-2 gene expression was significantly downregulated in the watermelon group without DSS (P< .05). These findings indicate that watermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid

  6. Raspberry Ketone Protects Rats Fed High-Fat Diets Against Nonalcoholic Steatohepatitis

    PubMed Central

    Wang, Lili; Zhang, Fengqing

    2012-01-01

    Abstract The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague–Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin–eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and

  7. Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis.

    PubMed

    Wang, Lili; Meng, Xianjun; Zhang, Fengqing

    2012-05-01

    The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague-Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin-eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was

  8. [Effects of refined konjac meal on lipid metabolism and blood viscosity of rats fed by high fat forage].

    PubMed

    Wang, Zhongxia; Yang, Lili; Liu, Hong; Tan, Xiutao

    2002-04-01

    Male SD rats are fed by high fat diet supplemented with refined konjac meal for 6 weeks and the effect of refined konjac meal on the serum lipid peroxides (LPO) and blood viscosity are observed. The results showed that the refined konjac meal can obviously decrease serum cholesterol, triglyceride and serum LPO of rats in comparison with those of rats fed only by high fat forage, and can elevate, at the same time, the high density lipoprotein-cholesterol and high density lipoprotein-cholesterol/triglyceride value. It is also shown that the refined konjac meal can decrease the blood viscosity, but has no effect on forage intake and weight gain of rats.

  9. Contrasting apoptotic responses of conjugated linoleic acid in the liver of obese Zucker rats fed palm oil or ovine fat.

    PubMed

    Lopes, Paula A; Martins, Susana V; Viana, Ricardo S J; Ramalho, Rita M; Alfaia, Cristina M; Pinho, Mário S; Jerónimo, Eliana; Bessa, Rui J B; Castro, Matilde F; Rodrigues, Cecília M P; Prates, José A M

    2011-08-01

    We hypothesized that reducing weight properties of conjugated linoleic acid (CLA) are due to adipocyte apoptosis and that CLA differentially modulates the apoptotic responses in hepatic lipotoxicity from rats fed saturated fat diets. Obese Zucker rats were fed atherogenic diets (2%w/w of cholesterol) formulated with high (15%w/w) saturated fat, from vegetable or animal origin, supplemented or not with 1% of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12 CLA isomers for 14 weeks. CLA induced no changes on retroperitoneal fat depot weight, which was in line with similar levels of apoptosis. Interestingly, CLA had a contrasting effect on cell death in the liver according to the dietary fat. CLA increased hepatocyte apoptosis, associated with upregulation of Fas protein in rats fed palm oil, compared to rats receiving palm oil alone. However, rats fed ovine fat alone displayed the highest levels of hepatic cell death, which were decreased in rats fed ovine fat plus CLA. This reducing effect of CLA was related to positively restoring endoplasmic reticulum (ER) ATF-6α, BiP and CHOP protein levels and increasing phosphorylated c-Jun NH(2)-terminal kinase (JNK) and c-Jun, thus suggesting an adaptive response of cell survival. These findings reinforce the role of CLA as regulator of apoptosis in the liver. Moreover, the dietary fat composition is a key factor in activation of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    PubMed

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats.

    PubMed

    Shodehinde, Sidiqat A; Ademiluyi, Adedayo O; Oboh, Ganiyu; Akindahunsi, Afolabi A

    2015-07-15

    Unripe plantain based-diets are part of folklore remedy for the management of diabetes in tropical Africa; however, with the dearth of information on the rationale behind this practice; this study therefore, sought to investigate the antihyperglycemic effect of traditional unripe plantain products (Amala and Booli) in high fat fed/low dose streptozotocin-induced diabetic rats and to provide a possible rationale for their antidiabetic properties. Diabetes was induced experimentally by high fat fed/low dose streptozotocin-diabetic rats (25mg/kg body wt.) and the diabetic rats were fed diets supplemented with 20-40% Amala and Booli for 14 days. The effect of the diets on the blood glucose level, pancreatic α-amylase, intestinal α-glucosidase and Angiotensin-I converting enzyme (ACE) activities and plasma antioxidant status as well as amylose/amylopectin content of the unripe plantain products were determined. A marked increase in the blood glucose, α-amylase, α-glucosidase and ACE activities with a corresponding decrease in plasma antioxidant status was recorded in diabetic rats. However, these indices were significantly (P < 0.05) reversed after unripe plantain product supplemented diet treatments for 14 days. Also, the amylose/amylopectin ratio of the products is 1:3. This study revealed that unripe plantain products exert antihyperglycemic effects which could be attributed to the inhibition of α-amylase and α-glucosidase activities by their constituent phytochemicals as well as their amylose/amylopectin contents in the diabetic rats, hence, providing the possible rationale behind their antidiabetic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikeska, Ruth; Wacker, Roland; Arni, Raghuvir

    2005-01-01

    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chainmore » has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.« less

  13. Potential anthelmintic: D-psicose inhibits motility, growth and reproductive maturity of L1 larvae of Caenorhabditis elegans.

    PubMed

    Sato, Masashi; Kurose, Hiroyuki; Yamasaki, Toru; Izumori, Ken

    2008-04-01

    No anthelmintic sugars have yet been identified. Eight ketohexose stereoisomers (D- and L-forms of psicose, fructose, tagatose and sorbose), along with D-galactose and D-glucose, were examined for potency against L1 stage Caenorhabditis elegans fed Escherichia coli. Of the sugars, D-psicose specifically inhibited the motility, growth and reproductive maturity of the L1 stage. D-Psicose probably interferes with the nematode nutrition. The present results suggest that D-psicose, one of the rare sugars, is a potential anthelmintic.

  14. Intake of phytic acid and myo-inositol lowers hepatic lipogenic gene expression and modulates gut microbiota in rats fed a high-sucrose diet.

    PubMed

    Okazaki, Yukako; Sekita, Ayaka; Katayama, Tetsuyuki

    2018-05-01

    Dietary phytic acid (PA) was recently reported by our group to suppress hepatic lipogenic gene expression and modulate gut microbiota in rats fed a high-sucrose (HSC) diet. The present study aimed to investigate whether the modulatory effects of PA depend on the dietary carbohydrate source and are attributed to the myo-inositol (MI) ring of PA. Male Sprague-Dawley rats were fed an HSC or a high-starch (HSR) diet with or without 1.02% sodium PA for 12 days. Subsequently, the rats were fed the HSC diet, the HSC diet containing 1.02% sodium PA or an HSC diet containing 0.2% MI for 12 days. The HSC diet significantly increased the hepatic triglyceride (TG) concentration as well as the activity and expression of hepatic lipogenic enzymes compared with the HSR diet. The increases were generally suppressed by dietary PA with a concomitant increase in the fecal and cecal ratios of Lactobacillus spp. In rats fed the HSR diet, PA intake did not substantially affect the factors associated with hepatic lipid metabolism or gut microbiota composition. The effects of MI intake were similar to that of PA intake on hepatic lipogenesis and gut microbiota in rats fed the HSC diet. These results suggest that dietary PA downregulates hepatic lipogenic gene expression and modulates gut microbiota composition in rats fed an HSC diet but not in rats fed an HSR diet. The MI ring of PA may be responsible for the effects of PA intake on hepatic lipogenic gene expression and gut microbiota.

  15. Euterpe edulis effects on cardiac and renal tissues of Wistar rats fed with cafeteria diet.

    PubMed

    De Barrios Freitas, Rodrigo; Melato, Fernanda Araujo; Oliveira, Jerusa Maria de; Bastos, Daniel Silva Sena; Cardoso, Raisa Mirella; Leite, João Paulo Viana; Lima, Luciana Moreira

    2017-02-01

    This study's objective was to evaluate the antioxidant and toxic effects of E. edulison cardiac and renal tissues of Wistar rats fed with cafeteria diet. Catalase (CAT), glutathione-S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in cardiac muscle and renal tissue of 60 animals, which were randomly assigned for 10 equal groups. Half of the rats were fed with cafeteria diet and the other half with commercial chow, combined or not to E. edulislyophilized extract, E. edulis deffated lyophilized extract or E. edulisoil. Data were evaluated using ANOVA, followed by the Student-Newman-Keuls test. Data showed a significant increase of CAT activity in cardiac tissue of animals from the groups fed with cafeteria diet associated to E. edulis lyophilized extract at 5%, E. edulis lyophilized extract at 10% and E. edulis deffated lyophilized extract at 10%. In addition, the same result was found in animals from the groups fed with commercial chow and commercial chow combined with E. edulislyophilized extract at 10% in comparison to the group fed exclusively with cafeteria diet. GST and SOD enzyme activity showed significant increase in the heart tissue of animals nourished with commercial chow when compared to the groups fed with cafeteria diet. On the other hand, there were no significant differences enzymatic levels in renal tissues. The oil and the extract of E. edulishad an important role promoting an increase of antioxidant enzymes levels in cardiac muscle, which prevent the oxidative damage resulting from the cafeteria diet in Wistar rats. There were no evidenced signs of lipid peroxidation in renal or in cardiac tissue of the animals studied, indicating that the E. edulisuse did not promote any increase in malondialdehyde cytotoxic products formation. This show that both E. edulis oil and extracts evaluated in this study were well tolerated in the studied doses.

  16. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goena, M.; Santidrian, S.; Cuevillas, F.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesizedmore » protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.« less

  17. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  18. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    PubMed

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  19. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    PubMed

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  20. Innate immune reactivity of the liver in rats fed a choline-deficient L-amino-acid-defined diet.

    PubMed

    Kawaratani, Hideto; Tsujimoto, Tatsuhiro; Kitazawa, Toshiyuki; Kitade, Mitsuteru; Yoshiji, Hitoshi; Uemura, Masahito; Fukui, Hiroshi

    2008-11-21

    To investigate the innate immune reactivity of tumor necrosis factor-alpha (TNF-alpha), Toll-like receptor 4 (TLR4), and CD14 in the liver of non-alcoholic steatohepatitis (NASH) model rats. Male F344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet. The rats were killed after 4 or 8 wk of the diet, and their livers were removed for immunohistochemical investigation and RNA extraction. The liver specimens were immunostained for TNF-alpha, TLR4, and CD14. The gene expressions of TNF-alpha, TLR4, and CD14 were determined by reverse-transcriptase polymerase chain reaction (RT-PCR). Kupffer cells were isolated from the liver by Percoll gradient centrifugation, and were then cultured to measure TNF-alpha production. The serum and liver levels of TNF-alpha in the CDAA-fed rats increased significantly as compared with the control group, as did the immunohistochemical values and gene expressions of TNF-alpha, TLR4, and CD14 with the progression of steatohepatitis. TNF-alpha production from the isolated Kupffer cells of the CDAA-fed rats was elevated by lipopolysaccharide stimulation. The expressions of TNF-alpha, TLR4, and CD14 increased in the NASH model, suggesting that TLR4 and CD14-mediated endotoxin liver damage may also occur in NASH.

  1. Inhibition of fetal bone development through epigenetic down- regulation of HoxA10 in obese rats fed high fat diet

    USDA-ARS?s Scientific Manuscript database

    Epidemiological studies show that maternal obesity during intrauterine and early postnatal life increases the risk of low bone mass and fracture later in life. Here, we show that bone development is inhibited in GED 18.5 embryos from rat dams made obese by feeding a high fat diet (HFD). Moreover, fe...

  2. Altered nitrogen balance and decreased urea excretion in male rats fed cafeteria diet are related to arginine availability.

    PubMed

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NO x ; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NO(x) and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  3. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    PubMed Central

    Sabater, David; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Remesar, Xavier

    2014-01-01

    Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NOx; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NOx and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability. PMID:24707502

  4. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6- pyruvylated-D-galactose

    PubMed Central

    1980-01-01

    Two human IgM myeloma proteins, IgMWEA and IgMMAY, were found to react with agar and Klebsiella polysaccharides that contain pyruvylated D- galactose (DGal). Quantitative precipitin data and precipitin inhibition studies with methyl alpha- and beta-glycosides of 4,6- pyruvylated-D-galactose showed their combining sites to be different, although each was directed against the pyruvylated-D-Gal, one reacting most specifically with Klebsiella polysaccharides with terminal nonreducing beta-linked 2,4 pyruvylated-D-Gal, whereas the other reacted equally well with Klebsiella polysaccharides that contain 3,4 beta-linked and 4,6 alpha-linked terminal nonreducing pyruvylated-DGal. Inhibition studies showed that both sites are directed toward one of the two space isomers of 3,4- or 4,6-pyruvylated DGal, the form in which the methyl group of the pyruvate is equatorial, or endo, and its carboxyl group axial, or exo, to the plane of the acetal ring. Coprecipitation studies showed the combining site of IgMWEA to be located on an (Fab')2 fragment and not on the (Fc)5mu fragment. The monoclonal peak in the serum of IgMMAY was specifically precipitated by Klebsiella polysaccharide. Myeloma proteins with specificities of this type may occur with reasonable frequency in humans and may be a consequence of clonal expansion from inapparent infection, carrier states, or disease produced by various Klebsiella organisms. PMID:6158553

  5. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.

    PubMed

    Zhang, Jia-Ying; Yin, Ying; Ni, Li; Long, Quan; You, Li; Zhang, Qian; Lin, Shan-Yan; Chen, Jing

    2016-11-01

    Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.

  6. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  7. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat.

    PubMed

    Paturi, Gunaranjan; Nyanhanda, Tafadzwa; Butts, Christine A; Herath, Thanuja D; Monro, John A; Ansell, Juliet

    2012-10-01

    The effects of red meat consumption with and without fermentable carbohydrates on indices of large bowel health in rats were examined. Sprague-Dawley rats were fed cellulose, potato fiber, or potato-resistant starch diets containing 12% casein for 2 wk, then similar diets containing 25% cooked beef for 6 wk. After week 8, cecal and colonic microbiota composition, fermentation end-products, colon structure, and colonocyte DNA damage were analyzed. Rats fed potato fiber had lower Bacteroides-Prevotella-Porphyromonas group compared to other diet groups. Colonic Bifidobacterium spp. and/or Lactobacillus spp. were higher in potato fiber and potato-resistant starch diets than in the cellulose diet. Beneficial changes were observed in short-chain fatty acid concentrations (acetic, butyric, and propionic acids) in rats fed potato fiber compared with rats fed cellulose. Phenol and p-cresol concentrations were lower in the cecum and colon of rats fed potato fiber. An increase in goblet cells per crypt and longer crypts were found in the colon of rats fed potato fiber and potato-resistant starch diets. Fermentable carbohydrates had no effect on colonic DNA damage. Dietary combinations of red meat with potato fiber or potato-resistant starch have distinctive effects in the large bowel. Future studies are essential to examine the efficacy of different types of nondigestible carbohydrates in maintaining colonic health during long-term consumption of high-protein diets. Improved understanding of interactions between the food consumed and gut microbiota provides knowledge needed to make healthier food choices for large bowel health. The impact of red meat on large bowel health may be ameliorated by consuming with fermentable dietary fiber, a colonic energy source that produces less harmful by-products than the microbial breakdown of colonic protein for energy. Developing functional red meat products with fermentable dietary fiber could be one way to promote a healthy and balanced

  8. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver.

    PubMed

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  10. Heat Treatment Improves Glucose Tolerance and Prevents Skeletal Muscle Insulin Resistance in Rats Fed a High-Fat Diet

    PubMed Central

    Gupte, Anisha A.; Bomhoff, Gregory L.; Swerdlow, Russell H.; Geiger, Paige C.

    2009-01-01

    OBJECTIVE—Heat treatment and overexpression of heat shock protein 72 (HSP72) have been shown to protect against high-fat diet–induced insulin resistance, but little is known about the underlying mechanism or the target tissue of HSP action. The purpose of this study is to determine whether in vivo heat treatment can prevent skeletal muscle insulin resistance. RESEARCH DESIGN AND METHODS—Male Wistar rats were fed a high-fat diet (60% calories from fat) for 12 weeks and received a lower-body heat treatment (41°C for 20 min) once per week. RESULTS—Our results show that heat treatment shifts the metabolic characteristics of rats on a high-fat diet toward those on a standard diet. Heat treatment improved glucose tolerance, restored insulin-stimulated glucose transport, and increased insulin signaling in soleus and extensor digitorum longus (EDL) muscles from rats fed a high-fat diet. Heat treatment resulted in decreased activation of Jun NH2-terminal kinase (JNK) and inhibitor of κB kinase (IKK-β), stress kinases implicated in insulin resistance, and upregulation of HSP72 and HSP25, proteins previously shown to inhibit JNK and IKK-β activation, respectively. Mitochondrial citrate synthase and cytochrome oxidase activity decreased slightly with the high-fat diet, but heat treatment restored these activities. Data from L6 cells suggest that one bout of heat treatment increases mitochondrial oxygen consumption and fatty acid oxidation. CONCLUSIONS—Our results indicate that heat treatment protects skeletal muscle from high-fat diet–induced insulin resistance and provide strong evidence that HSP induction in skeletal muscle could be a potential therapeutic treatment for obesity-induced insulin resistance. PMID:19073766

  11. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet.

    PubMed

    Tsai, I-Jung; Chen, Chia-Wen; Tsai, Shin-Yu; Wang, Pei-Yuan; Owaga, Eddy; Hsieh, Rong-Hong

    2018-01-29

    Vascular endothelial dysfunction is a potential risk factor for cardiovascular disease. This study evaluated the effect of curcumin on factors associated with vascular dysfunction using rats fed a high-sucrose, high-fat (HSF) diet. The experiment included 2 animal feeding phases. In the first feeding phase, male Sprague-Dawley rats were randomly divided into 2 groups: the control group (n = 8) was fed a standard diet (AIN-93G) and the HSF group (n = 24) was fed an HSF diet for 8 weeks to induce obesity. In the second feeding phase, lasting 4 weeks, the HSF group was randomly divided into 3 subgroups: the O group (n = 8) continued feeding on the HSF diet, the OA group (n = 8) had the HSF diet replaced with AIN-93G, and the OC group (n = 8) was fed the HSF diet supplemented with curcumin (300 mg/kg body weight daily). After 8 weeks, the HSF diet significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), insulin, homeostatic model assessment insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), C-reactive protein (CRP), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) but significantly reduced levels of nitric oxide (NO) and high-density lipoprotein cholesterol (HDL-C). After dietary intervention, the OA and OC groups exhibited significantly lower levels of AST, ALT, HOMA-IR, cholesterol, LDL-C, Hcy, CRP, VCAM-1, and ICAM-1 and higher levels of NO and catalase (CAT) activity compared with the O group. Superoxide dismutase, CAT, and glutathione peroxidase activities were increased in the OA group, while CAT levels were enhanced in the OC group. In conclusion, this study showed that curcumin supplementation and diet modification can inhibit HSF diet-induced vascular dysfunction potentially by enhancing NO production and antioxidant enzyme activities, thereby suppressing inflammation and oxidative damage in the vascular endothelium.

  12. Refeeding meal-fed rats increases lipoprotein lipase activity and deposition of dietary [14C]lipid in white adipose tissue and decreases oxidation to 14CO2. The role of undernutrition.

    PubMed Central

    Cruz, M L; Williamson, D H

    1992-01-01

    Meal-fed (3 h) rats had a decreased food intake, body weight and carcass fat compared with rats fed ad libitum. On refeeding a chow meal containing [1-14C]triolein, the production of 14CO2 was lower (45%) and the accumulation of carcass [14C]lipid higher (37%) in the meal-fed rats. There was higher lipoprotein lipase activity and greater accumulation of [14C]lipid in the epididymal and subcutaneous adipose-tissue depots of the meal-fed rats. In contrast, heparin-releasable lipoprotein lipase was not increased in perfused hearts of meal-fed rats on refeeding. Return of meal-fed rats to feeding ad libitum reversed these changes before the restoration of body weight or carcass fat. Evidence is presented that decreased dietary intake rather than meal pattern is an important determinant of the alterations in adipose lipid metabolism in the meal-fed rat in response to a meal. PMID:1497615

  13. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  14. Feeding Blueberry Diets to Young Rats Dose-Dependently Inhibits Bone Resorption through Suppression of RANKL in Stromal Cells

    PubMed Central

    Zhang, Jian; Lazarenko, Oxana P.; Kang, Jie; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Chen, Jin-Ran

    2013-01-01

    Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5%) for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT) of tibia, demonstrated that bone mineral density (BMD) and content (BMC) were dose-dependently increased in BB-fed rats compared to controls (P<0.05). Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition) rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand) a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ) which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption. PMID:23936431

  15. [Effects of chrysalis oil on learning, memory and oxidative stress in D-galactose-induced ageing model of mice].

    PubMed

    Chen, Weiping; Yang, Qiongjie; Wei, Xing

    2013-11-01

    To investigate the effects of chrysalis oil on learning, memory and oxidative stress in D-galactose-induced ageing model of mice. Mice were injected intraperitoneally with D-galactose daily and received chrysalis oil intragastrically simultaneously for 30 d. Then mice underwent space navigation test and spatial probe test, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) contents in mouse brain were measured. Compared to model group, escape latency in mice treated with 6 ml/kg*d chrysalis oil was significantly shorter (P<0.05), crossing times in 12 ml/kg*d group and 6 ml/kg*d group treated with chrysalis oil were significantly increased (P<0.05). Chrysalis oil treatment (12ml/kg*d) significantly increased SOD and GSH-PX activity and reduced MDA contents in brain of D-galactose-induced aging mice. Chrysalis oil can improve the ability of learning and memory in D-galactose-induced aging mice, and inhibit peroxidation in brain tissue.

  16. Mass spectrometric profiling of lipids in intestinal tissue from rats fed cereals processed for medical conditions.

    PubMed

    Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per

    2016-06-11

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for lipid profiling of intestine tissue sections from rats fed specially processed cereals and rats fed ordinary feed as a control. This cereal is known to increase the activity of antisecretory factor in plasma and the exact mechanism for the activation process at the cellular level is unclear. ToF-SIMS has been used to track food induced changes in lipid content in intestinal tissue sections to gain insight into the possible mechanisms involved. Data from 20 intestine sections belonging to four different rats from each group of control and specially processed cereals-fed rats were obtained using the stage scan macroraster with a lateral resolution of 5 μm. Data were subsequently subjected to orthogonal partial least squares discriminant analysis. The data clearly show that changes of certain lipids are induced by the specially processed cereal feed. Scores plots show a well-defined separation between the two groups. The corresponding loading plots reveal that the groups separate mainly due to changes of vitamin E, phosphocholine, and phosphosphingolipid fragments, and that for the c18:2 fatty acid. The observed changes in lipids might give insight into the working mechanisms of antisecretory factor in the body, and this has been successfully used to understand the working mechanism of specially processed cereal-induced antisecretory factor activation in intestine.

  17. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model.

    PubMed

    Hong, Seul-Ki; Choo, Eun-Ho; Ihm, Sang-Hyun; Chang, Kiyuk; Seung, Ki-Bae

    2017-11-01

    Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. THE EFFECT OF PROPRANOLOL ON GENE EXPRESSION DURING THE BLOOD ALCOHOL CYCLE OF RATS FED ETHANOL INTRAGASTRICALLY

    PubMed Central

    Li, Jun; Bardag-Gorce, F; Joan, Oliva; French, BA; Dedes, J; French, SW

    2010-01-01

    Propranolol, a beta adrenergic blocker prevents the blood alcohol (BAL) cycle in rats fed ethanol intragastrically at a constant rate by preventing the cyclic changes in the metabolic rate caused by fluctuating levels of norepinephrine released into the blood. The change in the rate of metabolism changes the rate of alcohol elimination in the blood which causes the BAL to cycle. Microarray analysis of the livers from the rats fed ethanol and propranolol showed similar changes in clusters of functionally related gene expressions. The controls and the trough of the cycle differed dramatically from the cluster pattern seen in the rats at the peaks of the blood alcohol cycle. The changes in gene expression induced by ethanol were similar when propranolol was fed without ethanol especially with the changes in the kinases and phosphatases, Toll-like receptor signaling and cytokine-cytokine receptor interaction were also changed. The changes in gene expression caused by ethanol and propranolol feeding are alike probably because both drugs induce β adrenergic receptor desensitization. PMID:19925788

  19. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    PubMed

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol -1 ) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol -1 ) and miglitol (-2.78 kcal mol -1 ), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC 50 values of 435.5 μg mL -1 and 1.84 mg mL -1 , but acarbose has values of 2.5 and 16.19 μg mL -1 . The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL -1 ) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL -1 , p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  20. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003.

    PubMed

    O'Connell Motherway, Mary; Fitzgerald, Gerald F; van Sinderen, Douwe

    2011-05-01

    In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant-derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β-1,4-endogalactanase producing galacto-oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β-galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose-6-phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI-type DNA-binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene. © 2010 University College Cork. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats.

    PubMed

    Ulu, Ramazan; Gozel, Nevzat; Tuzcu, Mehmet; Orhan, Cemal; Yiğit, İrem Pembegül; Dogukan, Ayhan; Telceken, Hafize; Üçer, Özlem; Kemeç, Zeki; Kaman, Dilara; Juturu, Vijaya; Sahin, Kazim

    2018-05-31

    In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of vitamin K2 (menatetrenone) and alendronate on bone mineral density and bone strength in rats fed a low-magnesium diet.

    PubMed

    Kobayashi, M; Hara, K; Akiyama, Y

    2004-11-01

    In this study, we examined changes in bone parameters and bone strength in rats fed low-Mg diets (experiment 1) and the effects of vitamin K2 (MK-4, experiment 3) and alendronate (ALN, experiment 2) in this model. In experiment 1, 5-week-old male Wistar rats were fed three low-Mg diets (Mg 9, 6, 3 mg/100 g diet) for 4 weeks. Although the cortical bone mineral content (CtBMC) and cortical thickness (CtTh) of the femoral diaphysis in all low-Mg-diet groups were the same as or greater than those in the intact group (Mg: 90 mg/100 g diet), the maximum load and elastic modulus were significantly reduced in the 3-mg-Mg group. In experiment 2, 4-week-old Wistar rats were fed a 6-mg-Mg diet for 8 weeks, and the effect of ALN (2, 20, and 200 microg/kg twice a week) was evaluated. The administration of ALN at 200 microg/kg increased the cortical bone mineral content (CtBMC), CtTh, and maximum load, but had no effect on the elastic modulus, as compared with the low-Mg-control group. In experiment 3, the effect of MK-4 was evaluated under the same conditions as in experiment 2. The administration of MK-4 had no effect on CtBMC, CtTh, or bone components of the femoral diaphysis. However, MK-4 inhibited the decreases in maximum load and elastic modulus due to the low-Mg diet. Since there is no other experimental model in which there is a decrease in bone mechanical properties without a decrease in bone mineral content, the low-Mg diet model is considered to be an excellent model for examining bone quality. Our results from this model suggest that MK-4 and ALN affect bone mechanical properties by different mechanisms.

  3. BETAINE FEEDING PREVENTS THE BLOOD ALCOHOL CYCLE IN RATS FED ALCOHOL CONTINUOUSLY FOR 1 MONTH USING THE RAT INTRAGASTRIC TUBE FEEDING MODEL

    PubMed Central

    Li, J; Li, XM; Caudill, M; Malysheva, O; Bardag-Gorce, F; Oliva, J; French, BA; Gorce, E; Morgan, K; Kathirvel, E; Morgan, T; French, SW

    2011-01-01

    Background Blood alcohol levels (BAL) cycle up and down over a 7–8 day period when ethanol is fed continuously for one month in the intragastric tube feeding rat model (ITFRM) of alcoholic liver disease. The cycling phenomenon is due to an alternating increase and decrease in the metabolic rate. Recently, we found that S-adenosyl-methionine (SAMe) fed with alcohol prevented the BAL cycle. Method Using the ITFRM we fed rats betaine (2 g/kg/day) with ethanol for 1 month and recorded the daily 24 h urine ethanol level (UAL) to measure the BAL cycle. UAL is equivalent to BAL because of the constant ethanol infusion. Liver histology, steatosis and BAL were measured terminally after 1 month of treatment. Microarray analysis was done on the mRNA extracted from the liver to determine the effects of betaine and alcohol on changes in gene expression. Results Betaine fed with ethanol completely prevented the BAL cycle similar to SAMe. Betaine also significantly reduced the BAL compared to ethanol fed rats without betaine. This was also observed when SAMe was fed with ethanol. The mechanism involved in both cases is that SAMe is required for the conversion of epinephrine from norepinephrine by phenylethanolamine methyltransferase (PNMT). Epinephrine is 5 to 10 fold more potent than norepinephrine in increasing the metabolic rate. The increase in the metabolic rate generates NAD, permitting ADH to increase the oxidation of alcohol. NAD is the rate limiting factor in oxidation of alcohol by alcohol dehydrogenase (ADH). This explains how SAMe and betaine prevented the cycle. Microarray analysis showed that betaine feeding prevented the up regulation of a large number of genes including TLR2/4, Il-1b, Jax3, Sirt3, Fas, Ifngr1, Tgfgr2, Tnfrsf21, Lbp and Stat 3 which could explain how betaine prevented fatty liver. Conclusion Betaine feeding lowers the BAL and prevents the BAL cycle by increasing the metabolic rate. This increases the rate of ethanol elimination by generating NAD

  4. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  5. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    PubMed Central

    2010-01-01

    Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD), insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G) and a fructose-rich diet group (60% fructose). The animals were tested for maximal lactate-steady state (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol). Another third were submitted to the training from 90 to 120 days (late protocol), and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT) and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease. PMID:20946638

  6. Increased hepatic beta-oxidation of docosahexaenoic acid, elongation of eicosapentaenoic acid, and acylation of lysophosphatidate in rats fed a docosahexaenoic acid-enriched diet.

    PubMed

    Kanazawa, A; Shirota, Y; Fujimoto, K

    1997-07-01

    Rats were fed a diet supplemented with corn oil (n-3 deficient), soy oil, or a mixture containing 8% 22:6n-3 ethyl ester for 6 wk. The hepatic capacities for the beta-oxidation and synthesis of 22:6n-3, in addition to the acylation of lysophosphatidate, were tested in vitro. In rats that were fed a 22:6n-3-enriched diet, both the beta-oxidation of 22:6n-3 and elongation of 20:5n-3 were enhanced compared to those in rats fed the other diets. Acylation of lysophosphatidate was also enhanced in rats fed a 22:6n-3-enriched diet, while the rate of dephosphorylation of phosphatidate was not changed. The amount of 22:6n-3 in the liver was much less than that consumed in a docosahexaenoic acid-enriched diet. These results suggest that a significant amount of dietary 22:6n-3 was degraded via beta-oxidation, and that a portion of the retroconverted 20:5n-3 was recycled for the synthesis of 22:6n-3. The recycling of 20:5n-3 might contribute to the low level of 22:6n-3 in rats fed an n-3-deficient diet.

  7. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy.

    PubMed

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun

    2017-09-01

    This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Results of a 90-day safety assurance study with rats fed grain from corn borer-protected corn.

    PubMed

    Hammond, B G; Dudek, R; Lemen, J K; Nemeth, M A

    2006-07-01

    The results of a 90-day rat feeding study with grain from MON 810 corn (YieldGard Cornborer -- YieldGard Cornborer is a registered trademark of Monsanto Technology, LLC) that is protected against feeding damage from corn and stalk boring lepidopteran insects are presented. Corn borer protection was accomplished through the introduction of cry1Ab coding sequences into the corn genome for in planta production of a bioactive form of Cry1Ab protein. Grain from MON 810 and its near-isogenic control was separately formulated into rodent diets at levels of 11% and 33% (w/w) by Purina Mills, Inc. (PMI). All diets were nutritionally balanced and conformed to PMI specifications for Certified LabDiet (PMI Certified LabDiet 5002 is a registered trademark of Purina Mills, Inc.) 5002. There were a total of 400 rats in the study divided into 10 groups of 20 rats/sex/group. The responses of rats fed diets containing MON 810 were compared to those of rats fed grain from conventional corn varieties. Overall health, body weight, food consumption, clinical pathology parameters (hematology, blood chemistry, urinalysis), organ weights, and gross and microscopic appearance of tissues were comparable between groups fed diets containing MON 810 and conventional corn varieties. This study complements extensive agronomic, compositional and farm animal feeding studies with MON 810 grain, confirming that it is as safe and nutritious as grain from existing commercial corn varieties.

  9. Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats.

    PubMed

    Zhao, Fei; Pang, Wentao; Zhang, Ziyi; Zhao, Jialong; Wang, Xin; Liu, Ye; Wang, Xun; Feng, Zhihui; Zhang, Yong; Sun, Wenyan; Liu, Jiankang

    2016-06-01

    Obesity is reported to be associated with immune dysfunction and a state of low-grade, chronic inflammation. Either pomegranate extract (PomE) or exercise (Ex) has been shown to have antiobesity, anti-inflammatory and antioxidant effects. Nevertheless, no study has addressed the additive benefits of PomE and Ex on the restoration of obesity-induced immune defects. The present work aims to study the effect of PomE and Ex as a combined intervention on immune function and the underlying mechanism involved in inflammation and oxidative stress in rats with high-fat-diet (HFD)-induced obesity. Our results demonstrate that the combination of PomE and Ex showed additive benefits on inhibition of HFD-induced body weight increase and improvement of HFD-induced immune dysfunction, including (a) attenuating the abnormality of histomorphology of the spleen, (b) increasing the ratio of the CD4+:CD8+ T cell subpopulations in splenocytes and peripheral blood mononuclear cells (PBMC), (c) inhibition of apoptosis in splenocytes and PBMC, (d) normalizing peritoneal macrophage phenotypes and (e) restoring immunomodulating factors in serum. We also find that immune dysfunction in HFD-fed rats was associated with increased inflammatory cytokine secretion and oxidative stress biomarkers, and that the combination of PomE and Ex effectively inhibited the inflammatory response and decreased oxidative damage. The effect of PomE and Ex as a combined intervention is greater than the effect of either PomE or Ex alone, showing that PomE and Ex may be additively effective in improving immune function in HFD-fed rats by inhibiting inflammation and decreasing oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats.

