Science.gov

Sample records for galactose

  1. GALACTOSE METABOLISM I.

    PubMed Central

    Fukuyama, T. T.; O'Kane, D. J.

    1962-01-01

    Fukuyama T. T. (University of Pennsylvania, Philadelphia) and D. J. O'Kane. Galactose metabolism. I. Pathway of carbon in fermentation by Streptococcus faecalis. J. Bacteriol. 84:793–796. 1962.—The pathway by which galactose-1-C14 is fermented in Streptococcus faecalis was investigated using dried-cell preparations. Lactic acid, acetic acid, formic acid, ethanol, and carbon dioxide were the end products formed, with lactic acid representing approximately 50% of the sugar fermented. The distribution of radio-activity indicated that the fermentation follows the Embden-Meyerhof route, suggesting that the difference in the formation of the products of glucose and galactose fermentation must be attributed to alternate routes of pyruvic acid metabolism. Differences in pH did not account for the dissimilar fermentation patterns. PMID:13960210

  2. Genetics Home Reference: glucose-galactose malabsorption

    MedlinePlus

    ... Facebook Twitter Home Health Conditions glucose-galactose malabsorption glucose-galactose malabsorption Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glucose-galactose malabsorption is a condition in which the ...

  3. Galactose adsorption on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Alatalo, Matti; Puisto, Mikko

    2014-03-01

    In order to understand the valorisation of biomass, it is essential to study the behavior of sugar molecules on catalytic surfaces. We have studied the adsorption of galactose molecules on the Ru(0001) surface using first principles calculations. We present results for the fully relaxed configurations of the molecule at different adsorption sites. We also compare the effect of the inclusion of the van der Waals interactions on both the energetics of the free galactose molecule and the adsorption energy of galactose on Ru(0001). We compare our results, obtained using periodically repeated supercells, to those obtained with cluster calculations.

  4. Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency.

    PubMed

    Schadewaldt, Peter; Kamalanathan, Loganathan; Hammen, Hans-Werner; Kotzka, Jorg; Wendel, Udo

    2014-12-01

    Patients with classical galactosaemia (galactose-1-phosphate uridyltransferase (GALT) deficiency) manifest clinical complications despite strict dietary galactose restriction. Therefore the significance of endogenous galactose production has been assessed. Previous in vivo studies primarily focused on patients homozygous for the most common genetic variant Q188R but little is known about other genetic variants. In the present study the endogenous galactose release in a group of non-Q188R homozygous galactosaemic patients (n = 17; 4-34 years) exhibiting comparably low residual GALT activity in red blood cells was investigated. Primed continuous infusion studies with D-[1-(13)C]galactose as substrate were conducted under post-absorptive conditions and in good metabolic control. The results demonstrate that all patients exhibiting residual GALT activity of <1.5% of control showed a comparable pathological pattern of increased endogenous galactose release irrespective of the underlying genetic variations. Possible implications of the findings towards a more differentiated dietary regimen in galactosaemia are discussed.

  5. Towards Enhanced Galactose Utilization by Lactococcus lactis▿

    PubMed Central

    Neves, Ana R.; Pool, Wietske A.; Solopova, Ana; Kok, Jan; Santos, Helena; Kuipers, Oscar P.

    2010-01-01

    Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed. PMID:20817811

  6. Control of the receptor for galactose taxis in Salmonella typhimurium.

    PubMed

    Fahnestock, M; Koshland, D E

    1979-02-01

    The chemotactic response to galactose in wild-type Salmonella typhimurium is not inducible by galactose, but is inducible by fucose, a non-metabolizable analog. In a galactokinase mutant, however, the galactose receptor is inducible by galactose. These data indicate that the concentration of free galactose in the cell controls the levels of the galactose receptor. The intensities of the chemotactic responses were found to vary in proportion to the concentration of galactose receptors. In bacteria with higher levels of galactose receptors, the ribose response is inhibited by galactose. This supports the model in which the ribose and galactose receptors compete for a common component of the signaling system.

  7. Role of galactose in cellular senescence.

    PubMed

    Elzi, David J; Song, Meihua; Shiio, Yuzuru

    2016-01-01

    Cellular senescence has been proposed to play critical roles in tumor suppression and organismal aging, but the molecular mechanism of senescence remains incompletely understood. Here we report that a putative lysosomal carbohydrate efflux transporter, Spinster, induces cellular senescence in human primary fibroblasts. Administration of d-galactose synergistically enhanced Spinster-induced senescence and this synergism required the transporter activity of Spinster. Intracellular d-galactose is metabolized to galactose-1-phosphate by galactokinase. Galactokinase-deficient fibroblasts, which accumulate intracellular d-galactose, displayed increased baseline senescence. Senescence of galactokinase-deficient fibroblasts was further enhanced by d-galactose administration and was diminished by restoration of wild-type galactokinase expression. Silencing galactokinase in normal fibroblasts also induced senescence. These results suggest a role for intracellular galactose in the induction of cellular senescence.

  8. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE).

    PubMed

    Mumma, Jane Odhiambo; Chhay, Juliet S; Ross, Kerry L; Eaton, Jana S; Newell-Litwa, Karen A; Fridovich-Keil, Judith L

    2008-02-01

    Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.

  9. 21 CFR 862.1310 - Galactose test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galactose test system. 862.1310 Section 862.1310....1310 Galactose test system. (a) Identification. A galactose test system is a device intended to measure galactose in blood and urine. Galactose measurements are used in the diagnosis and treatment of...

  10. 21 CFR 862.1310 - Galactose test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose test system. 862.1310 Section 862.1310....1310 Galactose test system. (a) Identification. A galactose test system is a device intended to measure galactose in blood and urine. Galactose measurements are used in the diagnosis and treatment of...

  11. Apparent galactose appearance rate in human galactosemia based on plasma [(13)C]galactose isotopic enrichment.

    PubMed

    Ning, C; Fenn, P T; Blair, I A; Berry, G T; Segal, S

    2000-08-01

    Determination of endogenous galactose formation in galactosemic subjects provides important information in understanding the etiology of the long-term complications. To accomplish this task a sensitive method for measurement of isotopic enrichment of plasma galactose was developed. The aldononitrile pentaacetate derivative of galactose was utilized for gas chromatography/mass spectrometry analysis. Using a phenyl-methylsilicone capillary column, adequate separation of galactose from glucose was obtained by temperature programming of the chromatography. The specific fragmentation pattern of m/z 212, 225, 314 from d-[(12)C]galactose and m/z 213, 226, 315 from l-[(13)C]galactose was used for the galactose enrichment measurement by atom percent excess (APE). There was good correlation between expected enrichment and determined APEs at galactose concentrations of 1, 2, and 5 micromol/L with a coefficient of variation ranging from 0.22 to 7.17%. The method provides an accurate estimation of plasma [(13)C]galactose enrichment from which the galactose production rate can be calculated. The steady-state plasma l-[(13)C]galactose isotopic enrichment of three individuals with galactosemia, two males ages 33 and 13, and one female age 9, during constant infusion of l-[(13)C]galactose was 55, 41, and 55%, allowing the estimation of the apparent galactose appearance rate of 0.62, 1.09, and 0.82 mg/kg/h, respectively. The reanalysis of three previous studies by the present method found that APE values determined by the method then employed, butylboronate acetate derivatization, were systemically lower than those determined with aldononitrile pentaacetate derivatization, making for an overestimation of the apparent galactose appearance rate. The small plasma sample volumes needed make it feasible to perform these studies in infants and young children with galactosemia. Copyright 2000 Academic Press.

  12. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: Evidence for a galactose-lactose antiporter

    SciTech Connect

    Hutkins, R.W.; Ponne, C. )

    1991-04-01

    Galactose-nonfermenting (Gal{sup {minus}}) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal{sup {minus}} cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated ({sup 14}C)lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force ({Delta}p) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a {Delta}p of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal{sup {minus}} S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.

  13. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii.

    PubMed

    Wong, T Y; Murdock, C A; Concannon, S P; Lockey, T D

    1991-01-01

    Azotobacter vinelandii growing on galactosides induced two distinct permeases for glucose and galactose. The apparent Vmax and Km of the galactose permease were 16 nmol galactose/min per 10(10) cells and 0.5 mM, respectively. The apparent Vmax and Km of the glucose permease were 7.8 nmol glucose/min per 10(10) cells and 0.04 mM, respectively. Excess glucose had no effect on the galactose uptake. However, excess galactose inhibited glucose transport. The galactosides-induced glucose permease also exhibited different uptake kinetics from that induced by glucose.

  14. Monitoring of biochemical status in children with Duarte galactosemia: utility of galactose, galactitol, galactonate, and galactose 1-phosphate.

    PubMed

    Ficicioglu, Can; Hussa, Christie; Gallagher, Paul R; Thomas, Nina; Yager, Claire

    2010-07-01

    Duarte galactosemia (DG) is frequently detected in newborn-screening programs. DG patients do not manifest the symptoms of classic galactosemia, but whether they require dietary galactose restriction is controversial. We sought to assess the relationships of selected galactose metabolites (plasma galactose, plasma galactitol, erythrocyte (RBC) galactitol, RBC galactonate, and urine galactitol and galactonate) to RBC galactose 1-phosphate (Gal-1-P), dietary galactose intake, and neurodevelopmental/clinical outcomes in DG children. We studied 30 children 1-6 years of age who had DG galactosemia and were on a regular diet. All participants underwent a physical and ophthalmologic examination and a neurodevelopmental assessment. RBC galactitol, RBC galactonate, RBC Gal-1-P, plasma galactose, plasma galactonate, and urine galactitol and galactonate concentrations were measured. RBC galactitol and galactonate concentrations were about 2 and 6 times higher, respectively, than control values. Plasma galactose and galactitol concentrations were also about twice the control values. The mean values for RBC Gal-1-P and urine galactitol were within the reference interval. We found a relationship between plasma and urine galactitol concentrations but no relationship between RBC galactose metabolites and urine galactitol. There was a significant relationship between galactose intake and RBC galactose metabolites, especially RBC galactitol (P < 0.0005) and RBC galactonate (P < 0.0005). Galactose intake was not related to the urine galactitol, plasma galactose, or plasma galactitol concentration. RBC galactitol, RBC galactonate, plasma galactose, plasma galactitol, and urine galactonate concentrations showed no relationship with clinical or developmental outcomes. DG children on a regular diet have RBC Gal-1-P concentrations within the reference interval but increased concentrations of other galactose metabolites, including RBC galactitol and RBC galactonate. These increased

  15. Ligand interactions with galactose oxidase: mechanistic insights.

    PubMed Central

    Whittaker, M M; Whittaker, J W

    1993-01-01

    Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme. PMID:8386015

  16. Ght2⁺ is required for UDP-galactose synthesis from extracellular galactose by Schizosaccharomyces pombe.

    PubMed

    Matsuzawa, Tomohiko; Hara, Futoshi; Tanaka, Naotaka; Tohda, Hideki; Takegawa, Kaoru

    2013-06-01

    Schizosaccharomyces pombe has eight hexose transporter genes, ght1 (+) to ght8 (+). Here we report that ght2 (+), which is highly expressed in the presence of glucose, is essential for UDP-galactose synthesis from extracellular galactose when cells grow on glucose. The galactosylation defect of a uge1Δ mutant defective in synthesis of UDP-galactose from glucose was suppressed in galactose-containing medium, but disruption of ght2 (+) in the uge1Δ mutant reversed suppression of the galactosylation defect. Expression of Saccharomyces cerevisiae GAL2 in uge1Δght2Δ cells suppressed the defective galactosylation phenotype in galactose-containing medium. These results indicate that galactose is transported from the medium to the cytosol in a Ght2-dependent manner, and is then converted into UDP-galactose.

  17. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose.

    PubMed

    Escalante-Chong, Renan; Savir, Yonatan; Carroll, Sean M; Ingraham, John B; Wang, Jue; Marx, Christopher J; Springer, Michael

    2015-02-03

    Natural environments are filled with multiple, often competing, signals. In contrast, biological systems are often studied in "well-controlled" environments where only a single input is varied, potentially missing important interactions between signals. Catabolite repression of galactose by glucose is one of the best-studied eukaryotic signal integration systems. In this system, it is believed that galactose metabolic (GAL) genes are induced only when glucose levels drop below a threshold. In contrast, we show that GAL gene induction occurs at a constant external galactose:glucose ratio across a wide range of sugar concentrations. We systematically perturbed the components of the canonical galactose/glucose signaling pathways and found that these components do not account for ratio sensing. Instead we provide evidence that ratio sensing occurs upstream of the canonical signaling pathway and results from the competitive binding of the two sugars to hexose transporters. We show that a mutant that behaves as the classical model expects (i.e., cannot use galactose above a glucose threshold) has a fitness disadvantage compared with wild type. A number of common biological signaling motifs can give rise to ratio sensing, typically through negative interactions between opposing signaling molecules. We therefore suspect that this previously unidentified nutrient sensing paradigm may be common and overlooked in biology.

  18. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  19. Galactose Epimerase Deficiency: Expanding the Phenotype.

    PubMed

    Dias Costa, Filipa; Ferdinandusse, Sacha; Pinto, Carla; Dias, Andrea; Keldermans, Liesbeth; Quelhas, Dulce; Matthijs, Gert; Mooijer, Petra A; Diogo, Luísa; Jaeken, Jaak; Garcia, Paula

    2017-03-01

    Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.

  20. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  1. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.

    PubMed

    Lee, Ki-Sung; Hong, Min-Eui; Jung, Suk-Chae; Ha, Suk-Jin; Yu, Byung Jo; Koo, Hyun Min; Park, Sung Min; Seo, Jin-Ho; Kweon, Dae-Hyuk; Park, Jae Chan; Jin, Yong-Su

    2011-03-01

    Although Saccharomyces cerevisiae is capable of fermenting galactose into ethanol, ethanol yield and productivity from galactose are significantly lower than those from glucose. An inverse metabolic engineering approach was undertaken to improve ethanol yield and productivity from galactose in S. cerevisiae. A genome-wide perturbation library was introduced into S. cerevisiae, and then fast galactose-fermenting transformants were screened using three different enrichment methods. The characterization of genetic perturbations in the isolated transformants revealed three target genes whose overexpression elicited enhanced galactose utilization. One confirmatory (SEC53 coding for phosphomannomutase) and two novel targets (SNR84 coding for a small nuclear RNA and a truncated form of TUP1 coding for a general repressor of transcription) were identified as overexpression targets that potentially improve galactose fermentation. Beneficial effects of overexpression of SEC53 may be similar to the mechanisms exerted by overexpression of PGM2 coding for phosphoglucomutase. While the mechanism is largely unknown, overexpression of SNR84, improved both growth and ethanol production from galactose. The most remarkable improvement of galactose fermentation was achieved by overexpression of the truncated TUP1 (tTUP1) gene, resulting in unrivalled galactose fermentation capability, that is 250% higher in both galactose consumption rate and ethanol productivity compared to the control strain. Moreover, the overexpression of tTUP1 significantly shortened lag periods that occurs when substrate is changed from glucose to galactose. Based on these results we proposed a hypothesis that the mutant Tup1 without C-terminal repression domain might bring in earlier and higher expression of GAL genes through partial alleviation of glucose repression. mRNA levels of GAL genes (GAL1, GAL4, and GAL80) indeed increased upon overexpression of tTUP. The results presented in this study illustrate

  2. Galactose oxidation using 13C in healthy and galactosemic children

    PubMed Central

    Resende-Campanholi, D.R.; Porta, G.; Ferrioli, E.; Pfrimer, K.; Ciampo, L.A. Del; Junior, J.S. Camelo

    2015-01-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies. PMID:25608239

  3. Galactose-specific seed lectins from Cucurbitaceae.

    PubMed

    Swamy, Musti J; Marapakala, Kavitha; Sultan, Nabil Ali M; Kenoth, Roopa

    2015-01-01

    Lectins, the carbohydrate binding proteins have been studied extensively in view of their ubiquitous nature and wide-ranging applications. As they were originally found in plant seed extracts, much of the work on them was focused on plant seed lectins, especially those from legume seeds whereas much less attention was paid to the lectins from other plant families. During the last two decades many studies have been reported on lectins from the seeds of Cucurbitaceae species. The main focus of the present review is to provide an overview of the current knowledge on these proteins, especially with regard to their physico-chemical characterization, interaction with carbohydrates and hydrophobic ligands, 3-dimensional structure and similarity to type-II ribosome inactivating proteins. The future outlook of research on these galactose-specific proteins is also briefly considered.

  4. Galactose Expulsion during Lactose Metabolism in Lactococcus lactis subsp. cremoris FD1 Due to Dephosphorylation of Intracellular Galactose 6-Phosphate

    PubMed Central

    Benthin, Stig; Nielsen, Jens; Villadsen, John

    1994-01-01

    In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (rmax = 1.2 h-1) is lower than the glucose flux through glycolysis (rmax = 1.5 h-1) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass -1 h-1 depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no Pi (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as Pi by hydrolysis

  5. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity. PMID:20507616

  6. The effect of enteric galactose on neonatal canine carbohydrate metabolism

    SciTech Connect

    Kliegman, R.M.; Miettinen, E.L.; Kalhan, S.C.; Adam, P.A.

    1981-01-01

    Newborn pups were assigned to a fasting group or to a group receiving intravenous glucose alimentation. Glucose turnover was determined during steady state equilibration of simultaneously infused (6-/sup 3/H) glucose. Thereafter, pups from each group received 0.625 g/Kg of either oral (U-/sup 14/C) galactose or (U-/sup 14/C) glucose. In fasted or intravenously alimented pups enteric glucose resulted in a rapid and sustained elevation of blood glucose concentrations. Systemic appearance of /sup 14/C label from enteric glucose increased rapidly as did the enrichment of blood (/sup 14/C) glucose specific activity. In those pups given enteric galactose, blood glucose values were equivalent to that in the glucose fed groups, however /sup 14/C appearing in blood glucose and blood glucose specific activity was significantly lower. The peak values for rates of appearance and disappearance of systemic glucose were significantly lower in pups fed galactose than among pups fed glucose. Glucose clearance was also significantly lower in these pups despite equivalent plasma insulin responses. Among fasting pups hepatic glycogen content was significantly higher in those given either oral glucose or galactose when compared to a completely starved control group. In contrast, among alimented pups galactose administration significantly enhanced hepatic glycogen content compared to those fed glucose. In addition, hepatic glycogen synthase (glucose-6-phosphate independent) activity was increased only among alimented pups fed galactose when compared to completely fasted pups. In conclusion these data suggest that following gastrointestinal galactose administration, hepatic carbohydrate uptake is augmented while glycogen synthesis may be enhanced. Augmented glycogen synthesis following galactose administration may reflect alterations in hepatic glycogen synthase activity or enhanced hepatic carbohydrate uptake.

  7. Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics.

    PubMed

    Kim, Moon Il; Shim, Jongmin; Li, Taihua; Woo, Min-Ah; Cho, Daeyeon; Lee, Jinwoo; Park, Hyun Gyu

    2012-03-07

    A colorimetric method for quantification of galactose, which utilizes a nanostructured multi-catalyst system consisting of Fe(3)O(4) magnetic nanoparticles (MNPs) and galactose oxidase (Gal Ox) simultaneously entrapped in large pore sized mesocellular silica, is described. Gal Ox, immobilized in a silica matrix, promotes reaction of galactose to generate H(2)O(2) that subsequently activates MNPs in silica mesopores to convert a colorimetric substrate into a colored product. By using this colorimetric method, galactose can be specifically detected. Along with excellent reusability via application of simple magnetic capturing, enhanced operational stability was achieved by employing a cross-linked enzyme aggregate (CLEA) method for Gal Ox immobilization. This protocol leads to effective prevention of enzyme leaching from the pores of mesocellular silica. The analytical utility of the new colorimetric biosensor was demonstrated by its use in diagnosing galactosemia, a genetic metabolic disorder characterized by the inability to utilize galactose, through analysis of clinical dried blood spot specimens. A microscale well-plate format was employed that possesses a multiplexing capability. The multi-catalyst system entrapping Gal Ox and MNPs represents a new approach for rapid, convenient, and cost-effective quantification of galactose in human blood and it holds promise as an alternative method for galactosemia diagnosis, replacing the laborious procedures that are currently in use.

  8. Mathematical model of galactose regulation and metabolic consumption in yeast.

    PubMed

    Mitre, Tina M; Mackey, Michael C; Khadra, Anmar

    2016-10-21

    The galactose network has been extensively studied at the unicellular level to broaden our understanding of the regulatory mechanisms governing galactose metabolism in multicellular organisms. Although the key molecular players involved in the metabolic and regulatory processes of this system have been known for decades, their interactions and chemical kinetics remain incompletely understood. Mathematical models can provide an alternative method to study the dynamics of this network from a quantitative and a qualitative perspective. Here, we employ this approach to unravel the main properties of the galactose network, including equilibrium binary and temporal responses, as a way to decipher its adaptation to actively-changing inputs. We combine its two main components: the genetic branch, which allows for bistable responses, and a metabolic branch, encompassing the relevant metabolic processes that can be repressed by glucose. We use both computational tools to estimate model parameters based on published experimental data, as well as bifurcation analysis to decipher the properties of the system in various parameter regimes. Our model analysis reveals that the interplay between the inducer (galactose) and the repressor (glucose) creates a bistable regime which dictates the temporal responses of the system. Based on the same bifurcation techniques, we explain why the system is robust to genetic mutations and molecular instabilities. These findings may provide experimentalists with a theoretical framework with which they can determine how the galactose network functions under various conditions.