    PubMed

    Su, Xuesong; Zhou, Guangyu; Wang, Yanqiu; Yang, Xu; Li, Li; Yu, Rui; Li, Detian

    2014-06-01

    Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25% PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1-NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1-NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.

  11. Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity.

    PubMed

    Bellassoued, Khaled; Ghrab, Ferdaws; Makni-Ayadi, Fatma; Van Pelt, Jos; Elfeki, Abdelfattah; Ammar, Emna

    2015-01-01

    Kombucha (KT) is claimed to have various beneficial effects on human health, but there is very little scientific evidence available in the literature. The present study investigates the effects of Camellia sinensis (GT) Linn. (Theaceae) and KT, two natural drinks, on cholesterol and antioxidant status using a hypercholesterolemia rat model. The present study compared the free-radical scavenging abilities and polyphenol levels of GT and KT. Wistar rats fed cholesterol-rich diets were given KT or GT (5 mL/kg body weight per day, po) for 16 weeks, then fasted overnight and sacrificed. The plasma lipid levels, thiobarbituric acid reactive substances (TBARS) and aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transpeptidase (GGT) serum levels, antioxidant activities of superoxide dismutase (SOD) and catalase (CAT), and creatinine and urea rats were examined. KT had a phenolic compound of 955 ± 0.75 mg GAE/g) followed, by GT (788.92 ± 0.02 mg GAE/g). The free radical scavenging activity of KT was higher than GT. Compared with GT, KT induced lowered serum levels of TC, TG, VLDL-C, and LDL-C by 26, 27, 28, and 36%, respectively, and increased the serum level of high-density lipoprotein cholesterol (HDL-C). KT induced a 55% decrease of TBARS level in liver and 44% in kidney, compared with those of rats fed a cholesterol-rich diet alone. Moreover, CAT and SOD activities were reduced by 29 and 33%, respectively, in liver and 31 and 35%, respectively, in kidney, after oral administration of KT, compared with those of HCD-fed rats. The findings revealed that KT administration induced attractive curative effects on hypercholesterolemic, particularly in terms of liver-kidney functions in rats. Its effect on humans needs to be studied further.

  12. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Pil; Department of Pharmaceutical Engineering, International University of Korea, Jinju; Choi, Jae Ho

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the liversmore » of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.« less

  13. Comparison of Antiobesity Effects Between Gochujangs Produced Using Different Koji Products and Tabasco Hot Sauce in Rats Fed a High-Fat Diet.

    PubMed

    Son, Hee-Kyoung; Shin, Hye-Won; Jang, Eun-Seok; Moon, Byoung-Seok; Lee, Choong-Hwan; Lee, Jae-Joon

    2018-03-01

    In this study, we compared the antiobesity effects between gochujangs prepared using different koji products and Tabasco hot sauce in rats fed a high-fat diet (HFD). Male Sprague-Dawley rats were fed HFD containing four different types of 10% gochujang powder or 0.25% commercial Tabasco sauce powder for 8 weeks. The body weight gain, liver and epididymal and mesenteric fat pad weights, serum leptin levels, and lipogenesis-related mRNA levels of HFD-gochujang supplementation groups were significantly decreased compared with those of the HFD group. In addition, gochujang supplement significantly reduced adipocyte size; hepatic triglyceride and total cholesterol levels; the occurrence of fatty liver deposits and steatosis by inhibiting lipogenesis through downregulation of fatty acid synthase, acetly-CoA carboxylase, and glucose-6-phosphate-dehydrogenase. These effects were greater in the gochujang-supplemented groups than the Tabasco hot sauce-supplemented group. The gochujang prepared by nutritious giant embryo rice koji and soybean koji was most effective in terms of antiobesity effects, compared with the other tested gochujangs. In gochujangs, the antiobesity effects are mediated by high levels of secondary metabolites such as isoflavone, soyasaponin, capsaicin, and lysophosphatidylcholine. The current results indicated that the gochujang products have the potential to reduce fat accumulation and obesity.

  14. A novel fed-batch based strategy for enhancing cell-density and recombinant cyprosin B production in bioreactors.

    PubMed

    Sampaio, P N; Pais, M S; Fonseca, L P

    2014-12-01

    Nowadays, the dairy industry is continuously looking for new and more efficient clotting enzymes to create innovative products. Cyprosin B is a plant aspartic protease characterized by clotting activity that was previously cloned in Saccharomyces cerevisiae BJ1991 strain. The production of recombinant cyprosin B by a batch and fed-batch culture was compared using glucose and galactose as carbon sources. The strategy for fed-batch cultivation involved two steps: in the first batch phase, the culture medium presented glucose 1 % (w/v) and galactose 0.5 % (w/v), while in the feed step the culture medium was constituted by 5 % (w/v) galactose with the aim to minimize the GAL7 promoter repression. Based on fed-batch, in comparison to batch growth, an increase in biomass (6.6-fold), protein concentration (59 %) and cyprosin B activity (91 %) was achieved. The recombinant cyprosin B was purified by a single hydrophobic chromatography, presenting a specific activity of 6 × 10(4) U·mg(-1), corresponding to a purification degree of 12.5-fold and a recovery yield of 16.4 %. The SDS-PAGE analysis showed that recovery procedure is suitable for achieving the purified recombinant cyprosin B. The results show that the recombinant cyprosin B production can be improved based on two distinct steps during the fed-batch, presenting that this strategy, associated with a simplified purification procedure, could be applied to large-scale production, constituting a new and efficient alternative for animal and fungal enzymes widely used in cheese making.

  15. No long-term feeding toxicities on the health status in rats fed with cloned Korean native beef cattle (Hanwoo) meat.

    PubMed

    Lee, Nam-Jin; Yang, Byoung-Chul; Im, Gi-Sun; Lee, Sung-Soo; Seong, Hwan-Hoo; Park, Jin-Ki; Chang, Won-Kyong; Kang, Jong-Koo; Hwang, Seongsoo

    2013-08-01

    This study was designed to undertake a risk assessment to identify the health status of rats fed with somatic cell nuclear transfer (SCNT)-cloned Korean native beef cattle (Hanwoo) meat for 26 weeks. The rats were randomly divided into 5 groups, each consisting of 12 male (142.6 ± 5.23 g) and 12 female (113.7 ± 6.31 g) rats each. The animals were fed commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) of normal cattle meat, and diets containing 5% (C-5) and 10% (C-10) of cloned cattle meat. The mortality; clinical signs; body weight; food consumption; urinary, hematology, blood biochemistry, and histopathological analyses; and absolute and relative organ weights were analyzed and compared. During the 26-week test period, health status-related factors of the rats fed on cloned Hanwoo meat were found to have no test substance-related toxicities. The only difference was the increased uterus weight in female C-10 rats as compared to their counterparts counterparts (p < .05). On the basis of these health status results, it can be postulated that no food consumption risks might arise from the long-term feeding of cloned cattle meat in rats.

  16. Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet

    PubMed Central

    Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.

    2008-01-01

    The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797

  17. In vivo determination of triglyceride (TG) secretion in rats fed different dietary saturated fats using (2- sup 3 H)-glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, H.C.; Yang, H.; Lasekan, J.

    1990-02-26

    Male, Sprague-Dawley rats (154{plus minus}1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 {mu}Ci (2-{sup 3}H)-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fedmore » BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion.« less

  18. Differences in betaine-homocysteine methyltransferase expression, ER stress response and liver injury between alcohol-fed mice and rats

    PubMed Central

    Shinohara, Masao; Ji, Cheng; Kaplowitz, Neil

    2009-01-01

    Chronic ethanol infusion resulted in greater serum ALT elevation, lipid accumulation, necroinflammation, and focal hepatic cell death in mice than rats. Mice exhibited a remarkable hyperhomocysteinemia but no increase was seen in rats. Similarly, a high methionine low folate diet (HMLF) induced less steatosis, serum ALT increase, and hyperhomocysteinemia in rats than in mice. Western blot analysis of betaine homocysteine methyltransferase (BHMT) expression showed that rats fed either ethanol or HMLF had significantly increased BHMT expression which did not occur in mice. Nuclear NFκB p65 was increased in mouse in response to alcohol feeding. The human BHMT promoter was repressed by homocysteine in mouse hepatocytes but not rat hepatocytes. BHMT induction was faster and greater in primary rat hepatocytes than mouse hepatocytes in response to exogenous homocysteine exposure. Mice fed ethanol i.g. exhibited an increase in GRP78 and IRE1 which was not seen in the rat and SREBP-1 was increased to a greater extent in mice than rats. Thus, rats are more resistant to ethanol induced steatosis, ER stress and hyperhomocysteinemia and this correlates with induction of BHMT in rats. These findings support the hypothesis that a critical factor in the pathogenesis of alcoholic liver injury is the enhanced ability of rat or impaired ability of mouse to up-regulate BHMT which prevents hyperhomocysteinemia, ER stress and liver injury. PMID:20069651

  19. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt–Fed Adult Wistar Rats

    PubMed Central

    Olushola, Ayoola I.; Aderibigbe, Komolafe O.; Stephen, Saka O.; Ayodeji, Odukoya S.

    2017-01-01

    Background. The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt–fed adult Wistar rats in this study. Method. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results. Results revealed that concentration of potassium ion and nitric oxide was significantly lower (P < .05) in high salt–fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt–fed group while P americana prevented biochemical perturbations in other experimental groups. Conclusion. In conclusion, high salt–diet induced biochemical alterations which were significantly protected by oral administration of P americana extract. PMID:29228805

  20. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt-Fed Adult Wistar Rats.

    PubMed

    Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S

    2017-10-01

    The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.

  1. RNA-sequencing data analysis of uterus in ovariectomized rats fed with soy protein isolate,17B-estradiol and casein

    USDA-ARS?s Scientific Manuscript database

    This data file describes the bioinformatics analysis of uterine RNA-seq data comparing genome wide effects of feeding soy protein isolate compared to casein to ovariectomized female rats age 64 days relative to treatment of casein fed rats with 5 ug/kg/d estradiol and relative to rats treated with e...

  2. Effect of ingestion of soy yogurt on intestinal parameters of rats fed on a beef-based animal diet

    PubMed Central

    Bedani, Raquel; Pauly-Silveira, Nadiége Dourado; Cano, Veridiana Soares Pereira; Valentini, Sandro Roberto; de Rossi, Graciela Font; Valdez, Elizeu Antonio

    2011-01-01

    The aim of this study was to investigate whether the ingestion of soy yogurt fermented with Enterococcus faecium CRL 183 would modify the intestinal count of enterococci, fecal pH and ammonia content in rats fed on a diet containing red meat. The rats were placed in 4 groups: for 60 days, group I was given a standard casein-based rodent feed and groups II-IV, the beef-based feed. From day 30, groups III-IV also received the following products: III) soy yogurt; IV) suspension of E. faecium CRL 183. At the start and on days 30 and 60, feces were collected for the determination of pH, ammonia content, count of enterococci and identification of their species. On day 60, rats were sacrificed and their colons also removed for count of enterococci and identification of their species. Rats that ingested soy yogurt showed no significant change (P<0.05) in fecal counts of Enterococcus spp., but, this rat group showed a higher count of E. faecium than rats that ingested suspension of E. faecium CRL 183. The ingestion of soy yogurt and E. faecium culture caused a significant rise (P < 0.05) in fecal pH and ammonia content. Our results suggest that consumption of soy yogurt fermented with E. faecium CRL 183 and L. helveticus subsp. jugurti could change the species of Enterococcus spp. present in the feces and colon of rats fed on a beef-based diet. However, the fermented soy product and the pure culture of E. faecium CRL 183 also induced undesirable effects such as the increase of fecal pH and ammonia content in the feces of rats fed on a beef-based diet. PMID:24031747

  3. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    PubMed

    Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose

  4. Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion

    PubMed Central

    Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose

  5. Distribution of magnesium in central nervous system tissue, trabecular and cortical bone in rats fed with unbalanced diets of minerals.

    PubMed

    Yasui, M; Yano, I; Yase, Y; Ota, K

    1990-11-01

    Recent epidemiological changes in patterns of foci of amyotrophic lateral sclerosis (ALS) in the Western Pacific suggest that environmental factors play a contributory role in the pathogenic process of this disorder. In this experimental study on rats, a similar situation of dietary mineral imbalance was created as is found in the soil and drinking water of these ALS foci with a low content of calcium (Ca) and magnesium (Mg) and a high content of aluminum (Al). In groups of rats fed a low Ca diet, low Ca-Mg diet, and low Ca-Mg plus high Al diet, serum Ca levels were found to be lower than those in a group fed a standard diet. Also, serum Mg levels were lower in the groups fed a low Ca-Mg diet and a low Ca-Mg plus high Al diet than in the groups fed a standard diet and only a low Ca diet. There was no significant difference in Mg content of central nervous system (CNS) tissues of groups fed unbalanced and standard diets, except for a significant decrease in Mg content of the spinal cord of rats fed a low Ca-Mg plus high Al diet. Mg content of the lumbar spine and cortical bone decreased in the unbalanced diet groups compared with that of a group fed a standard diet. These findings suggest that under the disturbed bone mineralization induced by unbalanced mineral diets, Mg may be mobilized from bone to maintain the level necessary for vital activity in soft tissues including CNS tissue.

  6. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease.

    PubMed

    King, Adrienne L; Mantena, Sudheer K; Andringa, Kelly K; Millender-Swain, Telisha; Dunham-Snary, Kimberly J; Oliva, Claudia R; Griguer, Corinne E; Bailey, Shannon M

    2016-10-01

    Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the

  7. Evaluation of some selected blood parameters and histopathology of liver and kidney of rats fed protein-substituted mucuna flour and derived protein rich product.

    PubMed

    Ngatchic, Josiane Therese Metsagang; Sokeng, Selestion Dongmo; Njintang, Nicolas Yanou; Maoundombaye, Theophile; Oben, Julius; Mbofung, Carl Moses F

    2013-07-01

    This comparative study reports the nutritional and toxicological characteristics of Mucuna pruriens flour and a protein-rich product developed from it. The protein-rich mucuna product (PRMP) was obtained by the three steps procedure: protein solubilization, heat-coagulation and sieving. Three weeks rats (n=6 per group) were fed for 28 days on standard protein-substituted rat feed with mucuna flour or PRMP. The experimental design was a factorial design with three mucuna accessions (Velvet, Black and White) and two treatments (flour and PRMP). The protein content ranged 27.2-31.5 g/100 g for flour and 58.8-61.1% for PRMP. Processing flour into PRMP led to a significant (p<0.05) reduction of tannins (50%), total polyphenols (50%) and trypsin inhibitors (94%). The rats fed PMRP diets witnessed weight gain similar to casein, while those fed mucuna flour lost weight. The levels of total cholesterol, HDL-cholesterol and LDL-cholesterol observed in animals groups fed mucuna flour and PRMP were significantly lower (p<0.05) than the control group. In addition lymphocytes, granulocytes, red blood cells, hemoglobin and hematocrit of rats fed mucuna flour were significantly (p<0.05) lower than values in other rats groups. Kidneys glomerular sclerosis and high creatinine levels were observed in group fed mucuna flour. PRMP then represents a good alternative of using mucuna proteins for human nutrition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, O.R.; Abou-El-Ela, S.H.

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was tomore » establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.« less

  9. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Alam, Md. Ashraful; Kauter, Kathleen; Brown, Lindsay

    2013-01-01

    Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day) improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats. PMID:23446977

  10. Chromium picolinate and chromium histidinate protects against renal dysfunction by modulation of NF-κB pathway in high-fat diet fed and Streptozotocin-induced diabetic rats.

    PubMed

    Selcuk, Mustafa Yavuz; Aygen, Bilge; Dogukan, Ayhan; Tuzcu, Zeynep; Akdemir, Fatih; Komorowski, James R; Atalay, Mustafa; Sahin, Kazim

    2012-04-08

    Diabetic nephropathy is one of major complications of diabetes mellitus. Although chromium is an essential element for carbohydrate and lipid metabolism, its effects on diabetic nephropathy are not well understood. The present study was conducted to investigate the effects of chromium picolinate (CrPic) and chromium histidinate (CrHis) on nuclear factor-kappa B (NF-κB) and nuclear factor-E2-related factor-2 (Nrf2) pathway in the rat kidney. Male Wistar rats were divided into six groups. Group I received a standard diet (8% fat) and served as a control; Group II was fed with a standard diet and received CrPic; Group III was fed with a standard diet and received CrHis; Group IV received a high fat diet (HFD, 40% fat) for 2 weeks and then were injected with streptozotocin (STZ) (HFD/STZ); Group V was treated as group IV (HFD/STZ) but supplemented with CrPic for 12 weeks. Group VI was treated as group IV (HFD/STZ) but supplemented with CrHis. The increased NF-κβ p65 in the HFD/STZ group was inhibited by CrPic and CrHis supplementation (P < 0.05). In STZ-treated rats, a significant decrease in levels of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) was found in kidney tissues when compared to control rats (P < 0.05). A significant increase in the levels of IκBα was observed in CrPic- and CrHis-treated rats when compared with STZ-treated rats. Renal Nrf2 levels were significantly decreased in diabetic rats compared with the control rats. There was a higher tendency for increase of kidney Nrf2 level and decrease in kidney NFκBp65 levels and 4- hydroxyl nonenal (4-HNE) protein adducts (P < 0.05) in diabetic rats. Our result show that in kidney tissue CrHis/CrPic increases Nrf2 level, parallelly decreases NF-κB and partially restores IκBα levels in HFD/STZ group, suggesting that CrPic and CrHis may play a role in antioxidant defense system via the Nrf2 pathway by reducing inflammation through NF-κβ p65 inhibition

  11. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    PubMed

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  12. Normal distribution of body weight gain in male Sprague-Dawley rats fed a high-energy diet.

    PubMed

    Archer, Zoe A; Rayner, D Vernon; Rozman, Jan; Klingenspor, Martin; Mercer, Julian G

    2003-11-01

    To investigate the effect of a high-energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague-Dawley (SD) rats. Twenty-eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein-1 and hypothalamic energy-balance-related genes were determined by Northern blotting and in situ hybridization, respectively. HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein-1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti-related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet-induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.

  13. Colonic Fermentation Promotes Decompression sickness in Rats

    PubMed Central

    de Maistre, Sébastien; Vallée, Nicolas; Gempp, Emmanuel; Lambrechts, Kate; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS). During dives with hydrogen as a diluent for oxygen, decreasing the body’s H2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. So we set out to investigate if colonic fermentation leading to endogenous hydrogen production promotes DCS in fasting rats. Four hours before an experimental dive, 93 fasting rats were force-fed, half of them with mannitol and the other half with water. Exhaled hydrogen was measured before and after force-feeding. Following the hyperbaric exposure, we looked for signs of DCS. A higher incidence of DCS was found in rats force-fed with mannitol than in those force-fed with water (80%, [95%CI 56, 94] versus 40%, [95%CI 19, 64], p < 0.01). In rats force-fed with mannitol, metronidazole pretreatment reduced the incidence of DCS (33%, [95%CI 15, 57], p = 0.005) at the same time as it inhibited colonic fermentation (14 ± 35 ppm versus 118 ± 90 ppm, p = 0.0001). Pre-diveingestion of mannitol increased the incidence of DCS in fasting rats when colonic fermentation peaked during the decompression phase. More generally, colonic fermentation in rats on a normal diet could promote DCS through endogenous hydrogen production. PMID:26853722

  14. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    PubMed

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  15. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet.

    PubMed

    Xu, Yan; Zhang, Min; Wu, Tao; Dai, ShengDong; Xu, Jinling; Zhou, Zhongkai

    2015-01-01

    Beneficial effects of green tea (Camellia sinensis, Theaceae) extracts against obesity have been reported; however, the anti-obesity ability of the major components of green tea, polysaccharides, polyphenols and caffeine is not clear. Therefore, experiments with total green tea extracts, polyphenols, polysaccharides, caffeine, and a complex of polysaccharide and polyphenol at a dose of 400 or 800 mg kg⁻¹ were conducted on high-fat diet fed rats for 6 weeks to investigate their anti-obesity effects. The results indicated that polyphenols and polysaccharides were responsible for the suppressive effect of green tea extracts on body weight increase and fat accumulation. Moreover, polyphenols, polysaccharides, or caffeine can improve blood lipid and antioxidant levels, and effectively reduce rat serum leptin levels, inhibit the absorption of fatty acids, and markedly reduce the expression levels of the IL-6 and TNF-α gene. Furthermore, it was shown that polysaccharides and polyphenols were synergistic in reduction of serum leptin levels and in anti-inflammatory activity. These results suggest that the polysaccharide combination with polyphenols might be a potential therapy against obesity.

  16. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet.

    PubMed

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2017-01-01

    To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p < 0.05). Free arachidonic acid and docosahexaenoic acid levels in group 4 were significantly less than in group 2 (p < 0.05). Histopathological examination of group 2 revealed extensive gliosis, neuronal hydropic degeneration, and edema. In group 4, gliosis was much lighter than in group 2, and edema was not observed. Neuronal structures in group 4 were similar to those in group 1. The HFrD increased the levels of free arachidonic acid and docosahexaenoic acid probably due to membrane degradation resulting from possible oxidative stress and inflammation in the brain. The HFrD also caused extensive gliosis, neuronal hydropic degeneration, and edema. Hence, M. pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. © 2017 The Author(s) Published by S. Karger AG, Basel.

  17. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet

    PubMed Central

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2018-01-01

    Objective To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. Materials and Methods The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Results Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p < 0.05). Free arachidonic acid and docosahexaenoic acid levels in group 4 were significantly less than in group 2 (p < 0.05). Histopathological examination of group 2 revealed extensive gliosis, neuronal hydropic degeneration, and edema. In group 4, gliosis was much lighter than in group 2, and edema was not observed. Neuronal structures in group 4 were similar to those in group 1. Conclusions The HFrD increased the levels of free arachidonic acid and docosahexaenoic acid probably due to membrane degradation resulting from possible oxidative stress and inflammation in the brain. The HFrD also caused extensive gliosis, neuronal hydropic degeneration, and edema. Hence, M. pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. PMID:28898884

  18. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  19. Evaluation of biochemical and redox parameters in rats fed with corn grown in soil amended with urban sewage sludge.

    PubMed

    Grotto, Denise; Carneiro, Maria Fernanda Hornos; Sauer, Elisa; Garcia, Solange Cristina; de Melo, Wanderley José; Barbosa, Fernando

    2013-09-01

    The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20 t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20 t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to

  20. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  1. Purple rice extract supplemented diet reduces DMH- induced aberrant crypt foci in the rat colon by inhibition of bacterial β-glucuronidase.

    PubMed

    Summart, Ratasark; Chewonarin, Teera

    2014-01-01

    Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial β-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited β-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.

  2. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    PubMed Central

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (P<0.05) decreased the levels of blood glucose, triglyceride, and LDL compared to controls. However, no changes were observed in serum cholesterol and rat body weight. Metformin also showed similar effects on these parameters. Conclusions: Andrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  3. Inhibition of gonadotropin and prostaglandin stimulation of testicular steroidogenesis in malnourished rats.

    PubMed

    Nduka, E U; Dada, O A

    1984-01-01

    The effect of human chorionic gonadotropin (hCG) and prostaglandin E1 (PGE1) on testicular steroidogenesis in protein-deficient and refed rats was studied in vitro. The malnourished, refed, and control rats were found to secret testosterone in response to hCG and PGE1 stimulation. There was a significant reduction in the basal level of secretion in the malnourished rat testis (1.0 +/- 0.4 nMol/3 hr./Testis). Malnourished rats refed with adequate protein diet responded to hCG and PGE1 stimulation in a similar manner to normally-fed adult rats.

  4. Brain glucose content in fetuses of ethanol-fed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullen, G.; Singh, S.P.; Snyder, A.K.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less

  5. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  6. A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats.

    PubMed

    Sahin, Nurhan; Akdemir, Fatih; Orhan, Cemal; Aslan, Abdullah; Agca, Can A; Gencoglu, Hasan; Ulas, Mustafa; Tuzcu, Mehmet; Viyaja, Juturu; Komorowskı, James R; Sahin, Kazim

    2012-09-01

    A novel nutritional supplement complex (N21 #125) composed of four well-known compounds (chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron) was designed to improve memory function and maintain brain health. The present study evaluated the complex's potential mechanism of action and its role in reducing oxidative stress in the brain of obese rats fed a high-fat diet (HFD). Male Wistar rats (n = 40, 8-week-old) were divided into four groups. Group I was fed a standard diet; Group II was fed a standard diet and supplemented with N21 } Group III was fed an HFD; and Group IV was fed an HFD and supplemented with N21 #125 for 12 weeks. Rats fed HFD had greater serum C-reactive protein (CRP) and tumor necrosis factor alpha (TNF-α) and brain malondialdehyde (MDA) concentrations than rats fed the control diet. Supplementation of N21 #125 decreased CRP, TNF-α, and MDA concentration in rats fed HFD. The levels of brain nuclear factor-E2-related factor-2 (Nrf2), heme oxygenase, extracellular signal-regulated kinases and protein kinase B were lower in rats fed the control diet than for rats fed the HFD. These parameters were increased by supplementation of N21 #125. The data indicate that N21 #125 protected the brain from oxidative damage and inflammation induced by the HFD. This effect may be through up-regulation of the transcription factor Nrf2 expression.

  7. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  8. Fatty acid utilization by young Wistar rats fed a cafeteria diet.

    PubMed

    Esteve, M; Rafecas, I; Fernández-López, J A; Remesar, X; Alemany, M

    1992-12-02

    The content and accretion of fatty acids in 30, 45 and 60-day old Wistar rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during that period. Diet had a small overall effect on the pattern of deposition of fatty acids, but the deposition of fat was much higher in cafeteria rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into lipid storage, whilst chow-feeding activated lipogenesis and the deposition of a shorter chain and more saturated type of fatty acids. During the second month of the rat's life, the elongation pathway as well as delta 9-desaturase became functional, thus helping to shape the pattern of fatty acids actually accrued. The 60-day rats showed a relative impairment in the operation of delta 5-desaturase, since their lipids had a higher C20:4/C20:3 ratio than those of the diet ingested. Cafeteria-diet feeding minimized this effect since the large supply of dietary polyunsaturated fatty acids made the operation of the elongation-desaturase pathways practically unnecessary.

  9. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes.

    PubMed

    Wilson, Rachel D; Islam, Md Shahidul

    2012-01-01

    The main objective of the study was to develop an alternative non-genetic rat model for type 2 diabetes (T2D). Six-week-old male Sprague-Dawley rats (190.56 ± 23.60 g) were randomly divided into six groups, namely: Normal Control (NC), Diabetic Control (DBC), Fructose-10 (FR10), Fructose-20 (FR20), Fructose-30 (FR30) and Fructose-40 (FR40) and were fed a normal rat pellet diet ad libitum for 2 weeks. During this period, the two control groups received normal drinking water whilst the fructose groups received 10, 20, 30 and 40% fructose in drinking water ad libitum, respectively. After two weeks of dietary manipulation, all groups except the NC group received a single injection (i.p.) of streptozotocin (STZ) (40 mg/kg b.w.) dissolved in citrate buffer (pH 4.4). The NC group received only a vehicle buffer injection (i.p.). One week after the STZ injection, animals with non-fasting blood glucose levels > 300 mg/dl were considered as diabetic. Three weeks after the STZ injection, the animals in FR20, FR30 and FR40 groups were eliminated from the study due to the severity of diabetes and the FR10 group was selected for the remainder of the 11 weeks experimental period. The significantly (p < 0.05) higher fluid intake, blood glucose, serum lipids, liver glycogen, liver function enzymes and insulin resistance (HOMA-IR) and significantly (p < 0.05) lower body weight, oral glucose tolerance, number of pancreatic β-cells and pancreatic β-cell functions (HOMA-β) of FR10 group demonstrate that the 10% fructose-fed followed by 40 mg/kg of BWSTZ injected rat can be a new and alternative model for T2D.

  10. Intake of hot water-extracted apple protects against myocardial injury by inhibiting apoptosis in an ischemia/reperfusion rat model.

    PubMed

    Kim, Mi Young; Lim, Sun Ha; Lee, Jongwon

    2014-11-01

    Intakes of apple and its products are shown to reduce the risk of coronary heart disease by delaying occlusion of coronary arteries. In our previous study, we showed that apple pectin protected against myocardial injury by prohibiting apoptotic cascades in a rat model of ischemia/reperfusion. Thus, we hypothesized that water-extracted apple, into which apple pectin was released from the cell wall, might exhibit the same efficacy as apple pectin. To test this hypothesis, we fed rats either cold water- (400 mg kg(-1) d(-1)) or hot water-extracted apples (HWEA; 40, 100, and 400 mg kg(-1) d(-1)). Three days later, the rats were subjected to myocardial injuries by ligating the left anterior descending coronary artery (30 minutes), and subsequently, the heart (3 hours) reperfused by releasing the ligation. Only the rats that were supplemented with HWEA (400 mg kg(-1) d(-1)) showed significant reductions in infarct size, which was 28.5% smaller than that of the control group. This infarct size reduction could be partly attributed to the prevention of steps leading to apoptosis. These steps are manifested by a higher Bcl-2/Bax ratio, lower procaspase-3 conversion to caspase-3, and inhibition of DNA nick generation, which reflects the extent of apoptosis. The findings indicate that HWEA supplementation reduces myocardial injury by inhibiting apoptosis under ischemia/reperfusion conditions. In conclusion, this study suggests that apple intake, specifically boiled apple, might reduce the risk of coronary heart disease by inhibiting postocclusion steps, such as myocardial injury after artery occlusion, as well as preocclusion steps, such as atherosclerotic plaque formation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport.

    PubMed

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-05-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using (125)I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging.

  12. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    PubMed Central

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-01-01

    Purpose Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state and it has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats with 125I-6-Deoxy-6-Iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Methods Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood were assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Results Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady-state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p<0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) and whereas no significant changes were observed in fructose-fed rats. Conclusion This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. PMID:17171359

  13. Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1.

    PubMed

    Baruffini, Enrico; Goffrini, Paola; Donnini, Claudia; Lodi, Tiziana

    2006-12-01

    In Kluyveromyces lactis, galactose transport has been thought to be mediated by the lactose permease encoded by LAC12. In fact, a lac12 mutant unable to grow on lactose did not grow on galactose either and showed low and uninducible galactose uptake activity. The existence of other galactose transport systems, at low and at high affinity, had, however, been hypothesized on the basis of galactose uptake kinetics studies. Here we confirmed the existence of a second galactose transporter and we isolated its structural gene. It turned out to be HGT1, previously identified as encoding the high-affinity glucose carrier. Analysis of galactose transporter mutants, hgt1 and lac12, and the double mutant hgt1lac12, suggested that Hgt1 was the high-affinity and Lac12 was the low-affinity galactose transporter. HGT1 expression was strongly induced by galactose and insensitive to glucose repression. This could explain the rapid adaptation to galactose observed in K. lactis after a shift from glucose to galactose medium.

  14. MicroRNA-24 regulates vascular remodeling via inhibiting PDGF-BB pathway in diabetic rat model.

    PubMed

    Yang, Jian; Zeng, Ping; Yang, Jun; Liu, Xiaowen; Ding, Jiawang; Wang, Huibo; Chen, Lihua

    2018-06-15

    Hyperglycemia is the high risk factor of vascular remodeling induced by angioplasty, and neointimal hyperplasia is strongly implicated in the pathogenesis of vascular remodeling caused by carotid artery balloon injury. Studies have shown that MicroRNA 24 (miR-24) plays an important role in angiocardiopathy, However, the role of miR-24 is far from thorough research. In this study, we investigate whether up-regulation of miR-24 by using miR-24 recombinant adenovirus (Ad-miR-24-GFP) can inhibit PDGF-BB signaling pathway and attenuate vascular remodeling in the diabetic rat model. Male Sprague-Dawley rats (n = 60) were randomly divided into 5 groups and fed with high sugar and high fat diet (Sham, Saline, Scramble, Ad-miR-24 groups), or ordinary diet (Control group). The front four groups were treated with streptozotocin (STZ) four weeks later and the blood glucose level was closely monitored. After the successful establishment of diabetic rats, the external carotid artery was injured by pressuring balloon 1.5 after internal carotid artery ligation, then the blood vessels were harvested 14 days later and indexes were detected including the following: HE staining for the level of vascular intima thickness, immunohistochemical detection for PCNA and P27 to test the proliferative degree of vascular smooth muscle cells (VSMCs), qRT-PCR for the level of miR-24, RAS,PDGF-R, western blot for the protein levels of JNK1/2, p- JNK1/2, ERK1/2, p-ERK1/2, RAS, PDGF-R, AP-1,P27 and PCNA. Serological detection was conducted for TNF-α, IL-6, IL-8. The delivery of Ad-miR-24 into balloon injury site has significantly increased the level of miR-24. Up-regulation of miR-24 could regulate vascular remodeling effectively, lower the level of inflammatory factors, inhibit the expression of mRNA and protein levels of JNK1/2, ERK1/2, RAS, PDGF-R, AP-1, P27, PCNA. miR-24 can inhibit the expression of AP-1 via the inhibition of PDGF-BB signaling pathway, thus inhibit VSMCs proliferation

  15. Effects on reproduction in female offspring from Sprague-Dawley rats fed 10% snakeweed (Gutierrezia microcephala) throughout pregnancy and concurrent treatment with safflower oil.

    PubMed

    Staley, E C; Smith, G S; Greenberg, J A

    1995-10-01

    Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.

  16. Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet.

    PubMed

    McClung, James P; Stahl, Chad H; Marchitelli, Louis J; Morales-Martinez, Nelson; Mackin, Katherine M; Young, Andrew J; Scrimgeour, Angus G

    2006-03-01

    Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.

  17. Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption.

    PubMed

    Lostao, M P; Urdaneta, E; Martínez-Ansó, E; Barber, A; Martínez, J A

    1998-02-27

    Leptin is involved in food intake and thermogenesis regulation. Since leptin receptor expression has been found in several tissues including small intestine, a possible role of leptin in sugar absorption by the intestine was investigated. Leptin inhibited D-galactose uptake by rat small intestinal rings 33% after 5 min of incubation. The inhibition increased to 56% after 30 min. However, neither at 5 min nor at 30 min did leptin prevent intracellular galactose accumulation. This leptin effect was accompanied by a decrease of the active sugar transport apparent Vmax (20 vs. 4.8 micromol/g wet weight 5 min) and apparent Km (15.8 vs. 5.3 mM) without any change in the phlorizin-resistant component. On the other hand, immunohistochemical experiments using anti-leptin monoclonal antibodies recognized leptin receptors in the plasma membrane of immune cells located in the lamina propria. These results indicate for the first time that leptin has a rapid inhibitory effect on sugar absorption and demonstrate the presence of leptin receptors in the intestinal mucosa.

  18. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    PubMed

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  19. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats.

    PubMed

    Jiang, Shu-Jun; Dong, Hui; Li, Jing-Bin; Xu, Li-Jun; Zou, Xin; Wang, Kai-Fu; Lu, Fu-Er; Yi, Ping

    2015-07-07

    To investigate the molecular mechanisms of berberine inhibition of hepatic gluconeogenesis in a diabetic rat model. The 40 rats were randomly divided into five groups. One group was selected as the normal group. In the remaining groups (n = 8 each), the rats were fed on a high-fat diet for 1 mo and received intravenous injection of streptozotocin for induction of the diabetic models. Berberine (156 mg/kg per day) (berberine group) or metformin (184 mg/kg per day) (metformin group) was intragastrically administered to the diabetic rats and 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) (0.5 mg/kg per day) (AICAR group) was subcutaneously injected to the diabetic rats for 12 wk. The remaining eight diabetic rats served as the model group. Fasting plasma glucose and insulin levels as well as lipid profile were tested. The expressions of proteins were examined by western blotting. The nuclear translocation of CREB-regulated transcription co-activator (TORC)2 was observed by immunohistochemical staining. Berberine improved impaired glucose tolerance and decreased plasma hyperlipidemia. Moreover, berberine decreased fasting plasma insulin and homeostasis model assessment of insulin resistance (HOMA-IR). Berberine upregulated protein expression of liver kinase (LK)B1, AMP-activated protein kinase (AMPK) and phosphorylated AMPK (p-AMPK). The level of phophorylated TORC2 (p-TORC2) protein in the cytoplasm was higher in the berberine group than in the model group, and no significant difference in total TORC2 protein level was observed. Immunohistochemical staining revealed that more TORC2 was localized in the cytoplasm of the berberine group than in the model group. Moreover, berberine treatment downregulated protein expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in the liver tissues. Our findings revealed that berberine inhibited hepatic gluconeogenesis via the regulation of the LKB1-AMPK-TORC2

  20. Body weight loss, effective satiation and absence of homeostatic neuropeptide compensation in male Sprague Dawley rats schedule fed a protein crosslinked diet.

    PubMed

    Cassie, Nikki; Anderson, Richard L; Wilson, Dana; Pawsey, Anne; Mercer, Julian G; Barrett, Perry

    2017-10-01

    Food structure contributes to the induction of satiation and the maintenance of satiety following intake of a meal. There is evidence from human studies that protein-crosslinking of a milk-protein based meal may enhance satiety, but the mechanism underpinning this effect is unknown. We investigated whether a rat model would respond in a similar manner and might provide mechanistic insight into enhanced satiety by structural modification of a food source. Rats were schedule fed a modified AIN-93M based diet in a liquid form or protein-crosslinked to produce a soft-solid form. This was compared to a modified AIN-93M solid diet. Average daily caloric intake was in the order solid > liquid > crosslinked. Body composition was unaltered in the solid group, but there was a loss of fat in the liquid group and a loss of lean and fat tissue in the crosslinked group. Compared to rats fed a solid diet, acute responses in circulating GLP-1, leptin and insulin were eliminated or attenuated in rats fed a liquid or crosslinked diet. Quantification of homeostatic neuropeptide expression in the hypothalamus showed elevated levels of Npy and Agrp in rats fed the liquid diet. Measurement of food intake after a scheduled meal indicated that reduced energy intake of liquid and crosslinked diets is not due to enhancement of satiety. When continuously available ad-libitum, rats fed a liquid diet showed reduced weight gain despite greater 24 h caloric intake. During the dark phase, caloric intake was reduced, but compensated for during the light phase. We conclude that structural modification from a liquid to a solidified state is beneficial for satiation, with less of a detrimental effect on metabolic parameters and homeostatic neuropeptides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  2. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    PubMed

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  3. Anti-steatotic and anti-inflammatory effects of Hovenia dulcis Thunb. extracts in chronic alcohol-fed rats.

    PubMed

    Choi, Ra-Yeong; Woo, Moon-Jae; Ham, Ju Ri; Lee, Mi-Kyung

    2017-06-01

    The anti-steatotic and anti-inflammatory effects of fruit water extract (FW) and seed ethanol extract (SE) of Hovenia dulcis Thunb. in chronic alcohol-fed rats were investigated. Rats were fed a liquid diet containing 36% calories from alcohol and orally administered FW or SE (300 and 500mg/kg/day). Both FW and SE reduced hepatic lipid contents and droplets, serum lipid concentration and inflammatory markers (hs-CRP, TNF-α and IL-6) levels compared with the alcohol control group. Alcohol led to significant decreases in the hepatic fatty acid oxidative gene (Ppargc1a, Cpt1a and Acsl1) levels, while it significantly increased the Myd88 and Tnfa gene levels. However, FW or SE supplementation significantly up-regulated gene expression of Ppargc1a, Ppara, Cpt1a and Acsl1, and down-regulated gene expression of Myd88, Tnfa and Crp compared with the alcohol control group. FW or SE supplementation also significantly decreased hepatic activities of fatty acid synthase and phosphatidate phosphohydrolase in chronic alcohol-fed rats. Plasma alcohol and acetaldehyde levels, hepatic enzyme activity and protein expression of CYP2E1 were lowered by FW or SE supplementation. These results indicate that both FW and SE play an important role in improvement of alcoholic hepatic steatosis and inflammation via regulation of lipid and inflammation metabolism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    PubMed

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-05

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Hypocholesterolemic effects of low calorie structured lipids on rats and rabbits fed on normal and atherogenic diet.

    PubMed

    Kanjilal, Sanjit; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Sugasini, Dhavamani; Rao, Yalagala Poornachandra; Prasad, Rachapudi B N; Lokesh, Belur R

    2013-01-01

    The hypocholesterolemic effects of two low calorie structured lipids (SL1 and SL2) containing essential fatty acids, prepared by lipase catalysed interesterification of ethyl behenate respectively with sunflower and soybean oils were studied in rats and rabbits. The feeding experiment conducted on rats as well as rabbits, fed on normal and atherogenic diet containing 10% of SL1 and SL2 (experimental) and sunflower oil (control) indicated no adverse effects on growth and food intake. However, the structured lipids beneficially lowered serum and liver lipids, particularly cholesterol, LDL cholesterol, triglycerides and also maintains the essential fatty acid status in serum and liver. The lipid deposition observed in the arteries of rabbits fed on atherogenic diets was significantly reduced when structured lipids were included in the diet. These observations coincided with reduced levels of serum cholesterol particularly LDL cholesterol observed in experimental groups. Therefore the structured lipids, designed to have low calorific value also beneficially lower serum lipids and lipid deposition in animals fed on atherogenic diets. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Delayed anaphylaxis involving IgE to galactose-alpha-1,3-galactose

    PubMed Central

    Platts-Mills, Thomas A E; Schuyler, Alexander J; Hoyt, Alice E W; Commins, Scott P

    2015-01-01

    Hypersensitivity in the allergic setting refers to immune reactions, stimulated by soluble antigens that can be rapidly progressing and, in the case of anaphylaxis, are occasionally fatal. As the number of known exposures associated with anaphylaxis is limited, identification of novel causative agents is important in facilitating both education and other allergen-specific approaches that are crucial to long-term risk management. Within the last 10 years several seemingly separate observations were recognized to be related, all of which resulted from the development of antibodies to a carbohydrate moiety on proteins where exposure differed from airborne allergens but which were nevertheless capable of producing anaphylactic and hypersensitivity reactions. Our recent work has identified these responses as being due to a novel IgE antibody directed against a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal). This review will present the history and biology of alpha-gal and discuss our current approach to management of the mammalian meat allergy and delayed anaphylaxis. PMID:26130470

  7. Combined oral supplementation of chromium picolinate, docosahexaenoic acid, and boron enhances neuroprotection in rats fed a high-fat diet

    PubMed

    Orhan, Cemal; Şahin, Nurhan; Tuzcu, Zeynep; Komorowski, James R.; Şahin, Kazım

    2017-11-13

    Background/aim: A novel complex of a nutritional supplement (CDB) contains chromium picolinate (CrPic), phosphatidylserine (PS), docosahexaenoic acid (DHA), and boron (B). The present study aimed to investigate the effects of CDB on the metabolic profile and memory acquisition in rats fed a high-fat diet (HFD). Materials and methods: Male Wistar rats were divided into six groups and received either a regular diet or HFD supplemented with or without different levels of CDB (0, 11, or 22 mg/kg BW). Results: Rats fed the HFD had greater glucose, insulin, lipid profile, and serum malondialdehyde concentrations, but lower serotonin and tryptophan in the serum and brain and lower Cr concentrations in serum, kidney, brain, and liver (P < 0.0001). CDB complex supplementation reversed all the effects, and the reversal effect was more pronounced with HFD for some parameters. Latency was less (P < 0.05) but probe was greater (P < 0.0001) for rats fed a regular diet. Increasing CDB complex levels in the diets resulted in a linear decrease in latency (P < 0.0002) but a linear increase in probe (P < 0.0002). Conclusion: Findings of the present work indicate that the CDB complex could be considered as an alternative treatment for preventing certain metabolic diseases and improving neurological functions, such as learning and memory.

  8. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  9. Effects of high molecular weight alcohols from sugar cane fed alone or in combination with plant sterols on lipid profile and antioxidant status of Wistar rats.

    PubMed

    Kitts, David D; Kopec, Aneta; Zawistowski, Jerzy; Popovich, David G

    2012-10-01

    The effect of feeding a mixture of high molecular weight alcohols derived from sugarcane (SCA), both alone and in combination with phytosterols (PS), on changes in plasma lipids, organ cholesterol accumulation, and antioxidant status of Wistar rats was undertaken. Three separate experiments were conducted and each experiment had 3 subsets. In experiment 1, rats were fed on an AIN-76, semi-synthetic diet supplemented with 0%, 0.5%, and 5% SCA w/w. The second experiment consisted of feeding rats an atherogenic diet (AIN-76+0.5% cholesterol) containing 0%, 0.5%, and 5% SCA w/w. The third experiment consisted of feeding rats an atherogenic diet that contained 2% PS in combination with 0%, 0.5%, and 5% SCA. Rats fed the atherogenic diet exhibited significant elevations in total and low-density lipoprotein cholesterol, and significant reductions in the high-density lipoprotein/total cholesterol ratio, regardless of the presence of 0.5% or 5% SCA mixture. Serum cholesterol increased 29% to 35% in these animals compared with animals fed the nonatherogenic diets. In contrast, animals fed atherogenic diets that contained 2% PS exhibited no difference in serum lipids compared with counterparts fed nonatherogenic diets. The combined presence of SCA with PS had no effect on further lowering plasma cholesterol. No changes in C-reactive protein were observed, but plasma oxygen radical scavenging capacity values significantly (p < 0.05) decreased when rats were fed the atherogenic diets that contained the combination of PS and SCA. This result corresponded to an apparent greater (p < 0.05) susceptibility of red blood cells to oxidative stress.

  10. A Morphologic and Biochemical Study of Nutritional Nephrocalcinosis in Female Rats Fed Semipurified Diets

    PubMed Central

    Woodard, James C.

    1971-01-01

    Nephrocalcinosis occurred in weanling female rats fed a semipurified diet for 8 weeks. Mineralization of the inner cortex began after 3 weeks on the semipurified diet, and was most severe after 8 weeks. Intraluminal calcification was observed first in the pars recta of the proximal convoluted tubule; calcification of cytoplasmic organelles or basement membranes of the tubular epithelium was not observed. At the end of 8 weeks, some mineral deposits were seen within Henle's loops of the outer medulla. Histochemical studies demonstrated that the deposits contained calcium and phosphorus and had a glycoprotein matrix; electron diffraction studies indicated that the main mineral phase was hydroxyapatite. No differences in serum calcium or phosphorus or in the ultrastructural characteristics of the thyroid parafollicular cells and the parathyroid parenchymal cells were observed between animals fed the semipurified diet and those fed a commercial chow. The urinary excretion of calcium and magnesium was less and urinary citrate excretion was greater in animals fed the semipurified diet. ImagesFig 1Fig 2Fig 3Fig 4Fig 5Fig 8Fig 9Fig 6Fig 7 PMID:5096368

  11. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet.

    PubMed

    Senaphan, Ketmanee; Sangartit, Weerapon; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Thawornchinsombut, Supawan; Greenwald, Stephen E; Kukongviriyapan, Upa

    2018-02-01

    Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P < 0.05). Moreover, RBPH reduced the levels of angiotensin-converting enzyme (ACE) and tumor necrosis factor-alpha in plasma. Oxidative stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47 phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.

  12. Galactose-1-phospate uridyltransferase

    MedlinePlus

    ... normal diets, most galactose comes from the breakdown ( metabolism ) of lactose, which is found in milk and ... Elsevier; 2013:550. Zinn AB. Inborn errors of metabolism. In: Martin RJ, Fanaroff AA, Walsh MC, eds. ...

  13. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats.

    PubMed

    Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie

    2016-11-17

    To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (P<0.05). BBR also increased the ratio of HMW to total adiponectin in high fat-fed rats compared with rats in the HF+Veh group. High- and low-dose BBR increased adipoR1 expression in skeletal muscle by over 6- and 2-fold (P<0.05), respectively, and high-dose BBR also increased adipoR2 expression in liver tissue by over 2-fold (P<0.05). BBR

  14. Biomechanical properties of the mandible, as assessed by bending test, in rats fed a low-quality protein.

    PubMed

    Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa

    2013-04-01

    The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in

  15. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    PubMed

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  16. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  17. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Rohit; Badger, Thomas M.; Arkansas Children's Nutrition Center, Little Rock, AR 72202

    2008-03-01

    Consumption of soy diets has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 induction and basal aryl hydrocarbon receptor (AhR) levels relative to those fed the same diet containing casein (CAS). In the present study, the molecular mechanisms underlying reduced AhR expression have been studied. The SPI-effect on AhR was not observed after feeding diets containing the purified soy isoflavones genistein or daidzein. Rat hepatoma FGC-4more » cells were treated with the serum obtained from rats fed CAS- or SPI-containing diets. Reduced AhR levels (P < 0.05) were observed after 24 h exposure to SPI-serum without any changes in the overall expression of chaperone proteins-HSP90 and XAP2. SPI-serum-stimulated AhR degradation was inhibited by treating the cells with the proteasome inhibitor, MG132, and was observed to be preceded by ubiquitination of the receptor. A reduced association of XAP2 with the immunoprecipitated AhR complex was observed. SPI-serum-mediated AhR degradation was preceded by nuclear translocation of the receptor. However, the translocated receptor was found to be unable to heterodimerize with ARNT or to bind to XRE elements on the CYP1A1 enhancer. These data suggest that feeding SPI-containing diets antagonizes AhR signaling by a novel mechanism which differs from those established for known AhR antagonists.« less

  18. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  19. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  20. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  1. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    PubMed

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  2. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholfield, D.J.; Fields, M.; Beal, T.

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D)more » to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.« less

  3. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  4. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    PubMed

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  5. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    PubMed Central

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  6. Oral microbial profile discriminates breast-fed from formula-fed infants.

    PubMed

    Holgerson, Pernilla L; Vestman, Nelly R; Claesson, Rolf; Ohman, Carina; Domellöf, Magnus; Tanner, Anne C R; Hernell, Olle; Johansson, Ingegerd

    2013-02-01

    Little is known about the effect of diet on the oral microbiota of infants, although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breast-fed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. A total of 207 mothers consented to participation of their 3-month-old infants. A total of 146 (70.5%) infants were exclusively and 38 (18.4%) partially breast-fed, and 23 (11.1%) were exclusively formula-fed. Saliva from all of their infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to suppress Streptococcus mutans and S sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by quantitative polymerase chain reaction for Lactobacillus gasseri. Lactobacilli were cultured from 27.8% of exclusively and partially breast-fed infants, but not from formula-fed infants. The prevalence of 14 HOMIM-detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM-detected bacteria and possible confounders clustered samples from breast-fed infants separately from formula-fed infants. The microbiota of breast-fed infants differed based on vaginal or C-section delivery. Isolates of L plantarum, L gasseri, and L vaginalis inhibited growth of the cariogenic S mutans and the commensal S sanguinis: L plantarum >L gasseri >L vaginalis. The microbiota of the mouth differs between 3-month-old breast-fed and formula-fed infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk.

  7. Lipid peroxide, alpha-tocopherol and retinoid levels in plasma and liver of rats fed diets containing beta-carotene and 13-cis-retinoic acid.

    PubMed

    Alam, S Q; Alam, B S

    1983-12-01

    The effect of feeding large amounts of beta-carotene and 13-cis-retinoic acid (RA) on plasma and liver levels of alpha-tocopherol, lipid peroxides and retinoids was studied. Groups of young male rats were fed semipurified diets supplemented with 0, 100 mg/kg beta-carotene, 20 and 100 mg/kg 13-cis-RA. After feeding the various diets for 11 weeks, rats were killed and the concentrations of lipid peroxides, alpha-tocopherol, and retinoids were measured in blood plasma and liver. Peroxide levels were increased and alpha-tocopherol levels were decreased in plasma as well as liver of rats fed diets containing 13-cis-RA; this effect seems to be dose dependent, beta-Carotene had no significant effect on either of the above parameters. There was a decrease in the liver and plasma concentrations of retinol in rats fed 13-cis-RA; the levels of RA were generally higher in these two groups. The results suggest that the mechanism whereby 13-cis-RA increases the tissue peroxide levels may be related to its ability to decrease alpha-tocopherol levels.

  8. Involvement of insulin resistance in D-galactose-induced age-related dementia in rats: Protective role of metformin and saxagliptin

    PubMed Central

    Kenawy, Sara; Hassan, Azza; El-Shenawy, Siham; Gomaa, Nawal; Zaki, Hala; Attia, Amina

    2017-01-01

    Age-related dementia is one of the most devastating disorders affecting the elderly. Recently, emerging data suggest that impaired insulin signaling is the major contributor in the development of Alzheimer’s dementia (AD), which is the most common type of senile dementia. In the present study, we investigated the potential therapeutic effects of metformin (Met) and saxagliptin (Saxa), as insulin sensitizing agents, in a rat model of brain aging and AD using D-galactose (D-gal, 150 mg/kg/day, s.c. for 90 successive days). Six groups of adult male Wistar rats were used: normal, D-gal, Met (500 mg/kg/day, p.o), and Saxa (1 mg/kg/day, p.o) control groups, as well as D-gal/Met and D-gal/Sax treated groups. Impaired learning and memory function was observed in rats treated with D-gal using Morris water maze test. Biochemical and histopathological findings also revealed some characteristic changes of AD in the brain that include the increased content of acetylcholine, glutamate, and phosphorelated tau, as well as deposition of amyloid plaques and neurofibrillary tangles. Induction of insulin resistance in experimentally aged rats was evidenced by increased blood glycated hemoglobin, brain contents of insulin and receptors for advanced glycated end-products, as well as decreased brain insulin receptor level. Elevation of oxidative stress markers and TNF-α brain content was also demonstrated. Met and Saxa, with a preference to Met, restored the normal memory and learning functions in rats, improved D-gal-induced state of insulin resistance, oxidative stress and inflammation, and ameliorated the AD biochemical and histopathological alterations in brain tissues. Our findings suggest that D-gal model of aging results in a diminishing of learning and memory function by producing a state of impaired insulin signaling that causes a cascade of deleterious events like oxidative stress, inflammation, and tau hyper-phosphorylation. Reversing of these harmful effects by the use of

  9. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    PubMed

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  10. Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis

    PubMed Central

    Chai, Yunrong; Beauregard, Pascale B.; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    ABSTRACT Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. PMID:22893383

  11. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?

    PubMed

    Damerow, Sebastian; Lamerz, Anne-Christin; Haselhorst, Thomas; Führing, Jana; Zarnovican, Patricia; von Itzstein, Mark; Routier, Françoise H

    2010-01-08

    The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.

  12. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  13. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    PubMed

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  14. Effects of PDE4 Pathway Inhibition in Rat Experimental Stroke

    PubMed Central

    Yang, Fan; Sumbria, Rachita K.; Xue, Dong; Yu, Chuanhui; He, Dan; Liu, Shuo; Paganini-Hill, Annlia; Fisher, Mark J.

    2015-01-01

    PURPOSE The first genomewide association study indicated that variations in the phosphodiesterase 4D (PDE4D) gene confer risk for ischemic stroke. However, inconsistencies among the studies designed to replicate the findings indicated the need for further investigation to elucidate the role of the PDE4 pathway in stroke pathogenesis. Hence, we studied the effect of global inhibition of the PDE4 pathway in two rat experimental stroke models, using the PDE4 inhibitor rolipram. Further, the specific role of the PDE4D isoform in ischemic stroke pathogenesis was studied using PDE4D knockout rats in experimental stroke. METHODS Rats were subjected to either the ligation or embolic stroke model and treated with rolipram (3mg/kg; i.p.) prior to the ischemic insult. Similarly, the PDE4D knockout rats were subjected to experimental stroke using the embolic model. RESULTS Global inhibition of the PDE4 pathway using rolipram produced infarcts that were 225% (p<0.01) and 138% (p<0.05) of control in the ligation and embolic models, respectively. PDE4D knockout rats subjected to embolic stroke showed no change in infarct size compared to wild-type control. CONCLUSIONS Despite increase in infarct size after global inhibition of the PDE4 pathway with rolipram, specific inhibition of the PDE4D isoform had no effect on experimental stroke. These findings support a role for the PDE4 pathway, independent of the PDE4D isoform, in ischemic stroke pathogenesis. PMID:25224348

  15. Feeding blueberry diets dose-dependently inhibits bone resorption in young rats

    USDA-ARS?s Scientific Manuscript database

    Nutritional status is a critical factor that influences bone development. We previously reported that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for only two weeks beginning on postnatal day 21 (PND21) significantly promoted bone formation. Howeve...

  16. Dietary palmitic acid modulates intestinal re-growth after massive small bowel resection in a rat.

    PubMed

    Sukhotnik, Igor; Hayari, Lili; Bashenko, Yulia; Chemodanov, Elena; Mogilner, Jorge; Shamir, Raanan; Bar Yosef, Fabiana; Shaoul, Ron; Coran, Arnold G

    2008-12-01

    Among factors promoting intestinal adaptation after bowel resection, dietary fatty acids have a special role. The purpose of the present study was to evaluate the effects of palmitic acid (PA) on early intestinal adaptation in rats with short bowel syndrome (SBS). Male Sprague-Dawley rats underwent either a bowel transection with re-anastomosis (sham rats) or 75% small bowel resection (SBS rats). Animals were randomly assigned to one of four groups: sham rats fed normal chow (sham-NC); SBS rats fed NC (SBS-NC), SBS rats fed high palmitic acid diet (SBS-HPA), and SBS rats fed low palmitic acid diet (SBS-LPA). Rats were sacrificed on day 14. Parameters of intestinal adaptation, overall bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, cell proliferation and apoptosis were determined at sacrifice. RT-PCR and Western blotting were used to determine the level of bax and bcl-2 mRNA and protein (parameters of apoptosis), and ERK protein levels (parameter of proliferation). Statistical analysis was performed using Kruskal-Wallis test followed by post hoc test for multiple comparisons with P values of less than 0.05 considered statistically significant. SBS-HFD rats demonstrated higher bowel and mucosal weight, mucosal DNA and protein in ileum, while deprivation of PA (SBS-LPA) inhibited intestinal re-growth both in jejunum and ileum compared to SBS-NC rats. A significant up-regulation of ERK protein coincided with increased cell proliferation in SBS-HFD rats (vs. SBS-NC). Also, the initial decreased levels of apoptosis corresponded with the early decrease in bax and increase in bcl-2 at both mRNA and protein levels. Early exposure to HPA both augments and accelerates structural bowel adaptation in a rat model of SBS. Increased cell proliferation and decreased cell apoptosis may be responsible for this effect. Deprivation of PA in the diet inhibits intestinal re-growth.

  17. Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

    PubMed Central

    Blanco, Narda; Ahrné, Siv; Molin, Göran

    2013-01-01

    Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine. PMID:23864942

  18. Hypolipidaemic and anti-oxidative potential of encapsulated herb (Terminalia arjuna) added vanilla chocolate milk in high cholesterol fed rats.

    PubMed

    Sawale, Pravin Digambar; Pothuraju, Ramesh; Abdul Hussain, Shaik; Kumar, Anuj; Kapila, Suman; Patil, Girdhari Ramdas

    2016-03-15

    Atherosclerosis is associated with coronary artery disease and occurs in developing as well as developed countries. In the present investigation, hypolipidaemic and anti-oxidative properties of encapsulated herb (Terminalia arjuna, 1.8%) added vanilla chocolate dairy drink was evaluated in high cholesterol fed Wistar rats for 60 days. At the end of the experimental period, a significant decrease in the body weight gain by rats receiving the encapsulated herb extract was noted as compared to high cholesterol fed rats. Administration of microencapsulated herb showed a statistically significant decrease in organ weights (epididymal fat and liver). Moreover, a significant decrease in serum lipids such as triglycerides, total cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol and atherogenic index was observed with encapsulated Terminalia arjuna extract in high cholesterol fed group. Increases in reduced glutathione and decreases in TBARS levels were also reported in both liver and red blood cell lysates with encapsulated herb supplementation. The results demonstrated that the bioactive components (phytosterols, flavanoids, saponins and tannins etc.) which are present in the encapsulated T. arjuna not only withstand the processing conditions but also are effectively released in the intestine and show their effects, such as hypolipidaemic and antioxidant activities, for better treating cardiovascular disease. © 2015 Society of Chemical Industry.

  19. Beneficial effects of gradual intense exercise in tissues of rats fed with a diet deficient in vitamins and minerals: a pilot study.

    PubMed

    Teixeira, Angélica; Müller, Liz; dos Santos, Alessandra A; Reckziegel, Patrícia; Emanuelli, Tatiana; Rocha, João Batista T; Bürger, Marilise E

    2009-05-01

    This study evaluated the preliminary effects of intense physical training (swimming) on oxidative stress in rats with nutritional deficiencies. Rats were fed with a standard diet or a diet deficient in vitamins and minerals for 4 months. The deficient diet contained one-fourth of the recommended vitamin and mineral levels for rats. From the second month, half of the animals were subjected to a swimming exercise in a plastic container with water maintained at 34 +/- 1 degrees C for 1 h/d, five times per week, for 11 wk. The rats were subjected to swimming exercise with loads attached to the dorsal region, which were progressively increased according to their body weight (1% to 7%). Sedentary rats were transported to the experimental room and handled as often in a similar way as the exercise group, except that they were not put in water. In the exercised group, blood lactate levels were significantly lower and the heart weight/body weight ratio was significantly higher than in the sedentary group (P < 0.05). Increased lipid peroxidation was observed in the liver, heart, and skeletal muscle of rats fed with the deficient diet, but it was completely reversed by exercise. Exercise also decreased lipid peroxidation levels in the heart and skeletal muscle of rats fed with the standard diet (P < 0.05). This pilot study leads to the continuity of the studies, because the partial results observed suggest that inadequate nutrition may enhance oxidative stress, and that intense chronic physical training may activate antioxidant defenses, possibly by hormesis.

  20. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.

    PubMed

    Nieto, Natalia; Rojkind, Marcos

    2007-02-01

    Alcoholic liver disease is associated with nutritional deficiency and it may aggravate within the context of fatty liver. We investigated the relationship between alcohol intake (whiskey binge drinking) and a choline-deficient diet (CD) and assessed whether stellate cells could contribute to liver injury in this model. Rats fed the CD diet plus whiskey showed increased liver damage compared to rats fed the CD diet, as demonstrated by H&E staining, elevated transaminases, steatosis, TNF-alpha levels, enhanced CYP2E1 activity, impaired antioxidant defense, elevated lipid peroxidation, and protein carbonyls. The combined treatment triggered an apoptotic response as determined by elevated Bax, caspase-3 activity, cytochrome-c release, and decreased Bcl-2 and Bcl-XL. Stellate cells were activated as increased expression of alpha-Sma was observed over that by the CD diet alone. The combined treatment shifted extracellular matrix remodeling towards a pro-fibrogenic response due to up-regulation of collagen I, TIMP1, and Hsp47 proteins, along with down-regulation of MMP13, MMP2, and MMP9 expression, proteases which degrade collagen I. These events were accompanied by increased phosphorylation of p38, a kinase that elevates collagen I. Repeated alcohol binges in the context of mild steatosis may promote activation of stellate cells and contribute to liver injury.

  1. Ameliorating effect and potential mechanism of Rehmannia glutinosa oligosaccharides on the impaired glucose metabolism in chronic stress rats fed with high-fat diet.

    PubMed

    Zhang, Ruxue; Zhou, Jun; Li, Maoxing; Ma, Haigang; Qiu, Jianguo; Luo, Xiaohong; Jia, Zhengping

    2014-04-15

    The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes.

    PubMed

    Challet, E; Jacob, N; Vuillez, P; Pévet, P; Malan, A

    1997-10-03

    Daily rhythms of pineal melatonin, body temperature, and locomotor activity are synchronized to the light-dark cycle (LD) via a circadian clock located in the suprachiasmatic nuclei (SCN). A timed caloric restriction in rats fed at dawn induces phase-advances and further phase-stabilization of these rhythms, suggesting that the circadian clock can integrate conflicting daily photic and non-photic cues. The present study investigated the daily expression of Fos-like immunoreactivity (Fos-ir) and light pulse-induced Fos-ir in the SCN, the intergeniculate leaflet (IGL) and the paraventricular thalamic nucleus (PVT) in calorie-restricted rats fed 2 h after the onset of light and in controls fed ad libitum. A daily rhythm of Fos-ir in the SCN was confirmed in control rats, with a peak approximately 2 h after lights on. At this time point (i.e. just prior to the feeding time), the level of SCN Fos-ir was lowered in calorie-restricted rats. Concomitantly, IGL Fos-ir was higher in calorie-restricted vs. control rats. In response to a light pulse during darkness, Fos-ir induction was found to be specifically (i.e. phase-dependently) lowered in the SCN and IGL of calorie-restricted rats. Observed changes of Fos-ir in the PVT were possibly related to the wake state of the animals. This study shows that repetitive non-photic cues presented in addition to a LD cycle affect the Fos expression in the circadian timing system.

  3. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat

    PubMed Central

    Mak, I. T.; Kramer, J. H.; Chmielinska, J. J.; Khalid, M. H.; Landgraf, K. M.; Weglicki, W. B.

    2013-01-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (~50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days ± NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s. c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal ·O2- generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21 % (p <0.025) and 7 % (NS). MgD+PR significantly reduced neutrophil NEP activity by 48 % (p <0.02); PR or MgD alone only reduced this activity 26 % and 15 %, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil ·O2- production and may promote other inflammatory activities during MgD. PMID:18607539

  4. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat.

    PubMed

    Mak, I T; Kramer, J H; Chmielinska, J J; Khalid, M H; Landgraf, K M; Weglicki, W B

    2008-07-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.

  5. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model.

    PubMed

    Ali, Tahir; Badshah, Haroon; Kim, Tae Hyun; Kim, Myeong Ok

    2015-01-01

    Melatonin acts as a pleiotropic agent in various age-related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D-galactose-induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D-galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D-galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y-maze test) results revealed that chronic melatonin treatment alleviated D-galactose-induced memory impairment. Additionally, melatonin treatment reversed D-galactose-induced synaptic disorder via increasing the level of memory-related pre-and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D-galactose-treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D-galactose-induced neuroinflammation through inhibition of microgliosis (Iba-1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p-IKKβ, p-NF-K B65, COX2, NOS2, IL-1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p-JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase-9, caspase-3 and PARP-1, and prevent neurodegeneration. Hence, melatonin attenuated the D-galactose-induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF-K B/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age-related neurodegenerative diseases such as Alzheimer's disease (AD). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.

  7. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats.

    PubMed

    Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong

    2016-01-05

    Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.

    PubMed

    Chai, Yunrong; Beauregard, Pascale B; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this

  9. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats.