  9. Galactose-α-1,3-galactose and Delayed Anaphylaxis, Angioedema, and Urticaria in Children

    PubMed Central

    Kennedy, Joshua L.; Stallings, Amy P.; Platts-Mills, Thomas A.E.; Oliveira, Walter M.; Workman, Lisa; James, Haley R.; Tripathi, Anubha; Lane, Charles J.; Matos, Luis; Heymann, Peter W.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Despite a thorough history and comprehensive testing, many children who present with recurrent symptoms consistent with allergic reactions elude diagnosis. Recent research has identified a novel cause for “idiopathic” allergic reactions; immunoglobulin E (IgE) antibody specific for the carbohydrate galactose-α-1,3-galactose (α-Gal) has been associated with delayed urticaria and anaphylaxis that occurs 3 to 6 hours after eating beef, pork, or lamb. We sought to determine whether IgE antibody to α-Gal was present in sera of pediatric patients who reported idiopathic anaphylaxis or urticaria. METHODS: Patients aged 4 to 17 were enrolled in an institutional review board–approved protocol at the University of Virginia and private practice allergy offices in Lynchburg, VA. Sera was obtained and analyzed by ImmunoCAP for total IgE and specific IgE to α-Gal, beef, pork, cat epithelium and dander, Fel d 1, dog dander, and milk. RESULTS: Forty-five pediatric patients were identified who had both clinical histories supporting delayed anaphylaxis or urticaria to mammalian meat and IgE antibody specific for α-Gal. In addition, most of these cases had a history of tick bites within the past year, which itched and persisted. CONCLUSIONS: A novel form of anaphylaxis and urticaria that occurs 3 to 6 hours after eating mammalian meat is not uncommon among children in our area. Identification of these cases may not be straightforward and diagnosis is best confirmed by specific testing, which should certainly be considered for children living in the area where the Lone Star tick is common. PMID:23569097

  10. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    PubMed

    Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose

  11. Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion

    PubMed Central

    Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose

  12. Elemental and structural studies of the rat galactose cataract

    SciTech Connect

    Harding, C.V.; Unakar, N.J.; Bagchi, M.; Chylack, L.T. Jr.; Jampel, R.S.; Bobrowski, W.F.; Dang, L.; Tsui, J.Y.; Harding, D. )

    1989-01-01

    A series of rat galactose lenses, from 1 to 20 days on the 50% galactose diet, were frozen in the whole eye, and fractured from pole to pole in the frozen state. Lyophilized half-lenses were prepared for analysis by energy dispersive spectrometry (EDS). Following elemental analysis, some specimens were embedded and sectioned for histological studies. Elemental X-ray maps, and/or profiles, were made for K, Na, Cl, Ca, P, and S. As early as two days on the galactose diet, a crescent-shaped region (streak) of Cl, Na, and Ca gain, and K loss develops near the equatorial surface. Between this region and the equatorial surface are the nucleated differentiating fiber cells which maintain low Cl, Na, and Ca, and high K (viable equatorial zone, VEZ). With time the streak expands anteriorly, centrally and posteriorly, eventually (by 20 days) including most of the lens. The VEZ, including the epithelium, however, is non-reactive to the galactose diet, which is deleterious to the fully differentiated fiber cells. Eventually, the VEZ undergoes a characteristic morphological change, apparently due in part to changes in its physical environment.

  13. Galactose promotes fat mobilization in obese lactating and nonlactating women

    USDA-ARS?s Scientific Manuscript database

    Galactose consumption as the only carbohydrate source, results in little increase in plasma glucose and insulin concentrations when compared with fasting. Lower insulin might promote endogenous lipolysis during meal absorption, which may facilitate fat loss. The objective was to test the hypothesis ...

  14. 21 CFR 862.1310 - Galactose test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galactose test system. 862.1310 Section 862.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  15. 21 CFR 862.1310 - Galactose test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galactose test system. 862.1310 Section 862.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  16. 21 CFR 862.1310 - Galactose test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galactose test system. 862.1310 Section 862.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  17. Contribution of galactose and fructose to glucose homeostasis

    USDA-ARS?s Scientific Manuscript database

    To determine the contributions of galactose and fructose to glucose formation, 6 subjects (26 +/- 2 years old; body mass index, 22.4 +/-0.2 kg/m2) (mean +/- SE) were studied during fasting conditions. Three subjects received a primed constant intravenous infusion of[6,6-2H2] glucose for 3 hours foll...

  18. Glycoconjugates as noninvasive probes of intrahepatic metabolism. III. Application to galactose assimilation by the intact rat

    SciTech Connect

    Hellerstein, M.K.; Munro, H.N.

    1988-04-01

    A tracer methodology has been developed for noninvasive assessment of intrahepatic metabolism of administered labeled sugars. In this procedure, we measure the output of the label from the liver in two glycoconjugates derived from hepatic UDP-glucose, namely, glucuronic acid formed through UDP-glucuronic acid and excreted in the urine following acetaminophen administration, and galactose formed through UDP-galactose and then secreted in the carbohydrate portion of glycoproteins in the plasma. Comparison of the distribution of label from various sugar precursors in these end-products can indicate exchanges between hepatic UDP-glucose, UDP-galactose, and UDP-glucuronic acid. In this study we apply the technique to explore whether the enzyme UDP-galactose-4-epimerase catalyzing the step UDP-galactose to UDP-glucose is nonequilibrium and therefore potentially has a regulatory role for utilization of free galactose. The specific activity in the two glycoconjugates was compared when either (1-3H)galactose or (U-14C)glucose was the infused precursor sugar. In rats under a variety of conditions (fasting, oral refeeding, intravenous administration of galactose), label from (1-3H)galactose accumulated in glycoprotein-bound galactose much more than in acetaminophen-bound glucuronic acid, in comparison to label from (U-14C)glucose, demonstrating limitation of the rate of transfer from UDP-galactose to UDP-glucose at the epimerase step. Accordingly, epimerase is suggested to have a regulatory role in the galactose assimilation pathway.

  19. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the activity...

  20. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the activity...

  1. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  2. Contribution of galactose and fructose to glucose homeostasis.

    PubMed

    Coss-Bu, Jorge A; Sunehag, Agneta L; Haymond, Morey W

    2009-08-01

    To determine the contributions of galactose and fructose to glucose formation, 6 subjects (26 +/- 2 years old; body mass index, 22.4 +/- 0.2 kg/m(2)) (mean +/- SE) were studied during fasting conditions. Three subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose for 3 hours followed by oral bolus ingestion of galactose labeled to 2% with [U-(13)C]galactose (0.72 g/kg); the other 3 subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose followed by either a bolus ingestion of fructose alone (0.72 g/kg) (labeled to 2% with [U-(13)C]fructose) or coingestion of fructose (labeled with [U-(13)C]fructose) (0.72 g/kg) and unlabeled glucose (0.72 g/kg). Four hours after ingestion, subjects received 1 mg of glucagon intravenously to stimulate glycogenolysis. When galactose was ingested alone, the area under the curve (AUC) of [(13)C(6)]glucose and [(13)C(3)]glucose was 7.28 +/- 0.39 and 3.52 +/- 0.05 mmol/L per 4 hours, respectively. When [U-(13)C]fructose was ingested with unlabeled fructose or unlabeled fructose plus glucose, no [(13)C(6)]glucose was detected in plasma. The AUC of [(13)C(3)]glucose after fructose and fructose plus glucose ingestion was 20.21 +/- 2.41 and 6.25 +/- 0.34 mmol/L per 4 hours, respectively. Comparing the AUC for the (13)C(3) vs (13)C(6) enrichments, 67% of oral galactose enters the systemic circulation via a direct route and 33% via an indirect route. In contrast, fructose only enters the systemic circulation via the indirect route. Finally, when ingested alone, fructose and galactose contribute little to glycogen synthesis. After the coingestion of fructose and glucose with the resultant insulin response from the glucose, fructose is a significant contributor to glycogen synthesis.

  3. Five Arab children with glucose-galactose malabsorption.

    PubMed

    Assiri, Asaad; Saeed, Anjum; Alnimri, Abdulrehman; Ahmad, Sarfaraz; Saeed, Elshazalay; Jameel, Sajjad

    2013-05-01

    Five children with glucose-galactose malabsorption (GGM) are presented. Two infants from Saudi Arabia were first-degree relatives, the third infant was unrelated and the other two were of Yemeni and Syrian origin, respectively. All the infants had chronic diarrhoea and four had failed to thrive since early infancy. All had stools positive for reducing substances, and sugar chromatography showed glucose and galactose malabsorption. Small bowel biopsies were normal in all. One infant developed gangrene of both legs as a complication of hypernatraemia and dehydration, necessitating bilateral amputation. Two infants had nephrolithiasis. All the infants responded well to fructose-based formulae. GGM should be considered in the differential diagnosis of chronic diarrhoea in infants breastfed or artificially fed from early life.

  4. Fermentation of Glucose, Lactose, Galactose, Mannitol, and Xylose by Bifidobacteria

    PubMed Central

    de Vries, Wytske; Stouthamer, A. H.

    1968-01-01

    For six strains of Bifidobacterium bifidum (Lactobacillus bifidus), fermentation balances of glucose, lactose, galactose, mannitol, and xylose were determined. Products formed were acetate, l(+)-lactate, ethyl alcohol, and formate. l(+)-Lactate dehydrogenase of all strains studied was found to have an absolute requirement for fructose-1,6-diphosphate. The phosphoroclastic enzyme could not be demonstrated in cell-free extracts. Cell suspensions fermented pyruvate to equimolar amounts of acetate and formate. Alcohol dehydrogenase was shown in cell-free extracts. Possible explanations have been suggested for the differences in fermentation balances found for different strains and carbon sources. By enzyme determinations, it was shown that bifidobacteria convert mannitol to fructose-6-phosphate by an inducible polyol dehydrogenase and fructokinase. For one strain of B. bifidum, molar growth yields of glucose, lactose, galactose, and mannitol were determined. The mean value of Y (ATP), calculated from molar growth yields and fermentation balances, was 11.3. PMID:5674058

  5. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  6. Effects of galactose feeding on aldose reductase gene expression.

    PubMed Central

    Wu, R R; Lyons, P A; Wang, A; Sainsbury, A J; Chung, S; Palmer, T N

    1993-01-01

    Aldose reductase (AR) is implicated in the pathogenesis of the diabetic complications and osmotic cataract. AR has been identified as an osmoregulatory protein, at least in the renal medulla. An outstanding question relates to the response of AR gene expression to diet-induced galactosemia in extrarenal tissues. This paper shows that AR gene expression in different tissues is regulated by a complex multifactorial mechanism. Galactose feeding in the rat is associated with a complex and, on occasions, multiphasic pattern of changes in AR mRNA levels in kidney, testis, skeletal muscle, and brain. These changes are not in synchrony with the temporal sequence of changes in tissue galactitol, galactose, and myoinositol concentrations. Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels. It is concluded that AR gene expression and tissue AR activities are regulated by mechanisms that are not purely dependent on nonspecific alterations in intracellular metabolite concentrations. This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney. PMID:8325980

  7. [Delayed appearance of symptoms in immediate hypersensitivity: type I sensitization to galactose-α-1,3-galactose].

    PubMed

    Biedermann, T; Röcken, M

    2012-04-01

    Delayed immediate-type allergy to innards and red meat can be mediated by IgE antibodies to galactose-α-1, 3-galactose (α-Gal). Apart from humans and Old World apes, α-Gal is ubiquitously expressed in glycoproteins and glycolipids. Thus, as α-Gal is immunogenic for humans, they can be easily sensitized even through a tick bite. Anti-α-Gal IgG represents approximately 1% of total IgG; IgE antibodies to α-Gal are comparably rare. However, in these patients, consuming red meat and especially innards can lead to the development of immediate type reactions such as urticaria. Cetuximab is a humanized IgG1 antibody containing murine α-Gal. Therefore, allergic reactions may occur with its first administration.

  8. METABOLIC INTERMEDIATES IN ADAPTIVE FERMENTATION OF GALACTOSE BY YEAST

    PubMed Central

    Reiner, John M.

    1947-01-01

    Pyruvic acid, which is known to be an intermediate of glucose fermentation, was added to yeast during adaptation to galactose fermentation. It was found to neutralize the inhibition by sodium fluoride, and to decrease the apparent time of adaptation from 90 to about 45 or 60 minutes. In control experiments, it was shown that intact yeast is unable appreciably to ferment or decarboxylate alone, although it oxidizes the compound readily. Experiments in which galactose and pyruvate were added at various times and in different orders were used to eliminate the possible complications of the rates at which these compounds penetrate the cells. Under these conditions, it was not possible to reduce the time of adaptation below 45 minutes. It was concluded that the rôle of added pyruvate was to serve as a source of acetaldehyde, which in turn could accept hydrogen and be reduced to alcohol. Substances, such as triose phosphate, which could serve as hydrogen donors were not produced from galactose in appreciable quantities until 45 minutes had elapsed. This time was therefore inferred to be the true adaptation time, during which the first synthesis of adaptive enzymes occurred. Some determinations of the distribution of phosphorylated intermediates at various stages during the adaptive process were carried out. It was found that ATP, which usually serves to phosphorylate hexoses, accumulates during the preadaptive phase, diminishes rapidly after 60 minutes, and subsequently increases once more. The source of the ATP phosphate appeared to be PPA or triose phosphate initially present in the cells. It was inferred that the adaptive enzyme was concerned with the phosphorylation of galactose and the conversion of the phosphate ester to a glucose ester, which could then be fermented by the normal enzymes of the cell. Added ATP was found to stimulate adaptation to a considerable extent, but did not shorten the time of adaptation below 75 minutes. This seemed consistent with the r

  9. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions.

    PubMed

    van den Brink, J; Akeroyd, M; van der Hoeven, R; Pronk, J T; de Winde, J H; Daran-Lapujade, P

    2009-04-01

    Glucose is the favoured carbon source for Saccharomyces cerevisiae, and the Leloir pathway for galactose utilization is only induced in the presence of galactose during glucose-derepressed conditions. The goal of this study was to investigate the dynamics of glucose-galactose transitions. To this end, well-controlled, glucose-limited chemostat cultures were switched to galactose-excess conditions. Surprisingly, galactose was not consumed upon a switch to galactose excess under anaerobic conditions. However, the transcripts of the Leloir pathway were highly increased upon galactose excess under both aerobic and anaerobic conditions. Protein and enzyme-activity assays showed that impaired galactose consumption under anaerobiosis coincided with the absence of the Leloir-pathway proteins. Further results showed that absence of protein synthesis was not caused by glucose-mediated translation inhibition. Analysis of adenosine nucleotide pools revealed a fast decrease of the energy charge after the switch from glucose to galactose under anaerobic conditions. Similar results were obtained when glucose-galactose transitions were analysed under aerobic conditions with a respiratory-deficient strain. It is concluded that under fermentative conditions, the energy charge was too low to allow synthesis of the Leloir proteins. Hence, this study conclusively shows that the intracellular energy status is an important factor in the metabolic flexibility of S. cerevisiae upon changes in its environment.

  10. Timing of Gene Transcription in the Galactose Utilization System of Escherichia coli*

    PubMed Central

    Horváth, Péter; Hunziker, Alexander; Erdőssy, János; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    In the natural environment, bacterial cells have to adjust their metabolism to alterations in the availability of food sources. The order and timing of gene expression are crucial in these situations to produce an appropriate response. We used the galactose regulation in Escherichia coli as a model system for understanding how cells integrate information about food availability and cAMP levels to adjust the timing and intensity of gene expression. We simulated the feast-famine cycle of bacterial growth by diluting stationary phase cells in fresh medium containing galactose as the sole carbon source. We followed the activities of six promoters of the galactose system as cells grew on and ran out of galactose. We found that the cell responds to a decreasing external galactose level by increasing the internal galactose level, which is achieved by limiting galactose metabolism and increasing the expression of transporters. We show that the cell alters gene expression based primarily on the current state of the cell and not on monitoring the level of extracellular galactose in real time. Some decisions have longer term effects; therefore, the current state does subtly encode the history of food availability. In summary, our measurements of timing of gene expression in the galactose system suggest that the system has evolved to respond to environments where future galactose levels are unpredictable rather than regular feast and famine cycles. PMID:20923764

  11. Sequential intrahepatic metabolic effects of enteric galactose alimentation in newborn rats.

    PubMed

    Kliegman, R M; Morton, S

    1988-09-01

    We determined metabolic responses after enteric galactose alimentation in 5- to 7-day-old newborn rats fasted for 24 h. The glycemic response was attenuated after enteric galactose feeding compared with the response after enteric glucose-fed rat pups. 14C radioactivity in blood from galactose-fed pups was reduced as counts in blood galactose were lower than counts in blood glucose in glucose-fed pups. Nonetheless within 15 min, [14C] from galactose appeared in blood glucose suggesting rapid conversion of galactose to glucose. The plasma insulin response was also attenuated after galactose feeding compared with the insulin response after enteric glucose. Hepatic glycogen content increased rapidly after enteric galactose feeding and was higher than after glucose feeding at 60, 120, and 180 min. Significant glycogen synthesis after oral glucose was delayed and occurred at 240 min. Carbon radioactivity in glycogen was higher in galactose fed pups between 15 and 360 min of the study. Serial determination of hepatic metabolites revealed an increase of galactose-1-phosphate levels after oral galactose at 240 and 300 min and a transient decline of ATP at 15 min. Other hepatic metabolites did not demonstrate significant differences between the two groups. These data suggest that hepatic glycogen synthesis is more rapid and occurs sooner after galactose than after glucose alimentation in previously fasted newborn rats. Galactose may enter a more direct pathway for neonatal hepatic glycogen synthesis. The relatively delayed entry of glucose label into hepatic glycogen and the delay of net glycogen synthesis after oral glucose suggest that glucose entry is not direct and may require further metabolism before incorporation into glycogen.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Free galactose concentrations in fresh and stored apples (Malus domestica) and processed apple products.

    PubMed

    Scaman, Christine H; Jim, Vickie Jin Wai; Hartnett, Carol

    2004-02-11

    Gas chromatography was used to quantitate free galactose in Braeburn, Fuji, Red Delicious, and Spartan apples during cold storage, after thermal processing of apple slices and in juice produced using clarification and/or liquifaction enzymes. Spartan had significantly higher galactose levels as compared to Red Delicious apples, but changes in galactose in all varieties during 9 months of cold storage were insignificant. Blanching and canning decreased galactose levels, but doubling the thermal processing during canning increased the free galactose concentration detected in plant tissue. An enzymatic liquefaction aid used to prepare apple juice dramatically increased the free galactose content while a clarification aid caused only a slight increase due to its selective action on soluble pectin. These findings provide useful information for dietitians to base diet recommendations for galactosemic patients.

  13. [Effect of various coumarins on the intestinal absorption of galactose in vivo (author's transl)].

    PubMed

    Ruano, M J; Bolufer, J; Larralde, J; Lluch, M

    1975-06-01

    The effect of various coumarins on the active transport of galactose by small intestine in chick and rat was studied, using the in vivo technique of sucessive absorptions. A 10(-4) M concentration of the different coumarins inhibits the absorption of galactose in the chick. This effect persists in successive absorptions without coumarin. In rat, inhibition of galactose active transport by coumarins was observed at 10(-3) M concentration.

  14. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis.

    PubMed

    Damerow, Sebastian; Hoppe, Carolin; Bandini, Giulia; Zarnovican, Patricia; Buettner, Falk F R; Ferguson, Michael A J; Routier, Françoise H

    2015-10-01

    Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection.

  15. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  16. Selection of Galactose-Fermenting Streptococcus thermophilus in Lactose-Limited Chemostat Cultures

    PubMed Central

    Thomas, Terence D.; Crow, Vaughan L.

    1984-01-01

    Stock cultures of Streptococcus thermophilus are essentially galactose negative (Gal−). Although both galactose 1-phosphate uridyl transferase and uridine-5-diphospho-glucose 4-epimerase are present, suggesting that the genes for the Leloir pathway exist, cells cannot induce high levels of galactokinase. Therefore, galactose is largely excreted when cultures are grown on lactose, and most strains cannot be readily adapted to grow on free galactose. Gal− cultures were grown in a chemostat under lactose limitation in which high concentrations of residual galactose were present. Under this selection pressure, Gal+ organisms eventually took over the culture with all four strains examined. Gal+ cells had induced galactokinase, and three of the four strains grew on free galactose with doubling times of 40 to 50 min. When Gal+ organisms were grown on lactose in batch culture, the galactose moiety was only partially utilized while lactose was still present. As lactose was exhausted, and catabolite repression was lifted, the Leloir pathway enzymes (especially galactokinase) were induced and the residual galactose fermented. Neither phospho-β-galactosidase activity nor the enzymes of the d-tagatose 6-phosphate pathway were detected in S. thermophilus. In contrast to Streptococcus cremoris and Streptococcus lactis, fermentation was homolactic with galactose in batch cultures and with lactose limitation in the chemostat. When mixed Gal+-Gal− cultures were repeatedly transferred in milk, the Gal− cells became the dominant cell type. The Gal− phenotype of stock cultures probably reflects their prolonged maintenance in milk. PMID:16346586

  17. Characterization of rice nucleotide sugar transporters capable of transporting UDP-galactose and UDP-glucose.

    PubMed

    Seino, Junichi; Ishii, Kumiko; Nakano, Takeshi; Ishida, Nobuhiro; Tsujimoto, Masafumi; Hashimoto, Yasuhiro; Takashima, Shou

    2010-07-01

    Using the basic local alignment search tool (BLAST) algorithm to search the Oryza sativa (Japanese rice) nucleotide sequence databases with the Arabidopsis thaliana UDP-galactose transporter sequences as queries, we found a number of sequences encoding putative O. sativa UDP-galactose transporters. From these, we cloned four putative UDP-galactose transporters, designated OsUGT1, 2, 3 and 4, which exhibited high sequence similarity with Arabidopsis thaliana UDP-galactose transporters. OsUGT1, 2, 3 and 4 consisted of 350, 337, 345 and 358 amino acids, respectively, and all of these proteins were predicted to have multiple transmembrane domains. To examine the UDP-galactose transporter activity of the OsUGTs, we introduced the OsUGTs' expression vectors into UDP-galactose transporter activity-deficient Lec8 cells. Our results showed that transfection with OsUGT1, 2 and 3 resulted in recovery of the deficit phenotype of Lec8 cells, but transfection with OsUGT4 did not. The results of an in vitro nucleotide sugar transport assay of OsUGTs, carried out with a yeast expression system, suggested that OsUGT4 is a UDP-glucose transporter rather than a UDP-galactose transporter. Although plants have multiple UDP-galactose transporter genes, phylogenic analysis indicates that plant UDP-galactose transporter genes are not necessarily evolutionary related to each other.