    PubMed

    Fouret, Gilles; Tolika, Evanthia; Lecomte, Jérôme; Bonafos, Béatrice; Aoun, Manar; Murphy, Michael P; Ferreri, Carla; Chatgilialoglu, Chryssostomos; Dubreucq, Eric; Coudray, Charles; Feillet-Coudray, Christine

    2015-10-01

    Cardiolipin (CL), a unique mitochondrial phospholipid, plays a key role in several processes of mitochondrial bioenergetics as well as in mitochondrial membrane stability and dynamics. The present study was designed to determine the effect of MitoQ, a mitochondrial-targeted antioxidant, on the content of liver mitochondrial membrane phospholipids, in particular CL, and its fatty acid composition in obesogenic diet-fed rats. To do this, twenty-four 6week old male Sprague Dawley rats were randomized into three groups of 8 animals and fed for 8weeks with either a control diet, a high fat diet (HF), or a HF diet with MitoQ (HF+MitoQ). Phospholipid classes and fatty acid composition were assayed by chromatographic methods in liver and liver mitochondria. Mitochondrial bioenergetic function was also evaluated. While MitoQ had no or slight effects on total liver fatty acid composition and phospholipid classes and their fatty acid composition, it had major effects on liver mitochondrial phospholipids and mitochondrial function. Indeed, MitoQ both increased CL synthase gene expression and CL content of liver mitochondria and increased 18:2n-6 (linoleic acid) content of mitochondrial phospholipids by comparison to the HF diet. Moreover, mitochondrial CL content was positively correlated to mitochondrial membrane fluidity, membrane potential and respiration, as well as to ATP synthase activity, while it was negatively correlated to mitochondrial ROS production. These findings suggest that MitoQ may decrease pathogenic alterations to CL content and profiles, thereby preserving mitochondrial function and attenuating the development of some of the features of metabolic syndrome in obesogenic diet-fed rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Losartan Attenuates Myocardial Endothelial-To-Mesenchymal Transition in Spontaneous Hypertensive Rats via Inhibiting TGF-β/Smad Signaling.

    PubMed

    Wu, Miao; Peng, Zhenyu; Zu, Changhao; Ma, Jing; Lu, Shijuan; Zhong, Jianghua; Zhang, Saidan

    2016-01-01

    Losartan plays an important role in the inhibition of myocardial fibrosis. But the underlying mechanism is not entirely clear. Emerging evidences have indicated that endothelial-to-mesenchymal transition (EndMT) plays a crucial role in cardiac fibrosis. Here the present study aims to first investigated the effect of Losartan on EndMT in cardiac fibrosis of spontaneous hypertensive rats (SHRs). Male SHRs were randomly divided into three groups and fed for 12 weeks, namely the SHR group (Group S), the Losartan-treated group (Group L) and the Prazosin-treated group (Group P). Wistar-Kyoto rats served as controls (Group W). The histological changes were evaluated by Masson's trichrome. Co-expression of CD31 and fibroblast-specific protein 1 (FSP1) were used as the markers of EndMT through immunofluorescence. The expressions of FSP1, CD31, TGF-β, Smad were detected by Western blot analysis. It was identified that elevated blood pressure induced a significant increase in myocardial fibrosis and EndMT in SHRs, which was reversed by Losartan and Prazosin treatment. Furthermore, the activity of TGF-β/Smad signaling was detected in the four groups. TGF-β/Smad signaling was activated in SHRs and suppressed by Losartan or Prazosin treatment. Losartan exhibited more efficiently than Prazosin in inhibiting TGF-β/Smad signaling activation, EndMT and myocardial fibrosis. These results showed that EndMT played an important role in promoting hypertensive cardiac fibrosis, and that losartan could suppress cardiac fibrosis through the inhibition of EndMT via classical TGF-β/Smad pathway.

  11. Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Vasudevan, Sushil; Tripathy, Minaketan; Alyautdin, Renad; Ismail, Nafeeza Mohd

    2014-01-01

    treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences. Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration.

  12. Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats

    PubMed Central

    Agarwal, Renu; Vasudevan, Sushil; Tripathy, Minaketan; Alyautdin, Renad; Ismail, Nafeeza Mohd

    2014-01-01

    <0.05), whereas the group treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences. Conclusions Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration. PMID:24940038

  13. Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity.

    PubMed

    Marín-Royo, Gema; Gallardo, Isabel; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; López-Andrés, Natalia; Gutiérrez-Tenorio, Josué; Rial, Eduardo; Bartolomé, Marı A Visitación; Nieto, María Luisa; Cachofeiro, Victoria

    2018-02-05

    Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18 F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction . © 2018. Published by The Company of Biologists Ltd.

  14. Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity

    PubMed Central

    Marín-Royo, Gema; Gallardo, Isabel; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; López-Andrés, Natalia; Gutiérrez-Tenorio, Josué; Rial, Eduardo; Bartolomé, María Visitación; Nieto, María Luisa

    2018-01-01

    ABSTRACT Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction. PMID:29361517

  15. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    PubMed

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  16. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    PubMed Central

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  17. Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight.

    PubMed

    Castro, H; Pomar, C A; Picó, C; Sánchez, J; Palou, A

    2015-03-01

    We analyzed the effects of a short exposure to a cafeteria diet during early infancy in rats on their metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis. Ten-day-old male pups were fed a control or a cafeteria diet for 12 days and then killed under ad libitum feeding conditions or 12 h fasting. The expression of key genes related to energy metabolism in liver, retroperitoneal white adipose tissue (WAT) and hypothalamus were analyzed. Despite no differences in body weight, cafeteria-fed animals had almost double the fat mass of control rats. They also showed higher food intake, higher leptinemia and altered hypothalamic expression of Neuropetide Y, suggesting a dysfunction in the control of food intake. Unlike controls, cafeteria-fed animals did not decrease WAT expression of Pparg, sterol regulatory element binding transcription factor 1 or Cidea under fasting conditions, and displayed lower Pnpla2 expression than controls. In liver, compared with controls, cafeteria animals presented: (i) lower expression of genes related with fatty acid uptake and lipogenesis under ad libitum-fed conditions; (ii) higher expression of fatty acid oxidation-related genes and glucokinase under fasting conditions; (iii) greater expression of leptin and insulin receptors; and higher protein levels of insulin receptor and the pAMPK/AMPK ratio. A short period of exposure to a cafeteria diet in early infancy in rat pups is enough to disturb the metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis, particularly in WAT, and hence induces an exacerbated body fat accumulation and increased metabolic risk, with no apparent effects on body weight.

  18. A High Salt Diet Inhibits Obesity and Delays Puberty in the Female Rat

    PubMed Central

    Pitynski-Miller, Dori; Ross, Micah; Schmill, Margaret; Schambow, Rachel; Fuller, Teresa; Flynn, Francis W.; Skinner, Donal C.

    2017-01-01

    Background/Objectives Processed foods are considered major contributors to the worldwide obesity epidemic. In addition to high sugar and fat contents, processed foods contain large amounts of salt. Due to correlations with rising adiposity, salt has recently been proposed to be obesogenic. This study investigated three hypotheses: i) high salt contributes to weight gain and adiposity in juvenile female rats, ii) puberty onset would be altered because salt is known to affect neuronal systems involved in activating the reproductive system, and iii) enhanced adiposity will act synergistically with salt to drive early puberty onset. Design Female weanling rats (post-natal day 21, n=105) were fed a low fat/low salt diet, low fat/high salt diet, high fat/low salt diet, or a high salt/high fat diet for 24 days. Metabolic measures, including weight gain, food intake, fecal output, activity, and temperature were recorded in subsets of animals. Results Body weight, retroperitoneal and perirenal fat pad weight, and adipocyte size were all lower in animals fed high fat/high salt compared to animals fed high fat alone. Leptin levels were reduced in high fat/high salt fed animals compared to high fat/low salt fed animals. Daily calorie intake was higher initially but declined with adjusted food intake and was not different among groups after 5 days. Osmolality and corticosterone were not different among groups. Fecal analysis showed excess fat excretion and a decreased digestive efficiency in animals fed high fat/low salt but not in animals fed high fat/high salt. Although respiratory exchange ratio was reduced by high dietary fat or salt, aerobic resting metabolic rate was not affected by diet. High salt delayed puberty onset, regardless of dietary fat content. Conclusions Salt delays puberty and prevents the obesogenic effect of a high fat diet. The reduced weight gain evident in high salt fed animals is not due to differences in food intake or digestive efficiency. PMID

  19. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats.

    PubMed

    Panchal, Sunil K; Poudyal, Hemant; Arumugam, Thiruma V; Brown, Lindsay

    2011-06-01

    Metabolic syndrome (obesity, diabetes, and hypertension) increases hepatic and cardiovascular damage. This study investigated preventive or reversal responses to rutin in high-carbohydrate, high-fat diet-fed rats as a model of metabolic syndrome. Rats were divided into 6 groups: 2 groups were fed a corn starch-rich diet for 8 or 16 wk, 2 groups were fed a high-carbohydrate, high-fat diet for 8 or 16 wk, and 2 groups received rutin (1.6 g/kg diet) in either diet for the last 8 wk only of the 16-wk protocol. Metabolic changes and hepatic and cardiovascular structure and function were then evaluated in these rats. The corn starch-rich diet contained 68% carbohydrate (mainly cornstarch) and 0.7% fat, whereas the high-carbohydrate, high-fat diet contained 50% carbohydrate (mainly fructose) and 24% fat (mainly beef tallow) along with 25% fructose in drinking water (total 68% carbohydrate using mean food and water intakes). The high-carbohydrate, high-fat diet produced obesity, dyslipidemia, hypertension, impaired glucose tolerance, hepatic steatosis, infiltration of inflammatory cells in the liver and the heart, higher cardiac stiffness, endothelial dysfunction, and higher plasma markers of oxidative stress with lower expression of markers for oxidative stress and apoptosis in the liver. Rutin reversed or prevented metabolic changes such as abdominal fat pads and glucose tolerance, reversed or prevented changes in hepatic and cardiovascular structure and function, reversed oxidative stress and inflammation in the liver and heart, and normalized expression of liver markers. These results suggest a non-nutritive role for rutin to attenuate chronic changes in metabolic syndrome.

  20. Leptin, cell proliferation and crypt fission in the gastrointestinal tract of intravenously fed rats.

    PubMed

    FitzGerald, A J; Mandir, N; Goodlad, R A

    2005-02-01

    Many peptides, hormones and growth factors have been implicated in the control of cell renewal in the gastrointestinal epithelium. Leptin is present in the stomach and salivary glands and leptin receptors are seen throughout the gut. Leptin can stimulate mitogen-activated protein kinase activity in vitro and short-term infusion has been reported to have a proliferative action on the colon in vivo, suggesting a biological link between obesity, physical activity and colon cancer. Food intake is one of the most important determinants of intestinal mucosal cell renewal, thus any direct effects of leptin on the gut may be hidden. This problem has been avoided experimentally by maintaining animals on total parenteral nutrition (TPN). Male Wistar rats were anaesthetized and cannulae were inserted into the jugular vein to deliver the TPN diet to which had been added 0, 0.5, 2.5, or 10 mg/kg of recombinant murine leptin. Orally fed rats were also studied. After 6 days of treatment, all animals were injected with vincristine and killed 2 h later. Tissue weight was recorded and crypt cell proliferation (arrested metaphases) and crypt fission were scored in 'microdissected' crypts. Leptin infusion led to a small decrease in body weight and in the weight of the caecum. Intestinal cell proliferation was significantly reduced by TPN when compared to the orally fed rats, but the addition of leptin had no effect on the small intestine or colon. Crypt fission was also significantly lowered in the TPN group. Fission was slightly but significantly increased in the proximal and mid-colon of the leptin-treated rats, but was decreased in the distal colon. Although leptin did not significantly alter cell proliferation, it had significant effects on the process of crypt fission in the colon, which varied according to the exact locality.

  1. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  2. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet.

    PubMed

    Kim, Min Hee; Lee, Jongsung; Jung, Sehyun; Kim, Joo Wan; Shin, Jae-Ho; Lee, Hae-Jeung

    2017-04-01

    The present study investigated the effect of ginseng berry hot water extract (GBx) on blood flow via the regulation of lipid metabolites and blood coagulation in rats fed a high-fat diet (HFD). Sixty rats were divided into five groups in descending order of body weight. Except for the control group, the other four groups were fed a HFD containing 45% kcal from fat for 11 wk without GBx. GBx groups were then additionally treated by gastric gavage with GBx dissolved in distilled water at 50 (GBx 50) mg/kg, 100 (GBx 100) mg/kg, or 150 (GBx 150) mg/kg body weight for 6 wk along with the HFD. To investigate the effects of GBx on rats fed a HFD, biochemical metabolite, blood coagulation assay, and histological analysis were performed. In the experiments to measure the serum levels of leptin and apolipoprotein B/A, GBx treatment attenuated the HFD-induced increases in these metabolites ( p  < 0.05). Adiponectin and apolipoprotein E levels in GBx-treated groups were significantly higher than the HFD group. Prothrombin time and activated partial thromboplastin time were increased in all GBx-treated groups. In the GBx-treated groups, the serum levels of thromboxane A 2 and serotonin were decreased and concentrations of serum fibrinogen degradation products were increased ( p  < 0.05). Moreover, histomorphometric dyslipidemia-related atherosclerotic changes were significantly improved by treatment with GBx. These results suggest the possibility that GBx can ameliorate blood flow by decreasing intima-media thickness via the regulation of blood coagulation factors related to lipid metabolites in rats fed a HFD.

  3. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    PubMed

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of boron supplements on bones from rats fed calcium and magnesium deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, H.; Irwin, A.; Kenney, M.A.

    1991-03-15

    Sixty female, weanling rats were fed, for 6 wks, diets providing: casein, 20; CHO, 40; fat, 40. Vitamins and minerals, except Ca and Mg, were fed according to AIN'76 recommendations. Gp A (control) was fed 100% AIN Ca, Mg and P with no boron (B) added. Gps CD and CD+B were fed 30% AIN Ca and 100% AIN Mg and P; Gps MD and MD+B were fed 20% AIN Mg and 100% AIN Ca and P; Gps CMD and CMD+B were fed 20% AIN Mg, 30% AIN Ca and 100% AIN P. The +B groups were supplemented with B atmore » 12 mcg/g diet. Femurs (F) and 2 vertebrae (V) were scraped clean, weighed, sealed in saline-wet gauze, and refrigerated overnight. Bones were equilibrated at {sup {approximately}}25C. F lengths and diameters at the breakpoint were measured before a 3-point flexure test. V were subjected to a compression test. Maximum force (kg) at breakpoint was recorded. Data for right and left F and for 2 V were pooled. Although DIET' (CD, MD, CMD) affected numerous characteristics of F and V, B supplementation of diets affected only % moisture in F, Ca concentration in dry F and in F ash for CD and CMD diets. Interactions between B and diet affected F Mg concentrations in bone and in ash. Group CMD+B had higher Mg/g F than CMD. B increased Mg/g ash for CMD, decreased it for CD and did not affect it for MD.« less

  5. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritis

    PubMed Central

    Oliver, S J; Freeman, S L; Corral, L G; Ocampo, C J; Kaplan, G

    1999-01-01

    The cytokine tumour necrosis factor-alpha (TNF-α) has been implicated in the aetiology of rheumatoid arthritis in humans as well as of experimental arthritis in rodents. Thalidomide, and to a greater extent the new thalidomide analogue CC1069, inhibit monocyte TNF-α production both in vitro and in vivo. The aim of the present study is to establish whether these drugs block production of TNF-α as well as IL-2 by rat leucocytes and whether this inhibition affects the development of rat adjuvant arthritis (AA). Cultured splenocytes were stimulated with either lipopolysaccharide (LPS) or concanavalin A (Con A) in the presence of thalidomide, CC1069, or solvent, and the production of TNF-α and IL-2 were compared. Next, adjuvant was injected into the base of the tail of rats without or with daily intraperitoneal injections with 100–200 mg/kg per day thalidomide or 50–200 mg/kg per day CC1069. Disease activity, including ankle swelling, hind limb radiographic and histological changes, weight gain, and ankle joint cytokine mRNA levels, were monitored. CC1069, but not the parent drug thalidomide, inhibited in vitro production of TNF-α and IL-2 by stimulated splenocytes in a dose-dependent manner. In vivo, a dose-dependent suppression of AA disease activity occurred in the CC1069-treated animals. In contrast, thalidomide-treated rats experienced comparable arthritis severity to placebo-treated animals. There was also a reduction in TNF-α and IL-2 mRNA levels in the ankle joints of CC1069-treated rats compared with thalidomide- and placebo-treated arthritic rats. Early initiation of CC1069 treatment suppressed AA inflammation more efficiently than delayed treatment. We conclude that thalidomide, which did not suppress TNF-α or IL-2 production in vitro by Lewis rat cells, did not suppress development of rat AA. However, the development of rat AA can be blocked by the thalidomide analogue CC1069, which is an efficient inhibitor of TNF-α production and IL-2 in vitro

  6. Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat.

    PubMed

    Malin, D H; Moon, W D; Goyarzu, P; Barclay, E; Magallanes, N; Vela, A J; Negrete, A P; Mathews, H; Stephens, B; Mills, W R

    2013-10-06

    There have been many reports of monoamine oxidase (MAO) inhibition by non-nicotine ingredients in tobacco smoke, persisting for days after smoking cessation. This study determined the effect of inhibiting MAO and its isoforms on nicotine withdrawal syndrome. Rats were rendered nicotine-dependent by seven days of subcutaneous (s.c.) 9 mg/kg/day infusion of nicotine bitartrate. Twenty-two hours after termination of infusion, they were observed over 20 min for somatically expressed nicotine withdrawal signs. Three hours before observation, rats were injected intraperitoneally (i.p.) with 4 mg/kg each of the MAO A antagonist clorgyline and the MAO B antagonist deprenyl, or with saline alone. A similar experiment was performed with non-dependent, saline-infused rats. Another experiment compared nicotine-dependent rats that received injections of either saline or 4 mg/kg clorgyline alone. A further experiment compared rats receiving either saline or 4 mg/kg deprenyl alone. Combined treatment with both MAO inhibitors markedly and significantly exacerbated somatically expressed nicotine withdrawal signs in nicotine infused rats, while having no significant effects in saline-infused rats. Rats injected s.c. with 4 mg/kg clorgyline alone had significantly more withdrawal signs than saline-injected rats, while deprenyl-injected rats had significantly fewer signs than saline controls. Assays confirmed that clorgyline thoroughly reduced MAO A enzymatic activity and deprenyl thoroughly reduced MAO B activity. The results suggest that inhibition of MAO A may contribute to the intensity of withdrawal syndrome in smoking cessation. © 2013 Elsevier Inc. All rights reserved.

  7. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose.

    PubMed

    Mullins, Raymond James; James, Hayley; Platts-Mills, Thomas A E; Commins, Scott

    2012-05-01

    We have observed patients clinically allergic to red meat and meat-derived gelatin. We describe a prospective evaluation of the clinical significance of gelatin sensitization, the predictive value of a positive test result, and an examination of the relationship between allergic reactions to red meat and sensitization to gelatin and galactose-α-1,3-galactose (α-Gal). Adult patients evaluated in the 1997-2011 period for suspected allergy/anaphylaxis to medication, insect venom, or food were skin tested with gelatin colloid. In vitro (ImmunoCAP) testing was undertaken where possible. Positive gelatin test results were observed in 40 of 1335 subjects: 30 of 40 patients with red meat allergy (12 also clinically allergic to gelatin), 2 of 2 patients with gelatin colloid-induced anaphylaxis, 4 of 172 patients with idiopathic anaphylaxis (all responded to intravenous gelatin challenge of 0.02-0.4 g), and 4 of 368 patients with drug allergy. Test results were negative in all patients with venom allergy (n = 241), nonmeat food allergy (n = 222), and miscellaneous disorders (n = 290). ImmunoCAP results were positive to α-Gal in 20 of 24 patients with meat allergy and in 20 of 22 patients with positive gelatin skin test results. The results of gelatin skin testing and anti-α-Gal IgE measurements were strongly correlated (r = 0.46, P < .01). α-Gal was detected in bovine gelatin colloids at concentrations of approximately 0.44 to 0.52 μg/g gelatin by means of inhibition RIA. Most patients allergic to red meat were sensitized to gelatin, and a subset was clinically allergic to both. The detection of α-Gal in gelatin and correlation between the results of α-Gal and gelatin testing raise the possibility that α-Gal IgE might be the target of reactivity to gelatin. The pathogenic relationship between tick bites and sensitization to red meat, α-Gal, and gelatin (with or without clinical reactivity) remains uncertain. Copyright © 2012 American Academy of Allergy, Asthma

  8. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats

    PubMed Central

    Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.

    2008-01-01

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692

  9. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.

    PubMed

    Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A

    2008-10-27

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.

  10. α-Tocopherol Attenuates the Triglyceride- and Cholesterol-Lowering Effects of Rice Bran Tocotrienol in Rats Fed a Western Diet.

    PubMed

    Shibata, Akira; Kawakami, Yuki; Kimura, Toshiyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2016-07-06

    Previous studies demonstrated the ability of tocotrienol (T3) to lower levels of lipids, including cholesterol (Cho) and triglycerides (TG). Although α-tocopherol (α-Toc) reportedly inhibits the hypocholesterolemic effect of T3, there is no information about whether α-Toc influences the TG-lowering effect of T3 in vivo. In this study, we investigated the influence of α-Toc on the antihyperlipidemic effects (Cho- and TG-lowering) of rice bran tocotrienols (RBT3) in F344 rats fed a western diet. α-Toc attenuated both the Cho- and TG-lowering effects of RBT3 in vivo, whereas α-Toc alone exhibited no hypolipidemic effects. RBT3-induced Cpt-1a and Cyp7a1 gene expression was reduced by α-Toc. Furthermore, coadministration of α-Toc decreased liver and adipose tissue concentrations of tocotrienols in F344 rats. These results indicate that α-Toc has almost no antihyperlipidemic effect in vivo, but abrogates the antihyperlipidemic effect of RBT3 by reducing tissue concentrations of tocotrienols and regulating expression of genes involved in lipid metabolism. Understanding the underlying mechanism of the beneficial effects of T3 on lipid metabolism and the interaction with α-Toc will be important for developing T3-based therapeutics.

  11. Thiopental inhibits nitric oxide production in rat aorta.

    PubMed

    Castillo, C; Asbun, J; Escalante, B; Villalón, C M; López, P; Castillo, E F

    1999-12-01

    We studied whether thiopental affects endothelial nitric oxide dependent vasodilator responses and nitrite production (an indicator of nitric oxide production) elicited by acetylcholine, histamine, and A23187 in rat aorta (artery in which nitric oxide is the main endothelial relaxant factor). In addition, we evaluated the barbiturate effect on nitric oxide synthase (NOS) activity in both rat aorta and kidney homogenates. Thiopental (10-100 microg/mL) reversibly inhibited the endothelium-dependent relaxation elicited by acetylcholine, histamine, and A23187. On the contrary, this anesthetic did not modify the endothelium-independent but cGMP-dependent relaxation elicited by sodium nitroprusside (1 nM - 1 microM) and nitroglycerin (1 nM - 1 microM), thus excluding an effect of thiopental on guanylate cyclase of vascular smooth muscle. Thiopental (100 microg/mL) inhibited both basal (87.8+/-14.3%) and acetylcholine- or A23187-stimulated (78.6+/-3.9 and 39.7+/-5.6%, respectively) production of nitrites in aortic rings. In addition the barbiturate inhibited (100 microg/mL) the NOS (45+/-4 and 42.8+/-9%) in aortic and kidney homogenates, respectively (measured as 14C-labeled citrulline production). In conclusion, thiopental inhibition of endothelium-dependent relaxation and nitrite production in aortic rings strongly suggests an inhibitory effect on NOS. Thiopental inhibition of the NOS provides further support to this contention.

  12. Karaya root saponin exerts a hypocholesterolemic response in rats fed a high-cholesterol diet.

    PubMed

    Afrose, Sadia; Hossain, Md S; Maki, Takaaki; Tsujii, Hirotada

    2009-05-01

    Different sources of saponins are known to have hypocholesterolemic activity with varying degrees of efficacy. We hypothesize that karaya root saponin would efficiently reduce cholesterol. The aim of this study is to examine the comparative hypocholesterolemic effect of karaya root saponin in rats fed a high-cholesterol diet. Sixty male Wister-Imamichi rats were divided into 5 groups of 12 rats each constituting of the following: control group, soybean saponin-supplemented group, karaya root saponin-supplemented group, quillaja saponin-supplemented group, and tea saponin-supplemented group. Compared with the control diet, both the karaya root- and quillaja saponin-supplemented diets significantly reduced (P < .05) serum cholesterol and atherogenic index. Karaya root saponin significantly increased the serum high-density lipoprotein cholesterol, high-density lipoprotein cholesterol/cholesterol ratio, and fecal cholesterol concentrations (P < .05). The triacylglycerol concentration was significantly reduced only in the quillaja saponin-supplemented rats (P < .05). All the tea, soybean, karaya root, and quillaja saponins significantly reduced low-density lipoprotein cholesterol, and the greatest reduction was observed with karaya root saponin. Highest fecal bile acid concentration was found with quillaja saponin, whereas highest liver bile acid concentration was observed with karaya root saponin-supplemented rats (P < .05). These results collectively suggest that karaya root saponin can efficiently reduce serum cholesterol concentration in rats.

  13. Ziram inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase.

    PubMed

    Su, Ying; Li, Huitao; Chen, Xiaomin; Wang, Yiyan; Li, Xiaoheng; Sun, Jianliang; Ge, Ren-Shan

    2018-01-01

    The neurotoxicity of ziram is largely unknown. In this study, we investigated the direct inhibitions of ziram on rat neurosteroid synthetic and metabolizing enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C14), and retinol dehydrogenase 2 (RDH2). Rat SRD5A1, AKR1C14, and RDH2 were cloned and transiently expressed in COS1 cells, and the effects of ziram on these enzymes were measured. Ziram inhibited rat SRD5A1 and AKR1C14 with IC 50 values of 1.556 ± 0.078 and 1.017 ± 0.072 μM, respectively, when 1000 nM steroid substrates were used. Ziram weakly inhibited RDH2 at 100 μM, when androstanediol (1000 nM) was used. Ziram competitively inhibited SRD5A1 and non-competitively inhibited AKR1C14 when steroid substrates were used. Docking study showed that ziram bound to NADPH-binding pocket of AKR1C14. In conclusion, our results demonstrated that ziram inhibited SRD5A1 and AKR1C14 activities, thus possibly interfering with neurosteroid production in rats.

  14. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    PubMed

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  15. Anti-apoptosis effect of polysaccharide isolated from the seeds of Cuscuta chinensis Lam on cardiomyocytes in aging rats.

    PubMed

    Sun, Shou-Li; Guo, Li; Ren, Ya-Chao; Wang, Bing; Li, Rong-Hui; Qi, Yu-Shan; Yu, Hui; Chang, Nai-Dan; Li, Ming-Hui; Peng, Hai-Sheng

    2014-09-01

    To investigate the mechanism of apoptosis in myocardial cells of aging rats induced by D-galactose and to study the effect of the Polysaccharide isolated from the seeds of Cuscuta chinensis Lam (PCCL) on apoptosis of cardiomyocytes and its corresponding machinasim in aging rat model. Fifty male SD rats were randomly divided into 5 groups. Normal control group (NC). D-galactose (100 mg · kg(-1)d(-1) for 56 day) indued aging group (MC), D-galactose plus 100 mg kg(-1) d(-1) PCCL group (ML), D-galactose plus 200 mg kg(-1) d(-1) PCCL group (MM), and D-galactose plus 400 mg kg(-1) d(-1) PCCL group (MH). Same volume of solution (water, or PCCL aqueous solution) was given by gavage for 56 days. Then the hearts were collected and apoptosis parameters were evaluated. Caspase-3 and Cyt c were determined by fluorescence spectrometer, the apoptosis rate was assessed by AnnexinV-FITC method by Flow-Cytometry, [Ca(2+)]i and [Ca(2+)]i overloaded by KCL were observed by laser scanning confocal microscopy (LSCM); Bcl-2 and Bax were examined by immunohistochemistry. The content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3, Bax expression level in D-galactose induced aging group were higher than NC (p < 0.05). The ratio of Bcl-2/Bax was decreased in D-galactose induced aging group compared to NC. On the other hand, the content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3 and apoptosis rate, as well as Bax expression level in all three PCCL groups were decreased compared to galactose induced group (p < 0.05). Bcl-2/Bax ratio was increased in all PCCL groups compared to galactose induced aging group. PCCL could decrease the apoptosis of cardiomyocytes by the mitochondria apoptosis pathway.

  16. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats

    PubMed Central

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  17. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  18. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heartmore » weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN

  19. Lymphatic fatty acids from rats fed human milk and formula containing coconut oil.

    PubMed

    Roche, M E; Clark, R M

    1994-06-01

    Human milk and infant formula containing coconut/soy oil were infused into the duodenum of rats to determine the incorporation of capric, lauric, myristic and palmitic acids into lymphatic triacylglycerol (TAG). The proportion of capric and lauric acids in the lymphatic TAG reflected the fatty acid composition of the diet. Based on positional analysis, it appears that more than 50% of the capric and lauric acids could have been absorbed from the intestine as sn-2 monoacylglycerols. In the rats fed human milk, 50% of palmitic acid in lymphatic TAG was in the sn-2 position. Because of the nonrandom distribution of palmitic acid in the lymphatic TAG, the nonspecific lipase in human milk, i.e., bile salt-stimulated lipase, did not appear to be a factor in milk lipid digestion.

  20. Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats.

    PubMed

    Chen, Jinn-Yang; Jian, Deng-Yuan; Lien, Chih-Chan; Lin, Yu-Ting; Ting, Ching-Heng; Chen, Luen-Kui; Hsu, Ting-Chia; Huang, Hsuan-Min; Wu, Yu-Ting; Kuan, Tse-Ting; Chao, Yu-Wen; Wu, Liang-Yi; Huang, Seng-Wong; Juan, Chi-Chang

    2016-11-01

    Obesity is a risk factor that promotes progressive kidney disease. Studies have shown that an adipocytokine imbalance contributes to impaired renal function in humans and animals, but the underlying interplay between adipocytokines and renal injury remains to be elucidated. We aimed to investigate the mechanisms linking obesity to chronic kidney disease. We assessed renal function in high-fat (HF) diet-fed and normal diet-fed rats, and the effects of preadipocyte- and adipocyte-conditioned medium on cultured podocytes. HF diet-fed and normal diet-fed Sprague Dawley rats were used to analyze the changes in plasma BUN, creatinine, urine protein and renal histology. Additionally, podocytes were incubated with preadipocyte- or adipocyte-conditioned medium to investigate the effects on podocyte morphology and protein expression. In the HF diet group, 24 h urinary protein excretion (357.5 ± 64.2 mg/day vs 115.9 ± 12.4 mg/day, P < 0.05) and the urine protein/creatinine ratio were significantly higher (1.76 ± 0.22 vs 1.09 ± 0.15, P < 0.05), increased kidney weight (3.54 ± 0.04 g vs 3.38 ± 0.04 g, P < 0.05) and the glomerular volume and podocyte effacement increased by electron microscopy. Increased renal expression of desmin and decreased renal expression of CD2AP and nephrin were also seen in the HF diet group (P < 0.05). Furthermore, we found that adipocyte-conditioned medium-treated podocytes showed increased desmin expression and decreased CD2AP and nephrin expression compared with that in preadipocyte-conditioned medium-treated controls (P < 0.05). These findings show that adipocyte-derived factor(s) can modulate renal function. Adipocyte-derived factors play an important role in obesity-related podocytopathy. © 2016 Society for Endocrinology.

  1. Effects of Nonalcoholic Fatty Liver Disease on Hepatic CYP2B1 and in Vivo Bupropion Disposition in Rats Fed a High-Fat or Methionine/Choline-Deficient Diet.

    PubMed

    Cho, Sung-Joon; Kim, Sang-Bum; Cho, Hyun-Jong; Chong, Saeho; Chung, Suk-Jae; Kang, Il-Mo; Lee, Jangik Ike; Yoon, In-Soo; Kim, Dae-Duk

    2016-07-13

    Nonalcoholic fatty liver disease (NAFLD) refers to hepatic pathologies, including simple fatty liver (SFL), nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis, that may progress to hepatocellular carcinoma. These liver disease states may affect the activity and expression levels of drug-metabolizing enzymes, potentially resulting in an alteration in the pharmacokinetics, therapeutic efficacy, and safety of drugs. This study investigated the hepatic cytochrome P450 (CYP) 2B1-modulating effect of a specific NAFLD state in dietary rat models. Sprague-Dawley rats were given a methionine/choline-deficient (MCD) or high-fat (HF) diet to induce NASH and SFL, respectively. The induction of these disease states was confirmed by plasma chemistry and liver histological analysis. Both the protein and mRNA levels of hepatic CYP2B1 were considerably reduced in MCD diet-fed rats; however, they were similar between the HF diet-fed and control rats. Consistently, the enzyme-kinetic and pharmacokinetic parameters for CYP2B1-mediated bupropion metabolism were considerably reduced in MCD diet-fed rats; however, they were also similar between the HF diet-fed and control rats. These results may promote a better understanding of the influence of NAFLD on CYP2B1-mediated metabolism, which could have important implications for the safety and pharmacokinetics of drug substrates for the CYP2B subfamily in patients with NAFLD.

  2. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II. ...

  3. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet.

    PubMed

    de Las Heras, Natalia; Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; López-Farré, Antonio; Ruiz-Roso, Baltasar; Lahera, Vicente

    2017-02-01

    Hypolipidemic and hypoglycemic properties of ginger in animal models have been reported. However, information related to the mechanisms and factors involved in the metabolic effects of ginger at a hepatic level are limited. The aim of the present study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of a hydroethanolic ginger extract (GE) in the liver of rats fed a high-fat diet (HFD). The study was conducted in male Wistar rats divided into the following 3 groups: (i) Rats fed a standard diet (3.5% fat), the control group; (ii) rats fed an HFD (33.5% fat); and (iii) rats fed an HFD treated with GE (250 mg·kg -1 ·day -1 ) for 5 weeks (HFD+GE). Plasma levels of glucose, insulin, lipid profile, leptin, and adiponectin were measured. Liver expression of glycerol phosphate acyltransferase (GPAT), cholesterol 7 alpha-hydroxylase, peroxisome proliferator-activated receptors (PPAR), PPARα and PPARγ, glucose transporter 2 (GLUT-2), liver X receptor, sterol regulatory element-binding protein (SREBP1c), connective tissue growth factor (CTGF), and collagen I was measured. Data were analyzed using a 1-way ANOVA, followed by a Newman-Keuls test if differences were noted. The study showed that GE improved lipid profile and attenuated the increase of plasma levels of glucose, insulin, and leptin in HFD rats. This effect was associated with a higher liver expression of PPARα, PPARγ, and GLUT-2 and an enhancement of plasma adiponectin levels. Furthermore, GE reduced liver expression of GPAT, SREBP1c, CTGF, and collagen I. The results suggest that GE might be considered as an alternative therapeutic strategy in the management of overweight and hepatic and metabolic-related alterations.

  4. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine.

    PubMed

    Sagara, M; Satoh, J; Wada, R; Yagihashi, S; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T

    1996-03-01

    N-acetylcysteine (NAC) is a precursor of glutathione (GSH) synthesis, a free radical scavenger and an inhibitor of tumour necrosis factor alpha (TNF). Because these functions might be beneficial in diabetic complications, in this study we examined whether NAC inhibits peripheral neuropathy. Motor nerve conduction velocity (MNCV) was significantly decreased in streptozotocin-induced-diabetic Wistar rats compared to control rats. Oral administration of NAC reduced the decline of MNCV in diabetic rats. Structural analysis of the sural nerve disclosed significant reduction of fibres undergoing myelin wrinkling and inhibition of myelinated fibre atrophy in NAC-treated diabetic rats. NAC treatment had no effect on blood glucose levels or on the nerve glucose, sorbitol and cAMP contents, whereas it corrected the decreased GSH levels in erythrocytes, the increased lipid peroxide levels in plasma and the increased lipopolysaccharide-induced TNF activity in sera of diabetic rats. Thus, NAC inhibited the development of functional and structural abnormalities of the peripheral nerve in streptozotocin-induced diabetic rats.

  5. Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450.

    PubMed

    Jones, G P; Watson, T G; Sinclair, A J; Birkett, A; Dunt, N; Nair, S S; Tonkin, S Y

    1999-09-01

    Kernels of the plant Santalum acuminatum (quandong) are eaten as Australian 'bush foods'. They are rich in oil and contain relatively large amounts of the acetylenic fatty acid, santalbic acid (trans-11-octadecen-9-ynoic acid), whose chemical structure is unlike that of normal dietary fatty acids. When rats were fed high fat diets in which oil from quandong kernels supplied 50% of dietary energy, the proportion of santalbic acid absorbed was more than 90%. Feeding quandong oil elevated not only total hepatic cytochrome P450 but also the cytochrome P450 4A subgroup of enzymes as shown by a specific immunoblotting technique. A purified methyl santalbate preparation isolated from quandong oil was fed to rats at 9% of dietary energy for 4 days and this also elevated cytochrome P450 4A in both kidney and liver microsomes in comparison with methyl esters from canola oil. Santalbic acid appears to be metabolized differently from the usual dietary fatty acids and the consumption of oil from quandong kernels may cause perturbations in normal fatty acid biochemistry.

  6. Silk and silkworm pupa peptides suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet.

    PubMed

    Lee, Sun Hee; Park, Dongsun; Yang, Goeun; Bae, Dae-Kwon; Yang, Yun-Hui; Kim, Tae Kyun; Kim, Dajeong; Kyung, Jangbeen; Yeon, Sungho; Koo, Kyo Chul; Lee, Jeong-Yong; Hwang, Seock-Yeon; Joo, Seong Soo; Kim, Yun-Bae

    2012-12-01

    The objective was to confirm the anti-obesity activity of a silk peptide (SP) and a silkworm pupa peptide (SPP) in rats fed a high-fat diet (HFD) and to elucidate their action mechanism(s) in a preadipocyte culture system. In an in vitro mechanistic study, the differentiation and maturation of 3T3-L1 preadipocytes were stimulated with insulin (5 μg/mL), and effects of SP and SPP on the adipogenesis of mature adipocytes were assessed. In an in vivo anti-obesity study, male C57BL/6 mice were fed an HFD containing SP or SPP (0.3, 1.0, or 3.0%) for 8 weeks, and blood and tissue parameters of obesity were analyzed. Hormonal stimulation of preadipocytes led to a 50-70% increase in adipogenesis. Polymerase chain reaction and Western blot analyses revealed increases in adipogenesis-specific genes (leptin and Acrp30) and proteins (peroxisome proliferator-activated receptor-γ and Acrp30). The hormone-induced adipogenesis and activated gene expression was substantially inhibited by treatment with SP and SPP (1-50 μg/mL). The HFD markedly increased body weight gain by increasing the weight of epididymal and mesenteric fat. Body and fat weights were significantly reduced by SP and SPP, in which decreases in the area of abdominal adipose tissue and the size of epididymal adipocytes were confirmed by magnetic resonance imaging and microscopic examination, respectively. Long-term HFD caused hepatic lipid accumulation and increased blood triglycerides and cholesterol, in addition to their regulatory factors Acrp30 and leptin. However, SP and SPP recovered the concentrations of Acrp30 and leptin, and attenuated steatosis. SP and SPP inhibit the differentiation of preadipocytes and adipogenesis by modulating signal transduction pathways and improve HFD-induced obesity by reducing lipid accumulation and the size of adipocytes.

  7. Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet-fed male Wistar rats.

    PubMed

    Doddigarla, Zephy; Ahmad, Jamal; Parwez, Iqbal

    2016-01-01

    This study is designed to know the effects of chromium picolinate (CrPic) and melatonin (Mel) each alone and in a combination on high carbohydrate diet-fed (HCD-fed) male Wistar rats that exhibit insulin resistance (IR), hyperglycemia, and oxidative stress. Wistar rats have been categorized into five groups. Each group consisted of six male Wistar rats, control rats (group I), HCD (group II), HCD + CrPic (group III), HCD + Mel (group IV), and HCD + CrPic + Mel (group V). Insignificant differences were observed in serum levels of superoxide dismutase, nitric oxide, and zinc in group III, group IV, and group V when each group was compared with group II rats respectively. Significant differences were observed in group III, group IV, and group V when each group was compared with group II in homeostasis model assessment-estimated IR (P < 0.05, <0.0.05, <0.05), and in the levels of blood glucose (P < 0.05, <0.0.05, <0.05), total cholesterol (P < 0.05, <0.001, <0.001), triacylglycerols (<0.05, <0.001, <0.001), high density lipoprotein cholesterol (P < 0.05, <0.001, <0.001), malondialdehyde (P < 0.05, <0.05, <0.001), catalase (P <0.05, <0.05, <0.05), glutathione (P < 0.05, <0.05, <0.05), Mel (P < 0.05, <0.05, <0.001), and copper (P < 0.05, <0.05, < 0.001). In view of these results, HCD-fed male Wistar rats that are destined to attain IR and T2DM through diet can be prevented by giving CrPic and Mel administration in alone or in a combination. © 2015 International Union of Biochemistry and Molecular Biology.

  8. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy

    USDA-ARS?s Scientific Manuscript database

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimu...

  9. The Lactose and Galactose Content of Cheese Suitable for Galactosaemia: New Analysis.

    PubMed

    Portnoi, P A; MacDonald, A

    2016-01-01

    The UK Medical Advisory Panel of the Galactosaemia Support Group report the lactose and galactose content of 5 brands of mature Cheddar cheese, Comte and Emmi Emmental fondue mix from 32 cheese samples. The Medical Advisory Panel define suitable cheese in galactosaemia to have a lactose and galactose content consistently below 10 mg/100 g. A total of 32 samples (5 types of mature Cheddar cheese, Comte and "Emmi Swiss Fondue", an emmental fondue mix) were analysed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technology used to perform lactose and galactose analysis. Cheddar cheese types: Valley Spire West Country, Parkham, Lye Cross Vintage, Lye Cross Mature, Tesco West Country Farmhouse Extra Mature and Sainsbury's TTD West Country Farmhouse Extra Mature had a lactose and galactose content consistently below 10 mg/100 g (range <0.05 to 12.65 mg). All Comte samples had a lactose content below the lower limit of detection (<0.05 mg) with galactose content from <0.05 to 1.86 mg/100 g; all samples of Emmi Swiss Fondue had lactose below the lower limit of detection (<0.05 mg) and galactose between 2.19 and 3.04 mg/100 g. All of these cheese types were suitable for inclusion in a low galactose diet for galactosaemia. It is possible that the galactose content of cheese may change over time depending on its processing, fermentation time and packaging techniques.

  10. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.

  11. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates.

    PubMed Central

    Meinander, N Q; Hahn-Hägerdal, B

    1997-01-01

    Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess. PMID:9143128

  12. Influence of carbohydrate and fat intake on diet-induced thermogenesis and brown fat activity in rats fed low protein diets.

    PubMed

    Rothwell, N J; Stock, M J

    1987-10-01

    Voluntary intake of protein, fat and carbohydrate (CHO) was modified by feeding young rats either a control purified diet [% metabolizable energy (ME): protein 21, fat 7, CHO 72], a control diet plus sucrose solution (20%) to drink (final intakes 17, 6 and 77% ME as protein, fat and CHO, respectively) or a low protein diet substituted with either CHO (8, 7 and 85% ME as protein, fat and CHO, respectively) or fat (8, 20 and 72% ME as protein, fat and CHO, respectively). Total ME intakes corrected for body size were similar for all rats, but body weight, energy gain and net energetic efficiency were lower in both low protein-fed groups than in the control group. The acute thermogenic response (% rise in oxygen consumption) to a standard balanced-nutrient meal was higher (12%) in sucrose-supplemented and in low protein groups (15-16%) than in control rats (8%). Brown adipose tissue protein content and thermogenic capacity (assessed from purine nucleotide binding to isolated mitochondria) were greater than control values in sucrose-fed and protein-deficient animals, and the greatest levels of activity were seen in low protein-fed rats with a high fat intake. The results demonstrate that the changes in energy balance, thermogenesis and brown adipose tissue activity that result from protein deficiency cannot be ascribed to changes in the level of energy intake or to a specific increase in the amount or proportion of either CHO or fat. They suggest that the protein-to-energy ratio must be the primary influence on thermogenesis and brown fat activity in these animals.

  13. Dietary anthocyanin-rich Haskap phytochemicals inhibit postprandial hyperlipidemia and hyperglycemia in rats.

    PubMed

    Takahashi, Azusa; Okazaki, Yukako; Nakamoto, Aika; Watanabe, Sanae; Sakaguchi, Hirohide; Tagashira, Yukari; Kagii, Atsuko; Nakagawara, Shunji; Higuchi, Ohki; Suzuki, Takashi; Chiji, Hideyuki

    2014-01-01

    Haskap (Lonicera caerulea L.) fruit contains some bioactive phenolic phytochemicals, mainly cyanidin-3-glucoside (cy3-glc) and chlorogenic acid. The purpose of this study was to investigate the effects of anthocyanin-rich phenolic phytochemical (containing 13.2% anthocyanin) purified from a Haskap fruit (named Haskap phytochemical) on postprandial serum triglyceride and blood glucose levels. The Haskap phytochemical (containing cy 3-glc at 300 mg/kg of body weight) was administered orally to rats fasted for 24 h and 30 min later, a corn oil emulsion was administered to these rats. After the administration, serum triglyceride concentration was measured. An increase in serum triglyceride concentration and the AUC significantly lowered in the Haskap phytochemical-administered group than in the saline-administered group. To evaluate the effect of serum glucose levels, the Haskap phytochemical was orally administered to rats fasted for 24 h and sucrose solution (2 g/kg of body weight) was administered to these rats after 30 min. After the administration, blood glucose level was measured. The Haskap phytochemical significantly reduced the increase in blood glucose levels and AUC in the Haskap phytochemical-administered group than in the saline-administered group. Furthermore, to investigate the long-term effects of Haskap phytochemical intake, high-fat diet (HF diet) with 1.5% or 3.0% Haskap phytochemical was administered to rats for four weeks. The investigation of chronological changes in the serum components of the rats fed HF diets in addition to the administration of Haskap phytochemical showed that the increase in serum triglyceride concentrations, total cholesterol concentrations and blood glucose were significantly suppressed compared to the HF diet-fed control (HF-control). These results suggest that the decrease in postprandial blood lipids and blood glucose by short or long-term Haskap phytochemical ingestion is due to anthocyanin and other polyphenols

  14. Transfer of 45Ca and 36Cl at the blood-nerve barrier of the sciatic nerve in rats fed low or high calcium diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadhwani, K.C.; Murphy, V.A.; Rapoport, S.I.

    1991-04-01

    Unidirectional fluxes of 45Ca, 36Cl, and of (3H)mannitol from blood into the sciatic nerve and cerebral cortex were determined from 5- and 15-min uptakes of these tracers after an intravenous (i.v.) bolus injection in awake rats. Rats were fed diets for 8 wk, that had either a low (0.01% wt/wt), normal (0.67%), or high (3%) Ca content. Plasma (Ca) was 32% less and 11% more in rats fed low (LOCA) and high Ca diets (HICA), respectively, than in rats fed a normal Ca diet (CONT). The mean permeability-surface area product (PA) of 45Ca at the blood-nerve barrier was about eightfoldmore » higher than at the blood-brain barrier in the same animals and did not differ significantly between groups (greater than 0.05). Mean PA ratios of 45Ca/36Cl for the blood-nerve and blood-brain barriers in CONT rats, 0.52 {plus minus} 0.04 and 0.40 {plus minus} 0.02, respectively, were not significantly different from corresponding ratios in LOCA and HICA groups, and corresponded to the aqueous limiting diffusion ratio (0.45). The authors results show no evidence for concentration-dependent transport of Ca over a plasma (Ca) range of 0.8-1.4 mmol/liter at the blood-nerve barrier of the rat peripheral nerve, and suggest that Ca and Cl exchange slowly between nerve and blood via paracellular pathways.« less

  15. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  16. Urethane inhibits genioglossal long-term facilitation in un-paralyzed anesthetized rats.

    PubMed

    Cao, Ying; Ling, Liming

    2010-06-25

    For approximately 3 decades, urethane has been (partially or solely) used as a successful anesthetic in numerous respiratory long-term facilitation (LTF) studies, which were performed on anesthetized, paralyzed, vagotomized and artificially ventilated animals of several different species. However, things become complicated when LTF of muscle activity is studied in un-paralyzed animals. For example, a commonly used acute intermittent hypoxia (AIH) protocol failed to induce muscle LTF in anesthetized, spontaneously breathing rats. But muscle LTF could be induced when hypoxic episode number was increased and/or anesthetics other than urethane were used. In these studies however, neither anesthetic nor paralysis was mentioned as a potential factor influencing AIH-induced muscle LTF. This study tested whether urethane inhibits AIH-induced genioglossal LTF (gLTF) in un-paralyzed ventilated rats, and if so, determined whether reducing urethane dose reverses this inhibition. Three groups of adult male Sprague-Dawley rats were anesthetized (Group 1: approximately 1.6 g kg(-1) urethane; Group 2: 50 mg kg(-1) alpha-chloralose +0.9-1.2 g kg(-1) urethane; Group 3: 0.9 g kg(-1) urethane +200-400 microg kg(-1) min(-1) alphaxalone), vagotomized and mechanically ventilated. Integrated genioglossus activity was measured before, during and after AIH (5 episodes of 3-min isocapnic 12% O(2), separated by 3-min hyperoxic intervals). The AIH-induced gLTF was absent in Group 1 rats (success rate was only approximately 1/7), but was present in Group 2 (in 10/12 rats) and Group 3 (in 11/11 rats) rats. The genioglossal response to hypoxia was not significantly different among the 3 groups. Collectively, these data suggest that urethane dose-dependently inhibits gLTF in un-paralyzed anesthetized rats. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    PubMed

    Zhang, Xu; Zhao, Yufeng; Zhang, Menghui; Pang, Xiaoyan; Xu, Jia; Kang, Chaoying; Li, Meng; Zhang, Chenhong; Zhang, Zhiguo; Zhang, Yifei; Li, Xiaoying; Ning, Guang; Zhao, Liping

    2012-01-01

    Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2)>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  18. Reduced carotid baroreceptor distensibility-induced baroreflex resetting contributes to impairment of sodium regulation in rats fed a high-fat diet.

    PubMed

    Abe, Chikara; Nagai, Yuko; Yamaguchi, Aoi; Aoki, Hitomi; Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sugimachi, Masaru; Morita, Hironobu

    2015-04-15

    Decreased carotid arterial compliance has been reported in obese subjects and animals. Carotid baroreceptors are located at the bifurcation of the common carotid artery, and respond to distension of the arterial wall, suggesting that higher pressure is required to obtain the same distension in obese subjects and animals. A hyperosmotic NaCl solution induces circulatory volume expansion and arterial pressure (AP) increase, which reflexively augment renal excretion. Thus, we hypothesized that sodium regulation via the baroreflex might be impaired in response to chronic hyperosmotic NaCl infusion in rats fed a high-fat diet. To examine this hypothesis, we used rats fed a high-fat (Fat) or normal (NFD) diet, and measured mean AP, water and sodium balance, and renal function in response to chronic infusion of hyperosmotic NaCl solution via a venous catheter. Furthermore, we examined arterial baroreflex characteristics with static open-loop analysis and distensibility of the common carotid artery. Significant positive water and sodium balance was observed on the 1st day of 9% NaCl infusion; however, this disappeared by the 2nd day in Fat rats. Mean AP was significantly higher during 9% NaCl infusion in Fat rats compared with NFD rats. In the open-loop analysis of carotid sinus baroreflex, a rightward shift of the neural arc was observed in Fat rats compared with NFD rats. Furthermore, distensibility of the common carotid artery was significantly reduced in Fat rats. These results indicate that a reduced baroreceptor distensibility-induced rightward shift of the neural arc might contribute to impairment of sodium regulation in Fat rats. Copyright © 2015 the American Physiological Society.

  19. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  20. Dimethylthiourea inhibits heart weight and hematocrit changes caused by dietary copper deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, J.T.

    1991-03-11

    Feeding antioxidants to rats in a copper (Cu)-deficient diet can partially inhibit the cardiac enlargement and anemia caused by Cu deficiency. This study was done to determine whether an antioxidant which bypassed the gastrointestinal tract was also protective and whether an agent more potent than previously used was more effective in this inhibition. Male, weanling rats were fed diets deficient or sufficient in Cu for 4 wks. Dimethylthiourea (DMTU) or saline was injected (ip) 4 times a week; minimum amount of DMTU retained during the experiment was estimated to be 250 mg/kg. Unlike other antioxidants, DMTU completely prevented the increasemore » in heart wt/body wt ratio; like the other agents, it only partially inhibited the anemia of Cu deficiency. DMTU did not affect plasma or liver Cu content of CuD rats; however, heart copper of CuD rats was significantly increased by DMTU. The effects of DMTU on heart size and hematocrit (Hct) may be attributed to its antioxidant function, but the possibility of altered mineral status must also be considered.« less

  1. Presynaptic inhibition of transmitter release from rat sympathetic neurons by bradykinin.

    PubMed

    Edelbauer, Hannah; Lechner, Stefan G; Mayer, Martina; Scholze, Thomas; Boehm, Stefan

    2005-06-01

    Bradykinin is known to stimulate neurons in rat sympathetic ganglia and to enhance transmitter release from their axons by interfering with the autoinhibitory feedback, actions that involve protein kinase C. Here, bradykinin caused a transient increase in the release of previously incorporated [3H] noradrenaline from primary cultures of dissociated rat sympathetic neurons. When this effect was abolished by tetrodotoxin, bradykinin caused an inhibition of tritium overflow triggered by depolarizing K+ concentrations. This inhibition was additive to that caused by the alpha2-adrenergic agonist UK 14304, desensitized within 12 min, was insensitive to pertussis toxin, and was enhanced when protein kinase C was inactivated. The effect was half maximal at 4 nm and antagonized competitively by the B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor indomethacin and the angiotensin converting enzyme inhibitor captopril did not alter the inhibition by bradykinin. The M-type K+ channel opener retigabine attenuated the secretagogue action of bradykinin, but left its inhibitory action unaltered. In whole-cell patch-clamp recordings, bradykinin reduced voltage-activated Ca2+ currents in a pertussis toxin-insensitive manner, and this action was additive to the inhibition by UK 14304. These results demonstrate that bradykinin inhibits noradrenaline release from rat sympathetic neurons via presynaptic B2 receptors. This effect does not involve cyclooxygenase products, M-type K+ channels, or protein kinase C, but rather an inhibition of voltage-gated Ca2+ channels.

  2. Safe administration of a gelatin-containing vaccine in an adult with galactose-α-1,3-galactose allergy.

    PubMed

    Pinson, Michelle L; Waibel, Kirk H

    2015-03-03

    Immunoglobulin (Ig) E antibodies to galactose-α-1,3-galactose (α-Gal) are associated with delayed anaphylaxis to mammalian food products and gelatin-based foods (Commins et al., J Allergy Clin Immunol 2009;123:426; Caponetto et al., J Allergy Clin Immunol Pract 2013;1:302). We describe a patient with α-Gal allergy who successfully tolerated the live zoster vaccine and we review anaphylactic reactions reported to this vaccine. Our patient, who tolerated a vaccine containing the highest gelatin content, is reassuring but continued safety assessment of gelatin-containing vaccines for this patient cohort is recommended as there are multiple factors for this patient cohort that influence the reaction risk. Published by Elsevier Ltd.

  3. Loss of Intralipid®- but Not Sevoflurane-Mediated Cardioprotection in Early Type-2 Diabetic Hearts of Fructose-Fed Rats: Importance of ROS Signaling

    PubMed Central

    Zhang, Liyan; Affolter, Andreas; Gandhi, Manoj; Hersberger, Martin; Warren, Blair E.; Lemieux, Hélène; Sobhi, Hany F.; Clanachan, Alexander S.; Zaugg, Michael

    2014-01-01

    Background Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. Methods Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. Results Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. Conclusions Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection. PMID:25127027

  4. Dietary intake of S-(α-carboxybutyl)-DL-homocysteine induces hyperhomocysteinemia in rats

    PubMed Central

    Strakova, Jana; Williams, Kelly T.; Gupta, Sapna; Schalinske, Kevin L.; Kruger, Warren D.; Rozen, Rima; Jiracek, Jiri; Li, Lucas; Garrow, Timothy A.

    2010-01-01

    Betaine homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to homocysteine forming dimethylglycine and methionine. We previously showed that inhibiting BHMT in mice by intraperitoneal injection of S-(α-carboxybutyl)-DL-homocysteine (CBHcy) results in hyperhomocysteinemia. In the present study, CBHcy was fed to rats to determine whether it could be absorbed and cause hyperhomocysteinemia as observed for the intraperitoneal administration of the compound in mice. We hypothesized that dietary administered CBHcy will be absorbed and will result in the inhibition of BHMT and cause hyperhomocysteinemia. Rats were meal-fed every 8 hours an L-amino acid-defined diet either containing or devoid of CBHcy (5 mg/meal) for 3 days. The treatment decreased liver BHMT activity by 90% and had no effect on methionine synthase, methylenetetrahydrofolate reductase, phosphatidylethanolamine N-methyltransferase and CTP:phosphocholine cytidylyltransferase activities. In contrast, cystathionine β-synthase activity and immunodetectable protein decreased (56 and 26%, respectively) and glycine N-methyltransferase activity increased (52%) in CBHcy-treated rats. Liver S-adenosylmethionine levels decreased by 25% in CBHcy-treated rats and S-adenosylhomocysteine levels did not change. Further, plasma choline decreased (22%) and plasma betaine increased (15-fold) in CBHcy-treated rats. The treatment had no effect on global DNA and CpG island methylation, liver histology and plasma markers of liver damage. We conclude that CBHcy mediated BHMT inhibition causes an elevation in total plasma homocysteine that is not normalized by the folate-dependent conversion of homocysteine to methionine. Further, metabolic changes caused by BHMT inhibition affect cystathionine β-synthase and glycine N-methyltransferase activities, which further deteriorate plasma homocysteine levels. PMID:20797482

  5. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    PubMed Central

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  6. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  7. Ketoprofen and antinociception in hypo-oestrogenic Wistar rats fed on a high sucrose diet.

    PubMed

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; García-Martínez, Betzabeth Anali; López-Muñoz, Francisco Javier

    2016-10-05

    Non-steroidal anti-inflammatory drugs such as ketoprofen are the most commonly used analgesics for the treatment of pain. However, no studies have evaluated the analgesic response to ketoprofen in conditions of obesity. The aim of this study was to analyse the time course of nociceptive pain in Wistar rats with and without hypo-oestrogenism on a high sucrose diet and to compare the antinociceptive response using ketoprofen. Hypo-oestrogenic and naïve rats received a hyper caloric diet (30% sucrose) or water ad libitum for 17 weeks, the thermal nociception ("plantar test" method) and body weight were tested during this period. A biphasic response was observed: thermal latency decreased in the 4th week (hyperalgesia), while from 12th to 17th week, thermal latency increased (hypoalgesia) in hypo-oestrogenic rats fed with high sucrose diet compared with the hypo-oestrogenic control group. At 4th and 17th weeks, different doses of ketoprofen (1.8-100mg/kg p.o.), were evaluated in all groups. The administration of ketoprofen at 4th and 17th weeks showed dose-dependent effects in the all groups; however, a greater pharmacological efficacy was observed in the 4th week in the hypo-oestrogenic animals that received sucrose. Nevertheless, in all the groups significantly diminish the antinociceptive effects in the 17th week. Our data showed that nociception was altered in the hypo-oestrogenic animals that were fed sucrose (hyperalgesia and hypoalgesia). Ketoprofen showed a dose-dependent antinociceptive effect at both time points. However, hypo-oestrogenism plus high-sucrose diet modifies the antinociceptive effect of ketoprofen. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters.

    PubMed

    Rosario, Fredrick J; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L; Jansson, Thomas

    2011-03-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid transporters. Pregnant rats were fed either an isocaloric low protein (LP, 4% protein) or control diet (18% protein) and studied at gestational day (GD)15, GD19, or GD21 (term 23). At GD19 and GD21, placental expression of phosphorylated eukaryotic initiation factor 4E binding protein 1 (Thr-36/46 or Thr-70) and phosphorylated S6 ribosomal protein (Ser-235/236) was decreased in the LP group. In addition, placental expression of phosphorylated S6 kinase 1 (Thr-389), phosphorylated Akt (Thr-308), and phosphorylated signal transducer and activator of transcription 3 (Tyr-705) was reduced at GD21. In microvillous plasma membranes (MVM) isolated from placentas of LP animals, protein expression of the sodium-coupled neutral amino acid transporter (SNAT)2 and the large neutral amino acid transporters 1 and 2 was reduced at GD19 and GD21. MVM SNAT1 protein expression was reduced at GD21 in LP rats. SNAT4 and 4F2 heavy chain expression in MVM was unaltered. System A and L amino acid transporter activity was decreased in MVM from LP animals at GD19 and GD21. In conclusion, maternal protein restriction inhibits placental insulin, mammalian target of rapamycin signaling, and signal transducer and activator of transcription 3 signaling, which is associated with a down-regulation of placental amino acid transporters. We speculate that maternal endocrine and metabolic control of placental nutrient transport reduces fetal growth in response to protein restriction.

  9. Free galactose concentrations in fresh and stored apples (Malus domestica) and processed apple products.

    PubMed

    Scaman, Christine H; Jim, Vickie Jin Wai; Hartnett, Carol

    2004-02-11

    Gas chromatography was used to quantitate free galactose in Braeburn, Fuji, Red Delicious, and Spartan apples during cold storage, after thermal processing of apple slices and in juice produced using clarification and/or liquifaction enzymes. Spartan had significantly higher galactose levels as compared to Red Delicious apples, but changes in galactose in all varieties during 9 months of cold storage were insignificant. Blanching and canning decreased galactose levels, but doubling the thermal processing during canning increased the free galactose concentration detected in plant tissue. An enzymatic liquefaction aid used to prepare apple juice dramatically increased the free galactose content while a clarification aid caused only a slight increase due to its selective action on soluble pectin. These findings provide useful information for dietitians to base diet recommendations for galactosemic patients.

  10. Complete inhibition of creatine kinase in isolated perfused rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less

  11. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    PubMed

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (p<0.05) than in the control rats. These results suggest that dietary L-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  12. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed themore » fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.« less

  13. Response of rats fed diets low in glucose and glucose precursors to low levels of glucose, starch and chemically modified starch.

    PubMed

    Chen, S C; Tsai, S; Nesheim, M C

    1980-05-01

    Several levels of glucose or starches were added to a basal diet that was free of available carbohydrate and low in carbohydrate precursors and fed to male, weanling rats. Rats fed such diets were highly responsive to dietary carbohydrate in growth rate, blood glucose levels and blood ketone bodies. There were no significant differences in the activities of pancreatic amylase, liver glucokinase, glucose-6-phosphatase and fructose-1,6-diphosphatase when dietary carbohydrate varied from 1.5 to 6% of the diet. Under these feeding conditions, a minimum of 6% by weight or 5.8% of the dietary calories has to be provided by carbohydrate to allow the rat an optimum rate of growth. Such diets that are low in glucose precursors were employed as an assay system for glucose availability from chemically cross-bonded starches with various degrees of phosphate crosslinkage. The data showed that introducing low levels of phosphate crosslinkages into the starch had little effect on the glucose availability from the starch.

  14. The potential of shark bone powder in breast cancer inhibition (pre-clinical study in DMBA-Induced Sprague Dawly Rats)

    NASA Astrophysics Data System (ADS)

    Bintari, S. H.; Parman, S.; Dafip, M.

    2018-03-01

    Breast cancer is a malignant disease, which lead to second cause of that after cervical cancer in women. To date, lots of drugs and supplement have been developed and consumed by patients. Shark bone is one of the supplements that might inhibit the proliferation of cancer cells. The application of shark bone powder for supplementation in breast cancer cases still becomes controversy; but until now people are still many who consume as a supplement. This study aimed to prove the potency of shark bone powder in the inhibition of breast cancer proliferation and to propose the possibility of its biological mechanism. The pre-clinical experimental study used a controlled posttest controlled design with 25 white rats strains of DML-induced Sprague-Dawley strains. The cancer markers observed were p53, AgNORs, VEGF, Bcl-2, and Cas-3. The test subjects were divided into 3 groups: control group and 2 treatment groups fed modified with 60% and 90% respectively. A pre-clinical trial of shark bone powder showed that there was significant inhibition for the DMBA-induced anti proliferation and breast cell cancer (p <0.05) parameters. Optimal concentration of shark bone powder to inhibit breast cancer proliferation lies in concentration 30mg/BB/day.

  15. Cytokine and Chemokine Expression Associated with Steatohepatitis and Hepatocyte Proliferation in Rats Fed Ethanol Via Total Enteral Nutrition

    USDA-ARS?s Scientific Manuscript database

    Sprague-Dawley rats were intragastrically fed low carbohydrate-containing ethanol (EtOH) diets via total enteral nutrition for up to 49 d. Induction of EtOH metabolism and appearance of steatosis preceded development of oxidative stress, inflammation, and cell death. A transitory peak of tumor necro...

  16. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    PubMed

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  17. Galactose uncovers face recognition and mental images in congenital prosopagnosia: the first case report.

    PubMed

    Esins, Janina; Schultz, Johannes; Bülthoff, Isabelle; Kennerknecht, Ingo

    2014-09-01

    A woman in her early 40s with congenital prosopagnosia and attention deficit hyperactivity disorder observed for the first time sudden and extensive improvement of her face recognition abilities, mental imagery, and sense of navigation after galactose intake. This effect of galactose on prosopagnosia has never been reported before. Even if this effect is restricted to a subform of congenital prosopagnosia, galactose might improve the condition of other prosopagnosics. Congenital prosopagnosia, the inability to recognize other people by their face, has extensive negative impact on everyday life. It has a high prevalence of about 2.5%. Monosaccharides are known to have a positive impact on cognitive performance. Here, we report the case of a prosopagnosic woman for whom the daily intake of 5 g of galactose resulted in a remarkable improvement of her lifelong face blindness, along with improved sense of orientation and more vivid mental imagery. All these improvements vanished after discontinuing galactose intake. The self-reported effects of galactose were wide-ranging and remarkably strong but could not be reproduced for 16 other prosopagnosics tested. Indications about heterogeneity within prosopagnosia have been reported; this could explain the difficulty to find similar effects in other prosopagnosics. Detailed analyses of the effects of galactose in prosopagnosia might give more insight into the effects of galactose on human cognition in general. Galactose is cheap and easy to obtain, therefore, a systematic test of its positive effects on other cases of congenital prosopagnosia may be warranted.

  18. The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague-Dawley rats.

    PubMed

    Abdulla, Mohammed H; Sattar, Munavvar A; Abdullah, Nor A; Johns, Edward J

    2012-09-01

    The aim of this study is to assess the effects of losartan and carvedilol on metabolic parameters and renal haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of fructose-fed rat. Thirty-six Sprague-Dawley rats were fed for 8 weeks either 20% fructose solution (F) or tap water (C) ad libitum. F or C group received either losartan or carvedilol (10 mg/kg p.o.) daily for the last 3 weeks of the study (FL and L) and (FCV and CV), respectively, then in acute studies the renal vasoconstrictor actions of Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. Data, mean±SEM were analysed using ANOVA with significance at P <0.05. Losartan and carvedilol decreased the area under the glucose tolerance curve of the fructose-fed group. The responses (%) to NA, PE, ME and Ang II in F were lower (P <0.05) than C (F vs. C, 17±2 vs. 38±3; 24±2 vs. 48±2; 12±2 vs. 34±2; 17±2 vs. 26±2), respectively. L had higher (P <0.05) responses to NA and PE while CV had blunted (P <0.05) responses to NA, PE and Ang II compared to C (L, CV vs. C, 47±3, 9±2 vs. 38±3; 61±3, 29±3 vs. 48±2; 16±3, 4±3 vs. 26±2), respectively. FL but not FCV group had enhanced (P <0.05) responses to NA, PE and ME compared to F (FL vs. F, 33±3 vs. 17±2; 45±3 vs. 24±2; 26±3 vs. 12±2), respectively. Losartan and carvedilol had an important ameliorating effect on fructose-induced insulin resistance. Losartan treatment could be an effective tool to restore normal vascular reactivity in the renal circulation of the fructose-fed rat.