  18. Galactose uncovers face recognition and mental images in congenital prosopagnosia: the first case report.

    PubMed

    Esins, Janina; Schultz, Johannes; Bülthoff, Isabelle; Kennerknecht, Ingo

    2014-09-01

    A woman in her early 40s with congenital prosopagnosia and attention deficit hyperactivity disorder observed for the first time sudden and extensive improvement of her face recognition abilities, mental imagery, and sense of navigation after galactose intake. This effect of galactose on prosopagnosia has never been reported before. Even if this effect is restricted to a subform of congenital prosopagnosia, galactose might improve the condition of other prosopagnosics. Congenital prosopagnosia, the inability to recognize other people by their face, has extensive negative impact on everyday life. It has a high prevalence of about 2.5%. Monosaccharides are known to have a positive impact on cognitive performance. Here, we report the case of a prosopagnosic woman for whom the daily intake of 5 g of galactose resulted in a remarkable improvement of her lifelong face blindness, along with improved sense of orientation and more vivid mental imagery. All these improvements vanished after discontinuing galactose intake. The self-reported effects of galactose were wide-ranging and remarkably strong but could not be reproduced for 16 other prosopagnosics tested. Indications about heterogeneity within prosopagnosia have been reported; this could explain the difficulty to find similar effects in other prosopagnosics. Detailed analyses of the effects of galactose in prosopagnosia might give more insight into the effects of galactose on human cognition in general. Galactose is cheap and easy to obtain, therefore, a systematic test of its positive effects on other cases of congenital prosopagnosia may be warranted.

  19. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  20. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii.

    PubMed

    Wong, T Y; Yao, X T

    1994-06-01

    Azotobacter vinelandii cell extracts reduced NAD and oxidized d-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO(2) at the first carbon position of the d-galactose molecule. This suggested that Azotobacter vinelandii metabolizes d-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway, d-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent K(m)s for NAD and d-galactose were 0.125 and 0.56 mM, respectively. Besides d-galactose, the active fraction of this galactose dehydrogenase also oxidized l-arabinose effectively. The electron acceptor for d-galactose or l-arabinose oxidation, NAD, could not be replaced by NADP. These substrate specificities were different from those reported in Pseudomonas saccharophila, Pseudomonas fluorescens, and Rhizobium meliloti.

  1. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  2. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  3. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins.

    PubMed

    Sujatha, Mannargudi S; Sasidhar, Yellamraju U; Balaji, Petety V

    2004-09-01

    An aromatic amino acid is present in the binding site of a number of sugar binding proteins. The interaction of the saccharide with the aromatic residue is determined by their relative position as well as orientation. The position-orientation of the saccharide relative to the aromatic residue was found to vary in different sugar-binding proteins. In the present study, interaction energies of the complexes of galactose (Gal) and of glucose (Glc) with aromatic residue analogs have been calculated by ab initio density functional (U-B3LYP/ 6-31G**) theory. The position-orientations of the saccharide with respect to the aromatic residue observed in various Gal-, Glc-, and mannose-protein complexes were chosen for the interaction energy calculations. The results of these calculations show that galactose can interact with the aromatic residue with similar interaction energies in a number of position-orientations. The interaction energy of Gal-aromatic residue analog complex in position-orientations observed for the bound saccharide in Glc/Man-protein complexes is comparable to the Glc-aromatic residue analog complex in the same position-orientation. In contrast, there is a large variation in interaction energies of complexes of Glc- and of Gal- with the aromatic residue analog in position-orientations observed in Gal-protein complexes. Furthermore, the conformation wherein the O6 atom is away from the aromatic residue is preferred for the exocyclic -CH2OH group in Gal-aromatic residue analog complexes. The implications of these results for saccharide binding in Gal-specific proteins and the possible role of the aromatic amino acid to ensure proper positioning and orientation of galactose in the binding site have been discussed.

  4. Kinetic Analysis of Guanidine Hydrochloride Inactivation of β-Galactosidase in the Presence of Galactose

    PubMed Central

    Nwamba, Charles O.; Chilaka, Ferdinand C.

    2012-01-01

    Inactivation of purified β-Galactosidase was done with GdnHCl in the absence and presence of varying [galactose] at 50°C and at pH 4.5. Lineweaver-Burk plots of initial velocity data, in the presence and absence of guanidine hydrochloride (GdnHCl) and galactose, were used to determine the relevant Km and Vmax values, with p-nitrophenyl β-D-galactopyranoside (pNPG) as substrate, S. Plots of ln([P]∞ − [P]t) against time in the presence of GdnHCl yielded the inactivation rate constant, A. Plots of A versus [S] at different galactose concentrations were straight lines that became increasingly less steep as the [galactose] increased, showing that A was dependent on [S]. Slopes and intercepts of the 1/[P]∞ versus 1/[S] yielded k+0 and k'+0, the microscopic rate constants for the free enzyme and the enzyme-substrate complex, respectively. Plots of k+0 and k'+0 versus [galactose] showed that galactose protected the free enzyme as well as the enzyme-substrate complex (only at the lowest and highest [galactose]) against GdnHCl inactivation. In the absence of galactose, GdnHCl exhibited some degree of non-competitive inhibition. In the presence of GdnHCl, galactose exhibited competitive inhibition at the lower [galactose] of 5 mM which changed to non-competitive as the [galactose] increased. The implications of our findings are further discussed. PMID:23008759

  5. Ultrasensitive Capillary Electrophoretic Analysis of Potentially Immunogenic Carbohydrate Residues in Biologics: Galactose-α-1,3-Galactose Containing Oligosaccharides

    PubMed Central

    Szabo, Zoltan; Guttman, Andras; Bones, Jonathan; Shand, Randi L.; Meh, David; Karger, Barry L.

    2012-01-01

    With the recent growth of the global monoclonal antibody market, ultrasensitive techniques are required for rapid analysis of possible immunogenic residues, such as galactose-α-1,3-galactose (α-1,3-Gal) on therapeutic proteins expressed in murine or CHO cell lines. We report a capillary electrophoretic approach in conjunction with exoglycosidase digestion for structural elucidation of N-linked IgG glycans containing the above immunogenic epitope. The method uses commercially available reagents and instrumentation, thus making the described methodology readily available for implementation and validation within the biotechnology industry. The method was first evaluated using polyclonal mouse IgG N-glycans which are known to contain α-1,3-Gal containing epitopes. High reproducibility in migration time enabled determination of GU values for five α-1,3-Gal containing structures. The method was successfully applied to the analysis of a NCI reference standard monoclonal antibody and two development phase monoclonal antibodies. The limit of detection and limit of quantitation were 1 and 2 µg of intact protein IgG starting material, respectively, further indicating the high sensitivity of the described method. PMID:22571495

  6. The galactose-induced decrease in phosphate levels leads to toxicity in yeast models of galactosemia.

    PubMed

    Machado, Caio M; De-Souza, Evandro A; De-Queiroz, Ana Luiza F V; Pimentel, Felipe S A; Silva, Guilherme F S; Gomes, Fabio M; Montero-Lomelí, Mónica; Masuda, Claudio A

    2017-02-14

    Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease.

  7. Galactose promotes fat mobilization in obese lactating and non-lactating women

    USDA-ARS?s Scientific Manuscript database

    Galactose consumption results in a lower rise in plasma glucose and insulin concentrations when compared to glucose. The lower insulin might promote lipolysis during meal absorption. An isocaloric galactose drink, when compared to glucose, will sustain fat mobilization during meal consumption while...

  8. Regulation of Entamoeba invadens encystation and gene expression with galactose and N-acetylglucosamine.

    PubMed

    Coppi, A; Eichinger, D

    1999-07-30

    Encystation of Entamoeba invadens parasites is prevented by the presence of free galactose or N-acetylglucosamine in the encystation medium. Galactose prevents the formation of amoeba cellular aggregates which develop during the early phase of encystation, suggesting the presence of functional cell surface galactose-binding molecules, whereas N-acetylglucosamine allows aggregation to occur and prevents cyst formation at a later point. While studying sugar inhibition of amoeba encystation, it was found that high efficiency encystation required the inclusion in encystation medium of precise amounts of polyvalent galactose-terminated molecules, and these molecules could be supplied by serum or by defined glycoconjugates, including mucin. Addition of free galactose to encystation medium prevented the accumulation of three transcripts which are normally upregulated during encystation, and N-acetylglucosamine prevented accumulation of one of the transcripts. These results suggest the presence of distinct sugar-sensitive pathways that regulate differentiation of the amoeba trophozoite into infectious cysts.

  9. Crithidia fasciculata induces encystation of Entamoeba invadens in a galactose-dependent manner.

    PubMed

    Cho, J; Eichinger, D

    1998-08-01

    The ability of the flagellate Crithidia fasciculata to induce encystation of the reptile pathogen, Entamoeba invadens, was studied in vitro. A specific ratio of flagellate to amoeba was required; both live and heat-killed C. fasciculata induced amoebic encystation. The interaction between the Crithidia and Entamoeba cells was found to be galactose-mediated because the addition of galactose to the culture medium, or the pretreatment of the flagellate with galactosidase, eliminated its ability to induce encystation. Galactose was also found to prevent the amoeba amoeba aggregation that normally occurs in axenic cultures of encystation-induced E. invadens. Both galactose and glcNAc completely inhibited cyst formation of these induced cultures, although the latter sugar did not prevent cell aggregation. These results indicate that a galactose-mediated interaction between E. invadens cells is an early step in the in vitro encystation pathway.

  10. Galactose therapy reduces proteinuria in patients with recurrent focal segmental glomerulosclerosis after kidney transplantation.

    PubMed

    Robson, Kate; Hill, Prudence; Langsford, David; Dwyer, Karen; Goodman, David; Langham, Robyn

    2015-03-01

    Primary focal segmental glomerulosclerosis is an important cause of end-stage kidney disease with a high rate of recurrent disease after kidney transplantation. Current therapy achieves remission in only half of patients. Recent interest has focused on the potential role of galactose in binding and inactivating the putative circulating permeability factor, supported by in vitro and clinical case report studies. Orally active and without major adverse effects, galactose has a favourable treatment profile compared with current immunosuppressive treatment options. We describe our experience using galactose therapy in two patients with recurrent focal segmental glomerulosclerosis after renal transplantation. Galactose was associated with symptomatic improvement and stabilization of graft function in one case; the other case was complicated by concurrent malignancy. In both cases, we observed a marked reduction in proteinuria with galactose treatment.

  11. Binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver

    SciTech Connect

    Kopacz-Jodczyk, T.; Galasinski, W.

    1987-10-01

    UDP-D-(U-/sup 14/C)galactose is decomposed to (U-/sup 14/C)galactose-1-phosphate and (U-/sup 14/C)galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-(U-/sup 14/C)galactose, at neutral pH, is also chemically degraded to the (U-/sup 14/C)galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-(U-/sup 14/C)galactose. It is a very important finding that products of the UDP-D-(U-/sup 14/C)galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended in order to avoid incorrect interpretations of the results.

  12. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG.

    PubMed

    Morava, Eva

    2014-08-01

    We recently redefined phosphoglucomutase-1 deficiency not only as an enzyme defect, involved in normal glycogen metabolism, but also an inborn error of protein glycosylation. Phosphoglucomutase-1 is a key enzyme in glycolysis and glycogenesis by catalyzing in the bidirectional transfer of phosphate from position 1 to 6 on glucose. Glucose-1-P and UDP-glucose are closely linked to galactose metabolism. Normal PGM1 activity is important for effective glycolysis during fasting. Activated glucose and galactose are essential for normal protein glycosylation. The complex defect involving abnormal concentrations of activated sugars leads to hypoglycemia and two major phenotypic presentations, one with primary muscle involvement and the other with severe multisystem disease. The multisystem phenotype includes growth delay and malformations, like cleft palate or uvula, and liver, endocrine and heart function with possible cardiomyopathy. The patients have normal intelligence. Decreased transferrin galactosylation is a characteristic finding on mass spectrometry. Previous in vitro studies in patient fibroblasts showed an improvement of glycosylation on galactose supplements. Four patients with PGM1 deficiency have been trialed on d-galactose (compassionate use), and showed improvement of serum transferrin hypoglycosylation. There was a parallel improvement of liver function, endocrine abnormalities and a decrease in the frequency of hypoglycemic episodes. No side effects have been observed. Galactose supplementation didn't seem to resolve all clinical symptoms. Adding complex carbohydrates showed an additional clinical amelioration. Based on the available clinical data we suggest to consider the use of 0.5-1g/kg/day d-galactose and maximum 50 g/day oral galactose therapy in PGM1-CDG. The existing data on galactose therapy have to be viewed as preliminary observations. A prospective multicenter trial is ongoing to evaluate the efficacy and optimal d-galactose dose of

  13. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG

    PubMed Central

    Morava, Eva

    2014-01-01

    We recently redefined phosphoglucomutase-1 deficiency not only as an enzyme defect, involved in normal glycogen metabolism, but also an inborn error of protein glycosylation. Phosphoglucomutase-1 is a key enzyme in glycolysis and glycogenesis by catalyzing in the bidirectional transfer of phosphate from position 1 to 6 on glucose. Glucose-1-P and UDP-glucose are closely linked to galactose metabolism. Normal PGM1 activity is important for effective glycolysis during fasting. Activated glucose and galactose are essential for normal protein glycosylation. The complex defect involving abnormal concentrations of activated sugars leads to hypoglycemia and two major phenotypic presentations, one with primary muscle involvement and the other with severe multisystem disease. The multisystem phenotype includes growth delay and malformations, like cleft palate or uvula, and liver, endocrine and possible cardiomyopathy. The patients have normal intelligence. Decreased transferrin galactosylation is a characteristic finding on mass spectrometry. Previous in vitro studies in patient fibroblasts showed an improvement of glycosylation on galactose supplements. Four patients with PGM1 deficiency have been trialed on D-galactose (compassionate use), and showed improvement of serum transferrin hypoglycosylation. There was a parallel improvement of liver function, endocrine abnormalities and a decrease in the frequency of hypoglycemic episodes. No side effects have been observed. Galactose supplementation didn't seem to resolve all clinical symptoms. Adding complex carbohydrates showed an additional clinical amelioration. Based on the available clinical data we suggest to consider the use of 0.5–1g/kg/day D-galactose and maximum 50g/day oral galactose therapy in PGM1-CDG. The existing data on galactose therapy have to be viewed as preliminary observations. A prospective multicenter trial is ongoing to evaluate the efficacy and optimal D-galactose dose of galactose supplementation

  14. 2-[(18)F]fluoro-2-deoxy-D-galactose PET/CT of hepatocellular carcinoma is not improved by co-administration of galactose.

    PubMed

    Bak-Fredslund, Kirstine P; Munk, Ole Lajord; Keiding, Susanne; Sørensen, Michael

    2016-09-01

    PET with [(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) is a promising imaging modality for detection of hepatocellular carcinoma (HCC). However, it can be difficult to distinguish small intrahepatic HCC lesions from surrounding liver tissue. Ut the competitive inhibition that galactose shows towards hepatic (18)F-FDGal metabolism, we tested the hypothesis that co-administration of galactose, at near-saturating doses, inhibits (18)F-FDGal metabolism to a greater extent in non-malignant hepatocytes than in HCC cells. This would increase the tumor to background ratio in the (18)F-FDGal PET scans with co-administration of galactose. Three patients known to have HCC underwent two (18)F-FDGal PET/CT scans on consecutive days, one with and one without simultaneous constant intravenous infusion of galactose. On both days, (18)F-FDGal was injected in the beginning of a 45-min dynamic PET scan of the liver followed by a static PET scan from mid-thigh to the top of the skull starting 60-70min after (18)F-FDGal administration. Parametric images of the hepatic metabolic function expressed in terms of hepatic systemic clearance of (18)F-FDGal were generated from the dynamic PET recordings. Co-administration of galactose did not give significantly better discrimination of the HCC lesions from background. Parametric images of the hepatic metabolic function did not add additional useful information to the detection of HCC lesions compared to the static images of radioactivity concentrations. Co-administration of galactose did not improve the interpretation of the (18)F-FDGal PET/CT images and did not improve the detection of intrahepatic HCC lesions, either using static or parametric images. Copyright © 2016. Published by Elsevier Inc.

  15. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose.

    PubMed

    Morisset, M; Richard, C; Astier, C; Jacquenet, S; Croizier, A; Beaudouin, E; Cordebar, V; Morel-Codreanu, F; Petit, N; Moneret-Vautrin, D A; Kanny, G

    2012-05-01

    Carbohydrate-specific IgE antibodies present on nonprimate mammalian proteins were incriminated recently in delayed meat anaphylaxis. The aim of this study was to explore whether anaphylaxis to mammalian kidney is also associated with galactose-α-1,3-galactose (αGal)-specific IgE. Fourteen patients with anaphylaxis to pork or beef kidney underwent prick tests to meat and kidney. Some patients also underwent skin tests to Erbitux(®) (cetuximab). IgE antibodies to αGal, swine urine proteins, beef and pork meat, serum albumin proteins, cat, and rFel d 1 were measured by ImmunoCAP(®). The αGal levels were estimated in meats and kidney by ELISA inhibition assay. Cross-reactivity between αGal and pork kidney was studied with the ImmunoCAP(®) inhibition assay. Among the 14 patients, 12 presented with anaphylactic shock. Reactions occurred within 2 h from exposure in 67% of patients. Associated risk factors were observed in 10 cases, and alcohol was the main cofactor. Three patients underwent an oral challenge to pork kidney, and anaphylaxis occurred after ingestion of small quantities (1-2 g). Prick tests to kidney were positive in 54% of patients. All tested patients showed positive skin tests to Erbitux(®). All patients tested positive for IgE to αGal, with levels ranging from 0.4 to 294 kU/l. IgE binding to αGal was inhibited by raw pork kidney extract (mean, 77%; range, 55-87%), which showed a high amount of αGal determinants. Pork or beef kidney anaphylaxis is related to αGal IgE. Its peculiar severity could be due to an elevated content of αGal epitopes in kidney. © 2012 John Wiley & Sons A/S.

  16. Galactose-α-1,3-galactose-specific IgE is associated with anaphylaxis but not asthma.

    PubMed

    Commins, Scott P; Kelly, Libby A; Rönmark, Eva; James, Hayley R; Pochan, Shawna L; Peters, Edward J; Lundbäck, Bo; Nganga, Lucy W; Cooper, Philip J; Hoskins, Janelle M; Eapen, Saju S; Matos, Luis A; McBride, Dane C; Heymann, Peter W; Woodfolk, Judith A; Perzanowski, Matthew S; Platts-Mills, Thomas A E

    2012-04-01

    IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose (α-gal) are common in the southeastern United States. These antibodies, which are induced by ectoparasitic ticks, can give rise to positive skin tests or serum assays with cat extract. To evaluate the relationship between IgE antibodies to α-gal and asthma, and compare this with the relationship between asthma and IgE antibodies to Fel d 1 and other protein allergens. Patients being investigated for recurrent anaphylaxis, angioedema, or acute urticaria underwent spirometry, exhaled nitric oxide, questionnaires, and serum IgE antibody assays. The results were compared with control subjects and cohorts from the emergency department in Virginia (n = 130), northern Sweden (n = 963), and rural Kenya (n = 131). Patients in Virginia with high-titer IgE antibodies to α-gal had normal lung function, low levels of exhaled nitric oxide, and low prevalence of asthma symptoms. Among patients in the emergency department and children in Kenya, there was no association between IgE antibodies to α-gal and asthma (odds ratios, 1.04 and 0.75, respectively). In Sweden, IgE antibodies to cat were closely correlated with IgE antibodies to Fel d 1 (r = 0.83) and to asthma (P < 0.001). These results provide a model of an ectoparasite-induced specific IgE response that can increase total serum IgE without creating a risk for asthma, and further evidence that the main allergens that are causally related to asthma are those that are inhaled.

  17. Lithium induces ER stress and N-glycan modification in galactose-grown Jurkat cells.

    PubMed

    Nagy, Tamás; Frank, Dorottya; Kátai, Emese; Yahiro, Rikki K K; Poór, Viktor S; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca(2+) regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response.

  18. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change.

    PubMed

    Nguyen-Huu, Truong D; Gupta, Chinmaya; Ma, Bo; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2015-07-01

    Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels.

  19. Lithium Induces ER Stress and N-Glycan Modification in Galactose-Grown Jurkat Cells

    PubMed Central

    Kátai, Emese; Yahiro, Rikki K. K.; Poór, Viktor S.; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L.; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca2+ regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response. PMID:23894652

  20. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    PubMed

    Coss, K P; Byrne, J C; Coman, D J; Adamczyk, B; Abrahams, J L; Saldova, R; Brown, A Y; Walsh, O; Hendroff, U; Carolan, C; Rudd, P M; Treacy, E P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  1. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.

    PubMed

    Chai, Yunrong; Beauregard, Pascale B; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this

  2. Preexercise galactose and glucose ingestion on fuel use during exercise.

    PubMed

    O'Hara, John P; Carroll, Sean; Cooke, Carlton B; Morrison, Douglas J; Preston, Thomas; King, Roderick F G J

    2012-10-01

    This study determined the effect of ingesting galactose and glucose 30 min before exercise on exogenous and endogenous fuel use during exercise. Nine trained male cyclists completed three bouts of cycling at 60% W(max) for 120 min after an overnight fast. Thirty minutes before exercise, the cyclists ingested a fluid formulation containing placebo, 75 g of galactose (Gal), or 75 g of glucose (Glu) to which (13)C tracers had been added, in a double-blind randomized manner. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total carbohydrate (CHO) oxidation, exogenous CHO oxidation, plasma glucose oxidation, and endogenous liver and muscle CHO oxidation rates. Peak exogenous CHO oxidation was significantly higher after Glu (0.68 ± 0.08 g.min(-1), P < 0.05) compared with Gal (0.44 ± 0.02 g.min(-1)); however, mean rates were not significantly different (0.40 ± 0.03 vs. 0.36 ± 0.02 g.min(-1), respectively). Glu produced significantly higher exogenous CHO oxidation rates during the initial hour of exercise (P < 0.01), whereas glucose rates derived from Gal were significantly higher during the last hour (P < 0.01). Plasma glucose and liver glucose oxidation at 60 min of exercise were significantly higher for Glu (1.07 ± 0.1 g.min(-1), P < 0.05, and 0.57 ± 0.08 g.min(-1), P < 0.01) compared with Gal (0.64 ± 0.05 and 0.29 ± 0.03 g.min(-1), respectively). There were no significant differences in total CHO, whole body endogenous CHO, muscle glycogen, or fat oxidation between conditions. The preexercise consumption of Glu provides a higher exogenous source of CHO during the initial stages of exercise, but Gal provides the predominant exogenous source of fuel during the latter stages of exercise and reduces the reliance on liver glucose.

  3. Fucosyltransferases produce N-glycans containing core l-galactose.

    PubMed

    Ohashi, Hiroyuki; Ohashi, Takao; Kajiura, Hiroyuki; Misaki, Ryo; Kitamura, Shinichi; Fujiyama, Kazuhito

    2017-01-29

    l-Galactose (l-Gal) containing N-glycans and cell wall polysaccharides have been detected in the l-Fuc deficient mur1 mutant of Arabidopsis thaliana. The l-Gal residue is thought to be transferred from GDP-l-Gal, which is a structurally related analog of GDP-l-Fuc, but in vitrol-galactosylation activity has never been detected. In this study, we carried out preparative scale GDP-l-Gal synthesis using recombinant A. thaliana GDP-mannose-3',5'-epimerase. We also demonstrated the l-galactosylation assay of mouse α1,6-fucosyltransferase (MmFUT8) and A. thaliana α1,3-fucosyltransferase (AtFucTA). Both fucosyltransferases showed l-galactosylation activity from GDP-l-Gal to asparagine-linked N-acetyl-β-d-glucosamine of asialo-agalacto-bi-antennary N-glycan instead of l-fucosylation. In addition, the apparent Km values of MmFUT8 and AtFucTA suggest that l-Fuc was preferentially transferred to N-glycan compared with l-Gal by fucosyltransferases. Our results clearly demonstrate that MmFUT8 and AtFucTA transfer l-Gal residues from GDP-l-Gal and synthesize l-Gal containing N-glycan in vitro.

  4. Molecular cloning of a human macrophage lectin specific for galactose

    SciTech Connect

    Cherayil, B.J.; Chairovitz, S.; Wong, C.; Pillai, S. Harvard Medical School, Boston )

    1990-09-01

    The murine Mac-2 protein is a galactose- and IgE-binding lectin secreted by inflammatory macrophages. The authors describe here the cloning an dcharacterization of cDNA representing the human homolog of Mac-2 (hMac-2). The amino acid sequence derived from the hMac-2 cDNA indicates that the protein is evolutionarily highly conserved, with 85% of its amino acid residues being similar to those in the murine homolog. This conservation is especially marked in the carboxyl-terminal lectin domain. The amino-terminal half of the protein is less conserved but still contains the repetitive proline-glycine-rich motif seen in the mouse protein. hMac-2 synthesized in vitro is recognized by the M3/38 monoclonal antibody to Mac-2 and binds to the desialylated glycoprotein asialofetuin and to laminin, a major component of basement membranes. These findings are discussed in the context of the potential functions of hMac-2.

  5. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir.

    PubMed

    Gupta, Swati; Agarwal, Abhinav; Gupta, Nishant Kumar; Saraogi, Gauravkant; Agrawal, Himanshu; Agrawal, G P

    2013-12-01

    The present study explores prospective of surface tailored nanoparticles for targeted delivery of acyclovir along with the interception of minimal side effects. Acyclovir loaded plain and galactosylated poly lectic co glycolic acid (PLGA) nanoparticles were efficiently prepared and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), size, polydispersity index, zeta potential, and entrapment efficiency. The formulations were evaluated for in vitro drug release and hemolysis. Further, biodistribution study and fluorescent microscopic studies were carried out to determine the targeting potential of formulations. SEM revealed smooth morphology and spherical shape of the nanoparticles. In vitro, the galactosylated nanoparticles were found to be least hemolytic and exhibited a sustained release pattern. In vivo studies exhibited an augmented bioavailability, increased residence time and enhanced delivery of acyclovir to the liver upon galactosylation. It may therefore be concluded that galactose conjugated PLGA nanoparticles can be used suitably as vehicles for delivery of bioactives specifically to the hepatic tissues and may be thus exploited in the effective management of various liver disorders.

  6. Impairments of tight junctions are involved in D-galactose-induced brain aging.

    PubMed

    Lei, Ming; Zhu, Zujian; Wen, Zefeng; Ke, Shihuai

    2013-08-21

    Impairments of tight junctions are implicated in the course of various age-related neurodegenerative disorders. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of tight junctions in this model, oxidative stress biomarkers, expression and ultrastructure of tight junctions, and the permeability of blood-brain barrier were examined in the hippocampus of the mice, which received an injection of D-galactose for 6 weeks. D-Galactose-injected mice showed impaired antioxidant systems, decreased levels of tight junction proteins, and ultrastructural pathological changes of tight junctions, accompanied by increased blood-brain barrier permeability in the hippocampus. These results show that impairments in tight junctions are involved in D-galactose-induced brain aging.

  7. Scopoletin Inhibits Rat Aldose Reductase Activity and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Junghyun; Kim, Chan-Sik; Lee, Yun Mi; Sohn, Eunjin; Jo, Kyuhyung; Shin, So Dam; Kim, Jin Sook

    2013-01-01

    Cataracts are a major cause of human blindness. Aldose reductase (AR) is an important rate-limiting enzyme that contributes to cataract induction in diabetic patients. Scopoletin is the main bioactive constituent of flower buds from Magnolia fargesii and is known to inhibit AR activity. To assess scopoletin's ability to mitigate sugar cataract formation in vivo, we studied its effects in a rat model of dietary galactose-induced sugar cataracts. Galactose-fed rats were orally dosed with scopoletin (10 or 50 mg/kg body weight) once a day for 2 weeks. Administering scopoletin delayed the progression of the cataracts that were induced by dietary galactose. Scopoletin also prevented galactose-induced changes in lens morphology, such as lens fiber swelling and membrane rupture. Scopoletin's protective effect against sugar cataracts was mediated by inhibiting both AR activity and oxidative stress. These results suggest that scopoletin is a useful treatment for sugar cataracts. PMID:24101940

  8. Scopoletin inhibits rat aldose reductase activity and cataractogenesis in galactose-fed rats.

    PubMed

    Kim, Junghyun; Kim, Chan-Sik; Lee, Yun Mi; Sohn, Eunjin; Jo, Kyuhyung; Shin, So Dam; Kim, Jin Sook

    2013-01-01

    Cataracts are a major cause of human blindness. Aldose reductase (AR) is an important rate-limiting enzyme that contributes to cataract induction in diabetic patients. Scopoletin is the main bioactive constituent of flower buds from Magnolia fargesii and is known to inhibit AR activity. To assess scopoletin's ability to mitigate sugar cataract formation in vivo, we studied its effects in a rat model of dietary galactose-induced sugar cataracts. Galactose-fed rats were orally dosed with scopoletin (10 or 50 mg/kg body weight) once a day for 2 weeks. Administering scopoletin delayed the progression of the cataracts that were induced by dietary galactose. Scopoletin also prevented galactose-induced changes in lens morphology, such as lens fiber swelling and membrane rupture. Scopoletin's protective effect against sugar cataracts was mediated by inhibiting both AR activity and oxidative stress. These results suggest that scopoletin is a useful treatment for sugar cataracts.

  9. Polyvinylamine-G-galactose is a route to bioactivated silica surfaces.

    PubMed

    Mokhtari, Hajir; Pelton, Robert; Jin, Liqiang

    2014-01-01

    Polyvinylamine (PVAm) was derivatized with lactobionic acid to give PVAm-GAL with pendant galactose groups along the PVAm chain. The galactose substituents were shown to undergo two types of specific interactions: (1) condensation with phenylboronic acid moieties on polymers and on surfaces; and, (2) the specific binding of RCA120, a galactose-specific lectin. Surface binding and assembly was monitored with Quartz Crystal Microbalance (QCM-D) measurements. Multilayer assemblies based on boronic ester formation were destroyed by lowering the pH, or by introducing sorbitol. We propose that the physical adsorption of PVAm-GAL onto silica or other negatively charged support surfaces is a simple route to galactose-rich interfaces, possibly useful for affinity separations, cell targeting and cell culturing.

  10. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10(4) Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus.

  11. Diauxic Growth of Azotobacter vinelandii on Galactose and Glucose: Regulation of Glucose Transport by Another Hexose.

    PubMed

    Wong, T Y; Pei, H; Bancroft, K; Childers, G W

    1995-02-01

    The growth curve of Azotobacter vinelandii was biphasic when the organism was grown in a medium containing a mixture of galactose and glucose. Galactose was the primary carbon source; glucose was also consumed, but the rate at which it was consumed was lower than the rate at which galactose was consumed during the first phase of growth. Metabolic pathways for both sugars were induced. Cell cultures exhibited a second lag period as galactose was depleted. The length of this lag phase varied from 2 to 10 h depending on the pregrowth history of the cells. The second log growth phase occurred at the expense of the remaining glucose in the medium and was accompanied by induction of the high-maximum rate of metabolism glucose-induced glucose permease and increases in the levels of glucose metabolic enzymes. The second lag phase of diauxie may have been due to the time required for induction of the glucose-induced glucose permease.

  12. Cross-linked leucaena seed gum matrix: an affinity chromatography tool for galactose-specific lectins.

    PubMed

    Seshagirirao, Kottapalli; Leelavathi, Chaganti; Sasidhar, Vemula

    2005-05-31

    A cross-linked leucaena (Leucaena leucocephala) seed gum (CLLSG) matrix was prepared for the isolation of galactose-specific lectins by affinity chromatography. The matrix was evaluated for affinity with a known galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). The matrix preparation was simple and inexpensive when compared to commercial galactose-specific matrices (i.e. about 1.5 US dollars/100 ml of matrix). The current method is also useful for the demonstration of the affinity chromatography technique in laboratories. Since leucaena seeds are abundant and inexpensive, and the matrix preparation is easy, CLLSG appears to be a promising tool for the separation of galactose-specific lectins.

  13. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    SciTech Connect

    Lei Ming; Hua Xiangdong; Xiao Ming Ding Jiong; Han Qunying Hu Gang

    2008-05-16

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose.

  14. Carbohydrate binding activities of Bradyrhizobium japonicum. II. Isolation and characterization of a galactose-specific lectin

    PubMed Central

    1990-01-01

    Extracts of Bradyrhizobium japonicum were fractionated on Sepharose columns covalently derivatized with lactose. Elution of the material that was specifically bound to the affinity column with lactose yielded a protein of Mr approximately 38,000. Isoelectric focusing of this sample yielded two spots with pI values of 6.4 and 6.8. This protein specifically bound to galactose-containing glycoconjugates, but did not bind either to glucose or mannose. Derivatives of galactose at the C-2 position showed much weaker binding; there was an 18-fold difference in the relative binding affinities of galactose versus N-acetyl-D- galactosamine. These results indicate that we have purified a newly identified carbohydrate-binding protein from Bradyrhizobium japonicum, that can exquisitely distinguish galactose from its derivatives at the C-2 position. PMID:2211830

  15. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose.

    PubMed

    Mullins, Raymond James; James, Hayley; Platts-Mills, Thomas A E; Commins, Scott

    2012-05-01

    We have observed patients clinically allergic to red meat and meat-derived gelatin. We describe a prospective evaluation of the clinical significance of gelatin sensitization, the predictive value of a positive test result, and an examination of the relationship between allergic reactions to red meat and sensitization to gelatin and galactose-α-1,3-galactose (α-Gal). Adult patients evaluated in the 1997-2011 period for suspected allergy/anaphylaxis to medication, insect venom, or food were skin tested with gelatin colloid. In vitro (ImmunoCAP) testing was undertaken where possible. Positive gelatin test results were observed in 40 of 1335 subjects: 30 of 40 patients with red meat allergy (12 also clinically allergic to gelatin), 2 of 2 patients with gelatin colloid-induced anaphylaxis, 4 of 172 patients with idiopathic anaphylaxis (all responded to intravenous gelatin challenge of 0.02-0.4 g), and 4 of 368 patients with drug allergy. Test results were negative in all patients with venom allergy (n = 241), nonmeat food allergy (n = 222), and miscellaneous disorders (n = 290). ImmunoCAP results were positive to α-Gal in 20 of 24 patients with meat allergy and in 20 of 22 patients with positive gelatin skin test results. The results of gelatin skin testing and anti-α-Gal IgE measurements were strongly correlated (r = 0.46, P < .01). α-Gal was detected in bovine gelatin colloids at concentrations of approximately 0.44 to 0.52 μg/g gelatin by means of inhibition RIA. Most patients allergic to red meat were sensitized to gelatin, and a subset was clinically allergic to both. The detection of α-Gal in gelatin and correlation between the results of α-Gal and gelatin testing raise the possibility that α-Gal IgE might be the target of reactivity to gelatin. The pathogenic relationship between tick bites and sensitization to red meat, α-Gal, and gelatin (with or without clinical reactivity) remains uncertain. Copyright © 2012 American Academy of Allergy, Asthma

  16. Anaphylaxis to succinylated gelatin in a patient with a meat allergy: galactose-α(1, 3)-galactose (α-gal) as antigenic determinant.

    PubMed

    Uyttebroek, A; Sabato, V; Bridts, C H; De Clerck, L S; Ebo, D G

    2014-11-01

    Specific immunoglobulin E (sIgE) antibodies towards the galactose-α(1,3)-galactose (α-gal) moieties may elicit life-threatening and fatal anaphylactic reactions. Patients sensitized to α-gal moieties from mammalian meat may also react towards mammalian gelatins and gelatin-containing drugs such as bovine gelatin-based colloid plasma substitute. The case of a 56 year old woman with a meat allergy who suffered anaphylaxis to succinylated gelatin is reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Lactose and Galactose Content of Cheese Suitable for Galactosaemia: New Analysis.

    PubMed

    Portnoi, P A; MacDonald, A

    2016-01-01

    The UK Medical Advisory Panel of the Galactosaemia Support Group report the lactose and galactose content of 5 brands of mature Cheddar cheese, Comte and Emmi Emmental fondue mix from 32 cheese samples. The Medical Advisory Panel define suitable cheese in galactosaemia to have a lactose and galactose content consistently below 10 mg/100 g. A total of 32 samples (5 types of mature Cheddar cheese, Comte and "Emmi Swiss Fondue", an emmental fondue mix) were analysed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technology used to perform lactose and galactose analysis. Cheddar cheese types: Valley Spire West Country, Parkham, Lye Cross Vintage, Lye Cross Mature, Tesco West Country Farmhouse Extra Mature and Sainsbury's TTD West Country Farmhouse Extra Mature had a lactose and galactose content consistently below 10 mg/100 g (range <0.05 to 12.65 mg). All Comte samples had a lactose content below the lower limit of detection (<0.05 mg) with galactose content from <0.05 to 1.86 mg/100 g; all samples of Emmi Swiss Fondue had lactose below the lower limit of detection (<0.05 mg) and galactose between 2.19 and 3.04 mg/100 g. All of these cheese types were suitable for inclusion in a low galactose diet for galactosaemia. It is possible that the galactose content of cheese may change over time depending on its processing, fermentation time and packaging techniques.

  18. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17.

    PubMed

    Kim, Jae Hyung; Ryu, Jayoung; Huh, In Young; Hong, Soon-Kwang; Kang, Hyun Ah; Chang, Yong Keun

    2014-09-01

    A wild-type yeast strain with a good galactose-utilization efficiency was newly isolated from the soil, and identified and named Saccharomyces cerevisiae KL17 by 18s RNA sequencing. Its performance of producing ethanol from galactose was investigated in flask cultures with media containing various combination and concentrations of galactose and glucose. When the initial galactose concentration was 20 g/L, it showed 2.2 g/L/h of substrate consumption rate and 0.63 g/L/h of ethanol productivity. Although they were about 70 % of those with glucose, such performance of S. cerevisiae KL17 with galactose was considered to be quite high compared with other strains reported to date. Its additional merit was that its galactose metabolism was not repressed by the existence of glucose. Its capability of ethanol production under a high ethanol concentration was demonstrated by fed-batch fermentation in a bioreactor. A high ethanol productivity of 3.03 g/L/h was obtained with an ethanol concentration and yield of 95 and 0.39 g/L, respectively, when the cells were pre-cultured on glucose. When the cells were pre-cultured on galactose instead of glucose, fermentation time could be reduced significantly, resulting in an improved ethanol productivity of 3.46 g/L/h. The inhibitory effects of two major impurities in a crude galactose solution obtained from acid hydrolysis of galactan were assessed. Only 5-Hydroxymethylfurfural (5-HMF) significantly inhibited ethanol fermentation, while levulinic acid (LA) was benign in the range up to 10 g/L.

  19. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice.

    PubMed

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice.

  20. Galactose content of legumes, caseinates, and some hard cheeses: implications for diet treatment of classic galactosemia.

    PubMed

    Van Calcar, Sandra C; Bernstein, Laurie E; Rohr, Frances J; Yannicelli, Steven; Berry, Gerard T; Scaman, Christine H

    2014-02-12

    There are inconsistent reports on the lactose and/or galactose content of some foods traditionally restricted from the diet for classic galactosemia. Therefore, samples of cheeses, caseinates, and canned black, pinto, kidney, and garbanzo beans were analyzed for free galactose content using HPLC with refractive index or pulsed amperometric detection. Galactose concentrations in several hard and aged cheeses and three mild/medium Cheddars, produced by smaller local dairies, was <10 mg/100 g sample compared to 55.4 mg/100 g sample in four sharp Cheddars produced by a multinational producer. Galactose in sodium and calcium caseinate ranged from undetectable to 95.5 mg/100 g sample. Free galactose level in garbanzo beans was lower than previously reported at 24.6 mg/100 g sample; black beans contained 5.3 mg/100 g, and free galactose was not detected in red kidney or pinto beans. These data provide a basis for recommending inclusion of legumes, caseinate-containing foods, and some aged hard cheeses that had been previously restricted in the diet for individuals with galactosemia.

  1. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    PubMed Central

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice. PMID:21629743

  2. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  3. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    PubMed

    Zhou, Yue-Yue; Ji, Xiong-Fei; Fu, Jian-Ping; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  4. UDP-galactose 4' epimerase (GALE) is essential for development of Drosophila melanogaster.

    PubMed

    Sanders, Rebecca D; Sefton, Jennifer M I; Moberg, Kenneth H; Fridovich-Keil, Judith L

    2010-01-01

    UDP-galactose 4' epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose in the final step of the Leloir pathway; human GALE (hGALE) also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. GALE therefore plays key roles in the metabolism of dietary galactose, in the production of endogenous galactose, and in maintaining the ratios of key substrates for glycoprotein and glycolipid biosynthesis. Partial impairment of hGALE results in the potentially lethal disorder epimerase-deficiency galactosemia. We report here the generation and initial characterization of a first whole-animal model of GALE deficiency using the fruit fly Drosophila melanogaster. Our results confirm that GALE function is essential in developing animals; Drosophila lacking GALE die as embryos but are rescued by the expression of a human GALE transgene. Larvae in which GALE has been conditionally knocked down die within days of GALE loss. Conditional knockdown and transgene expression studies further demonstrate that GALE expression in the gut primordium and Malpighian tubules is both necessary and sufficient for survival. Finally, like patients with generalized epimerase deficiency galactosemia, Drosophila with partial GALE loss survive in the absence of galactose but succumb in development if exposed to dietary galactose. These data establish the utility of the fly model of GALE deficiency and set the stage for future studies to define the mechanism(s) and modifiers of outcome in epimerase deficiency galactosemia.