  19. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    PubMed

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  20. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santidrian, S.; Cuevillas, F.; Goena, M.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showedmore » that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.« less

  1. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism.

    PubMed

    Deminice, Rafael; de Castro, Gabriela Salim Ferreira; Francisco, Lucas Vieira; da Silva, Lilian Eslaine Costa Mendes; Cardoso, João Felipe Rito; Frajacomo, Fernando Tadeu Trevisan; Teodoro, Bruno Gonzaga; Dos Reis Silveira, Leonardo; Jordao, Alceu Afonso

    2015-04-01

    To examine the effects of creatine (Cr) supplementation on liver fat accumulation in rats fed a choline-deficient diet. Twenty-four rats were divided into 3 groups of 8 based on 4 weeks of feeding an AIN-93 control diet (C), a choline-deficient diet (CDD) or a CDD supplemented with 2% Cr. The CDD diet was AIN-93 without choline. The CDD significantly increased plasma homocysteine and TNFα concentration, as well as ALT activity. In liver, the CDD enhanced concentrations of total fat (55%), cholesterol (25%), triglycerides (87%), MDA (30%), TNFα (241%) and decreased SAM concentrations (25%) and the SAM/SAH ratio (33%). Cr supplementation prevented all these metabolic changes, except for hepatic SAM and the SAM/SAH ratio. However, no changes in PEMT gene expression or liver phosphatidylcholine levels were observed among the three experimental groups, and there were no changes in hepatic triglyceride transfer protein (MTP) mRNA level. On the contrary, Cr supplementation normalized expression of the transcription factors PPARα and PPARγ that were altered by the CDD. Further, the downstream targets and fatty acids metabolism genes, UCP2, LCAD and CPT1a, were also normalized in the Cr group as compared to CDD-fed rats. Cr supplementation prevented fat liver accumulation and hepatic injures in rats fed with a CDD for 4 weeks. Our results demonstrated that one-carbon metabolism may have a small role in mitigating hepatic fat accumulation by Cr supplementation. The modulation of key genes related to fatty acid oxidation pathway suggests a new mechanism by which Cr prevents liver fat accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Anaphylaxis to succinylated gelatin in a patient with a meat allergy: galactose-α(1, 3)-galactose (α-gal) as antigenic determinant.

    PubMed

    Uyttebroek, A; Sabato, V; Bridts, C H; De Clerck, L S; Ebo, D G

    2014-11-01

    Specific immunoglobulin E (sIgE) antibodies towards the galactose-α(1,3)-galactose (α-gal) moieties may elicit life-threatening and fatal anaphylactic reactions. Patients sensitized to α-gal moieties from mammalian meat may also react towards mammalian gelatins and gelatin-containing drugs such as bovine gelatin-based colloid plasma substitute. The case of a 56 year old woman with a meat allergy who suffered anaphylaxis to succinylated gelatin is reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Enzymatic and microstructural changes in the liver of experimental rats fed with fatty diet and fresh or heated soy oil concurrently.

    PubMed

    Jaarin, K; Hwa, Tay Chin; Umar, Nor Aini; Siti Aishah, M A; Das, S

    2010-01-01

    Consumption of heated edible oils may be harmful. The present study aimed to observe the histological changes due to concurrent consumption of soy oil (either fresh or heated) and fatty diet and the changes in the level of alanine transaminase (ALT) and alkaline phosphatase (ALP). Forty female Spraque-Dawley rats were equally divided into four groups (I to IV). All the rats n groups II, III and IV were ovariectomised. Rats in group I (control) were fed with 2% cholesterol diet, whereas the rats in groups II, III and IV were fed with 2% cholesterol diet fortified with 15% weight/weight (w/w) fresh soy oil (FSO), once heated soy oil (1HSO) and five times heated soy oil (5HSO) respectively, for 16 weeks. Blood was taken for liver enzymes and analysed before and after 16 weeks of study. At the end of the study the animals were sacrificed, and the liver was examined histologically. The specimens were weighed, formalin fixed and the sections were stained with hematoxylin and eosin. Fresh, 1HSO and 5HSO soy oil caused significant increase in serum ALT and ALP compared to their base line values. Fresh, 1HSO and 5HSO soy oil caused microsteatosis, inflammation and necrosis of the liver tissues. However, there was no significant difference in the ALT and ALP enzyme levels amongst the oil fed groups. It is concluded that the effect of both fresh and heated soy oil on these parameters was not affected by repeated heating except for the inflammation.

  4. The role of water molecules in stereoselectivity of glucose/galactose-binding protein

    NASA Astrophysics Data System (ADS)

    Kim, Minsup; Cho, Art E.

    2016-11-01

    Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose-GGBP and β-D-galactose-GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.

  5. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  6. Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model.

    PubMed

    Yang, Honggai; Qu, Zhuo; Zhang, Jingze; Huo, Liqin; Gao, Jing; Gao, Wenyuan

    2016-11-01

    Ferulic acid (FA) acts as a powerful antioxidant against various age-related diseases. To investigate the effect and underlying mechanism of FA against d-galactose(d-gal)-induced memory deficit, mice were injected with d-gal to induce memory impairment and simultaneously treated with FA and donepezil. The behavioral results revealed that chronic FA treatment reversed d-gal-induced memory impairment. Further, FA treatment inhibited d-gal-induced AChE activity and oxidative stress via increase of superoxide dismutase activity and reduced glutathione content, as well as decrease of malondialdehyde and nitric oxide levels. We also observed that FA significantly inhibits inflammation in the brain through reduction of NF-κB and IL-1β by enzyme-linked immunosorbent assay. Additionally, FA treatment significantly reduces the caspase-3 level in the hippocampus of d-gal-treated mice. Hematoxylin and eosin and Nissl staining showed that FA prevents neurodegeneration induced by d-gal. These findings showed that FA inhibits d-gal-induced AChE activity, oxidative stress, neuroinflammation and neurodegeneration, and consequently ameliorates memory impairment.

  7. Anti-aggregatory effect of boswellic acid in high-fat fed rats: involvement of redox and inflammatory cascades

    PubMed Central

    2016-01-01

    Introduction A high-fat diet is one of the main dietary factors promoting platelet aggregation. The present study was conducted to elucidate the involvement of boswellic acid (BA) on the platelet hyperaggregability in HFD-fed rats. As platelet hyperaggregability in HFD rats is closely linked to inflammation and enhanced free radical production, the present study was extended to evaluate the anti-inflammatory and anti-oxidative effect of BA on HFD-promoted platelet aggregation. Material and methods Rats were assigned to normal, HFD-fed, aspirin-treated (30 mg/kg), and BA-treated (250 and 500 mg/kg) groups. Results Boswellic acid administration in a high dose was effective in attenuating the severity of hyperlipidemia and platelet aggregation, indicated by lower collagen/epinephrine-induced platelet aggregation, as evidenced by the significant increase (p < 0.05) in the circulating platelet count and reduction in the number of thrombi in the lungs. Moreover, it attenuated the oxidative stress and the intensity of inflammatory mediators associated with platelet hyperaggregability, as evidenced by the inhibitory effects on interlukin-1β, COX-2 and tumor necrosis factor-α, indicating that the antiplatelet activity of BA is likely a consequence of controlling oxidative stress and inflammation. Conclusions The present data suggest that BA shows a promising anti-aggregatory effect by attenuating the enhanced hyperlipidemia, oxidative stress and inflammation associated with HFD. PMID:27904529

  8. Ferulic Acid on Glucose Dysregulation, Dyslipidemia, and Inflammation in Diet-Induced Obese Rats: An Integrated Study

    PubMed Central

    González-Aguilar, Gustavo A.; Loarca-Piña, Guadalupe; Ezquerra-Brauer, Josafat-Marina; Domínguez Avila, J. Abraham; Robles-Sánchez, Maribel

    2017-01-01

    Obesity is considered to be a low-grade chronic inflammatory process, which is associated with cardiovascular and metabolic diseases. An integral evaluation of the effects of ferulic acid on biomarkers of glucose dysregulation, dyslipidemia, inflammation, and antioxidant potential induced by a high-fat diet (HFD) in rats was carried out. Three groups of male Wistar rats (six per group) consumed a basal diet (BD), which was supplemented with either lard at 310 g/kg (HFD) or lard and ferulic acid at 2 g/kg (HFD + FA), ad libitum for eight weeks. Body weight gain, hyperplasia, and hypertrophy in abdominal fat tissues were higher in the HFD group than in the HFD+FA group. The rats fed a HFD + FA significantly inhibited the increase in plasma lipids and glucose, compared with the HFD group. Biomarkers associated with inflammation were found at higher concentrations in the serum of rats fed a HFD than the HFD + FA group. Plasma antioxidant levels were lower in HFD rats compared to rats fed the HFD + FA. These results suggest that ferulic acid improves the obesogenic status induced by HFD, and we elucidated the integral effects of ferulic acid on a biological system. PMID:28661434

  9. Ferulic Acid on Glucose Dysregulation, Dyslipidemia, and Inflammation in Diet-Induced Obese Rats: An Integrated Study.

    PubMed

    Salazar-López, Norma Julieta; Astiazarán-García, Humberto; González-Aguilar, Gustavo A; Loarca-Piña, Guadalupe; Ezquerra-Brauer, Josafat-Marina; Domínguez Avila, J Abraham; Robles-Sánchez, Maribel

    2017-06-29

    Obesity is considered to be a low-grade chronic inflammatory process, which is associated with cardiovascular and metabolic diseases. An integral evaluation of the effects of ferulic acid on biomarkers of glucose dysregulation, dyslipidemia, inflammation, and antioxidant potential induced by a high-fat diet (HFD) in rats was carried out. Three groups of male Wistar rats (six per group) consumed a basal diet (BD), which was supplemented with either lard at 310 g/kg (HFD) or lard and ferulic acid at 2 g/kg (HFD + FA), ad libitum for eight weeks. Body weight gain, hyperplasia, and hypertrophy in abdominal fat tissues were higher in the HFD group than in the HFD+FA group. The rats fed a HFD + FA significantly inhibited the increase in plasma lipids and glucose, compared with the HFD group. Biomarkers associated with inflammation were found at higher concentrations in the serum of rats fed a HFD than the HFD + FA group. Plasma antioxidant levels were lower in HFD rats compared to rats fed the HFD + FA. These results suggest that ferulic acid improves the obesogenic status induced by HFD, and we elucidated the integral effects of ferulic acid on a biological system.

  10. Antihypercholesterolaemic influence of dietary tender cluster beans (Cyamopsis tetragonoloba) in cholesterol fed rats

    PubMed Central

    Pande, S.; Platel, K.; Srinivasan, K.

    2012-01-01

    Background & objectives: Cluster beans (Cyamopsis tetragonoloba) are rich source of soluble fibre content and are known for their cholesterol lowering effect. The beneficial anti-hypercholesterolaemic effect of whole dietary cluster beans as a source of dietary fibre was evaluated in high cholesterol diet induced hypercholesterolaemia in experimental rats. Methods: Male Wistar rats (90-95 g) divided in six groups of 10 rats each were used. Freeze dried tender cluster beans were included at 12.5 and 25 per cent levels in the diet of animals maintained for 8 wk either on high (0.5%) cholesterol diet or basal control diet. Results: Significant anti-hypercholesterolaemic effect was seen in cluster bean fed animals, the decrease in serum cholesterol being particularly in the LDL associated fraction. There was also a beneficial increase in HDL associated cholesterol fraction. Hepatic lipid profile showed a significant decrease in both cholesterol and triglycerides as a result of feeding tender cluster beans along with high cholesterol diet. Interpretation & Conclusions: The present experimental results showed the beneficial hypocholesterolaemic and hypolipidimic influences dietary tender cluster beans in atherogenic situation. Studies in human need to be done to confirm the results. PMID:22561629

  11. The galactose-induced decrease in phosphate levels leads to toxicity in yeast models of galactosemia.

    PubMed

    Machado, Caio M; De-Souza, Evandro A; De-Queiroz, Ana Luiza F V; Pimentel, Felipe S A; Silva, Guilherme F S; Gomes, Fabio M; Montero-Lomelí, Mónica; Masuda, Claudio A

    2017-06-01

    Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats.

    PubMed

    Kumar, Vikash; Wollner, Clayton; Kurth, Theresa; Bukowy, John D; Cowley, Allen W

    2017-10-01

    The goal of the present study was to explore the protective effects of mTORC1 (mammalian target of rapamycin complex 1) inhibition by rapamycin on salt-induced hypertension and kidney injury in Dahl salt-sensitive (SS) rats. We have previously demonstrated that H 2 O 2 is elevated in the kidneys of SS rats. The present study showed a significant upregulation of renal mTORC1 activity in the SS rats fed a 4.0% NaCl for 3 days. In addition, renal interstitial infusion of H 2 O 2 into salt-resistant Sprague Dawley rats for 3 days was also found to stimulate mTORC1 activity independent of a rise of arterial blood pressure. Together, these data indicate that the salt-induced increases of renal H 2 O 2 in SS rats activated the mTORC1 pathway. Daily administration of rapamycin (IP, 1.5 mg/kg per day) for 21 days reduced salt-induced hypertension from 176.0±9.0 to 153.0±12.0 mm Hg in SS rats but had no effect on blood pressure salt sensitivity in Sprague Dawley treated rats. Compared with vehicle, rapamycin reduced albumin excretion rate in SS rats from 190.0±35.0 to 37.0±5.0 mg/d and reduced the renal infiltration of T lymphocytes (CD3 + ) and macrophages (ED1 + ) in the cortex and medulla. Renal hypertrophy and cell proliferation were also reduced in rapamycin-treated SS rats. We conclude that enhancement of intrarenal H 2 O 2 with a 4.0% NaCl diet stimulates the mTORC1 pathway that is necessary for the full development of the salt-induced hypertension and kidney injury in the SS rat. © 2017 American Heart Association, Inc.

  13. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats

    PubMed Central

    Suh, Nanjoo; Reddy, Bandaru S.; DeCastro, Andrew; Paul, Shiby; Lee, Hong Jin; Smolarek, Amanda K.; So, Jae Young; Simi, Barbara; Wang, Chung Xiou; Janakiram, Naveena B.; Steele, Vernon; Rao, Chinthalapally V.

    2011-01-01

    Evidence supports the protective role of non-steroidal anti-inflammatory drugs (NSAIDs) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet and colon tumors were induced with azoxymethane (AOM). One week after the second AOM-treatment groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm) or naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, p=0.005) and multiplicity (58% reduction, p=0.008). Most importantly, colon tumor multiplicities were profoundly decreased (80–85% reduction, p<0.0001) when given low-dose atorvastatin with either sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (p=0.001) or naproxen (p =0.0005). Proliferation markers, proliferating cell nuclear antigen, cyclin D1 and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and cyclooxygenase-2, phospho-p65, as well as inflammatory cytokines, TNF-α, IL-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans. PMID:21764859

  14. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    PubMed Central

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  15. Analysis of concentration and (13)C enrichment of D-galactose in human plasma.

    PubMed

    Schadewaldt, P; Hammen, H W; Loganathan, K; Bodner-Leidecker, A; Wendel, U

    2000-05-01

    A stable-isotope dilution method for the sensitive determination of D-galactose in human plasma was established. D-[(13)C]Galactose was added to plasma, and the concentration was measured after D-glucose was removed from the plasma by treatment with D-glucose oxidase and the sample was purified by ion-exchange chromatography. For gas chromatographic-mass spectrometric analysis, aldononitrile pentaacetate derivatives were prepared. Monitoring of the [MH-60](+) ion intensities at m/z 328, 329, and 334 in the positive chemical ionization mode allowed the assessment of 1-(12)C-, 1-(13)C-, and U-(13)C(6)-labeled D-galactose, respectively. The D-galactose concentration was quantified on the basis of the (13)C-labeled internal standard. The method was linear (range examined, 0.1-5 micromol/L) and of good repeatability in the low and high concentration ranges (within- and between-run CVs <15%). The limit of quantification for plasma D-galactose was <0.02 micromol/L. Measurements in plasma of postabsorptive subjects yielded D-galactose concentrations (mean +/- SD) of 0.12 +/- 0.03 (n = 16), 0.11 +/- 0.04 (n = 15), 1.44 +/- 0.54 (n = 10), and 0.17 +/- 0.07 (n = 5) micromol/L in healthy adults, diabetic patients, patients with classical galactosemia, and obligate heterozygous parents thereof, respectively. These data were considerably lower (3- to 18-fold) than the values of a conventional enzymatic assay. The procedure was also applied successfully in a stable-isotope turnover study to evaluate endogenous D-galactose formation. The present findings establish that detection of D-galactose from endogenous sources is feasible in human plasma and show that erroneously high results may be obtained by enzymatic methods.

  16. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity

    PubMed Central

    Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu

    2017-01-01

    The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D-galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, diamine oxidase (DAO), glutamine (Gln) and glutaminase were measured. The expression of S-100β in the serum was detected using an enzyme-linked immunosorbent assay. The expression levels of the amyloid β-protein (Aβ) precursor (APP), presenilin 1 (PS1), β-site APP-cleaving enzyme (BACE), zona occludens protein (ZO)-1 and Aβ 1–40 in the brain of rats were detected via reverse-transcription polymerase chain reaction, western blotting and immunohistochemistry. The levels of LPS, TNF-α, IL-1, DAO, Gln and S-100β in serum and the mRNA and protein expression levels of APP, PS1, BACE and Aβ1-40 in the brain were markedly increased in the model rats compared with controls. The level of glutaminase in the serum and the expression of ZO-1 in the brain were decreased in the model rats compared with controls. IETM was present in the rat model of aluminum neurotoxicity established by D-galactose and AlCl3 and may be important in the development of this neurotoxicity. PMID:28627692

  17. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits.

    PubMed

    Yamakoshi, J; Kataoka, S; Koga, T; Ariga, T

    1999-01-01

    The aim of this study was to evaluate the antiatherosclerotic effect of proanthocyanidin-rich extracts from grape seeds in cholesterol-fed rabbits. Proanthocyanidin-rich extracts (0.1% and 1% in diets [w/w]) did not appreciably affect the changes in serum lipid profile of cholesterol-fed rabbits. The level of cholesteryl ester hydroperoxides (ChE-OOH) induced by 2,2'-azobis(2-amidinopropane-dihydrochloride (AAPH) were lower in the plasma of rabbits fed proanthocyanidin-rich extract plus cholesterol than in the plasma of rabbits fed cholesterol alone, but not in the low-density lipoprotein (LDL). Aortic malondialdehyde (MDA) content decreased in rabbits fed proanthocyanidin-rich extract. Feeding proanthocyanidin-rich extracts (0.1 and 1% in the diet) to rabbits significantly reduced severe atherosclerosis in the aorta. Immunohistochemical analysis revealed a decrease in the number of oxidized LDL-positive macrophage-derived foam cells in atherosclerotic lesions in the aorta of rabbits fed proanthocyanidin-rich extract. When proanthocyanidin-rich extract was administered orally to rats, proanthocyanidin was detected in the plasma by Porters method but not in the lipoproteins (LDL plus VLDL). In an in vitro experiment using human plasma, proanthocyanidin-rich extract added to the plasma inhibited the oxidation of cholesteryl linoleate in LDL, but not in the LDL isolated after the plasma and the extract were incubated in advance. These results suggested that proanthocyanidins, the major polyphenols in red wine, might trap reactive oxygen species in aqueous series such as plasma and interstitial fluid of the arterial wall, thereby inhibiting oxidation of LDL and showing an antiatherosclerotic activity.

  18. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    PubMed Central

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-01-01

    Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. Conclusion The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis. PMID:17118137

  19. Effects of Eriobotrya japonica seed extract on oxidative stress in rats with non-alcoholic steatohepatitis.

    PubMed

    Yoshioka, Saburo; Hamada, Atsuhide; Jobu, Kohei; Yokota, Junko; Onogawa, Masahide; Kyotani, Shojiro; Miyamura, Mitsuhiko; Saibara, Toshiji; Onishi, Saburo; Nishioka, Yutaka

    2010-02-01

    Non-alcoholic steatohepatitis is associated with the deposition of lipid droplets in the liver, and is characterised histologically by the infiltration of inflammatory cells, hepatocellular degeneration and liver fibrosis. Oxidative stress may play an important role in the onset and deterioration of non-alcoholic steatohepatitis. We previously reported that an Eriobotrya japonica seed extract, extracted in 70% ethanol, exhibited antioxidant actions in vitro and in vivo. In this study, we examined the effect of this extract in a rat model of non-alcoholic steatohepatitis. The seed extract was given in the drinking water to fats being fed a methionine-choline-deficient diet for 15 weeks. Increases in alanine aminotransferase and aspartate aminotransferase levels were significantly inhibited in rats fed the seed extract compared with the group on the diet alone. Formation of fatty droplets in the liver was also inhibited. Antioxidant enzyme activity in liver tissue was higher than in the diet-only group and lipid peroxidation was reduced compared with rats that also received the extract. Expression of 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal was lower in the rats given the seed extract than in the diet-only group. In the former, liver tissue levels of transforming growth factor-beta and collagen were also decreased. Thus, the E. japonica seed extract inhibited fatty liver, inflammation and fibrosis, suggesting its usefulness in the treatment of non-alcoholic steatohepatitis.

  20. Interleukin-1-induced anorexia in the rat. Influence of prostaglandins.

    PubMed Central

    Hellerstein, M K; Meydani, S N; Meydani, M; Wu, K; Dinarello, C A

    1989-01-01

    The anorexia associated with acute and chronic inflammatory or infectious conditions is poorly understood. Our objectives were to explore the anorexigenic effects of interleukin-1 (IL-1) in the rat. Recombinant human (rh) IL-1 beta, murine (rm) IL-1 alpha and to a lesser extent rhIL-1 alpha significantly reduced food intake at greater than or equal to 4.0 micrograms/kg i.p. but not at lower doses, in young (200-250 g) meal-fed rats on chow diets. The anorexic effect appears to be mediated by prostaglandins since pretreatment with ibuprofen completely blocked it, and a fish oil based diet abolished it, in comparison to corn oil or chow diets. Fish oil feeding also decreased basal and IL-1 stimulated prostaglandin E2 production by tissues in vitro (liver, brain, peritoneal macrophages) and in the whole body. Constant intravenous infusions of lower doses of IL-1 also diminished food intake, though intravenous boluses did not (reflecting rapid renal clearance). Chronic daily administration of IL-1 caused persistent inhibition of food intake for 7-17 d in chow and corn oil fed rats, but had no effect in fish oil fed rats. There was an attenuation of the effect (tachyphylaxis) after 7 d in corn oil and chow fed rats, but slowed weight gain and lower final weights were observed after 17-32 d of daily IL-1. Old (18-20 mo Fisher 344) rats showed less sensitivity to IL-1 induced anorexia. In conclusion, IL-1 is anorexigenic in the rat, but this is influenced by the structural form of IL-1, the route and chronicity of administration, the source of dietary fat, and the age of the animal. The ability of prior fat intake to influence the anorexic response to IL-1 represents a novel nutrient-nutrient interaction with potential therapeutic implications. PMID:2786888

  1. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  2. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome.

    PubMed

    Kaprinay, B; Lipták, B; Slovák, L; Švík, K; Knezl, V; Sotníková, R; Gáspárová, Z

    2016-12-21

    People with metabolic syndrome have higher risk of cardiovascular diseases then those without. The aim of the work was to investigate whether high fat diet administered to Prague hereditary hypertriglyceridemic (HTG) rats can induce signs of metabolic syndrome (MetS). Our results showed that HTG rats fed high fat diet (HTGch) had disturbed glucose metabolism and also lipid metabolism - increased serum triacylglycerols (TAG), total cholesterol (Ch), low-density lipoprotein-Ch (LDL-Ch), and decreased high-density lipoprotein-Ch (HDL-Ch). Their livers proved markers of developing steatosis. Moreover, HTGch had increased blood pressure, yet the vascular endothelium was not significantly damaged. All these changes were accompanied with oxidative stress and tissue damage identified as increased liver concentrations of thiobarbituric acid reactive substances (TBARS) and activity of the lysosomal enzyme N-acetyl-D-glucosaminidase (NAGA). We assume that the model used may be suitable for the study of MetS with no evidence of obesity. Prolongation of the high fat diet duration might have a major impact on all parameters tested, especially on vascular endothelial function.

  3. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    PubMed

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  4. Estrogen Abolishes Latent Inhibition in Ovariectomized Female Rats

    ERIC Educational Resources Information Center

    Nofrey, Barbara S.; Ben-Shahar, Osnat M.; Brake, Wayne G.

    2008-01-01

    Estrogen is frequently prescribed as a method of birth control and as hormone replacement therapy for post-menopausal women with varied effects on cognition. Here the effects of estrogen on attention were examined using the latent inhibition (LI) behavioral paradigm. Ovariectomized (OVX) female rats were given either estrogen benzoate (EB, 10 or…

  5. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet

    PubMed Central

    Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Soleimany, Mansureh

    2015-01-01

    Objective(s): Lectin-like low density lipoprotein receptor (LOX-1) has pivot role in vascular complications, which is upregulated in numerous pathological conditions. Since exercise has beneficial effects in prevention of hyperlipidemic complications, present study examined protective effects of aerobic exercise through reduction of LOX-1 expression in heart during dyslipidemia. Materials and Methods: Four groups of rats were used (N=25): Normal, Normal and exercise, High fat and High fat and exercise. High fat diet (HFD) was made by adding 10% animal oil, 2% cholesterol and 0.5% colic acid to standard rodent chow. Exercise protocol consisted of swimming 1 hr/day, and 5 days/week for 8 weeks. Plasma lipids were evaluated at the end of experiment, 48 hr after final session of exercise. At the end, rats were sacrificed and heart was removed for determination of malondialdehyde (MDA) content, and LOX-1 expression. Results: HFD meaningfully changed lipid profile (>50%), but chronic exercise had no significant effects on lipid profile. LOX-1 expression was significantly increased in heart of rats fed with HFD, while swimming exercise considerably reduced gene expression of LOX-1. MDA content was significantly enhanced in rats fed with HFD (4.37±0.6 nmol/mg, P<0.01) compared to normal group (1.56±0.48 nmol/mg), whereas swimming exercise decreased MDA level of heart in rats fed with HFD (2.28±0.32, P<0.01). Conclusion: Findings indicated that swimming exercise is able to diminish heart expression of LOX-1 receptor concomitant reduction of oxidative stress. Since these parameters are involved in generation of dyslipidemic complications, swimming exercise is a good candidate to reduce these complications. PMID:26557970

  6. The control of fatty acid metabolism in liver cells from fed and starved sheep.

    PubMed Central

    Lomax, M A; Donaldson, I A; Pogson, C I

    1983-01-01

    Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats. PMID:6615480

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The lowering effect of dietary glucose versus starch on fat digestibility in rats is dependent on the type of fat in the diet.

    PubMed

    Vissia, G H; Beynen, A C

    2000-07-01

    The aim of the study was to determine whether the type of dietary fat influences the effect of dietary glucose on lipid digestibility. Earlier work had shown that glucose, when compared with starch, reduced fat digestibility in rats fed rations containing animal fat as fat source. Male rats (n = 6/group) were fed for two weeks on purified diets containing either 62% (w/w) starch or glucose and either 8% (w/w) palm oil, coconut fat, soybean oil or medium-chain triglycerides (MCT) as the main source of fat. The diets had no differential effect on growth. Glucose significantly depressed apparent lipid digestibility in rats fed the diets containing either palm oil or coconut fat, but not in rats given the diets containing either soybean oil or MCT. Thus, the inhibitory effect of glucose on lipid digestibility in rats is dependent on the dietary lipid source. This observation may contribute to understanding the mechanism by which dietary glucose inhibits fat digestion.

  9. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    PubMed Central

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  10. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign

  11. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  12. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets.

    PubMed

    Poulose, Shibu M; Bielinski, Donna F; Carey, Amanda; Schauss, Alexander G; Shukitt-Hale, Barbara

    2017-06-01

    Açaí (Euterpe spp.), an exotic palm fruit, has recently emerged as a promising source of natural antioxidants with wide pharmacological and nutritional value. In this study, two different species of açaí pulp extracts, naturally grown in two distinct regions of the Amazon, namely, Euterpe oleracea Mart. (habitat: Brazilian floodplains of the Amazon) and Euterpe precatoria Mart. (habitat: Bolivian Amazon), were studied for their effects on brain health and cognition. Neurochemical analyses were performed in critical brain regions associated with memory and cognition of 19-month-old açaí-fed rats, in whom the cognitive benefits of açaí had been established. Results indicated significant reductions (P< 0.05) in prooxidant NADPH-oxidoreductase-2 (NOX2) and proinflammatory transcription factor NF-κB in açaí-fed rats. Measurement of Nrf2 expression, a transcription factor for antioxidant enzymes, and a possible link between oxidative stress, neuroinflammation and autophagy mechanisms, indicated significant overexpression (P<0.005) in the hippocampus and frontal cortex of the açaí-fed rats. Furthermore, significant activation of endogenous antioxidant enzymes GST and SOD were also observed in the açaí-fed animals when compared to control. Analysis of autophagy markers such as p62, phospho-mTOR, beclin1 and MAP1B-LC3 revealed differential expression in frontal cortex and hippocampus, mostly indicating an upregulation in the açaí-fed rats. In general, results were more profound for EP than EO in hippocampus as well as frontal cortex. Therefore, an açaí-enriched diet could possibly modulate Nrf2, which is known to modulate the intracellular redox status, thereby regulating the ubiquitin-proteosomal pathway, ultimately affecting cognitive function in the aging brain.

  13. Moderate red-wine consumption partially prevents body weight gain in rats fed a hyperlipidic diet.

    PubMed

    Vadillo, Montserrat; Bargalló, Montserrat Vadillo; Ardévol, Anna; Grau, Anna Ardévol; Fernández-Larrea, Juan; Fernández-Larrea, Juan de Dios; Pujadas, Gerard; Anguiano, Gerard Pujadas; Bladé, Cinta; Segarra, Maria Cinta Bladé; Salvadó, Maria Josepa; Rovira, Maria Josepa Salvadó; Arola, Lluís; Ferré, Lluia Arola; Blay, Mayte; Olivé, Mayte Blay

    2006-02-01

    Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; P<.05) and lower energy intake (269.45 +/- 4.02 KJ/animal.day vs day vs 300.81 +/- 4.52 KJ/animal.day; P<.05) and had less fat mass at epididymal location respect to the whole body weight (0.014 +/- 0.001 vs 0.017 +/- 0.001; P<.05) than the HFD group. However, the red wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity.

  14. Influence of chronic stress on the compositions of hepatic cholesterol and triglyceride in male Wistar rats fed a high fat diet.

    PubMed

    Gao, Siyuan; Han, Xue; Fu, Jihua; Yuan, Xiaoling; Sun, Xing; Li, Qiang

    2012-07-01

      We determined the influence of chronic stress (CS) on the compositions of hepatic cholesterol and triglyceride (TG) in rats fed a high fat diet (HFD).   Male Wistar rats were fed either a standard diet or a HFD and half of the HFD fed rats were given CS (electric foot shock assisted with noise) for 8 weeks.   Compared with the control group, the levels of hepatic total cholesterol (TC) and TG were significantly elevated in the HFD and HFD with chronic stress (HFD+CS) groups, and the more severe elevations of them were found in the HFD group. Inversely, the more severe elevations of hepatic water-soluble parts of TC and TG were found in the HFD+CS group, as the elevations of low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol in liver and serum, tumor necrosis factor-α, interleukin-1β and malondialdehyde in liver. Meanwhile, downregulated mRNA expressions of hepatic liver X receptor-α (LXR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were also more severe in the HFD+CS group.   CS can aggravate the high levels of water-soluble compositions of hepatic TC and TG induced by HFD as it aggravates hepatic inflammation and oxidative stress; in spite of that, however, it cannot further promote hepatic lipidosis. This is consistent with the downregulated mRNA expressions of LXR-α and PPAR-γ. © 2012 The Japan Society of Hepatology.

  15. Tissue accumulation and urinary excretion of chromium in rats fed diets containing graded levels of chromium chloride or chromium picolinate.

    PubMed

    Yoshida, Munehiro; Hatakeyama, Erika; Hosomi, Ryota; Kanda, Seiji; Nishiyama, Toshimasa; Fukunaga, Kenji

    2010-08-01

    To attempt a risk assessment of the excess intake of trivalent chromium (Cr), tissue Cr accumulation and urinary Cr excretion were examined in weanling rats fed experimental diets containing graded levels of Cr chloride (CrCl3) or Cr picolinate (CrPic). Thirty-six male weanling 4-weeks-old Wistar rats were divided into six groups and fed a casein-based semi-purified diet (Cr content: <0.02 microg/g) supplemented with 1, 10, or 100 microg Cr/g as CrCl3 or CrPic for 28 days. Among the experimental groups, no significant difference was observed in body weight; however, supplementation of 100 microg Cr/g to the diets caused a significant low liver weight irrespective of the chemical species of Cr. Activities of serum aspartate aminotransferase and alanine aminotransferase were significantly elevated in rats given CrPic at 100 microg Cr/g. In the liver, kidney and femur, Cr accumulation increased with elevation of the dietary Cr level. No influence of the difference in the chemical species of supplemented Cr was observed in the liver and kidney, but CrCl3 caused significantly higher Cr accumulation than CrPic in the femur of rats given 100 microg Cr/g. Daily urinary Cr excretion elevated with the increase of the dietary Cr level. Rats given CrPic showed significantly higher daily urinary Cr excretion than those given CrCl3, particularly at a dietary Cr level of 100 microg/g. The rate of urinary Cr excretion in rats given CrPic was constant, irrespective of the dietary Cr level, but that of rats given CrCl3 fell with the increase of the dietary Cr level. These results indicate that the lowest adverse effect level of dietary Cr is less than 100 microg/g, irrespective of the chemical species of Cr.