  5. Production of substrate for galactose oxidase by depolymerization of an arabinogalactan-peptide from wheat flour.

    PubMed

    Schrøder, M; Søe, J B; Zargahi, M R; Rouau, X

    1999-04-01

    Water extractable arabinogalactan-peptide (WE-AGP) isolated from white wheat flour was depolymerized enzymatically to liberate substrate for a galactose oxidase from Dactylium dendroides. A crude liquid pectolytic preparation from Aspergillus niger (p70) displayed activities capable of converting WE-AGP into a substrate for galactose oxidase. The most favorable substrate was observed when WE-AGP was not fully depolymerized into galactose and arabinose. alpha-L-Arabinofuranosidase B from A. niger was also able to produce substrate from WE-AGP; arabinofuranosidase-treated WE-AGP was a better substrate for galactose oxidase than galactose. Treatment by the crude p70 and purified enzymes showed that alpha-L-arabinofuranosidase was partly responsible for the production of substrate, whereas beta-galactosidase did not result in any substrate production or improve the effect of alpha-L-arabinofuranosidase. However, the positive effect of alpha-L-arabinofuranosidase was increased when p70 was added at the same level of arabinofuranosidase activity, suggesting that additional enzyme activities present in p70 were responsible for production of substrate for galactose oxidase.

  6. Classical Galactosemia: Insight into Molecular Pathomechanisms by Differential Membrane Proteomics of Fibroblasts under Galactose Stress.

    PubMed

    Staubach, Simon; Müller, Stefan; Pekmez, Murat; Hanisch, Franz-Georg

    2017-02-03

    Classical galactosemia, a hereditary metabolic disease caused by the deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), results in an impaired galactose metabolism and serious long-term developmental affection of the CNS and ovaries, potentially related in part to endogenous galactose-induced protein dysglycosylation. In search for galactose-induced changes in membrane raft proteomes of GALT-deficient cells, we performed differential analyses of lipid rafts from patient-derived (Q) and sex- and age-matched control fibroblasts (H) in the presence or absence of the stressor. Label-based proteomics revealed of the total 454 (female) or 678 (male) proteins a proportion of ∼12% in at least one of four relevant ratios as fold-changed. GALT(-) cell-specific effects in the absence of stressor revealed cell-model-dependent affection of biological processes related to protein targeting to the plasma membrane (female) or to cellular migration (male). However, a series of common galactose-induced effects were observed, among them the strongly increased ER-stress marker GRP78 and calreticulin involved in N-glycoprotein quality control. The membrane-anchored N-glycoprotein receptor CD109 was concertedly decreased under galactose-stress together with cadherin-13, GLIPR1, glypican-1, and semaphorin-7A. A series of proteins showed opposite fold-changes in the two cell models, whereas others fluctuated in only one of the two models.

  7. The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae.

    PubMed

    Madeo, Marianna; Kovács, Attila D; Pearce, David A

    2014-11-28

    SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast.

    PubMed

    Rønnow, B; Olsson, L; Nielsen, J; Mikkelsen, J D

    1999-06-11

    Beet molasses is widely used as a growth substrate for bakers' and distillers' yeast in the production of biomass and ethanol. Most commercial yeasts do not fully utilise the carbohydrates in molasses since they are incapable of hydrolysing the disaccharide melibiose to glucose and galactose. Also, expression of genes encoding enzymes for the utilisation of carbon sources that are alternatives to glucose is tightly regulated, sometimes rates of yeast growth and/or ethanol production. The GAL genes are regulated by specific induction by galactose and repression during growth on glucose. In an industrial distillers' yeast, two genes interacting synergistically in glucose repression of galactose utilization, MIG1 and GAL80, have been disrupted with MEL1, encoding melibiase. The physiology of the wild-type strain and the recombinant strains was investigated on mixtures of glucose and galactose and on molasses. The recombinant strain started to ferment galactose when 9.7 g 1(-1) glucose was still present during a batch fermentation, whereas the wild-type strain did not consume any galactose in the presence of glucose. The ethanol yield in the recombinant strain was 0.50 g ethanol g sugar (-1) in an ethanol fermentation on molasses, compared with 0.48 g ethanol g sugar (-1) for the wild-type strain. The increased ethanol yield was due to utilization of melibiose in the molasses.

  9. Characterization of the Stimulation of Ethylene Production by Galactose in Tomato (Lycopersicon esculentum Mill.) Fruit 1

    PubMed Central

    Kim, Jongkee; Gross, Kenneth C.; Solomos, Theophanes

    1987-01-01

    We have characterized the stimulation of ethylene production by galactose in tomatoes (Lycopersicon esculentum Mill.). The effect of concentration was studied by infiltrating 0, 4, 40, 100, 200, 400, or 800 micrograms galactose for each gram of fresh fruit weight into mature green `Rutgers' fruit. Both 400 and 800 micrograms per gram fresh weight consistently stimulated a transient increase in ethylene approximately 25 hours after infiltration; the lower concentrations did not. Carbon dioxide evolution of fruit infiltrated with 400 to 800 micrograms per gram fresh weight was greater than that of lower concentrations. The ripening mutants, rin and nor, also showed the transient increase in ethylene and elevated CO2 evolution by 400 micrograms per gram fresh weight galactose. 1-Aminocyclopropane-1-carboxylic acid (ACC) content and ACC-synthase activity increased concurrently with ethylene production. However, galactose did not stimulate ACC-synthase activity in vitro. The infiltrated galactose in pericarp tissue was rapidly metabolized, decreasing to endogenous levels within 50 hours. Infiltrated galacturonic acid, dulcitol, and mannose stimulated transient increases in ethylene production similar to that of galactose. The following sugars produced no response: sucrose, fructose, glucose, rhamnose, arabinose, xylose, raffinose, lactose, and sorbitol. PMID:16665781

  10. D-Galactose Causes Motor Coordination Impairment, and Histological and Biochemical Changes in the Cerebellum of Rats.

    PubMed

    Rodrigues, André Felipe; Biasibetti, Helena; Zanotto, Bruna Stela; Sanches, Eduardo Farias; Schmitz, Felipe; Nunes, Vinícius Tejada; Pierozan, Paula; Manfredini, Vanusa; Magro, Débora Delwing Dal; Netto, Carlos Alexandre; Wyse, Angela T S

    2017-08-01

    Classical galactosemia is an inborn error of carbohydrate metabolism in which patients accumulate high concentration of galactose in the brain. The most common treatment is a galactose-restricted diet. However, even treated patients develop several complications. One of the most common symptoms is motor coordination impairment, including affected gait, balance, and speech, as well as tremor and ataxia. In the present study, we investigated the effects of intracerebroventricular galactose administration on motor coordination, as well as on histological and biochemical parameters in cerebellum of adult rats. Wistar rats received 5 μL of galactose (4 mM) or saline by intracerebroventricular injection. The animals performed the beam walking test at 1 and 24 h after galactose administration. Histological and biochemical parameters were performed 24 h after the injections. The results showed motor coordination impairment at 24 h after galactose injection. Galactose also decreased the number of cells in the molecular and granular layers of the cerebellum. The immunohistochemistry results suggest that the cell types lost by galactose are neurons and astrocytes in the spinocerebellum and neurons in the cerebrocerebellum. Galactose increased active caspase-3 immunocontent and acetylcholinesterase activity, decreased acetylcholinesterase immunocontent, glutathione, and BDNF levels, as well as caused protein and DNA damage. Our results suggest that galactose induces histological and biochemical changes in cerebellum, which can be associated with motor coordination impairment.

  11. Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Anbukkarasi, Kaliyaperumal; UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Nanda, Dhiraj Kumar; Singh, Prashant; Singh, Rameshwar

    2014-09-01

    Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal(-)) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal(+)) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal(-)) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42 °C. Milk was fermented in combination with Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal(-) NCDC 218(0.79 %). Low galactose yogurt was prepared following standard procedure using Gal(+) S. thermophilus isolates and Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04 in 1:1 ratio. Among which low galactose yogurt by NCDC 659 combination contained less galactose 0.37 % followed by NCDC 661 (0.51 %), NCDC 660 (0.65 %) and reference Gal(-) NCDC 218 (0.98 %) after 4 h of fermentation. This study clearly reveals that Gal(+) S. thermophilus isolates can be paired with Gal(-) L. delbrueckii subsp. bulgaricus for developing low galactose yogurt.

  12. Oral D-galactose supplementation in PGM1-CDG.

    PubMed

    Wong, Sunnie Yan-Wai; Gadomski, Therese; van Scherpenzeel, Monique; Honzik, Tomas; Hansikova, Hana; Holmefjord, Katja S Brocke; Mork, Marit; Bowling, Francis; Sykut-Cegielska, Jolanta; Koch, Dieter; Hertecant, Jozef; Preston, Graeme; Jaeken, Jaak; Peeters, Nicole; Perez, Stefanie; Nguyen, David Do; Crivelly, Kea; Emmerzaal, Tim; Gibson, K Michael; Raymond, Kimiyo; Abu Bakar, Nurulamin; Foulquier, Francois; Poschet, Gernot; Ackermann, Amanda M; He, Miao; Lefeber, Dirk J; Thiel, Christian; Kozicz, Tamas; Morava, Eva

    2017-06-15

    PurposePhosphoglucomutase-1 deficiency is a subtype of congenital disorders of glycosylation (PGM1-CDG). Previous casereports in PGM1-CDG patients receiving oral D-galactose (D-gal) showed clinical improvement. So far no systematic in vitro and clinical studies have assessed safety and benefits of D-gal supplementation. In a prospective pilot study, we evaluated the effects of oral D-gal in nine patients.MethodsD-gal supplementation was increased to 1.5 g/kg/day (maximum 50 g/day) in three increments over 18 weeks. Laboratory studies were performed before and during treatment to monitor safety and effect on serum transferrin-glycosylation, coagulation, and liver and endocrine function. Additionally, the effect of D-gal on cellular glycosylation was characterized in vitro.ResultsEight patients were compliant with D-gal supplementation. No adverse effects were reported. Abnormal baseline results (alanine transaminase, aspartate transaminase, activated partial thromboplastin time) improved or normalized already using 1 g/kg/day D-gal. Antithrombin-III levels and transferrin-glycosylation showed significant improvement, and increase in galactosylation and whole glycan content. In vitro studies before treatment showed N-glycan hyposialylation, altered O-linked glycans, abnormal lipid-linked oligosaccharide profile, and abnormal nucleotide sugars in patient fibroblasts. Most cellular abnormalities improved or normalized following D-gal treatment. D-gal increased both UDP-Glc and UDP-Gal levels and improved lipid-linked oligosaccharide fractions in concert with improved glycosylation in PGM1-CDG.ConclusionOral D-gal supplementation is a safe and effective treatment for PGM1-CDG in this pilot study. Transferrin glycosylation and ATIII levels were useful trial end points. Larger, longer-duration trials are ongoing.GENETICS in MEDICINE advance online publication, 15 June 2017; doi:10.1038/gim.2017.41.

  13. The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis

    SciTech Connect

    Kunst, C.; Kliegman, R.; Trindade, C. )

    1989-11-01

    In adults glucose incorporation to glycogen is indirect after recycling from lactate. In neonates galactose entry to glycogen exceeds that for glucose, but the pathway is unknown. The pathway of hexose incorporation to glycogen was studied in 5-7-day-old rats and 6-h-old rats injected intraperitoneally (IP) with either double-labeled (6-3H)glucose (nonrecycling), (U-14C)glucose (recycling), or (6-3H)glucose and (U-14C)galactose in saline. In another group of pups, 1 g/kg of glucose or galactose was administered in addition to tracers to determine glycemia and net glycogen synthesis between 15 and 180 min after injection. Blood glucose increased from 3.4 +/- 0.4 to 8.5 +/- 1.5 mM in 5-7-day-old pups in response to IP glucose; there was no glycemic response to galactose, although galactose levels increased from 0.5 to 6.3 mM at 15 min. Hepatic glycogen increased after IP glucose from 14 +/- 2 at 15 min to 30 +/- 3 at 120 min (P less than 0.01), whereas after IP galactose glycogen was 44 +/- 6 mumol/g at 120 min (P less than 0.05). After IP glucose, 3H and 14C disintegration per minute in glycogen increased slowly with 14C exceeding 3H at 120 and 180 min. In contrast IP (14C)galactose resulted in a much greater peak of 14C incorporation into glycogen. The ratio of 3H to 14C in glycogen relative to the injectate after IP glucose decreased from 0.69 +/- 0.12 to 0.36 +/- 0.03 (P less than 0.01) between 15 to 180 min, whereas the ratio after galactose was 0.20 +/- 0.007 to 0.15 +/- 0.02 at these times. The 6-h-old pups also demonstrated augmented incorporation of (14C)galactose in glycogen relative to (3H-14C)glucose. In contrast to 5-7-day-old pups there was no evidence of glucose recycling in 6-h-old pups. In conclusion galactose entry into glycogen exceeds that for glucose and is not dependent on recycling.

  14. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    SciTech Connect

    Mikeska, Ruth; Arni, Raghuvir; Mikhailov, Albert; Gabdoulkhakov, Azat; Voelter, Wolfgang; Betzel, Christian

    2005-01-01

    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.

  15. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    PubMed Central

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  16. D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens.

    PubMed

    Ryu, Eun-Ju; Sim, Jaehyun; Sim, Jun; Lee, Julian; Choi, Bong-Kyu

    2016-09-01

    Autoinducer 2 (AI-2) is a quorum sensing molecule to which bacteria respond to regulate various phenotypes, including virulence and biofilm formation. AI-2 plays an important role in the formation of a subgingival biofilm composed mostly of Gram-negative anaerobes, by which periodontitis is initiated. The aim of this study was to evaluate D-galactose as an inhibitor of AI-2 activity and thus of the biofilm formation of periodontopathogens. In a search for an AI-2 receptor of Fusobacterium nucleatum, D-galactose binding protein (Gbp, Gene ID FN1165) showed high sequence similarity with the ribose binding protein (RbsB), a known AI-2 receptor of Aggregatibacter actinomycetemcomitans. D-Galactose was evaluated for its inhibitory effect on the AI-2 activity of Vibrio harveyi BB152 and F. nucleatum, the major coaggregation bridge organism, which connects early colonizing commensals and late pathogenic colonizers in dental biofilms. The inhibitory effect of D-galactose on the biofilm formation of periodontopathogens was assessed by crystal violet staining and confocal laser scanning microscopy in the absence or presence of AI-2 and secreted molecules of F. nucleatum. D-Galactose significantly inhibited the AI-2 activity of V. harveyi and F. nucleatum. In addition, D-galactose markedly inhibited the biofilm formation of F. nucleatum, Porphyromonas gingivalis, and Tannerella forsythia induced by the AI-2 of F. nucleatum without affecting bacterial growth. Our results demonstrate that the Gbp may function as an AI-2 receptor and that galactose may be used for prevention of the biofilm formation of periodontopathogens by targeting AI-2 activity.

  17. Long-term oral galactose treatment prevents cognitive deficits in male Wistar rats treated intracerebroventricularly with streptozotocin.

    PubMed

    Salkovic-Petrisic, Melita; Osmanovic-Barilar, Jelena; Knezovic, Ana; Hoyer, Siegfried; Mosetter, Kurt; Reutter, Werner

    2014-02-01

    Basic and clinical research has demonstrated that dementia of sporadic Alzheimer's disease (sAD) type is associated with dysfunction of the insulin-receptor (IR) system followed by decreased glucose transport via glucose transporter GLUT4 and decreased glucose metabolism in brain cells. An alternative source of energy is d-galactose (the C-4-epimer of d-glucose) which is transported into the brain by insulin-independent GLUT3 transporter where it might be metabolized to glucose via the Leloir pathway. Exclusively parenteral daily injections of galactose induce memory deterioration in rodents and are used to generate animal aging model, but the effects of oral galactose treatment on cognitive functions have never been tested. We have investigated the effects of continuous daily oral galactose (200 mg/kg/day) treatment on cognitive deficits in streptozotocin-induced (STZ-icv) rat model of sAD, tested by Morris Water Maze and Passive Avoidance test, respectively. One month of oral galactose treatment initiated immediately after the STZ-icv administration, successfully prevented development of the STZ-icv-induced cognitive deficits. Beneficial effect of oral galactose was independent of the rat age and of the galactose dose ranging from 100 to 300 mg/kg/day. Additionally, oral galactose administration led to the appearance of galactose in the blood. The increase of galactose concentration in the cerebrospinal fluid was several times lower after oral than after parenteral administration of the same galactose dose. Oral galactose exposure might have beneficial effects on learning and memory ability and could be worth investigating for improvement of cognitive deficits associated with glucose hypometabolism in AD.

  18. The effect of d-galactose induced oxidative stress on in vitro redox homeostasis in rat plasma and erythrocytes.

    PubMed

    Delwing-de Lima, Daniela; Hennrich, Silmara Brietzig; Delwing-Dal Magro, Débora; Aurélio, Juliana Gruenwaldt Maia; Serpa, Ana Paula; Augusto, Thierry Waltrich; Pereira, Nariana Regina

    2017-02-01

    We, herein, investigated the in vitro effects of galactose on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, and on the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and butyrylcholinesterase (BuChE) in the blood of 30- and 60-day-old rats. We also determined the influence of the antioxidants, trolox, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Galactose was added to the assay at final concentrations of 0.1, 3.0, 5.0 and 10.0mM. Control experiments were performed without the addition of galactose. Rats were sacrificed by decapitation without anesthesia and a blood sample was removed for analysis. Galactose, at 3.0mM, 5.0mM and 10.0mM, enhanced TBA-RS in the plasma of 60-day-old rats, while 10.0mM galactose reduced total sulfhydryl content in the plasma of 30-day-old rats; 5.0mM and 10.0mM galactose enhanced CAT activity in the erythrocytes of 30- and 60-day-old rats and 10.0mM galactose reduced SOD activity in the erythrocytes of 60-day-old rats. Galactose did not alter BuChE activity. Data showed that at the pathologically high concentration (greater than 5.0mM), galactose induces lipid peroxidation, reduces total sulfhydryl content and alters antioxidant defenses in the blood of rats. Trolox, ascorbic acid and glutathione addition prevented most alterations in oxidative stress parameters that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this disease, which may include the use of antioxidants for ameliorating the damage caused by galactose.

  19. Insights into EPR effect versus lectin-mediated targeted delivery: biodegradable polycarbonate micellar nanoparticles with and without galactose surface decoration.

    PubMed

    Ebrahim Attia, Amalina Binte; Oh, Pamela; Yang, Chuan; Tan, Jeremy Pang Kern; Rao, Nithya; Hedrick, James L; Yang, Yi Yan; Ge, Ruowen

    2014-11-12

    Polymeric micelles with and without galactose are synthesized to study liver targeting ability in an orthotopic HCC rat model. Micelles with galactose accumulate more in the healthy liver tissue instead of HCC, while micelles without galactose amass in HCC by the EPR effect. These micelles show great potential as drug delivery carriers to target either the liver or HCC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Serum galactose-deficient IgA1 levels in children with IgA nephropathy.

    PubMed

    Jiang, Mengjie; Jiang, Xiaoyun; Rong, Liping; Xu, Yuanyuan; Chen, Lizhi; Qiu, Zeting; Mo, Ying

    2015-01-01

    Immunoglobulin A nephropathy (IgAN) is an immunopathologic diagnosis based on a renal biopsy, it is characterized by deposits of IgA-containing immune complexes in the mesangium. Adults with IgAN have a galactose-deficient IgA1 in the circulation and glomerular deposition. There are few studies on the glycosylation of serum IgA1 in children with IgAN. To measure the serum levels of galactose-deficient IgA1 in pediatric patients with IgAN, 72 biopsy-proven IgAN children were divided into 3 groups based on the clinical features: isolated hematuria group (24 patients), hematuria and proteinuria group (22 patients), and nephritic syndrome group (26 patients). They were also divided into 3 groups according to pathologic grading: grade I + II group (25 patients), grade III group (33 patients) and grade IV + V group (14 patients). 30 healthy children were recruited as a control group. We used vicia villosa lectin binding enzyme-linked immunosorbent assay to measure the serum levels of galactose-deficient IgA1 in all groups and controls. Serum levels of galactose-deficient IgA1 in children with IgAN were higher than controls (P < 0.01). There were no significant differences in serum levels of galactose-deficient IgA1 among the different clinical and pathologic grading groups. The values of the area under the curve for galactose-deficient IgA1 levels were 0.976 (95% CI, 0.953-1.000). The cutoff point for galactose-deficient IgA1 levels was 0.125, with a sensitivity of 87.5% and a specificity of 83.3%, with a positive predictive value of 92.6% and a negative predictive value of 73.5% (P < 0.01). Children with IgAN presented serum galactose-deficient IgA1, which has shown no relationship with the clinical manifestations and pathologic grading of the disease. Detection of serum galactose-deficient IgA1 levels by vicia villosa lectin binding enzyme-linked immunosorbent assay has a certain clinical value in diagnosis of children with IgAN.

  1. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    PubMed Central

    Mikeska, Ruth; Wacker, Roland; Arni, Raghuvir; Singh, Tej P.; Mikhailov, Albert; Gabdoulkhakov, Azat; Voelter, Wolfgang; Betzel, Christian

    2005-01-01

    The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R free = 23.6%) and 20.9 (R free = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound. PMID:16508080

  2. Galactose and Lactose Genes from the Galactose-Positive Bacterium Streptococcus salivarius and the Phylogenetically Related Galactose-Negative Bacterium Streptococcus thermophilus: Organization, Sequence, Transcription, and Activity of the gal Gene Products

    PubMed Central

    Vaillancourt, Katy; Moineau, Sylvain; Frenette, Michel; Lessard, Christian; Vadeboncoeur, Christian

    2002-01-01

    Streptococcus salivarius is a lactose- and galactose-positive bacterium that is phylogenetically closely related to Streptococcus thermophilus, a bacterium that metabolizes lactose but not galactose. In this paper, we report a comparative characterization of the S. salivarius and S. thermophilus gal-lac gene clusters. The clusters have the same organization with the order galR (codes for a transcriptional regulator and is transcribed in the opposite direction), galK (galactokinase), galT (galactose-1-P uridylyltransferase), galE (UDP-glucose 4-epimerase), galM (galactose mutarotase), lacS (lactose transporter), and lacZ (β-galactosidase). An analysis of the nucleotide sequence as well as Northern blotting and primer extension experiments revealed the presence of four promoters located upstream from galR, the gal operon, galM, and the lac operon of S. salivarius. Putative promoters with virtually identical nucleotide sequences were found at the same positions in the S. thermophilus gal-lac gene cluster. An additional putative internal promoter at the 3′ end of galT was found in S. thermophilus but not in S. salivarius. The results clearly indicated that the gal-lac gene cluster was efficiently transcribed in both species. The Shine-Dalgarno sequences of galT and galE were identical in both species, whereas the ribosome binding site of S. thermophilus galK differed from that of S. salivarius by two nucleotides, suggesting that the S. thermophilus galK gene might be poorly translated. This was confirmed by measurements of enzyme activities. PMID:11790749

  3. The role of water molecules in stereoselectivity of glucose/galactose-binding protein

    NASA Astrophysics Data System (ADS)

    Kim, Minsup; Cho, Art E.

    2016-11-01

    Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose–GGBP and β-D-galactose–GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.

  4. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose.

    PubMed

    Nguyen, Trung Hau; Ra, Chae Hun; Sunwoo, InYung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-12-18

    This study examined the pretreatment, enzymatic saccharification, and fermentation of the red macroalgae Gracilaria verrucosa using adapted saccharomyces cerevisiae to galactose or NaCl for the increase of bioethanol yield. Pretreatment with thermal acid hydrolysis to obtain galactose was carried out with 11.7% (w/v) seaweed slurry and 373 mM H2SO4 at 121 °C for 59 min. Glucose was obtained from enzymatic hydrolysis. Enzymatic saccharification was performed with a mixture of 16 U/mL Celluclast 1.5L and Viscozyme L at 45 °C for 48 h. Ethanol fermentation in 11.7% (w/v) seaweed hydrolysate was carried out using Saccharomyces cerevisiae KCTC 1126 adapted or non-adapted to high concentrations of galactose or NaCl. When non-adapted S. cerevisiae KCTC 1126 was used, the ethanol productivity was 0.09 g/(Lh) with an ethanol yield of 0.25. Ethanol productivity of 0.16 and 0.19 g/(Lh) with ethanol yields of 0.43 and 0.48 was obtained using S. cerevisiae KCTC 1126 adapted to high concentrations of galactose and NaCl, respectively. Adaptation of S. cerevisiae KCTC 1126 to galactose or NaCl increased the ethanol yield via adaptive evolution of the yeast.

  5. Anti-galactose antibodies do not bind to normal human red cells

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.

    1986-03-01

    The authors investigated the possibility that senescent cell IgG might have an anti-galactose (anti-gal) specificity as suggested by others. Anti-gal was isolated from normal human serum with ..cap alpha.. melibiose-agarose. The assays used were hemagglutination, rosetting, phagocytosis, and /sup 125/I protein A binding assay, immunoblotting, and glycine/HCL, pH 2.3, versus sugar elutions. Results revealed binding of anti-gal to rabbit but not human RBC. Immunoblotting of anti-gal revealed labeling of approx.29 bands in rabbit red cell membranes and no labeling of autologous human red cell membranes. The authors attempted to inhibit binding of anti-gal with various sugars. Melibiose caused enhancement rather than inhibition of agglutination when used at concentrations reported by previous investigators to cause inhibition. Neither ..cap alpha.. melibiose or galactose caused inhibition of phagocytosis of senescent cells. Senescent cell IgG was not displaced from freshly isolated old red cells by incubation with melibiose or galactose as determined by an /sup 125/I protein A binding assay. The authors were also unable to elute IgG from stored red cells with galactose. The authors conclude that senescent cell IgG does not have an anti-galactose specificity. The authors were unable to demonstrate an anti-gal antibody to normal human red cells.

  6. Alternative pathways of galactose assimilation: could inverse metabolic engineering provide an alternative to galactosemic patients?

    PubMed

    Lai, Kent; Klapa, Maria I

    2004-07-01

    The galactose assimilation pathway has been extensively studied as an example of a genetic regulatory switch. Besides the importance of this pathway as a tool in basic biological research, unraveling its structure and regulation is also of major medical importance. Impairment of galactose assimilation is the cause of the genetic metabolic disease known as "galactosemia", while the in vivo activity of the pathway affects the production of glycans. The latter have been connected to tumor metastasis, anti-cancer drug resistance and various cardiovascular diseases. Despite the vast amount of studies, however, galactose assimilation and its interaction with other parts of the metabolic network have not been fully elucidated yet. In yeast and higher eukaryotes, it is still being studied as comprising only the linear Leloir pathway. Recent observations, however, indicate that alternative pathways of galactose assimilation identified in prokaryotes and fungi might also be present in yeast. Such a result is valuable per se, because it could lead to the discovery of these pathways in humans. Even more importantly, these pathways provide alternative phenotypes with known genetic fingerprints that can be used in the context of classical and inverse metabolic engineering to examine and treat the mechanisms of defects of galactose assimilation.

  7. Increased albumin permeation in eyes, aorta, and kidney of hypertensive rats fed galactose

    SciTech Connect

    Tilton, R.G.; LaRose, L.; Chang, K.; Weigel, C.J.; Williamson, J.R.

    1986-03-01

    These experiments were undertaken to determine whether ingestion of galactose increases albumin permeation in the vasculature of hypertensive rats. 50% dextrin (control) or 50% galactose diets were fed to unilaterally nephrectomized, male Sprague-Dawley rats weighing 200 g. Hypertension (systolic pressure >175 mmHg) was induced by weekly IM injections of 25 mg/kg DOCA and 1% saline drinking water; 3 months later /sup 125/I-albumin permeation was assessed in whole eyes, aorta and kidneys. /sup 125/I-albumin permeation was significantly increased in all 3 tissues of hypertensive rats (n = 9) vs controls (n = 9): aorta (3.30 +/- 0.19 (SD) vs 2.87 +/- 0.14), eye (3.15 +/- 0.14 vs 2.59 +/- 0.11), and kidney (6.58 +/- 0.63 vs 3.85 +/- 0.50). Albumin permeation was increased still further in hypertensive rats fed the galactose diet (n = 8): aorta (3.75 +/- 0.38), eye (3.82 +/- 0.17), and kidney (10.74 +/- 3.13). Hypertension +/- galactose feeding had no effect on albumin permeation in lung, skin, or brain. These findings indicate that: (1) hypertension increases albumin permeation in vessels affected by diabetic vascular diseases, and 2) hypertension-induced increases in albumin permeation are increased still further by galactose ingestion, presumably mediated by imbalances in polyol/insitol metabolism (analogous to those induced by diabetes) independent of hyperglycemia and/or insulinopenia.

  8. Accumulation of myoinositol and rubidium ions in galactose-exposed rat lens

    SciTech Connect

    Kawaba, T.; Cheng, H.M.; Kinoshita, J.H.

    1986-10-01

    When rat lens is incubated in 30 mM galactose overnight, the extent of accumulation of rubidium ions (Rb) and myoinositol (MI) are affected, as well as the Na-K ATPase activity. Rb accumulation and Na-K ATPase activity are only slightly affected compared to the dramatic drop in MI accumulation. These changes are completely abolished by sorbinil, which blocks polyol formation, or by rendering the galactose medium hypertonic to offset the osmotic effect of polyol formation. On the other hand, the addition of excess MI to the galactose medium had no effect on correcting these changes. The results obtained are consistent with the polyol-osmotic theory of sugar cataract formation.

  9. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    PubMed Central

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-01-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose. PMID:27762269

  10. Thermal treatment of galactose-branched polyelectrolyte microcapsules to improve drug delivery with reserved targetability.

    PubMed

    Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu

    2008-06-05

    A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.

  11. Substitution of L-fucose by L-galactose in cell walls of arabidopsis mur1

    SciTech Connect

    Zablackis, E.; York, W.S.; Pauly, M.

    1996-06-21

    An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1 plants challenged the hypothesis that fucose is a required component of biologically active oligosaccharides derived from cell wall xyloglucan. However, the replacement of L-fucose (that is, 6-deoxyl-L-galactose) by L-galactose does not detectably alter the biological activity of the oligosaccharides derived from xyloglucan. Thus, essential structural and conformational features of xyloglucan and xyloglucan-derived oligosaccharides are retained when L-galactose replaces L-fucose. 29 refs., 2 figs., 2 tabs.

  12. Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica.

    PubMed Central

    Petri, W A; Smith, R D; Schlesinger, P H; Murphy, C F; Ravdin, J I

    1987-01-01

    Entamoeba histolytica adheres to human colonic mucus, colonic epithelial cells, and other target cells via a galactose (Gal) or N-acetyl-D-galactosamine (GalNAc) inhibitable surface lectin. Blockade of this adherence lectin with Gal or GalNAc in vitro prevents amebic killing of target cells. We have identified and purified the adherence lectin by two methods: affinity columns derivatized with galactose monomers or galactose terminal glycoproteins, and affinity columns and immunoblots prepared with monoclonal antibodies that inhibit amebic adherence. By both methods the adherence lectin was identified as a 170-kD secreted and membrane-bound amebic protein. The surface location of the lectin was confirmed by indirect immunofluorescence. Purified lectin competitively inhibited amebic adherence to target cells by binding to receptors on the target Chinese hamster ovary cells in a Gal-inhibitable manner. Images PMID:2890654

  13. Solubility and selective crystallization of lactose from solutions of its hydrolysis products glucose and galactose

    SciTech Connect

    Bourne, J.R.; Hegglin, M.; Prenosil, J.E.

    1983-06-01

    A high degree of conversion is desired when lactose is hydrolyzed to glucose and galactose. This produces, however, a high concentration of galactose, which is inhibitory for the enzyme catalyst (beta-galactosidase). The inhibition can be reduced by limiting the conversion per pass over the enzyme (e.g. to ca. 50%), separating unconverted lactose from the reactor effluent, and recycling it to the reactor inlet. (This allows the overall conversion to be raised to ca. 80-90%). The solubilities of lactose, glucose, and galactose have been determined at various temperatures and for sugar mixtures having different concentrations and degrees of hydrolysis. Various cooling crystallizations have defined convenient and simple processes for the selective separation of lactose from its hydrolysis products.

  14. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  15. Vascular filtration function in galactose-fed versus diabetic rats: The role of polyol pathway activity

    SciTech Connect

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Chang, K.; Province, M.A.; Kilo, C.; Williamson, J.R. )

    1990-07-01

    These studies were undertaken to assess the effects of increased galactose (v increased glucose) metabolism via the polyol pathway on vascular filtration function in the kidneys, eyes, nerves, and aorta. Quantitative radiolabeled tracer techniques were used to assess glomerular filtration rate (GFR) and regional tissue vascular clearance of plasma 131I-bovine serum albumin (BSA) in five groups of male Sprague-Dawley rats: nondiabetic controls, streptozotocin-diabetic rats, nondiabetic rats fed a 50% galactose diet, diabetic rats treated with sorbinil (an aldose reductase inhibitor), and galactose-fed rats treated with sorbinil. Sorbinil was added to the diet to provide a daily dose of approximately .2 mmol/kg body weight. After 2 months of diabetes or galactose ingestion, albumin clearance was increased twofold to fourfold in the eye (anterior uvea, choroid, and retina), sciatic nerve, aorta, and kidney; GFR was increased approximately twofold and urinary excretion of endogenous albumin and IgG were increased approximately 10-fold. Sorbinil treatment markedly reduced or completely prevented all of these changes in galactose-fed, as well as in diabetic rats. These observations support the hypothesis that increased metabolism of glucose via the sorbitol pathway is of central importance in mediating virtually all of the early changes in vascular filtration function associated with diabetes in the kidney, as well as in the eyes, nerves, and aorta. On the other hand, renal hypertrophy in diabetic rats and polyuria, hyperphagia, and impaired weight gain in galactose-fed and in diabetic rats were unaffected by sorbinil and therefore are unlikely to be mediated by increased polyol metabolism.

  16. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical

  17. How strict is galactose restriction in adults with galactosaemia? International practice.

    PubMed

    Adam, S; Akroyd, R; Bernabei, S; Bollhalder, S; Boocock, S; Burlina, A; Coote, T; Corthouts, K; Dalmau, J; Dawson, S; Defourny, S; De Meyer, A; Desloovere, A; Devlin, Y; Diels, M; Dokoupil, K; Donald, S; Evans, S; Fasan, I; Ferguson, C; Ford, S; Forga, M; Gallo, G; Grünert, S C; Heddrich-Ellerbrok, M; Heidenborg, C; Jonkers, C; Lefebure, K; Luyten, K; MacDonald, A; Meyer, U; Micciche, A; Müller, E; Portnoi, P; Ripley, S; Robert, M; Robertson, L V; Rosenbaum-Fabian, S; Sahm, K; Schultz, S; Singleton, K; Sjöqvist, E; Stoelen, L; Terry, A; Thompson, S; Timmer, C; Vande Kerckhove, K; van der Ploeg, L; Van Driessche, M; van Rijn, M; van Teeffelen-Heithoff, A; Vitoria, I; Voillot, C; Wenz, J; Westbrook, M; Wildgoose, J; Zweers, H

    2015-05-01

    Dietary management of 418 adult patients with galactosaemia (from 39 centres/12 countries) was compared. All centres advised lactose restriction, 6 restricted galactose from galactosides ± fruits and vegetables and 12 offal. 38% (n=15) relaxed diet by: 1) allowing traces of lactose in manufactured foods (n=13) or 2) giving fruits, vegetables and galactosides (n=2). Only 15% (n=6) calculated dietary galactose. 32% of patients were lost to dietetic follow-up. In adult galactosaemia, there is limited diet relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    DTIC Science & Technology

    1990-02-01

    which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were

  19. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13Cmore » MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  20. Acute hypersensitivity reaction to Crotalidae polyvalent immune Fab (CroFab) as initial presentation of galactose-α-1,3-galactose (α-gal) allergy.

    PubMed

    Rizer, Justin; Brill, Kaitlin; Charlton, Nathan; King, Joshua

    2017-08-01

    Crotalidae polyvalent immune Fab antivenom (CroFab), commonly used for the treatment of clinically significant North American crotalinae envenomation, is generally well-tolerated. A novel form of anaphylaxis due to an IgE antibody response to the mammalian oligosaccharide galactose-α-1,3-galactose (α-gal) has been established following red-meat consumption as well as IV administration of cetuximab, which contain the α-gal epitope. We present a case of α-gal allergy discovered after acute hypersensitivity reaction to FabAV. A 61-year-old healthy female was bitten on her left ankle by Agkistrodon contortrix. Given the patient's rapid progression of pain and swelling, she was given FabAV. During infusion of FabAV, she developed diffuse hives over her entire body and itching, but denied respiratory or gastrointestinal symptoms and her vital signs remained stable. The FabAV was immediately discontinued and she received intravenous diphenhydramine and famotidine with gradual resolution of symptoms. On further discussion, she denied a history of α-gal or papaya allergy but rarely ate red meat and endorsed sustaining frequent tick bites. Subsequent antibody testing was significant for an α-1,3-galactose IgE concentration of 45,000 U/L (normal <3500 U/L), confirming α-gal allergy. To our knowledge, this is the first report of FabAV hypersensitivity associated with an underlying α-gal allergy.

  1. Effect of Capparis spinosa L. on cognitive impairment induced by D-galactose in mice via inhibition of oxidative stress.

    PubMed

    Turgut, Nergiz Hacer; Kara, Haki; Arslanbaş, Emre; Mert, Derya Güliz; Tepe, Bektaş; Güngör, Hüseyin

    2015-01-01

    To determine the phenolic acid levels and DNA damage protection potential of Capparis spinosa L. seed extract and to investigate the effect of the extract on cognitive impairment and oxidative stress in an Alzheimer disease mice model. Thirty BALB/c mice divided into 5 groups (control, D-galactose, D-galactose + C. spinosa 50, D-galactose + C. spinosa 100, D-galactose + C. spinosa 200) were used. Mice were administered an injection of D-galactose (100 mg/kg, subcutaneous) and orally administered C. spinosa (50, 100, or 200 mg/kg) daily for 8 weeks. Syringic acid was detected and the total amount was 204.629 µg/g. Addition of 0.05 mg/mL C. spinosa extract provided significant protection against the damage of DNA bands. C. spinosa attenuated D-galactose-induced learning dysfunctions in mice and significantly increased memory retention. Malondialdehyde (MDA) levels increased and superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities decreased in the D-galactose group. C. spinosa (200 mg/kg body weight) significantly decreased MDA level and increased SOD, GPx, and CAT activities. These results show that C. spinosa has the potential in ameliorating cognitive deficits induced by D-galactose in mice and the antioxidant activity may partially account for the improvement of learning and memory function.

  2. Intracerebroventricular D-galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat.

    PubMed

    Rodrigues, André Felipe; Biasibetti, Helena; Zanotto, Bruna Stela; Sanches, Eduardo Farias; Pierozan, Paula; Schmitz, Felipe; Parisi, Mariana Migliorini; Barbé-Tuana, Florencia; Netto, Carlos Alexandre; Wyse, Angela T S

    2016-05-01

    Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4mM) or saline (control). For behavioral parameters, galactose was injected 1h or 24h previously to the testing. For biochemical assessment, animals were decapitated 1h, 3h or 24h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.

  3. Remodeling of Oxidative Energy Metabolism by Galactose Improves Glucose Handling and Metabolic Switching in Human Skeletal Muscle Cells

    PubMed Central

    Kase, Eili Tranheim; Nikolić, Nataša; Bakke, Siril Skaret; Bogen, Kaja Kamilla; Aas, Vigdis; Thoresen, G. Hege; Rustan, Arild Christian

    2013-01-01

    Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments. PMID:23560061

  4. [Galactose loading test in infants and small children suffering in recurrent bronchitis and other chronic illness (author's transl)].

    PubMed

    Osváth, P; Fornai, K; Pozderka, B; Veres, B

    1981-08-01

    The authors performed galactose loading tests in children suffering from chronic diseases: recurrent bronchitis vomiting, diarrhoea, milk-intolerance, somatic and mental retardation, cramps. In 32 of the 92 examined cases galactose levels rose until pathological, pseudo- diabetic levels. Stillbirth, cataract, hyperbilirubinaemia, convulsions occurred among family members of 10 patients. Galactose-1-phosphat-uridyl-transferase levels were decreased only in 4 of the 17 patients examined. In the other cases some different pathway of galactose metabolism is suspected. Complete remission of symptoms was achieved with diet devoid of milk sugar (lactose) in 29 patients: one infant died and two others remained mentally retarded. According to the examinations presented minor deviations of galactose metabolism cause clinical symptoms more frequently in early life as it was supposed until now.

  5. Unveiling epimerization effects: a rotational study of α-D-galactose.

    PubMed

    Peña, Isabel; Cabezas, Carlos; Alonso, José L

    2015-06-25

    By studying its C4 epimer α-D-galactose, the effects of epimerization on the conformational behaviour of α-D-glucose have been unveiled. Using laser ablation of crystalline samples, four conformers of α-D-galactopyranose have been observed, for the first time, in a supersonic expansion by analyzing the Fourier transform rotational spectrum.

  6. Effect of chronic ethanol on D-galactose absorption by the rat whole intestinal surface.

    PubMed

    Carreras, O; Vazquez, A L; Rubio, J M; Delgado, M J; Murillo, M L

    1992-01-01

    The in vivo absorption of D-galactose by rat whole intestinal surface after 4 weeks of 30% ethanol ingestion in drinking water has been studied, and the results were compared with ad lib-fed control rats. The total serosal intestinal area was determined by integration obtaining similar values between control and alcohol-treated groups. In the caecum surface of ethanol-fed rats slight but not significant increases were found, while the jejunum area decreased with respect to control rats. Total galactose absorption during 10 min of perfusion was slightly increased in ethanol-fed rats but these results were not significant with the substrate concentrations tested. When absorption data were referred to serosal surface, the absorption/cm2 values in ethanol-fed rats were increased at the studied galactose concentrations although these results were only statistically significant at 10 mM. In conclusion, the present data indicates a slight increase in D-galactose absorptive capacity by the whole intestine in ethanol-fed rats which suggest that the tissue traditionally not evaluated such as caecum and colon could modify the functional response to the absorption nutrients.