  16. Hypolipidemic and Hypocholesterolemic Effect of Roselle (Hibiscus sabdariffa L.) Seeds Oil in Experimental Male Rats.

    PubMed

    Ali, Rehab F M; El-Anany, Ayman M

    2017-01-01

    The current investigation aimed to evaluate the influence of roselle seeds oil (RSO), coconut oil (CNO) and binary mixture of them on serum lipids of experimental rats. Fatty acid composition of native and blended oils was determined. Thirty five male Albino rats (145- 160 g) were used throughout this study. The rats were fed AIN-93G diet containing 10% fat from CNO, RSO, B1 (25%RSO+ 75 %CNO), B2 (50 %RSO+ 50 %CNO or B3 (75 %RSO+ 25 % CNO) for eight weeks. Blood samples were collected at the beginning, every two weeks during the experiment, and at the end of the experiment. At the time of sacrifice, organs weights in relation to their body weights were immediately recorded. Substitution of 25, 50 and 75 % of CNO with equal amounts of RSO reduced saturated fatty acids by 16.04, 32.58 and 48.77 %, respectively in blended oils. The content of linoleic (C18:2) increased from not detected level in CNO to 9.81, 19.67 and 29.48 % in CNO blended with 25, 50 and 75 % of RSO, respectively. The relative liver weights of rats fed CNO was significantly higher than that of those fed RSO and blended oils. Mixing CNO with various levels of RSO attenuates the adverse effect in the relative liver weights which caused by CNO administration. At the end of the experiment, blinding coconut oil with 25, 50 and 75 % of roselle oil inhibited the elevation in total cholesterol by 9.69, 28.16 and 36.16 %, respectively compared to CNO rats. Rats fed diet containing CNO for 8 weeks had significantly the highest content (126.49 mg/dl) of low-density lipoprotein cholesterol, while those fed 100 % RSO (as a source of lipids) had the lowest concentration of LDL-C (64.32 mg/dL). Atherogenic index (AI) values of rats submitted B1, B2 and B3 were about 1.12, 1.23 and 1.28 times as low as those of rats fed CNO diet, respectively. The results of this study indicate that roselle seeds oil (RSO) reduces hyperlipidemia and hypercholesterolemia in rats fed diet rich in saturated fatty acids.

  17. Liver cholesterol concentrations in mice fed diets containing various sources of fat, carbohydrates or fiber.

    PubMed

    Beynen, A C; Klaasen, H L; Koopman, J P; Fielmich-Bouman, A M; Lemmens, A G

    1989-01-01

    Liver cholesterol concentrations were measured in mice after feeding for 30 days cholesterol-free, semipurified diets containing various sources of fat, carbohydrates or fiber. Olive oil produced significantly higher liver cholesterol concentrations than tallow, sunflowerseed oil and cocoa fat. In mice fed either fructose or sucrose liver cholesterol was significantly increased when compared with mice fed galactose or lactose. Dietary cellulose, when compared with pectin, did not influence liver cholesterol. The amount of fat in the diet, in the form of either corn oil or coconut fat, had no significant effect on liver cholesterol. It is concluded that the type of carbohydrate and fat in the diet are major determinants of liver cholesterol in mice.

  18. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  19. Effects of central administration of resistin on renal sympathetic nerve activity in rats fed a high-fat diet: a comparison with leptin.

    PubMed

    Habeeballah, H; Alsuhaymi, N; Stebbing, M J; Badoer, E

    2017-08-01

    Similar to leptin, resistin acts centrally to increase renal sympathetic nerve activity (RSNA). In high-fat fed animals, the sympatho-excitatory effects of leptin are retained, in contrast to the reduced actions of leptin on dietary intake. In the present study, we investigated whether the sympatho-excitatory actions of resistin were influenced by a high-fat diet. Further, because resistin and leptin combined can induce a greater sympatho-excitatory response than each alone in rats fed a normal chow diet, we investigated whether a high-fat diet (22%) could influence this centrally-mediated interaction. Mean arterial pressure (MAP), heart rate (HR) and RSNA were recorded before and for 3 hours after i.c.v. saline (control; n=5), leptin (7 μg; n=4), resistin (7 μg; n=5) and leptin and resistin combined (n=6). Leptin alone and resistin alone significantly increased RSNA (71±16%, 62±4%, respectively). When leptin and resistin were combined, there was a significantly greater increase in RSNA (195±41%) compared to either hormone alone. MAP and HR responses were not significantly different between hormones. When the responses in high-fat fed rats were compared to normal chow fed rats, there were no significant differences in the maximum RSNA responses. The findings indicate that sympatho-excitatory effects of resistin on RSNA are not altered by high-fat feeding, including the greater increase in RSNA observed when resistin and leptin are combined. Our results suggest that diets rich in fat do not induce resistance to the increase in RSNA induced by resistin alone or in combination with leptin. © 2017 British Society for Neuroendocrinology.

  20. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.

    PubMed

    Dalkıran, Berna; Erden, Pınar Esra; Kılıç, Esma

    2016-06-01

    In this study, two enzyme electrodes based on graphene (GR), Co3O4 nanoparticles and chitosan (CS) or multi-walled carbon nanotubes (MWCNTs), Co3O4 nanoparticles, and CS, were fabricated as novel biosensing platforms for galactose determination, and their performances were compared. Galactose oxidase (GaOx) was immobilized onto the electrode surfaces by crosslinking with glutaraldehyde. Optimum working conditions of the biosensors were investigated and the analytical performance of the biosensors was compared with respect to detection limit, linearity, repeatability, and stability. The MWCNTs-based galactose biosensor provided about 1.6-fold higher sensitivity than its graphene counterpart. Moreover, the linear working range and detection limit of the MWCNTs-based galactose biosensor was superior to the graphene-modified biosensor. The successful application of the purposed biosensors for galactose biosensing in human serum samples was also investigated.

  1. The biosynthesis of glycoconjugates from galactose in the human gastric mucous membrane.

    PubMed

    Kopacz-Jodczyk, T; Zwierz, K; Gałasiński, W

    1984-12-01

    Pieces of human gastric mucosa were incubated with labeled galactose. The ratio of glucosamine-galactosamine radioactivity in human gastric glycoconjugates, after incubation of the tissue with labeled galactose, was similar to that of the two compounds after incubation with labeled glucose.

  2. Down-regulation of liver RNA breakdown by turpentine administration in the starved rat: autophagy and relevant factors.

    PubMed

    Saadane, A; Delautier, D; Lestriez, V; Feldmann, G; Lardeux, B; Bleiberg-Daniel, F

    1999-04-01

    To determine whether the inhibition of RNA breakdown observed in ad libitum fed rats 24 h after turpentine administration still occurs in inflamed rats fasted for 24 h and to examine the mechanism and factors involved. RNA breakdown was measured during cyclic in situ perfusion of livers by the accumulation of [14C] cytidine after in vivo RNA labelling. Autophagic activity was determined by the morphometric analysis of lysosomal structures. The decrease in RNA breakdown (53%) observed in the inflamed rats was accompanied by a 38% drop in the fractional cytoplasmic volume of initial and digestive autophagic vacuoles. Among amino acids, only the portal levels of glutamate were significantly enhanced by 83%. In vivo suppression of glucocorticoid activity using RU 38486 in inflamed rats did not affect the inhibition of RNA breakdown. The results show that turpentine-induced inflammation in fasted rats inhibits RNA degradation as well as autophagy and that glucocorticoids do not seem to be involved.

  3. Inhibition of particulate debris-induced osteolysis by alendronate in a rat model.

    PubMed

    Thadani, Peter J; Waxman, Bryan; Sladek, Eduard; Barmada, Riad; Gonzalez, Mark H

    2002-01-01

    A rat model was used to study the efficacy of alendronate therapy in inhibition of particle-induced periprosthetic osteolysis. A prosthesis was simulated by inserting a cylindrical polymethylmethacrylate plug into the distal femur of 24 rats allowing the plug to communicate with the joint space. Intra-articular injections of irregularly-shaped ultra-high molecular weight polyethylene particles of 20-200 pm in diameter were administered at 2-week intervals. The rats were randomized into two groups (n=12 each). Group A rats received twice weekly subcutaneous injections of alendronate sodium while group B rats received injections of saline vehicle only. At 10 weeks all rats were sacrificed. The distal femurs were harvested and axial sections were prepared for histologic analysis. Each section was graded on a scale of 1-4, quantifying the degree of osteolysis surrounding the polymethylmethacrylate plug. Microscopic examination showed a significant (P<.0001) difference in the amount of periprosthetic bone. Femurs from group A treated with alendronate demonstrated mostly normal or near-normal periprosthetic trabeculations, whereas femurs from group B treated with saline showed extensive bone resorption. There was no qualitative difference in the inflammatory cellular response between the groups. This study established the ability of alendronate to inhibit the osteoclastic-mediated osteolysis around joint implants.

  4. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet.

    PubMed

    Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Pérez-Cruz, Claudia; Pichardo-Ontiveros, Edgar; Wang, Mei; Donovan, Sharon M; Tovar, Armando R; Torres, Nimbe

    2017-07-05

    Current efforts are directed to reducing the gut dysbiosis and inflammation produced by obesity. The purpose of this study was to investigate whether consuming nopal, a vegetable rich in dietary fibre, vitamin C, and polyphenols can reduce the metabolic consequences of obesity by modifying the gut microbiota and preventing metabolic endotoxemia in rats fed a high fat and sucrose diet. With this aim, rats were fed a high fat diet with 5% sucrose in the drinking water (HFS) for 7 months and then were fed for 1 month with HFS + 5% nopal (HFS + N). The composition of gut microbiota was assessed by sequencing the 16S rRNA gene. Nopal modified gut microbiota and increased intestinal occludin-1 in the HFS + N group. This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. These changes were accompanied by reduced hepatic steatosis and oxidative stress in adipose tissue and brain, and improved cognitive function, associated with an increase in B. fragilis. This study supports the use of nopal as a functional food and prebiotic for its ability to modify gut microbiota and to reduce metabolic endotoxemia and other obesity-related biochemical abnormalities.

  5. Substitution of soy protein for casein prevents oxidative modification and inflammatory response induced in rats fed high fructose diet.

    PubMed

    Sreeja, S; Geetha, Rajagopalan; Priyadarshini, Emayavaramban; Bhavani, Krishnamoorthy; Anuradha, Carani Venkatraman

    2014-01-01

    Fructose-rich diet is known to cause metabolic dysregulation, oxidative stress, and inflammation. We aimed to compare the effects of two dietary proteins of animal and plant origins on fructose-induced oxidative stress and inflammatory changes in liver. Wistar rats were fed either starch or fructose (60%) diet with casein or soy protein (20%) as the protein source for 8 weeks. Glucose and insulin, glycated hemoglobin and fructosamine, AOPP, and FRAP were determined in circulation. Intracellular ROS, oxidatively modified proteins (4-HNE and 3-NT adducts), adiponectin, TNF- α , IL-6 and PAI-1 mRNA expression, phosphorylation and activation of JNK and IKK β , and NF- κ B binding activity were assayed in liver. In comparison with starch fed group, fructose + casein group registered significant decline in antioxidant potential and increase in plasma glucose, insulin, and glycated proteins. Increased ROS production, 4-HNE and 3-NT modified proteins, JNK and IKK β activation, and NF- κ B binding activity were observed in them along with increased gene expression of PAI-1, IL-6, and TNF- α and decreased adiponectin expression. Substitution of soy protein for casein reduced oxidative modification and inflammatory changes in fructose-fed rats. These data suggest that soy protein but not casein can avert the adverse effects elicited by chronic consumption of fructose.

  6. Water Permeation through the Sodium-Dependent Galactose Cotransporter vSGLT

    PubMed Central

    Choe, Seungho; Rosenberg, John M.; Abramson, Jeff; Wright, Ernest M.; Grabe, Michael

    2010-01-01

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70–80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. PMID:20923633

  7. Chronic fluoxetine inhibits sexual behavior in the male rat: reversal with oxytocin.

    PubMed

    Cantor, J M; Binik, Y M; Pfaus, J G

    1999-06-01

    Selective serotonin reuptake inhibitors, used widely in the treatment of depression, progressively inhibit sexual orgasm in many patients and induce a transient inhibition of sexual desire. We attempted to model the effects of these drugs in sexually experienced male rats during tests of copulation in bilevel chambers. These chambers allow the study of both appetitive and consummatory sexual responses of male rats. Males were treated daily with fluoxetine hydrochloride (0, 1, 5, or 10 mg/kg) and tested for sexual behavior with receptive females at 4-day intervals. Rats were treated with oxytocin (200 ng/kg) or saline after ejaculations had decreased. Fluoxetine decreased ejaculatory responses of male rats in a dose- and time-dependent fashion, but left the copulatory efficiency of the males intact. In contrast, conditioned level changing, a measure of appetitive sexual excitement, was inhibited following acute and chronic treatment with 10 mg/kg, although tolerance may have developed to the effect of 5 mg/kg. Subsequent administration of oxytocin restored the ejaculatory response but not the measure of sexual excitement to baseline levels. The reversal by oxytocin of the fluoxetine-induced deficit in ejaculations is consistent with the hypothesis that serotonin suppresses ejaculatory mechanisms by interrupting the action of oxytocin, which normally accompanies sexual behavior. Co-administration of oxytocin may help to alleviate the predominant sexual side effect of serotonin reuptake blockers.

  8. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    PubMed

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50-70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat

  9. Relative contributions of pituitary-adrenal hormones to the ontogeny of behavioral inhibition in the rat.

    PubMed

    Takahashi, L K; Kim, H

    1995-04-01

    Recent investigations revealed that adrenalectomized (ADX) rat pups exhibit deficits in behavioral inhibition. Furthermore, administration of exogenous corticosterone (CORT) restores behavioral inhibition in ADX pups. Although these studies suggest that CORT has an important role in the development of behavioral inhibition, the relative behavioral effects of elevated pituitary hormone secretion induced by ADX are not known. Therefore, experiments were conducted to assess the potential behavioral effects of elevated adrenocorticotropin (ACTH) secretion induced by ADX and to further evaluate the contribution of endogenous CORT to the development of behavioral inhibition. In Experiment 1., we verified that 10-day-old ADX rats exhibit high levels of plasma ACTH throughout the preweaning period associated with the development of behavioral inhibition. In Experiment 2, 10-day-old pups were hypophysectomized (HYPOX) and ADX and were compared behaviorally to sham-operated controls on day 14. When tested in the presence of an anesthetized unfamiliar adult male rat, HYPOX + ADX pups exhibited low levels of freezing accompanied by ultrasonic vocalizations. These pups also had reduced concentrations of plasma ACTH and CORT. In Experiment 3, 10-day-old pups were HYPOX and tested for behavioral inhibition on day 14. In comparison to sham-operated controls, HYPOX rats exhibited significantly lower levels of freezing and had reduced plasma concentrations of ACTH and CORT. Results demonstrate clearly that deficits in freezing occur even in the presence of low plasma ACTH concentrations. Therefore, elevated secretion of pituitary hormones is not a major factor that contributes to the ADX-induced deficits in behavioral inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    PubMed

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Carbohydrate metabolism of the perfused rat liver

    PubMed Central

    Ross, B. D.; Hems, R.; Freedland, R. A.; Krebs, H. A.

    1967-01-01

    1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13·3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This `inhibition' was abolished by oleate or glucagon. PMID:5584023

  12. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis.

    PubMed

    Shimizu, T; Igarashi, J; Ohtuka, Y; Oguchi, S; Kaneko, K; Yamashiro, Y

    2001-01-01

    We investigated the effect of n-3 polyunsaturated fatty acids (PUFAs) on mucosal levels of leukotrienes (LTs) and lipid peroxide (LPO), and on mucosal microcirculation, in rats with experimental colitis induced by dextran sulfate sodium (DSS). We fed Wistar rats a perilla oil-enriched diet containing alpha-linolenic acid (63.2% of total fatty acids) with various doses of vitamin E for 4 weeks, with 4% DSS added to the drinking water during the last week. Control rats were fed a diet produced from soybean oil containing alpha-linolenic acid (5.1% of total fatty acids). Colonic mucosal blood flow was measured with a laser Doppler flowmeter. The mucosal level of arachidonic acid was significantly lower and that of eicosapentaenoic acid was significantly higher in the experimental group. The mucosal level of LPO in the experimental group fed a trace or ordinary dose of vitamin E was significantly higher than that of the controls. The production of LTB(4) and LTC(4) from the colonic mucosa in the experimental group was significantly lower than that in controls. However, only the experimental group fed a vitamin E dose 4-fold higher than that given to the controls showed a significant increase in mucosal blood flow. These results suggest that n-3 PUFAs increase mucosal blood flow by inhibiting LT production when there is sufficient vitamin E to inhibit lipid peroxidation in rats with experimental colitis. Copyright 2001 S. Karger AG, Basel

  13. Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Anbukkarasi, Kaliyaperumal; UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Nanda, Dhiraj Kumar; Singh, Prashant; Singh, Rameshwar

    2014-09-01

    Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal(-)) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal(+)) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal(-)) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42 °C. Milk was fermented in combination with Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal(-) NCDC 218(0.79 %). Low galactose yogurt was prepared following standard procedure using Gal(+) S. thermophilus isolates and Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04 in 1:1 ratio. Among which low galactose yogurt by NCDC 659 combination contained less galactose 0.37 % followed by NCDC 661 (0.51 %), NCDC 660 (0.65 %) and reference Gal(-) NCDC 218 (0.98 %) after 4 h of fermentation. This study clearly reveals that Gal(+) S. thermophilus isolates can be paired with Gal(-) L. delbrueckii subsp. bulgaricus for developing low galactose yogurt.

  14. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    PubMed Central

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  15. Taxifolin inhibits rat and human 11β-hydroxysteroid dehydrogenase 2.

    PubMed

    Wu, Chengyun; Cao, Shuyan; Hong, Tingting; Dong, Yaoyao; Li, Chao; Wang, Qiufan; Sun, Jianliang; Ge, Ren-Shan

    2017-09-01

    Taxifolin is a flavonoid in food plants. Kidney 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) is an NAD + -dependent oxidase that inactivates glucocorticoid cortisol (human) or corticosterone (rodents) into biologically inert 11 keto glucocorticoids. The present study investigated the effects of taxifolin on rat and human kidney microsomal 11β-HSD2. Taxifolin noncompetitively inhibited rat and human 11β-HSD2 against steroid substrates, with IC 50 values of 33.08 and 13.14μM, respectively. Administration of 5 and 10mg/kg taxifolin for 30min ex vivo inhibited 11β-HSD2 significantly and also in vivo decreased cortisol metabolism, as shown in the significant increase of area under curve (AUC). This result shows that taxifolin is a potent 11β-HSD2 inhibitor, possibly causing side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats.

    PubMed

    Tan, Benny Kwong Huat; Tan, Chee Hong; Pushparaj, Peter Natesan

    2005-04-29

    The present study was designed to investigate the hypoglycemic and hypolipidemic activities of the semi-purified fractions of an ethanolic leaf extract of Averrhoa bilimbi (ABe) in high fat diet (HFD)-streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats aged 10 weeks (200-250 g) were fed with a high fat diet obtained from Glen Forrest stock feeders (Western Australia) for 2 weeks prior to intraperitoneal injection with streptozotocin (STZ, 50 mg/kg). The leaves of A.bilimbi were exhaustively extracted with 80% ethanol, concentrated at 40 degrees C using a rotavapor and partitioned successively with butanol, ethylacetate and hexane to get aqueous (AF), butanol (BuF), ethylacetate (EF), and hexane fractions (HF). The fractions were freeze-dried to obtain powders of each. To investigate the effect of long term administration of the hypoglycemic fractions, diabetic animals were treated with vehicle (distilled water), AF (125 mg/kg), or BuF (125 mg/kg), twice a day for 14 days. The long term administration of AF and BuF at a dose of 125 mg/kg significantly (P < 0.05) lowered blood glucose and triglyceride concentrations when compared to the vehicle. The hepatic glycogen content was significantly higher (P < 0.05) in AF-treated rats when compared to diabetic control, however no change was found in the BuF-treated rats. Moreover, AF as well as BuF did not cause any significant change in the total cholesterol and HDL-cholesterol. There was also no difference in liver thiobarbituric acid reactive substances (TBARS) and cytochrome P450 values between AF, BuF and vehicle-treated control rats. In conclusion, the results indicate that AF is more potent than BuF in the amelioration of hyperglycemia and hyperlipidemia in HFD fed-STZ diabetic rats. Hence, AF is a potential source for the isolation of active principle(s) for oral anti-diabetic therapy.

  17. Metabolic active-high density VERO cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding.

    PubMed

    Mendonça, Ronaldo Z; Arrózio, Sara J; Antoniazzi, Marta M; Ferreira, Jorge M C; Pereira, Carlos A

    2002-07-17

    The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.

  18. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    PubMed

    Lecomte, Virginie; Kaakoush, Nadeem O; Maloney, Christopher A; Raipuria, Mukesh; Huinao, Karina D; Mitchell, Hazel M; Morris, Margaret J

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  19. INTRARENAL GHRELIN RECEPTOR INHIBITION AMELIORATES ANGIOTENSIN II-DEPENDENT HYPERTENSION IN RATS.

    PubMed

    Kemp, Brandon A; Howell, Nancy L; Padia, Shetal H

    2018-06-20

    The intrarenal ghrelin receptor (GR) is localized to collecting duct (CD) cells where it increases αENaC-dependent sodium reabsorption in rodents. We hypothesized that chronic GR inhibition with intrarenal GR siRNA lowers blood pressure (BP) in Angiotensin II-dependent hypertension via reductions in αENaC-dependent sodium reabsorption. Uninephrectomized Sprague-Dawley rats (N=121) received subcutaneous osmotic pumps for chronic systemic delivery of Angiotensin II or vehicle (5% dextrose in water). Rats also received intrarenal infusion of vehicle, GR siRNA, or scrambled (SCR) siRNA. In rats receiving intrarenal vehicle or intrarenal SCR siRNA, systemic Angiotensin II infusion increased sodium retention and BP on day 1, and BP remained elevated throughout the 5-day study. These rats also demonstrated increased CD GR expression after 5 days of infusion. However, intrarenal GR siRNA infusion prevented Angiotensin II-mediated sodium retention on day 1, induced a continuously negative cumulative sodium balance compared with Angiotensin II alone, and reduced BP chronically. Glomerular filtration rate and renal blood flow remained unchanged in GR siRNA-infused rats. Systemic Angiotensin II infusion also increased serum aldosterone levels, CD αENaC and pSGK1 expression in rats with intrarenal SCR siRNA; however these effects were not observed in the presence of intrarenal GR siRNA, despite exposure to the same systemic Angiotensin II. These data demonstrate that chronic inhibition of intrarenal GR activity significantly reduces αENaC -dependent sodium retention, resulting in a negative cumulative sodium balance, thereby ameliorating Angiotensin II-induced hypertension in rats. Renal GRs represent a novel therapeutic target for the treatment of hypertension and other sodium-retaining states.

  20. Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model

    PubMed Central

    Weber, Nina C.; van der Sluijs, Koen; Hackl, Florian; Hotz, Lorenz; Dahan, Albert; Hollmann, Markus W.; Berger, Marc M.

    2014-01-01

    We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport. PMID:25386677

  1. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    PubMed Central

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707

  2. Virgin coconut oil prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

    PubMed

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

  3. Protective effect of curcumin (Curcuma longa) against D-galactose-induced senescence in mice.

    PubMed

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    Brain senescence plays an important role in cognitive dysfunction and neurodegenerative disorders. Curcumin was reported to have beneficial effect against several neurodegenerative disorders including Alzheimer's disease. Therefore, the present study was conducted in order to explore the possible role of curcumin against D-galactose-induced cognitive dysfunction, oxidative damage, and mitochondrial dysfunction in mice. Chronic administration of D-galactose for 6 weeks significantly impaired cognitive function (both in Morris water maze and elevated plus maze), locomotor activity, oxidative defense (raised lipid peroxidation, nitrite concentration, depletion of reduced glutathione and catalase activity), and mitochondrial enzyme complex activities (I, II, and III) as compared to vehicle treated group. Curcumin (15 and 30 mg/kg) and galantamine (5 mg/kg) treatment for 6 weeks significantly improved cognitive tasks, locomotor activity, oxidative defense, and restored mitochondrial enzyme complex activity as compared to control (D-galactose). Chronic D-galactose treatment also significantly increased acetylcholine esterase activity that was attenuated by curcumin (15 and 30 mg/kg) and galantamine (5 mg/kg) treatment. In conclusion, the present study highlights the therapeutic potential of curcumin against d-galactose induced senescence in mice.

  4. Improvement of hydrogen fermentation of galactose by combined inoculation strategy.

    PubMed

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Arivalagan, Pugazhendhi; Bakonyi, Péter; Kim, Sang-Hyoun

    2017-03-01

    This study evaluated the feasibility of anaerobic hydrogen fermentation of galactose, a red algal biomass sugar, using individual and combined mixed culture inocula. Heat-treated (90°C, 30 min) samples of granular sludge (GS) and suspended digester sludge (SDS) were used as inoculum sources. The type of mixed culture inoculum played an important role in hydrogen production from galactose. Between two inocula, granular sludge showed higher hydrogen production rate (HPR) and hydrogen yield (HY) of 2.2 L H 2 /L-d and 1.09 mol H 2 /mol galactose added , respectively. Combined inoculation (GS + SDS) led to an elevated HPR and HY of 3.1 L H 2 /L-d and 1.28 mol H 2 /mol galactose added , respectively. Acetic and butyric acids are the major organic acids during fermentation. Quantitative polymerase chain reaction (qPCR) revealed that the mixed culture generated using the combined inoculation contained a higher cluster I Clostridium abundance than the culture produced using the single inoculum. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats.

    PubMed

    Rodríguez-Gómez, Isabel; Manuel Moreno, Juan; Jimenez, Rosario; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Wangensteen, Rosemary; Vargas, Félix

    2015-12-01

    This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Hypoglycemic and hypolipidemic effects of Saururus chinensis Baill in streptozotocin-induced diabetic rats.

    PubMed

    Hwang, Ji-Yeon; Zhang, Jian; Kang, Min-Jung; Lee, Soo-Kyung; Kim, Hyun-A; Kim, Jong-Jin; Kim, Jung-In

    2007-01-01

    Saururus chinensis Baill was reported to inhibit alpha-glucosidase in vitro and flatten postprandial increase in blood glucose in streptozotocin (STZ)-induced diabetic rats. We studied the effect of chronic consumption of S. chinensis Baill on blood glucose and lipid profile in STZ-induced diabetic male rats fed high fat diet. Male rats weighing 100-120 g were fed 30% fat diet with and without 10% freeze-dried leaves of S. chinensis Baill for 7 weeks after 1 week of adaptation. The rats were rendered diabetic by intravenous injection of STZ (60 mg/kg) after 6-week feeding of the assigned diets. At 1 week after the injection, the rats were sacrificed after an overnight fast. Plasma glucose (380.2 +/- 14.4 mg/dL), total cholesterol (93.9 +/- 7.9 mg/dL) and triglyceride levels (123.6 +/- 7.5 mg/dL) of the S. chinensis Baill group were significantly lower than those of the control group (418.1 +/- 12.0 mg/dL, 119.9 +/- 9.4 mg/dL, 152.0 +/- 10.3 mg/dL, respectively, p<0.05). Chronic consumption of S. chinesis Baill significantly decreased maltase activity of the small intestinal mucosa (120.1 +/- 8.7 U/g protein) compared with the control group (96.8 +/- 7.0 U/g protein, p<0.05). These results suggest that S. chinensis Baill have hypoglycemic and hypolipidemic effects by inhibiting alpha-glucosidase activity in the animal model of diabetes mellitus.

  7. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    PubMed

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    PubMed

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet.

    PubMed

    Ebrahimi, Tahereh; Behdad, Behnoosh; Abbasi, Maryam Agha; Rabati, Rahman Ghaffarzadegan; Fayyaz, Amir Farshid; Behnod, Vahid; Asgari, Ali

    2015-06-20

    Hypercholesterolemia is associated with an increased risk of heart disease. In this study, we investigated the antihyperlipidemic effects of garlic (Allium sativum L.) in rat models of hypercholesterolemic. Wistar male rats were randomly divided into 4 diet groups with garlic supplementation. Male Wistar rats were fed by standard pellet diet (group I), standard diet supplemented with 4% garlic (group II), lipogenic diet (containing sunflower oil, cholesterol and ethanol) equivalent to 200 mg raw garlic/kg body weight (raw) (group III) and lipogenic diet equivalent to 400 mg raw garlic/kg body weight (raw) (group IV). Rats fed 400 g/kg garlic extract(GE), had a significantly lower concentration of serum low-density lipoprotein cholesterol (LDL-C) cholesterol and elevated HDL -C cholesterol at day 28 (P < 0.05).In addition,serum levels of LDL-C was lower in the III and IV group than those in the IV group (P < 0.001 for each). However, cholesterol efflux capacity was positively correlated with HDL cholesterol concentration (P < 0 · 0001). It was also directly correlated with garlic supplementation (P < 0 · 0001). Together Taken, the results are clearly indicative of the beneficial effects of garlic in reducing lateral side effects of hyperlipidemia. Our data demonstrate that GE has protective effects on HDL in rats with high LDL intake. Therefore, it could be used to remedy hypercholesterolemia with help reduce risk of coronary heart disease The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1834155749171141.

  10. Apigenin inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase.

    PubMed

    Wu, Ying; Li, Lili; Zhou, Songyi; Shen, Qiuxia; Lin, Han; Zhu, Qiqi; Sun, Jianliang; Ge, Ren-Shan

    2017-11-01

    Apigenin, a common flavonoid, has extensive pharmacological activities. Apigenin inhibits some steroid biosynthetic enzymes, suggesting that it may block neurosteroid synthesis. Neurosteroids play many important roles in neurological functions. The objective of the present study is to investigate effects of apigenin on neurosteroidogenic enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C9), and retinol dehydrogenase 2 (RoDH2), in rats. SRD5A1, AKR1C9, and RoDH2 were expressed in COS-1 cells and the effects of apigenin on these enzymes and modes of action were explored using radiolabeled substrates and thin-layer chromatographic separation coupled with radiometry. Apigenin inhibited SRD5A1, AKR1C9, and RoDH2 activities with IC 50 values of 100, 0.891 ± 0.065, and >100 μM, respectively. Apigenin competitively inhibited rat AKR1C9 when its substrate 5α-dihydrotestosterone was used and uncompetitively inhibited the enzyme when cofactor NADPH was used. In conclusion, apigenin is a potent inhibitor of rat AKR1C9, thereby controlling the rate of neurosteroid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  12. NMDA inhibits oxotremorine-induced acid secretion via the NO-dependent cyclic GMP system in rat stomach.

    PubMed

    Tsai, L H; Lee, Y J

    2001-12-31

    The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.

  13. High-monosaccharide intake inhibits anorexigenic hypothalamic insulin response in male rats.

    PubMed

    Ramos, Viviane Wagner; Batista, Leandro Oliveira; Cordeiro, Elisaldo Mendes; Oliveira, Gustavo Vieira; Albuquerque, Kelse Tibau

    2018-06-01

    The aim of this research is to evaluate if intake of 20% fructose solution is able to change the anorexigenic hypothalamic insulin action. Thirty day-old male Wistar rats were randomly assigned to one of the following groups: standard chow and water for the rats (Control group, C) and standard chow and 20% fructose solution for the rats (Fructose group, F).These treatments lasted 8 weeks. Three-month-old rats from group C and F received insulin or saline intracerebroventricular injections for evaluation of 24 h food intake, phosphorylated forms of the IR (p-IR) and Akt (p-Akt) proteins and quantified hypothalamic insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) proteins. Insulin injection was able to decrease food intake in group C compared to 0.9% saline. However, insulin infusion failed to inhibit 24 h food intake in group F compared to 0.9% saline. The hypothalamic content of the IRS-1 was 37% higher in group F as well as p-Akt protein was significant higher vs. group C. We concluded that the 20% fructose solution compromised insulin signaling considering that it inhibited the anorexigenic hypothalamic response to acute injection of this hormone and increase of IRS-1 and p-Akt content.

  14. The antioxidant n-acetylcysteine reduced necrosis, but exacerbated liver fibrosis induced by chronic alcohol in rats fed via total enteral nutrition

    USDA-ARS?s Scientific Manuscript database

    Despite many years of research, the molecular mechanisms underlying progression of alcoholic liver injury from simple steatosis through steatohepatitis and fibrosis remain in dispute. In the current study male Sprague-Dawley rats (350 g) were chronically fed a high unsaturated fat diet for 120 d usi...

  15. Aminophylline preferentially inhibits chloroethylclonidine-insensitive alpha-adrenoceptor-mediated contractions in rat aorta.

    PubMed

    Duarte, J; Pérez-Vizcaíno, F; Zarzuelo, A; Jiménez, J; Tamargo, J

    1993-11-01

    1. In rat thoracic aortae, contractions induced by methoxamine were inhibited by chloroethylclonidine, whereas oxymetazoline-induced contractions, which were more dependent on Ca(2+)-entry, were insensitive to chloroethylclonidine. 2. Aminophylline inhibited the contractions and 45Ca(2+)-uptake induced by both methoxamine and oxymetazoline. However, oxymetazoline-induced contractions were more sensitive to inhibition by aminophylline and D600. 3. Thus, the partial selectivity of aminophylline for the chloroethylclonidine-resistant, highly dependent on extracellular Ca2+, oxymetazoline-mediated responses may be explained by a preferential inhibition of agonist-induced Ca2+ entry as compared to inhibition of other transduction pathways.