  7. The Chemopreventive Peptide Lunasin Inhibits d-Galactose- Induced Experimental Cataract in Rats.

    PubMed

    Dai, Guangzhi; Zhang, Ping; Ye, Pei; Zhang, Miaoqing; Han, Ning; Shuai, Haoyue; Tan, Shuhua

    2016-01-01

    Oxidative damage to the constituents of the eye lens is a major mechanism in the initiation and development of cataract. Lunasin, a 43-amino acids chemoprevention peptide, has been proved to possess potent anti-oxidative activity other than its established anticancer activities. Herein, we explored whether lunasin has preventative effects on d-galactose-induced experimental cataract in rat. After modeling, SD rats were administrated by instillation, 80 µM of lunasin eye drops to each eye thrice daily and consecutively for 30 days. As a result, lunasin treatment effectively inhibited the progression of d-galactose-induced experimental cataract, and protected the lenses of rats from oxidative damage and attenuated the lipid peroxidation through up-regulation of antioxidant enzymes, and inhibited the activation of polyol pathway by decreasing AR activity. Additionally, in vitro studies proved that lunasin treatment could protect human lens epithelial cells (hLECs) against d-galactose induced cell damage and apoptosis, and up-regulate antioxidant enzymes. This is the first demonstration that lunasin could inhibit d-galactose-induced experimental cataract in rats by protecting against oxidative damage and inhibiting the activation of polyol pathway.

  8. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    PubMed Central

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-gang

    2016-01-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  9. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. Effect of anaerobiosis, dinitrophenol and fluoride on the active intestinal transport of galactose in snail.

    PubMed

    Barber, A; Jordana, R; Ponz, F

    1975-06-01

    The active transport of galactose across the intestinal wall (everted sacs) of the snail Cryptomphalus hortensis Müller has been studied in vitro, under several metabolic conditions. Anaerobiosis does not change the serosal/mucosal galactose gradients which are developed in oxygen atmosphere. Dinitrophenol (10(-4) M) greatly increased the O2 uptake by the tissue and clearly inhibits the sugar transport. At 5 times 10(-4) M concentration, DNP totally prevents the uphill transport while the O2 uptake is normal. The inhibition produced by DNP does not increase by anaerobiosis. Fluoride inhibits the galactose transport and also the O2 uptake. It is deduced that in snail intestine the energy for the active transport of galactose can be supplied by aerobic as much as by anaerobic metabolism. The inhibition by dinitrophenol seems to be independent of its uncoupling action on the oxidative phosphorylation. The inhibitory effect of NaF may be due both to glycolisis inhibition and to alteration of the digestive epithelium.

  11. The structural and molecular biology of type I galactosemia: Enzymology of galactose 1-phosphate uridylyltransferase.

    PubMed

    McCorvie, Thomas J; Timson, David J

    2011-09-01

    Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.

  12. The estimation of blood galactose using a glucose oxidase-catalase reagent

    PubMed Central

    Bowden, C. H.

    1963-01-01

    The removal of the blood glucose by yeast fermentation in a conventional blood galactose method is replaced by an enzymic reaction using a glucose oxidase-catalase reagent. The method can be readily modified to suit a variety of blood sugar estimation methods. PMID:14063336

  13. Determination of the lactose and galactose content of cheese for use in the galactosaemia diet.

    PubMed

    Portnoi, P A; MacDonald, A

    2009-10-01

    Treatment of galactosaemia requires a low galactose diet. In the UK, traditionally, all cheeses have been excluded from the diet, although some types of mature hard cheese are likely to be low in lactose and galactose. The present study aimed to determine the lactose and galactose content of mature cheeses. Over 6 years, the UK Galactosaemia Support Group commissioned the analysis of 109 samples (by two laboratories) of 12 cheese types, in eight batches throughout the year. Cheeses, obtained from retail outlets, were homogenised, sugars were extracted using water or 40% alcohol for fatty samples, and samples were deproteinised. Enzymatic analysis using measuring light absorbance was conducted on filtered extracts. Cheeses containing undetectable quantities of lactose (<2.8 mg 100 g(-1), Leatherhead Food International, Leatherhead, UK (LFI) analysis; <10 mg 100 g(-1), Laboratory of Government Chemist, Teddington, UK (LGC Limited) analysis) and galactose were: Gruyere (five samples); Emmental (block, sliced and grated) (16 samples); Jarlsberg (six samples); Parmigiano Reggiano and Grana Padano Italian Parmesan (block and grated) (16 samples); and mature Cheddar cheese from the UK West Country Farmhouse Cheese Makers Association (35 samples) only. Lactose containing cheeses included other mature Cheddar cheeses, Gouda and Edam. Gruyere, Emmental, Jarlsberg, Italian Parmesan (Parmigiano Reggiano and Grana Padano), and mature Cheddar cheese produced in one area of England where the manufacturing process is standardised and guaranteed are now allowed in the UK galactosaemia diet.

  14. Inhibitory effect of IL-1β on galactose intestinal absorption in rabbits.

    PubMed

    Viñuales, Carmen; Gascón, Sonia; Barranquero, Cristina; Osada, Jesús; Rodríguez-Yoldi, Ma Jesús

    2012-01-01

    Recent studies from our laboratory have shown that nitric oxide is involved in the IL-1β-induced inhibition of D-fructose intestinal transport in rabbits. The aim of this work was to further the studies of IL-1β effect on D-galactose absorption in a septic state induced by intravenous administration of this cytokine. Galactose intestinal absorption was assessed employing three techniques: sugar uptake in jejunum everted rings, transepithelial flux in Ussing-type chambers and uptake assays in brush border membrane vesicles. The level of the Na(+)/D-glucose cotransporter (SGLT1) expression was analyzed by Western blot. In sepsis condition the body temperature was increased and studies on cellular intestinal integrity have not shown modifications in the brush border membrane. However, D-galactose absorption across mucosa of jejunum was diminished in IL-1β treated rabbits. The levels of SGLT-1 were no significantly different in both animal groups (control and IL-1β treated), indicating that the cytokine could induce a reduction in the SGLT-1 functionality. The inhibition was significantly reversed by the activation of several PKC, PKA, MAPKs and nuclear factor (NF)-ĸB inhibitors administered 15 min before the IL-1β. The inhibitory effect of IL-1β on D-galactose absorption across mucosal side of enterocyte could be mediated by the activation of several kinases and nuclear factor (NF)-ĸB. Copyright © 2012 S. Karger AG, Basel.

  15. Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems.

    PubMed

    Schleis, Thomas G

    2007-09-01

    Maltose, a disaccharide composed of two glucose molecules, is used in a number of biological preparations as a stabilizing agent or osmolality regulator. Icodextrin, which is converted to maltose, is present in a peritoneal dialysis solution. Galactose and xylose are found in some foods, herbs, and dietary supplements; they are also used in diagnostic tests. When some blood glucose monitoring systems are used--specifically, those that use test strips containing the enzymes glucose dehydrogenase-pyrroloquinolinequinone or glucose dye oxidoreductase--in patients receiving maltose, icodextrin, galactose, or xylose, interference of blood glucose levels can occur. Maltose, icodextrin, galactose, and xylose are misinterpreted as glucose, which can result in erroneously elevated serum glucose levels. This interference can result in the administration of insulin, which may lead to hypoglycemia. In severe cases of hypoglycemia, deaths have occurred. If patients are receiving maltose, icodextrin, galactose, or xylose, clinicians must review the package inserts of all test strips to determine the type of glucose monitoring system being used and to use only those systems whose tests strips contain glucose oxidase, glucose dehydrogenase-nicotinamide adenine dinucleotide, or glucose dehydrogenase-flavin adenine dinucleotide.

  16. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans.

    PubMed

    Pomin, Vitor H

    2016-03-01

    Glycans are ubiquitous components of all organisms. The specificity of glycan structures works in molecular recognition in multiple biological processes especially cell-cell and cell-matrix signaling events. These events are mostly driven by functional proteins whose activities are ultimately regulated by interactions with carbohydrate moieties of cell surface glycoconjugates. Galactose is a common composing monosaccharide in glycoconjugates. Sulfation at certain positions of the galactose residues does not only increase affinity for some binding proteins but also makes the structures of the controlling glycans more specific to molecular interactions. Here the phylogenetic distribution of glycans containing the sulfated galactose unit is examined across numerous multicellular organisms. Analysis includes autotrophs and heterotrophs from both terrestrial and marine environments. Information exists more regarding the marine species. Although future investigations in molecular biology must be still performed in order to assure certain hypotheses, empirical evidences based on structural biology of the sulfated galactose-containing glycans among different species particularly their backbone and sulfation patterns clearly indicate great specificity in terms of glycosyltransferase and sulfotransferase activity. This set of information suggests that evolution has shaped the biosynthetic machinery of these glycans somewhat related to their potential functions in the organisms.

  17. Production, purification, and characterization of a novel galactose oxidase from Fusarium acuminatum.

    PubMed

    Alberton, Dayane; Silva de Oliveira, Luciana; Peralta, Rosane Marina; Barbosa-Tessmann, Ione Parra

    2007-06-01

    Extra-cellular production of a novel galactose oxidase from Fusarium acuminatum using submerged fermentation was studied. Glucose (1.0% w/v) was used as the sole carbon source. Maximum galactose oxidase production (approximately 4.0 U/ml) was obtained when fermentation was carried out at 25 degrees C, with orbital shaking (100 rpm) and an initial medium of pH 7.0, for 96 h, using a 2% (v/v) inoculum made from a homogenized four-day-old liquid culture, in the presence of copper, manganese, and magnesium. The enzyme was purified by one-step affinity chromatography, with a recovery of 42% of the initial activity. The purified enzyme ran as a single band of 66 kDa in SDS-PAGE. Optimal pH and temperature for the enzyme activity were 8.0 and 30 degrees C, respectively. The enzyme was thermoinactivated at temperatures above 60 degrees C. The purified enzyme was active toward various substrates, including galactose, dihydroxyacetone, guar gum, lactose, melibiose, methyl-galactopyranoside, and raffinose. SDS was an inhibitor but EDTA, Tween 80, NH(4)(+), Na(+), Mg(2+), K(+), and glycerol were not. The Michaelis-Menten constant (K(m)) for galactose was estimated to be 16.2 mM, while maximal velocity (V(max)) was 0.27 micromol of H(2)O(2) . ml(-1) . min(-1).

  18. Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes

    PubMed Central

    Palme, Julius

    2017-01-01

    In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell’s inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes’ decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment. PMID:28542190

  19. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    PubMed

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Enzymic synthesis of O-β-d-glucopyranosyl-(1→6)-d-galactose

    PubMed Central

    Knox, K. W.

    1965-01-01

    1. The enzymic synthesis of O-β-d-glucopyranosyl-(1→6)-d-galactose has been described and evidence for the structure presented. 2. It has been shown that the transglycosylase of A. niger provides a convenient means of synthesizing (1→6)-linked disaccharides. PMID:14340044

  1. Effects of puerarin on D-galactose-induced memory deficits in mice.

    PubMed

    Xu, Xiao-Hong; Zhao, Tie-Qiao

    2002-07-01

    To study the effects of puerarin on learning-memory behavior in aging mice induced by D-galactose and to explore in-brain mechanism of its effects. The aging mice model were induced by sc D-galactose 0.12 g/kg daily for 6 weeks and meanwhile treated with three doses of puerarin once a day for 6 weeks. The spontaneous behavior and the learning-memory behavior were tested for the aging mice using open field and Y-maze on the day after the last treatment. Then the activity of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) and lipofuscin in brain tissue were measured using UV-photospectrometer and fluorospectrophotometer analysis system. Compared with the D-galactose control group, puerarin 60 mg/kg was shown to increase significantly the spontaneous behavior and explorative response in the open field and improve remarkably the learning-memory ability of the aging mice induced by D-galactose. The percentage of memory retention increased from 69 %+/-9 % to 79 %+/-6 %. Puerarin 30 mg/kg and 60 mg/kg promoted remarkably the activity of SOD in the brain of the aging mice from (12.1+/-2.9) to (14.9+/-2.1) and(15.5+/-2.7) U/g wet brain weight, respectively, and decreased significantly the content of lipofuscin from (27+/-5) to (20+/-4) and (20+/-4) microg/g wet brain weight, respectively. Puerarin could improve the memory dysfunction produced by D-galactose. Improvement of the antioxidase activity of brain in the aging mice may be involved in this effect.

  2. The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with D -galactose.

    PubMed

    Poget, S F; Legge, G B; Proctor, M R; Butler, P J; Bycroft, M; Williams, R L

    1999-07-23

    C-type lectins are calcium-dependent carbohydrate-recognising proteins. Isothermal titration calorimetry of the C-type Polyandrocarpa lectin (TC14) from the tunicate Polyandrocarpa misakiensis revealed the presence of a single calcium atom per monomer with a dissociation constant of 2.6 microM, and confirmed the specificity of TC14 for D -galactose and related monosaccharides. We have determined the 2.2 A X-ray crystal structure of Polyandrocarpa lectin complexed with D -galactose. Analytical ultracentrifugation revealed that TC14 behaves as a dimer in solution. This is reflected by the presence of two molecules in the asymmetric unit with the dimeric interface formed by antiparallel pairing of the two N-terminal beta-strands and hydrophobic interactions. TC14 adopts a typical C-type lectin fold with differences in structure from other C-type lectins mainly in the diverse loop regions and in the second alpha-helix, which is involved in the formation of the dimeric interface. The D -galactose is bound through coordination of the 3 and 4-hydroxyl oxygen atoms with a bound calcium atom. Additional hydrogen bonds are formed directly between serine, aspartate and glutamate side-chains of the protein and the sugar 3 and 4-hydroxyl groups. Comparison of the galactose binding by TC14 with the mannose binding by rat mannose-binding protein reveals how monosaccharide specificity is achieved in this lectin. A tryptophan side-chain close to the binding site and the distribution of hydrogen-bond acceptors and donors around the 3 and 4-hydroxyl groups of the sugar are essential determinants of specificity. These elements are, however, arranged in a very different way than in an engineered galactose-specific mutant of MBPA. Possible biological functions can more easily be understood from the fact that TC14 is a dimer under physiological conditions. Copyright 1999 Academic Press.

  3. Transcriptomic analysis of Saccharomyces cerevisiae physiology in the context of galactose assimilation perturbations.

    PubMed

    Syriopoulos, C; Panayotarou, A; Lai, K; Klapa, Maria I

    2008-09-01

    Despite being extensively studied in various organisms due to scientific, industrial and medical interest, the galactose assimilation function and regulation, and especially its interaction with other parts of cellular physiology, have not been fully elucidated yet. The post-genomic era holistic techniques ("omics") could assist towards this goal. In this paper, we holistically analyzed full-genome Saccharomyces cerevisiae transcriptional profiling data concerning its glucose- and galactose-grown wild-type (WT) physiology and its glucose-grown gal7-deficient (GAL7Delta) physiology, as these were obtained in the experiment described in Lai and Elsas (Biochem. Biophys. Res. Commun. 2000, 271, 392-400). The gal7 gene encodes for the second enzyme of the galactose assimilation, Leloir, pathway, and its deficiency in humans causes a potentially lethal disease, named "classic galactosemia". Analysis of the galactose-grown compared to the glucose-grown WT physiology indicated a significant increase in the transcriptional expression of the ribosomal machinery and decrease in the transcriptional activity of the fatty acids' beta-oxidation at the peroxisomes. Comparison of GAL7Delta to WT physiology in glucose indicated a significant transcriptional increase in the mitochondrial activity and the rate of catabolism of disaccharides, including sucrose, mannose and trehalose, towards amplified biosynthesis of the main cell wall components. Comparison with other physiological conditions indicated strong correlation between the glucose-grown GAL7Delta transcriptional physiology and the WT growth under glucose derepression conditions. Finally, the acquired results and the large number of still unknown genes that were related to the galactose assimilation regulation indicated the need for further, specifically designed, perturbations and integrated analyses of multiple levels of cellular function.

  4. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth.

    PubMed

    Coppenhagen-Glazer, S; Sol, A; Abed, J; Naor, R; Zhang, X; Han, Y W; Bachrach, G

    2015-03-01

    Fusobacterium nucleatum is a common oral anaerobe involved in periodontitis that is known to translocate and cause intrauterine infections. In the oral environment, F. nucleatum adheres to a large diversity of species, facilitating their colonization and creating biological bridges that stabilize the multispecies dental biofilm. Many of these interactions (called coadherences or coaggregations) are galactose sensitive. Galactose-sensitive interactions are also involved in the binding of F. nucleatum to host cells. Hemagglutination of some F. nucleatum strains is also galactose sensitive, suggesting that a single galactose-sensitive adhesin might mediate the interaction of fusobacteria with many partners and targets. In order to identify the fusobacterial galactose-sensitive adhesin, a system for transposon mutagenesis in fusobacteria was created. The mutant library was screened for hemagglutination deficiency, and three clones were isolated. All three clones were found to harbor the transposon in the gene coding for the Fap2 outer membrane autotransporter. The three fap2 mutants failed to show galactose-inhibitable coaggregation with Porphyromonas gingivalis and were defective in cell binding. A fap2 mutant also showed a 2-log reduction in murine placental colonization compared to that of the wild type. Our results suggest that Fap2 is a galactose-sensitive hemagglutinin and adhesin that is likely to play a role in the virulence of fusobacteria.

  5. Increased ocular blood flow and /sup 125/I-albumin permeation in galactose-fed rats: inhibition by sorbinil

    SciTech Connect

    Tilton, R.G.; Chang, K.; Weigel, C.; Eades, D.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1988-06-01

    125I-Albumin permeation and blood flow (assessed with 15 micron, 85Sr-labelled microspheres) were determined in the retina, choroid, anterior uvea, and brain of male Sprague-Dawley rats fed diets containing 50% dextrin (control) or 50% galactose. Blood flow was increased in the retina, choroid, and anterior uvea but not in the brain of rats fed galactose for 3 weeks and 3 months versus controls, and was normalized by sorbinil (an inhibitor of aldose reductase) in the 3-week group. After 8 months of galactose feeding, blood flow was reduced to normal levels in the retina and was slightly below normal in the choroid; blood flow remained elevated in the anterior uvea but was significantly lower than that observed at 3 weeks and at 3 months. In rats fed galactose for 8 months, sorbinil completely normalized blood flow in the choroid, and decreased, but did not normalize, blood flow in the anterior uvea. 125I-Albumin permeation was increased in the retina, choroid, and anterior uvea of rats fed 50% galactose for 3 weeks, 3 months, and 8 months versus controls, but was unchanged in the brain. Sorbinil normalized 125I-albumin permeation in all three ocular tissues in 8-month galactose-fed rats. Polyol levels were increased significantly in all three ocular tissues of 3-week galactose-fed rats; sorbinil markedly decreased, but did not normalize, polyol levels in all three tissues.

  6. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia.

    PubMed

    Van Calcar, Sandra C; Bernstein, Laurie E; Rohr, Frances J; Scaman, Christine H; Yannicelli, Steven; Berry, Gerard T

    2014-07-01

    The galactose-restricted diet is life-saving for infants with classic galactosemia. However, the benefit and extent of dietary galactose restriction required after infancy remain unclear and variation exists in practice. There is a need for evidence-based recommendations to better standardize treatment for this disorder. This paper reviews the association between diet treatment and outcomes in classic galactosemia and evaluates the contribution of food sources of free galactose in the diet. Recommendations include allowing all fruits, vegetables, legumes, soy products that are not fermented, various aged cheeses and foods containing caseinates. Further research directions are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. In utero and lactational β-carotene supplementation attenuates D-galactose-induced hearing loss in newborn rats.

    PubMed

    Yu, Fei; Hao, Shuai; Zhao, Yue; Yang, Hui; Fan, Xiao-Lan; Yang, Jun

    2011-08-01

    D-Galactose could give rise to free radical damage by disturbing the some maternal antioxidants. The oxidative stress induced by D-galactose is a potent inducer of apoptosis, which is accompanied by the activation of protein-splitting enzymes called caspases. Apoptosis is a crucial physiological determinant of embryonic and neonatal development, and play an essential role in the development of the inner ear structures. Recently the increasing of D-galactose exposure is due to high consumption of dairy foods or reduced galactose metabolism. An overwhelming presence of D-galactose is known to become highly ototoxicity to humans. The purpose of this study was to investigate whether supplementation of pregnant and lactational mothers with β-carotene could attenuate cochlear function damage and hair cells apoptosis induced by d-galactose in newborn rats. Pregnant rats were supplemented with D-galactose, or D-galactose and β-carotene from gestational day (GD) 7 until postnatal day (PND) 21. On PND 22, offspring were examined in the distortion product otoacoustic emission (DPOAE) task, cochleae were then harvested for assessment of apoptosis by immunohistochemical stain for cysteine-aspartic acid proteases 3 (caspase-3) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Maternal and offspring blood samples were then collected by direct cardiac puncture in heparin tubes, blood levels of D-galactose and β-carotene were measured, plasma was separated for malondialdehyde (MDA) analysis, erythrocytes were left for superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH). D-Galactose could significantly disturb the balance between maternal antioxidants and free radicals, and induce hearing loss in the offspring and cochlear hair cell apoptosis. In contrast, β-carotene supplementation, coincidentally with D-galactose exposure, ameliorated these changes. Our data offer a conceptual framework for designing

  8. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes.