  16. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquioline 1-oxide.

    PubMed

    Zhang, Ming; Wang, Fang; Jiang, Lu; Liu, Ruihai; Zhang, Lian; Lei, Xingen; Li, Jiyou; Jiang, Jingli; Guo, Huiyuan; Fang, Bing; Zhao, Liang; Ren, Fazheng

    2013-07-01

    Despite significant advances in cancer therapy, cancer-related mobility and mortality are still rising. Alternative strategies such as cancer prevention thus become essential. Probiotics represent an emerging option for cancer prevention, but studies are limited to colon cancers. The efficiency of probiotics in the prevention of other cancers and the correlative mechanism remains to be explored. A novel probiotics Lactobacillus salivarius REN (L. salivarius REN) was isolated from centenarians at Bama of China, which showed highly potent antigenotoxicity in an initial assay. 4-nitroquioline 1-oxide (4NQO)-induced oral cancer model was introduced to study the anticancer activity of L. salivarius REN in vivo. The results indicated that oral administration of probiotic L. salivarius REN or its secretions could effectively suppress 4NQO-induced oral carcinogenesis in the initial and postinitial stage, and the inhibition was in a dose-dependent manner. A significant decrease of neoplasm incidence (65%-0%) was detected in rats fed with the high dose of L. salivarius REN [5 × 10(10) CFU/kg body weight (bw)/d]. In vivo evidences indicated that the probiotics inhibited 4NQO-induced oral cancer by protecting DNA against oxidative damage and downregulating COX-2 expression. L. salivarius REN treatment significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and induced apoptosis in a dose-dependent manner. Our findings suggest that probiotics may act as potential agents for oral cancer prevention. This is the first report showing the inhibitory effect of the probiotics on oral carcinogenesis. ©2013 AACR.

  17. Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo.

    PubMed

    Gorinstein, Shela; Leontowicz, Hanna; Leontowicz, Maria; Jesion, Iwona; Namiesnik, Jacek; Drzewiecki, Jerzy; Park, Yong-Seo; Ham, Kyung-Sik; Giordani, Edgardo; Trakhtenberg, Simon

    2011-01-01

    To assess the influence of two persimmon cultivars on some atherosclerosis indices in rats fed cholesterol (Chol)-containing diets. Persimmon cultivars "Fuyu" and "Jiro" as supplementation to rats' diets were investigated in vitro to compare the contents of their bioactive compounds (polyphenols, flavonoids, flavanols, tannins, carotenoids, and ascorbic acid) and antioxidant potentials. In the in vivo investigation, 36 male Wistar rats were randomly divided into six diet groups, each with six rats: control, control/Fuyu, control/Jiro, Chol, Chol/Fuyu, and Chol/Jiro. During a period of 47 d (42 d of feeding and 5-d adaptation before the experiment) of the trial, rats in the control group were fed a basal diet and two additional control groups (control/Fuyu and control/Jiro) a basal diet plus 5% of lyophilized Fuyu and Jiro, respectively. The Chol, Chol/Fuyu, and Chol/Jiro rat groups were fed a basal diet supplemented with 1% Chol (Chol group) and 1% Chol plus 5% lyophilized Fuyu (Chol/Fuyu group) and plus 5% lyophilized Jiro (Chol/Jiro group), respectively. After completion of the experiment, the rats were anesthetized using Narcotan (halothane) and sacrificed and the atherosclerotic lesions in the aorta were assessed. The obtained results of the investigation of all six groups were compared. Testing of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerols, total cholesterol in the liver, electrophoretic patterns of liver tissue, and three-dimensional fluorescence of serum protein fractions was performed. The polyphenols and tannins were significantly higher in the Fuyu cultivar (P<0.05). The antioxidant potential of persimmon Fuyu was higher than in the Jiro cultivar, but the difference was significant only according to the 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay (P<0.05). Supplementation of diets with 5% of the lyophilized Fuyu and Jiro hindered the increase in plasma lipids versus

  18. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  19. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  20. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical

  1. A Low-Protein Diet Enhances Angiotensin II Production in the Lung of Pregnant Rats but Not Nonpregnant Rats

    PubMed Central

    Gao, Haijun; Tanchico, Daren Tubianosa; Yallampalli, Uma; Yallampalli, Chandrasekhar

    2016-01-01

    Pulmonary angiotensin II production is enhanced in pregnant rats fed a low-protein (LP) diet. Here we assessed if LP diet induces elevations in angiotensin II production in nonpregnant rats and whether Ace expression and ACE activity in lungs are increased. Nonpregnant rats were fed a normal (CT) or LP diet for 8, 12, or 17 days and timed pregnant rats fed for 17 days from Day 3 of pregnancy. Plasma angiotensin II, expressions of Ace and Ace2, and activities of these proteins in lungs, kidneys, and plasma were measured. These parameters were compared among nonpregnant rats or between nonpregnant and pregnant rats fed different diets. Major findings are as follows: (1) plasma angiotensin II levels were slightly higher in the LP than CT group on Days 8 and 12 in nonpregnant rats; (2) expression of Ace and Ace2 and abundance and activities of ACE and ACE2 in lungs, kidneys, and plasma of nonpregnant rats were unchanged by LP diet except for minor changes; (3) the abundance and activities of ACE in lungs of pregnant rats fed LP diet were greater than nonpregnant rats, while those of ACE2 were decreased. These results indicate that LP diet-induced increase in pulmonary angiotensin II production depends on pregnancy. PMID:27195150

  2. Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae.

    PubMed

    Garcia Sanchez, Rosa; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2010-09-01

    Overexpression of the PGM2 gene encoding phosphoglucomutase (Pgm2p) has been shown to improve galactose utilization both under aerobic and under anaerobic conditions. Similarly, xylose utilization has been improved by overexpression of genes encoding xylulokinase (XK), enzymes from the non-oxidative pentose phosphate pathway (non-ox PPP) and deletion of the endogenous aldose reductase GRE3 gene in engineered Saccharomyces cerevisiae strains carrying either fungal or bacterial xylose pathways. In the present study, we investigated how the combination of these traits affect xylose and galactose utilization in the presence or absence of glucose in S. cerevisiae strains engineered with the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. In the absence of PGM2 overexpression, the combined overexpression of XK, the non-ox PPP and deletion of the GRE3 gene significantly delayed aerobic growth on galactose, whereas no difference was observed between the control strain and the xylose-engineered strain when the PGM2 gene was overexpressed. Under anaerobic conditions, the overexpression of the PGM2 gene increased the ethanol yield and the xylose consumption rate in medium containing xylose as the only carbon source. The possibility of Pgm2p acting as a xylose isomerase (XI) could be excluded by measuring the XI activity in both strains. The additional copy of the PGM2 gene also resulted in a shorter fermentation time during the co-consumption of galactose and xylose. However, the effect was lost upon addition of glucose to the growth medium. PGM2 overexpression was shown to benefit xylose and galactose fermentation, alone and in combination. In contrast, galactose fermentation was impaired in the engineered xylose-utilizing strain harbouring extra copies of the non-ox PPP genes and a deletion of the GRE3 gene, unless PGM2 was overexpressed. These cross-reactions are of particular relevance for the fermentation of mixed sugars from lignocellulosic feedstock.

  3. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    PubMed

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.

  4. Proline-rich proteins moderate the inhibitory effect of tea on iron absorption in rats.

    PubMed

    Kim, Hee-Seon; Miller, Dennis D

    2005-03-01

    Tea inhibits iron absorption in studies in which tea is given with radiolabeled iron to humans as a single dose. Our objective was to test the hypothesis that proline-rich proteins (PRPs) may act as a defense against this effect by forming complexes with tannins, thereby preventing them from inhibiting iron absorption. Two studies were conducted. In study 1, rats were given test solutions containing (59)FeCl(3) in water, tea, or tea + gelatin (T/G). In study 2, the rats were divided into 3 groups and assigned to one of 3 nutritionally complete diets: control, tea (5 g tea tannin/kg diet), or T/G (5 g tea tannin + 60 g gelatin/kg diet). Rats were fed the respective diets for 5 d and then given a single (59)Fe-labeled meal of the diet. Iron absorption was measured by whole-body retention of the (59)Fe over a 2-wk period. Iron absorption in study 1 was lower in the tea group (24 +/- 9.6%, P < 0.05) than in the T/G (42 +/- 19.4%) or water groups (50 +/- 7.5%). In study 2, iron absorption did not differ among the groups. Rats fed the tea diet had dramatic hypertrophy of the parotid salivary glands. Adding gelatin as a proxy for salivary PRPs to the tea eliminated the inhibitory effect of tea on iron absorption. The results suggest that PRPs, whether from salivary glands or diet, can protect against the inhibition of iron absorption by tea.

  5. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  6. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet.

    PubMed

    Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi

    2016-08-01

    Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.

  7. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats

    PubMed Central

    da Rocha, Guilherme L.; Crisp, Alex H.; de Oliveira, Maria R. M.; da Silva, Carlos A.; Silva, Jadson O.; Duarte, Ana C. G. O.; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats. PMID:26904718

  8. A 90-day safety study in Sprague-Dawley rats fed milk powder containing recombinant human lactoferrin (rhLF) derived from transgenic cloned cattle.

    PubMed

    Zhou, Cui; Wang, Jian Wu; Huang, Kun Lun; He, XiaoYun; Chen, Xiu Ping; Sun, Hong; Yu, Tian; Che, Hui Lian

    2011-10-01

    Transgenic cloned animals expressing beneficial human nutritional traits offer a new strategy for large-scale production of some kinds of functional substances. In some cases, the required safety testing for genetically modified (GM) foods do not seem appropriate for human food safety, though regulations do not seem to provide alternatives. A 90-day rat feeding study is the core study for the safety assessment of GM foods. The test material in this 90-day study was prepared nonfat milk powder containing recombinant human lactoferrin (rhLF), which was expressed in transgenic cloned cattle. Groups of 10 male and female Sprague-Dawley rats were given a nutritionally balanced purified diet containing 7.5, 15, or 30% transgenic or conventional milk powder for 90 days. A commercial AIN93G diet was used as an additional control group. Clinical, biological, and pathological parameters were compared between groups. The only significant effect of treatment was higher mean ferritin and Fe(+) concentrations for both male and female rats fed the transgenic milk powder diets, as compared to rats fed nontransgenic milk diets or the commercial diet. The results of the present study are consistent with previous research, which indicates that milk powder containing rhLF derived from healthy transgenic cloned cattle is as safe as conventional milk powder.

  9. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats.

    PubMed

    da Rocha, Guilherme L; Crisp, Alex H; de Oliveira, Maria R M; da Silva, Carlos A; Silva, Jadson O; Duarte, Ana C G O; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats.

  10. Galactose Is the Limiting Factor for the Browning or Discoloration of Cheese during Storage.

    PubMed

    Igoshi, Asuka; Sato, Yui; Kameyama, Kumi; Murata, Masatsune

    2017-01-01

    The browning or discoloration of cheese is often observed during long-time ripening or aging. In the present study, we identified galactose as a limiting factor for the browning, and clarified the involvement of the Maillard reaction for the discoloration. A precursor of browning of Cheddar cheese was isolated by procedures of solvent extraction and chromatography. D-Galactose and D-lactose were identified as a precursor of browning of Cheddar cheese A and B, respectively. Cheddar cheese (A, B, and C), sugar-added cheese, and nine kinds of retail cheese were stored at 4 to 70ºC for 0 to 10 d, before the L*-, a*-, and b*-values and sugar contents of each sample were measured. Cheese to which galactose was added turned brown more intensively during storage than the non-added control and the other sugar-added cheese. The more galactose was added, the more intensive the browning of the cheese appeared. The decrease in galactose correlated with the ΔL*-, Δa*-, Δb*-, and ΔE-values indicating the browning or discoloration of cheese samples. The decrease in sugars of nine kinds of retail cheese during storage also correlated with the ΔL*-, Δa*-, and ΔE-values of these cheese samples. These results clearly indicate that sugars, especially galactose, in cheese are an important factor for the browning of cheese during storage. In general, a high amount of amino acids, peptides, and proteins exists in ripe or mature cheese. Therefore, sugars, especially galactose, were considered to be the limiting factor for the Maillard reaction causing the browning of ripe or mature cheese during storage.

  11. Cardioprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    PubMed

    Kamisah, Yusof; Periyah, Vengadesh; Lee, Kee Tat; Noor-Izwan, Norrashid; Nurul-Hamizah, Amran; Nurul-Iman, Badlishah Sham; Subermaniam, Kogilavani; Jaarin, Kamsiah; Azman, Abdullah; Faizah, Othman; Qodriyah, Hj Mohd Saad

    2015-01-01

    Virgin coconut oil (VCO) contains high antioxidant activity which may have protective effects on the heart in hypertensive rats. The study investigated the effects of VCO on blood pressure and cardiac tissue by measuring angiotensin-converting enzyme (ACE) activity and its histomorphometry in rats fed with a heated palm oil (HPO) diet. Thirty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control, (ii) orally given VCO (1.42 ml/kg), (iii) fed with a HPO (15%) diet, and (iv) fed with a HPO diet and supplemented with VCO (1.42 ml/kg, po) (HPO+VCO) for 16 weeks. Blood pressure was measured monthly. After 16 weeks, rat hearts were dissected for lipid peroxidation (TBARS) and ACE activity measurement and histomorphometric study. Systolic blood pressure was significantly increased in the HPO group compared with the control starting at week eight (112.91 ± 1.32 versus 98.08 ± 3.61 mmHg, p < 0.05) which was prevented by VCO supplementation (91.73 ± 3.42 mmHg). The consumption of HPO increased TBARS and ACE activity in heart, which were inhibited by VCO supplementation. The increases in the myofiber width and area as well as nuclear size reduction in the HPO group were significantly prevented by VCO supplementation. These results suggested that VCO supplementation possesses a cardioprotective effect by preventing the increase in blood pressure via an antioxidant mechanism and remodeling in rats fed repeatedly with a HPO diet.

  12. Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice.

    PubMed

    Xian, Yan-Fang; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Mao, Qing-Qiu; Cheng, Christopher H K; Ip, Siu-Po; Lin, Zhi-Xiu

    2014-10-01

    Isorhynchophylline (IRN), an alkaloid isolated from Uncaria rhynchophylla, has been reported to improve cognitive impairment induced by beta-amyloid in rats. However, whether IRN could also ameliorate the D-galactose (D-gal)-induced mouse memory deficits is still not clear. In the present study, we aimed to investigate whether IRN had potential protective effect against the D-gal-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (100mg/kg) and orally administered IRN (20 or 40mg/kg) daily for 8weeks, followed by assessing spatial learning and memory function by the Morris water maze test. The results showed that IRN significantly improved spatial learning and memory function in the D-gal-treated mice. In the mechanistic studies, IRN significantly increased the level of glutathione (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT), while decreased the level of malondialdehyde (MDA) in the brain tissues of the D-gal-treated mice. Moreover, IRN (20 or 40mg/kg) significantly inhibited the production of prostaglandin E 2 (PGE2) and nitric oxide (NO), and the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of nuclear factor kappa B (NF-κB) in the brain tissues of D-gal-treated mice. Our results amply demonstrated that IRN was able to ameliorate cognitive deficits induced by D-gal in mice, and the observed cognition-improving action may be mediated, at least in part, through enhancing the antioxidant status and anti-inflammatory effect of brain tissues via NFκB signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny's colons: interaction of diet with fetal alcohol exposure

    PubMed Central

    Linz, Amanda L; Xiao, Rijin; Parker, James G; Simpson, Pippa M; Badger, Thomas M; Simmen, Frank A

    2004-01-01

    Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats. PMID:15488141

  14. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    USDA-ARS?s Scientific Manuscript database

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  15. Differential entry of ricin into malignant and normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decastel, M.; Haentjens, G.; Aubery, M.

    1989-02-01

    The authors have compared the mechanisms of ricin binding to and entry into Zajdela hepatoma cells (ZHC) and normal rat hepatocytes (HyC). Lactose but not mannan was found to inhibit ricin binding to and toxicity on ZHC and HyC. This finding suggests that ricin binding, entry, and toxicity are expressed only through the galactose binding sites on ZHC and HyC. Nevertheless, the characteristics of ricin binding and its entry pathway appeared to be different in several respects in ZHC and HyC. Scatchard analysis of equilibrium data determined over a wide range of {sup 125}I-labeled ricin concentrations yielded a curvilinear plotmore » for ZHC, while a straight line was obtained for HyC. These results indicate that only ZHC possess high-affinity receptors for ricin. Analysis of ricin toxicity of ZHC and HyC, in the presence of ammonium chloride or after K{sup +}-depletion in both cell types, suggests that the ricin bound to galactose receptors entered through neutral vesicles in ZHC, and through both neutral and acidic vesicles in HyC. The qualitative and quantitative differences found between the process of receptor-mediated endocytosis of ricin in ZHC and HyC might explain the differential sensitivity of the two cell types toward the toxin.« less

  16. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  17. Effect of food seasoning spices mixture on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats.

    PubMed

    Suganthi, R; Rajamani, S; Ravichandran, M K; Anuradha, C V

    2007-03-01

    High fructose feeding in normal rats induces insulin resistance and also facilitates oxidative damage. The present study examines the effects of a spices mixture (SM) on oxidative stress markers and antioxidant potential in tissues of high fructose-fed insulin-resistant rats. Male Wistar rats received a semisynthetic diet containing either 60% fructose or 60% starch. SM administration at three different doses (10, 30, and 50 mg/day per rat) was initiated orally 15 days later and continued for the next 30 days. After the total experimental period of 45 days, peroxidation of lipids and antioxidant status in liver and kidney were quantified. Fructose-treated rats showed increased levels of peroxidation indices such as thiobarbituric acid-reactive substances and lipid hydroperoxides in tissues. The condition was associated with an inadequate antioxidant system. Administration of SM along with fructose diet reduced the levels of peroxidation markers in tissues and improved the antioxidant status. The positive effect of SM on the oxidant-antioxidant balance could be attributed to the active constituents of the different spices present in the mixture.

  18. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    PubMed

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Atropine-induced inhibition of sperm and semen transport impairs fertility in male rats.

    PubMed

    Sato, Takahiro; Ban, Yoshiki; Uchida, Miki; Gondo, Eri; Yamamoto, Masakatsu; Sekiguchi, Yoshiko; Sakaue, Akiko; Kemi, Masayuki; Nakatsuka, Toshio

    2005-08-01

    Previous studies revealed that atropine reduced male fertility in rats without any effects on mating performance, sperm production and motility, and testicular morphology. The present study was conducted to investigate whether the impairment of male fertility induced by atropine was related to the inhibition of sperm and semen transports from the vas deferens and seminal vesicle to the urethra during the process of emission. Male rats were treated with atropine at 125 mg/kg/day for 10-17 days prior to mating with untreated females. After confirmation of mating, male rats were euthanized and sperm number in the vas deferens and weights of the seminal vesicle and copulatory plug were determined as indicators of inhibition of sperm and semen transports, respectively. Reproductive status of mated females was determined on gestation days 15-17. A low pregnancy rate associated with a decreased number of implants was observed in females that mated with the atropine-treated males. The average number of sperm in the vas deferens was increased in the atropine-treated males. The average seminal vesicle weight in the atropine-treated males was greater than that of controls. The copulatory plug weights were decreased in the atropine-treated males. These results suggest that inhibitions of sperm and semen transports from the vas deferens and seminal vesicle to the urethra during the process of emission result in reduced male fertility in rats.

  20. A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su

    2018-05-15

    The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the

  1. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    PubMed

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P < 0.01). GABA content of zolpidem group and Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P < 0.05). GABA content of Calculus Bovis group was higher than combination group (P < 0.05). GABA content of zolpidem group was not significantly different from combination group. Gly content of Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P < 0.05). Contents of two inhibitive neurotransmitters in rat striatum corpora were all significantly increased in Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  2. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  3. Perinatal undernutrition alters intestinal alkaline phosphatase and its main transcription factors KLF4 and Cdx1 in adult offspring fed a high-fat diet.

    PubMed

    Lallès, Jean-Paul; Orozco-Solís, Ricardo; Bolaños-Jiménez, Francisco; de Coppet, Pierre; Le Dréan, Gwénola; Segain, Jean-Pierre

    2012-11-01

    Nutrient restriction during gestation and/or suckling is associated with an increased risk of developing inflammation, obesity and metabolic diseases in adulthood. However, the underlying mechanisms, including the role of the small intestine, are unclear. We hypothesized that intestinal adaptation to the diet in adulthood is modulated by perinatal nutrition. This hypothesis was tested using a split-plot design experiment with 20 controls and 20 intrauterine growth-retarded (IUGR) rats aged 240 days and randomly assigned to be fed a standard chow or a high-fat (HF) diet for 10 days. Jejunal tissue was collected at necropsy and analyzed for anatomy, digestive enzymes, goblet cells and mRNA levels. Cecal contents and blood serum were analyzed for alkaline phosphatase (AP). IUGR rats failed to adapt to HF by increasing AP activity in jejunal tissue and cecal content as observed in controls. mRNA levels of transcription factors KLF4 and Cdx1 were blunted in jejunal epithelial cell of IUGR rats fed HF. mRNA levels of TNF-α were lower in IUGR rats. They also displayed exacerbated aminopeptidase N response and reduced jejunal goblet cell density. Villus and crypt architecture and epithelial cell proliferation increased with HF in both control and IUGR rats. Serum AP tended to be lower, and serum levamisole inhibition-resistant AP fraction was lower, in IUGR than controls with HF. Serum fatty acids and triglycerides were higher in IUGR rats and higher with HF. In conclusion, the adult intestine adapts to an HF diet differentially depending on early nutrition, jejunal AP and transcription factors being blunted in IUGR individuals fed HF. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  5. Intestinal Alterations, Basal Hematology, and Biochemical Parameters in Adolescent Rats Fed Different Sources of Dietary Copper.

    PubMed

    Tomaszewska, Ewa; Dobrowolski, Piotr; Kwiecień, Małgorzata

    2016-05-01

    Copper (Cu) is required for basically all biochemical and physiological processes in the body. The aim was to evaluate the effects of different sources of dietary copper on jejunal epithelium histomorphometry in adolescent rats. Male rats at the age of 5 weeks were used in the 12-week experiment. The control group was fed with standard diet providing the required Cu level (5 mg/kg body weight (bw) per day) in an inorganic form (sulfate) covered 100 % of daily demand, and the other three groups were supplemented with Cu-glycine complex covered 50, 75, and 100 % daily demand. Basal hematological and plasma biochemical analyses as well as histomorphometric examinations of the jejunal epithelium and liver were performed. Cu given in the organic form in 100 % of daily demand depressed the muscular and submucosa layer and the crypt depth (P < 0.05) without an influence of the innervation of the jejunum. In turn, organic Cu given in 75 % of daily demand did not influence the intestinal morphology in adult rats. Dietary organic Cu given to rats covering the daily demand in 50 or 75 % appears to be less harmful with regard to the intestinal epithelium than when administered in 100 % of daily demand.

  6. Hyperglycemia inhibits recovery from disuse-induced skeletal muscle atrophy in rats.

    PubMed

    Kataoka, H; Nakano, J; Morimoto, Y; Honda, Y; Sakamoto, J; Origuchi, T; Okita, M; Yoshimura, T

    2014-01-01

    The purpose of this study was to evaluate the effects of hyperglycemia on skeletal muscle recovery following disuse-induced muscle atrophy in rats. Wistar rats were grouped as streptozotocin-induced diabetic rats and non-diabetic rats. Both ankle joints of each rat were immobilized to induce atrophy of the gastrocnemius muscles. After two weeks of immobilization and an additional two weeks of recovery, tail blood and gastrocnemius muscles were isolated. Serial cross sections of muscles were stained for myosin ATPase (pH 4.5) and alkaline phosphatase activity. Serum insulin and muscle insulin-like growth factor-1 (IGF-1) levels were also measured. Serum insulin levels were significantly reduced in the diabetic rats compared to the non-diabetic controls. The diameters of type I, IIa, and IIb myofibers and capillary-to-myofiber ratio in the isolated muscle tissue were decreased after immobilization in both treatments. During the recovery period, these parameters were restored in the non-diabetic rats, but not in the diabetic rats. In addition, muscle IGF-1 levels after recovery increased significantly in the non-diabetic rats, but not in the diabetic rats. We conclude that decreased levels of insulin and IGF-1 and impairment of angiogenesis associated with diabetes might be partly responsible for the inhibition of regrowth in diabetic muscle.

  7. Chronic ethanol feeding inhibits plasma levels of insulin-like growth factor-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonntag, W.E.; Boyd, R.L.

    1988-01-01

    The purpose of this study was to determine whether the generalized catabolic effects of chronic ethanol may be associated with a decline in plasma of insulin-like growth factor-1 (IGF-1). Male Sprague-Dawley rats were fed a liquid diet containing 5% ethanol or pair-fed a diet made isocaloric with maltose-dextrin. Animals were maintained on this diet for either 12 days or 4.5 months. Another groups of animals were fed control diet ad libitum for 2 weeks. After 12 days of feeding, plasma concentrations of IGF-1 in ad libitum fed rats were 771 +/- 41 ng/ml which was greater than concentrations in eithermore » pair-fed or ethanol-fed rats. After 4.5 months of feeding, plasma levels of IGF-1 in ad libitum and pair-fed rats were similar to the 12 day study. However, a significant decrease in plasma levels of IGF-1 was observed in ethanol-fed animals over the 4.5 month period. Results of a similar study in rats fed a high-fat diet for 4.5 months were similar to those found with the low-fat diet.« less

  8. The metabolism of galactose in the human gastric mucous membrane.

    PubMed

    Kopacz-Jodczyk, T; Zwierz, K; Gałasiński, W

    1984-12-01

    After incubating pieces of human gastric mucous membrane with radioactive galactose, labeled metabolites of glycolysis (FDP,PEP,pyruvate):hexose and hexosamine intermediates in glycoconjugate biosynthesis (gal-1P, UDP-gal,acetylated hexosamines, and their phosphate esters), amino acids (glycine, alanine, and serine), and oxoglutarate as a metabolite of the citric acid cycle were isolated from the acid-soluble fraction. These results suggest that galactose in the human gastric mucous membrane is epimerized to glucose and metabolized in the glycolytic pathway together with oxidation in the citric acid cycle and in the direction of glycoconjugate biosynthesis.

  9. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    NASA Technical Reports Server (NTRS)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  10. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-weekmore » study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less

  11. Toxicological parameters of albino rats fed with extruded snacks from Aerial yam (Dioscoria bulbifera) and African breadfruit seed (Treculia africana).

    PubMed

    Olatoye, Kazeem K; Arueya, Gibson L

    2018-01-01

    In this study, safety of novel food from aerial yam and Treculia africana , underutilized food materials with high-nutritive value and health benefits were investigated. Animal experiment involving the use of thirty (30) male albino rats was conducted for 28 days.Thereafter, rats in all groups were sacrificed and blood samples collected for biochemical analysis and hematological assay. Some vital organs were harvested and used for histological analysis. Biochemical and hematological parameters were not significantly p  ≤ .05 different among the treatment and controls. However there was an increase in monocytes, which is a reflection of immune boosting potential of the novel snack. No significant pathological changes were observed in liver and kidney of rats fed with this snack. Rats showed no signs of toxicity within the study period. These findings suggest that product may be safe and useful as an Immune adjuvant.

  12. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats.

    PubMed

    Singh, S; Sharma, R K; Malhotra, S; Pothuraju, R; Shandilya, U K

    2017-04-26

    Restoration of dysbiosed gut microbiota through probiotic may have profound effect on type 2 diabetes. In the present study, rats were fed high fat diet (HFD) for 3 weeks and injected with low dose streptozotocin to induce type 2 diabetes. Diabetic rats were then fed Lactobacillus rhamnosus NCDC 17 and L. rhamnosus GG with HFD for six weeks. L. rhamnosus NCDC 17 improved oral glucose tolerance test, biochemical parameters (fasting blood glucose, plasma insulin, glycosylated haemoglobin, free fatty acids, triglycerides, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol), oxidative stress (thiobarbituric acid reactive substance and activities of catalase, superoxide dismutase and glutathione peroxidase in blood and liver), bifidobacteria and lactobacilli in cecum, expression of glucagon like peptide-1 producing genes in cecum, and adiponection in epididymal fat, while decreased propionate proportions (%) in caecum, and expression of tumour necrosis factor-α and interlukin-6 in epididymal fat of diabetic rats as compared to diabetes control group. These findings offered a base for the use of L. rhamnosus NCDC 17 for the improvement and early treatment of type 2 diabetes.

  13. Effect of short term oral cadmium exposure in rats fed low zinc and low copper diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panemangalore, M.; Lee, C.J.; Wilson, K.

    1986-03-05

    The effects of 0, 0.15 and 5.0 ppm Cd in drinking water was determined in 10 week old F-344 rats fed either control - C (30 ppm Zn + 5 ppm Cu), low Zn - LZn (5 ppm Zn), low copper - LCu (0.5 ppm Cu) and low Zn + low Cu - LZn + LCu (5 ppm Zn + 0.5 ppm Cu) diets for 8 weeks. All groups gained about 9 g/wk and neither the decrease in dietary Zn and Cu levels or Cd exposure altered wt gain or food intake (14 g/day). Liver Zn levels averaged about 19more » mg/g in all groups and were unaffected by either diet or Cd exposure; but metallothionein (MT) concentration increased from 19..mu..g/g to 40 ..mu..g/g in groups exposed to 5.0 ppm Cd and was lower in rats given LZn and LZn + LCu diet (pless than or equal to0.05). In contrast, kidney Zn levels declined in groups fed LZn + LCu diets, but exposure to Cd maintained Zn levels. Kidney MT concentration fell in response to LZn, LCu and LZn + LCu diets, while exposure to 5.0 ppm Cd elevated MT concentration almost 3 fold, however, LZn and LCu diets decreased the extent of MT induction (pless than or equal to0.05). Kidney Zn levels appear to be more susceptible to modulation by dietary Zn and Cu levels, and oral Cd exposure.« less

  14. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  15. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals. PMID:22685607

  16. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  17. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using

  18. Arcuate nucleus of hypothalamus is involved in mediating the satiety effect of electroacupuncture in obese rats.

    PubMed

    Fei Wang; Tian, De Run; Tso, Patrick; Han, Ji Sheng

    2011-12-01

    Obesity is a major health problem in the world. Since effective remedies are rare, researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. This study investigated the anti-obesity mechanisms of EA, using a rat model of diet-induced obesity. After feeding with a high-fat diet for 9 weeks, a number of rats who gained weight that surpassed the maximal body weight of rats in the chow-fed group were considered obese and employed in the study. A 2 Hz EA treatment at the acupoints ST36/SP6 with the intensity increasing stepwise from 0.5-1-1.5 mA was given once a day for 30 min. Rats treated with EA showed significantly decreased food intake and reduced body weight compared with the rats in DIO and restraint group. EA treatment increased peptide levels of α-MSH and mRNA levels of its precursor POMC in the arcuate nuclear of hypothalamus (ARH) neurons. In addition, the cerebral spinal fluid (CSF) content of α-MSH was elevated by EA application. ARH lesions by monosodium glutamate abolished the inhibition effect of EA on food intake and body weight. A non-acupoint stimulation did not show the benefit effect on food intake inhibition and body weight reduction compared with restraint and ST36/SP6 EA treatment. We concluded that EA treatment at ST36/SP6 acted through ARH to significantly inhibit food intake and body weight gain when fed a high-fat diet and that the stimulation of α-MSH expression and release might be involved in the mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. [Vitamin E and experimental caries in rats fed a cariogenic diet and zinc].

    PubMed

    Rapisarda, E; Longo, A

    1981-01-01

    A cariogenic diet with zinc and vitamin E administered to rats for 90 days led to a reduction in caries of 21.87% by comparison with animals fed with the cariogenic diet only, and 3.12% by comparison with those that received the diet plus zinc. Although the details of the mechanism of action of vitamin E are not fully known, it is felt that its demonstrated cariostatic effect depends on its antioxidant activity and its protection of the sulphydryl groups of some enzyme system, together with its direct intervention in cell respiration. Since both vitamin E and zinc activate NAD-dependent LDH, their simultaneous administration enhances their individual cariostatic effects by bringing about a lower accumulation of lactic acid in the bacterial plaque.

  20. Differential effects of dietary fats on sympathetic nervous system activity in the rat.

    PubMed

    Young, J B; Walgren, M C

    1994-01-01

    Fat feeding stimulates sympathetic nervous system (SNS) activity in rats. To determine if fats vary in their potency as stimulants of the SNS, [3H]norepinephrine ([3H]NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of animals fed lab chow diets supplemented with safflower oil, coconut oil, or medium-chain triglycerides (MCT). At 5 days, all three fats accelerated [3H]NE turnover in heart and did so equally, but only when the fat supplement represented an increase in energy intake. However, after 14 days, safflower oil and coconut oil but not MCT increased [3H]NE turnover in heart compared with turnover rates obtained in animals fed isoenergetic amounts of chow. Furthermore, the stimulatory effect of safflower oil on [3H]NE turnover was statistically greater than that seen in animals fed equivalent amounts of coconut oil. In vivo synthesis of NE assessed by accumulation of dopamine (DA) in heart following inhibition of dopamine-beta-hydroxylase (D beta H) was likewise highest in safflower oil-fed rats and lowest in those fed MCT. Thus, sympathetic activation by dietary fat varies among different fats, suggesting a role for fatty acid intake in dietary regulation of the SNS.