    PubMed Central

    Mollet, B; Pilloud, N

    1991-01-01

    By complementing appropriate gal lesions in Escherichia coli K802, we were able to isolate the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes of Lactobacillus helveticus. Tn10 transposon mutagenesis, together with in vivo complementation analysis and in vitro enzyme activity measurements, allowed us to map these two genes. The DNA sequences of the genes and the flanking regions were determined. These revealed that the two genes are organized in the order galK-galT in an operonlike structure. In an in vitro transcription-translation assay, the galK and galT gene products were identified as 44- and 53-kDa proteins, respectively, data which corresponded well with the DNA sequencing data. The deduced amino acid sequence of the galK gene product showed significant homologies to other prokaryotic and eukaryotic galactokinase sequences, whereas galactose-1-phosphate uridyl transferase did not show any sequence similarities to other known proteins. This observation, together with a comparison of known gal operon structures, suggested that the L. helveticus operon developed independently to a translational expression unit having a different gene order than that in E. coli, Streptococcus lividans, or Saccharomyces cerevisiae. DNA sequencing of the flanking regions revealed an open reading frame downstream of the galKT operon. It was tentatively identified as galM (mutarotase) on the basis of the significant amino acid sequence homology with the corresponding Streptococcus thermophilus gene. Images PMID:2066342

  9. Identification of galactose-α-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy.

    PubMed

    Hamsten, C; Starkhammar, M; Tran, T A T; Johansson, M; Bengtsson, U; Ahlén, G; Sällberg, M; Grönlund, H; van Hage, M

    2013-04-01

    Patients with IgE antibodies against the carbohydrate epitope galactose-α-1,3-galactose (α-Gal) have reported severe allergic reactions after consumption of red meat. Investigations have revealed associations between IgE to α-Gal and tick bites. We provide the first direct evidence that α-Gal is present within ticks thus potentially explaining the relationship between tick exposure and sensitization to α-Gal, with development of red meat allergy as a secondary phenomena. Serum from Swedish patients with delayed severe reactions to red meat was included in the study. A dose-dependent inhibition of IgE responses to α-Gal by the tick Ixodes ricinus is demonstrated. Furthermore, using cryostat-cut sections of I. ricinus, we show that both a monoclonal and a polyclonal antibody against α-Gal stains the gastrointestinal tract of the tick. The same pattern is seen when staining with patient sera IgE positive to α-Gal. These results confirm that the α-Gal epitope is present in I. ricinus and imply host exposure to α-Gal during a tick bite. This provides further evidence that tick bites are associated with IgE responses to α-Gal and red meat allergy. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  10. Food allergy to the carbohydrate galactose-alpha-1,3-galactose (alpha-gal): four case reports and a review.

    PubMed

    Bircher, Andreas J; Hofmeier, Kathrin Scherer; Link, Susanne; Heijnen, Ingmar

    2017-02-01

    Until recently, food allergies to mammalian meats have been considered to be very rare. The observation that patients not previously exposed to the monoclonal chimeric antibody cetuximab suffered from severe anaphylaxis upon first exposure, led to the identification of galactose-alpha-1,3-galactose as a new relevant carbohydrate allergen. These patients later often suffered from anaphylactic reactions to red meat. Epidemiological data indicated that bites by the tick Amblyomma americanum in the USA, later also by Ixodes species in other continents, resulted in sensitisation to alpha-gal. On the other hand, in African patients with parasitic disorders, a high prevalence of anti-alpha-gal IgE, without clinical relevance, has been reported. In our four cases, one patient with a late onset of meat allergy had a history of a tick bite. The other three patients had symptoms from childhood or at a juvenile age. This indicates that in some patients, other ways of sensitisation may also take place. However, in patients without atopy, tick bite-induced IgE to alpha-gal may be more relevant. Diagnosis is based on a history of delayed onset of anaphylaxis. Skin tests with commercially available meat test solutions are often equivocal or negative; skin tests with raw meat and particularly pork kidney are more sensitive. Determination of specific IgE to alpha-gal is commercially available. The highest sensitivity is observed with skin and basophil activation tests with cetuximab which is, however, limited by its high costs.

  11. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6- pyruvylated-D-galactose

    PubMed Central

    1980-01-01

    Two human IgM myeloma proteins, IgMWEA and IgMMAY, were found to react with agar and Klebsiella polysaccharides that contain pyruvylated D- galactose (DGal). Quantitative precipitin data and precipitin inhibition studies with methyl alpha- and beta-glycosides of 4,6- pyruvylated-D-galactose showed their combining sites to be different, although each was directed against the pyruvylated-D-Gal, one reacting most specifically with Klebsiella polysaccharides with terminal nonreducing beta-linked 2,4 pyruvylated-D-Gal, whereas the other reacted equally well with Klebsiella polysaccharides that contain 3,4 beta-linked and 4,6 alpha-linked terminal nonreducing pyruvylated-DGal. Inhibition studies showed that both sites are directed toward one of the two space isomers of 3,4- or 4,6-pyruvylated DGal, the form in which the methyl group of the pyruvate is equatorial, or endo, and its carboxyl group axial, or exo, to the plane of the acetal ring. Coprecipitation studies showed the combining site of IgMWEA to be located on an (Fab')2 fragment and not on the (Fc)5mu fragment. The monoclonal peak in the serum of IgMMAY was specifically precipitated by Klebsiella polysaccharide. Myeloma proteins with specificities of this type may occur with reasonable frequency in humans and may be a consequence of clonal expansion from inapparent infection, carrier states, or disease produced by various Klebsiella organisms. PMID:6158553

  12. Using the galactose-α-1,3-galactose enzyme-linked immunosorbent assay to predict anaphylaxis in response to cetuximab.

    PubMed

    Weiss, Jared; Grilley Olson, Juneko; Deal, Allison Mary; Chera, Bhishamjit; Weissler, Mark; Murphy, Barbara A; Hayes, David Neil; Gilbert, Jill

    2016-06-01

    Cetuximab is a monoclonal antibody against epidermal growth factor receptor with activity against head and neck cancer and colorectal cancer. Anaphylaxis in response to cetuximab is a significant clinical problem in the Southeastern United States with a grade 3/4 infusion reaction rate of 14%. Previous retrospective data have suggested that the presence of preformed immunoglobulin E antibodies against galactose-α-1,3-galactose in serum can predict anaphylaxis in response to cetuximab. Sixty patients were prospectively screened as part of the entry criteria for a phase 2 study of neoadjuvant carboplatin, nab-paclitaxel, and cetuximab. Patients were recruited at 2 academic medical centers known to have high anaphylaxis rates: the University of North Carolina and Vanderbilt. Only patients with a negative laboratory result were treated on the clinical protocol. No patient experienced anaphylaxis; the negative predictive value was thus 100%. Other than smoking history, the demographics were similar for assay-positive subjects and assay-negative subjects. Subjects with a negative test result can be safely treated with cetuximab. Further research is required regarding the optimal cutoff for positivity and the positive predictive value. Cancer 2016;122:1697-701. © 2016 American Cancer Society. © 2016 American Cancer Society.

  13. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using

  14. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose.

    PubMed

    Lu, Xiaoling; Zhou, Yanhua; Wu, Tao; Hao, Lei

    2014-11-01

    This study investigated the ameliorative effect of black rice anthocyanin (BACN) in senescent mice induced by D-galactose. The male mice were randomly divided into five groups, namely, the normal group, the model group and dosage groups (15, 30 and 60 mg kg(-1) of BACN). The model group and three dosage groups were continuously injected subcutaneously with D-galactose. The results suggested that superoxide dismutase (SOD) and catalase (CAT) were significantly increased upon black rice anthocyanin treatment, while MDA and the activity of monoamine oxidase (MAO) significantly decreased. The expressions of superoxide dismutase genes (SOD1 and SOD2) in liver were up-regulated in black rice anthocyanin group, while the expression of the MAO-B gene was down-regulated. These findings demonstrated that the ameliorative effect of BACN might be achieved partly by altering endogenous antioxidant enzymatic and aging-related enzymatic activities and regulating SOD1, SOD2 and MAO-B gene expressions.

  15. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.

  16. Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose

    PubMed Central

    Huisjes, Eline H.; de Hulster, Erik; van Dam, Jan C.; Pronk, Jack T.

    2012-01-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKa value of galacturonic acid (3.51), the addition of 10 g · liter−1 galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter−1 galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  17. Crystallization and preliminary structural studies of champedak galactose-binding lectin

    PubMed Central

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Abdul-Rahman, Puteri Shafinaz; Mohamed, Emida; Ibrahim, Wan Izlina Wan; Hashim, Onn Haji; Isaacs, Neil W.; Cogdell, Richard J.

    2009-01-01

    Galactose-binding lectin from champedak (Artocarpus integer) consists of two chains: α and β (133 and 21 amino acids, respectively). It has been shown to recognize and bind to carbohydrates involved in IgA and C1 inhibitor molecules. The protein was purified and crystallized at 293 K. Crystals were observed in two space groups, P21 and P21212, and diffracted to 1.65 and 2.6 Å, respectively. PMID:19724126

  18. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms.

    PubMed

    Lee, Sun Bok; Kim, Jeong Ah; Lim, Hyun Seung

    2016-05-01

    Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey-Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation.

  19. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota.

    PubMed

    Hobbs, Merlin Eric; Williams, Howard J; Hillerich, Brandan; Almo, Steven C; Raushel, Frank M

    2014-07-22

    A previously unknown metabolic pathway for the utilization of l-galactose was discovered in a prevalent gut bacterium, Bacteroides vulgatus. The new pathway consists of three previously uncharacterized enzymes that were found to be responsible for the conversion of l-galactose to d-tagaturonate. Bvu0219 (l-galactose dehydrogenase) was determined to oxidize l-galactose to l-galactono-1,5-lactone with kcat and kcat/Km values of 21 s(-1) and 2.0 × 10(5) M(-1) s(-1), respectively. The kinetic product of Bvu0219 is rapidly converted nonenzymatically to the thermodynamically more stable l-galactono-1,4-lactone. Bvu0220 (l-galactono-1,5-lactonase) hydrolyzes both the kinetic and thermodynamic products of Bvu0219 to l-galactonate. However, l-galactono-1,5-lactone is estimated to be hydrolyzed 300-fold faster than its thermodynamically more stable counterpart, l-galactono-1,4-lactone. In the final step of this pathway, Bvu0222 (l-galactonate dehydrogenase) oxidizes l-galactonate to d-tagaturonate with kcat and kcat/Km values of 0.6 s(-1) and 1.7 × 10(4) M(-1) s(-1), respectively. In the reverse direction, d-tagaturonate is reduced to l-galactonate with values of kcat and kcat/Km of 90 s(-1) and 1.6 × 10(5) M(-1) s(-1), respectively. d-Tagaturonate is subsequently converted to d-glyceraldehyde and pyruvate through enzymes encoded within the degradation pathway for d-glucuronate and d-galacturonate.

  20. Decrease in Cell Surface Galactose Residues of Schizosaccharomyces pombe Enhances Its Coflocculation with Pediococcus damnosus

    PubMed Central

    Peng, Xuan; Sun, Jun; Michiels, Chris; Iserentant, Dirk; Verachtert, Hubert

    2001-01-01

    Pediococcus damnosus can coflocculate with Saccharomyces cerevisiae and cause beer acidification that may or may not be desired. Similar coflocculations occur with other yeasts except for Schizosaccharomyces pombe which has galactose-rich cell walls. We compared coflocculation rates of S. pombe wild-type species TP4-1D, having a mannose-to-galactose ratio (Man:Gal) of 5 to 6 in the cell wall, with its glycosylation mutants gms1-1 (Man:Gal = 5:1) and gms1Δ (Man:Gal = 1:0). These mutants coflocculated at a much higher level (30 to 45%) than that of the wild type (5%). Coflocculation of the mutants was inhibited by exogenous mannose but not by galactose. The S. cerevisiae mnn2 mutant, with a mannan content similar to that of gms1Δ, also showed high coflocculation (35%) and was sensitive to mannose inhibition. Coflocculation of P. damnosus and gms1Δ (or mnn2) also could be inhibited by gms1Δ mannan (with unbranched α-1,6-linked mannose residues), concanavalin A (mannose and glucose specific), or NPA lectin (specific for α-1,6-linked mannosyl units). Protease treatment of the bacterial cells completely abolished coflocculation. From these results we conclude that mannose residues on the cell surface of S. pombe serve as receptors for a P. damnosus lectin but that these receptors are shielded by galactose residues in wild-type strains. Such interactions are important in the production of Belgian acid types of beers in which mixed cultures are used to improve flavor. PMID:11472912

  1. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein

    NASA Technical Reports Server (NTRS)

    Salins, L. L.; Ware, R. A.; Ensor, C. M.; Daunert, S.

    2001-01-01

    The galactose/glucose-binding protein (GBP) is synthesized in the cytoplasm of Escherichia coli in a precursor form and exported into the periplasmic space upon cleavage of a 23-amino-acid leader sequence. GBP binds galactose and glucose in a highly specific manner. The ligand induces a hinge motion in GBP and the resultant protein conformational change constitutes the basis of the sensing system. The mglB gene, which codes for GBP, was isolated from the chromosome of E. coli using the polymerase chain reaction (PCR). Since wild-type GBP lacks cysteines in its structure, introducing this amino acid by site-directed mutagenesis ensures single-label attachment at specific sites with a sulfhydro-specific fluorescent probe. Site-directed mutagenesis by overlap extension PCR was performed to prepare three different mutants to introduce a single cysteine residue at positions 148, 152, and 182. Since these residues are not involved in ligand binding and since they are located at the edge of the binding cleft, they experience a significant change in environment upon binding of galactose or glucose. The sensing system strategy is based on the fluorescence changes of the probe as the protein undergoes a structural change on binding. In this work a reagentless sensing system has been rationally designed that can detect submicromolar concentrations of glucose. The calibration plots have a linear working range of three orders of magnitude. Although the system can sense galactose as well, this epimer is not a potential interfering substance since its concentration in blood is negligible. Copyright 2001 Academic Press.

  2. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein

    NASA Technical Reports Server (NTRS)

    Salins, L. L.; Ware, R. A.; Ensor, C. M.; Daunert, S.

    2001-01-01

    The galactose/glucose-binding protein (GBP) is synthesized in the cytoplasm of Escherichia coli in a precursor form and exported into the periplasmic space upon cleavage of a 23-amino-acid leader sequence. GBP binds galactose and glucose in a highly specific manner. The ligand induces a hinge motion in GBP and the resultant protein conformational change constitutes the basis of the sensing system. The mglB gene, which codes for GBP, was isolated from the chromosome of E. coli using the polymerase chain reaction (PCR). Since wild-type GBP lacks cysteines in its structure, introducing this amino acid by site-directed mutagenesis ensures single-label attachment at specific sites with a sulfhydro-specific fluorescent probe. Site-directed mutagenesis by overlap extension PCR was performed to prepare three different mutants to introduce a single cysteine residue at positions 148, 152, and 182. Since these residues are not involved in ligand binding and since they are located at the edge of the binding cleft, they experience a significant change in environment upon binding of galactose or glucose. The sensing system strategy is based on the fluorescence changes of the probe as the protein undergoes a structural change on binding. In this work a reagentless sensing system has been rationally designed that can detect submicromolar concentrations of glucose. The calibration plots have a linear working range of three orders of magnitude. Although the system can sense galactose as well, this epimer is not a potential interfering substance since its concentration in blood is negligible. Copyright 2001 Academic Press.

  3. GalR Acts as a Transcriptional Activator of galKT in the Presence of Galactose in Streptococcus pneumoniae.

    PubMed

    Afzal, Muhammad; Shafeeq, Sulman; Manzoor, Irfan; Kuipers, Oscar P

    2015-01-01

    We explored the regulatory mechanism of Leloir pathway genes in Streptococcus pneumoniae D39. Here, we demonstrate that the expression of galKT is galactose dependent. By microarray analysis and quantitative RT-PCR, we further show the role of the transcriptional regulator GalR, present upstream of galKT, as a transcriptional activator of galKT in the presence of galactose. Moreover, we predict a 19-bp regulatory site (5'-GATAGTTTAGTAAAATTTT-3') for the transcriptional regulator GalR in the promoter region of galK, which is also highly conserved in other streptococci. Growth comparison of D39 ΔgalK with the D39 wild type grown in the presence of galactose shows that galK is required for the proper growth of S. pneumoniae on galactose.

  4. Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes.

    PubMed

    Park, S M; Ohkuma, M; Masuda, Y; Ohta, A; Takagi, M

    1997-01-01

    The GAL1 and GAL10 gene cluster encoding the enzymes of galactose utilization was isolated from an asporogenic yeast, Candida maltosa. The structure of the gene cluster in which both genes were divergently transcribed from the central promoter region resembled those of some other yeasts. The expression of both genes was strongly induced by galactose and repressed by glucose in the medium. Galactose-inducible expression vectors in C. maltosa were constructed on low- and high-copy number plasmids using the promoter regions of both genes. With these vectors and the beta-galactosidase gene from Kluyveromyces lactis as a reporter, galactose-inducible expression was confirmed. Homologous overexpression of members of the cytochrome P-450 gene family in C. maltosa was also successful by using a high-copy-number vector under the control of these promoters.

  5. Partial correction of neutrophil dysfunction by oral galactose therapy in glycogen storage disease type Ib.

    PubMed

    Letkemann, Rudolf; Wittkowski, Helmut; Antonopoulos, Aristotelis; Podskabi, Teodor; Haslam, Stuart M; Föll, Dirk; Dell, Anne; Marquardt, Thorsten

    2017-03-01

    Glycogen storage disease type Ib (GSD-Ib) is characterized by impaired glucose homeostasis, neutropenia and neutrophil dysfunction. Mass spectrometric glycomic profiling of GSD-Ib neutrophils showed severely truncated N-glycans, lacking galactose. Experiments indicated the hypoglycosylation of the electron transporting subunit of NADPH oxidase, which is crucial for the defense against bacterial infections. In phosphoglucomutase 1 (PGM1) deficiency, an inherited disorder with an enzymatic defect just one metabolic step ahead, hypogalactosylation can be successfully treated by dietary galactose. We hypothesized the same pathomechanism in GSD-Ib and started a therapeutic trial with oral galactose and uridine. The aim was to improve neutrophil dysfunction through the correction of hypoglycosylation in neutrophils. The GSD-Ib patient was treated for 29weeks. Monitoring included glycomics analysis of the patient's neutrophils and neutrophil function tests including respiratory burst activity, phagocytosis and migration. Although no substantial restoration of neutrophil glycosylation was found, there was partial improvement of respiratory burst activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE PAGES

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; ...

    2016-10-20

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  7. Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality

    PubMed Central

    Gopinath, Rajaneesh Karimpurath

    2016-01-01

    Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment. PMID:26951197

  8. Protective effect of Millettia pulchra polysaccharide on cognitive impairment induced by D-galactose in mice.

    PubMed

    Lin, Xing; Huang, Zhongshi; Chen, Xiaoyu; Rong, Yanping; Zhang, Shijun; Jiao, Yang; Huang, Quanfang; Huang, Renbin

    2014-01-30

    A polysaccharide (PMP) was isolated from Millettia pulchra and purified by DEAE-cellulose and Sephadex G-75 chromatography. The results showed that PMP was composed of d-glucose and d-arabinose in a molar ratio of 90.79% and 9.21%, with an average molecular weight of about 14,301 Da. Furthermore, the effect of PMP on cognitive impairment induced by d-galactose in mice was evaluated. Treatment with PMP significantly reversed d-galactose-induced learning and memory impairments, as measured by behavioral tests. One of the potential mechanisms of this action was to reduce oxidative stress and suppress inflammatory responses. Furthermore, our results also showed that PMP markedly reduced the content and deposition of β-amyloid peptide, improved the dysfunction of synaptic plasticity, increased the levels of acetylcholine, but decreased cholinesterase activity. These results suggest that PMP exerts an effective protection against d-galactose-induced cognitive impairment, and PMP may be a major bioactive ingredient in M. pulchra.

  9. Identification of PblB mediating galactose-specific adhesion in a successful Streptococcus pneumoniae clone.

    PubMed

    Hsieh, Yu-Chia; Lin, Tzu-Lung; Lin, Che-Ming; Wang, Jin-Town

    2015-07-21

    The pneumococcal genome is variable and there are minimal data on the influence of the accessory genome on phenotype. Pneumococcal serotype 14 sequence type (ST) 46 had been the most prevalent clone causing pneumonia in children in Taiwan. A microarray was constructed using the genomic DNA of a clinical strain (NTUH-P15) of serotype 14 ST46. Using DNA hybridization, genomic variations in NTUH-P15 were compared to those of 3 control strains. Microarray analysis identified 7 genomic regions that had significant increases in hybridization signals in the NTUH-P15 strain compared to control strains. One of these regions encoded PblB, a phage-encoded virulence factor implicated (in Streptococcus mitis) in infective endocarditis. The isogenic pblB mutant decreased adherence to A549 human lung epithelial cell compared to wild-type NTUH-P15 strain (P = 0.01). Complementation with pblB restored the adherence. PblB is predicted to contain a galactose-binding domain-like region. Preincubation of NTUH-P15 with D-galactose resulted in decreases of adherence to A549 cell in a dose-dependent manner. Challenge of mice with NTUH-P15, isogenic pblB mutant and pblB complementation strains determined that PblB was required for bacterial persistence in the nasopharynx and lung. PblB, as an adhesin mediating the galactose-specific adhesion activity of pneumococci, promote pneumococcal clonal success.

  10. Lactose, galactose and glucose determination in naturally "lactose free" hard cheese: HPAEC-PAD method validation.

    PubMed

    Monti, Lucia; Negri, Stefano; Meucci, Aurora; Stroppa, Angelo; Galli, Andrea; Contarini, Giovanna

    2017-04-01

    A chromatographic method by HPAEC-PAD was developed and in-house validated for the quantification of low sugar levels in hard cheese, specifically Grana Padano PDO cheese. Particular attention was paid to the extraction procedure, due to residual microbial and enzymatic activities. Specificity in detection and linearity were verified. Recoveries ranged from 93% for lactose to 98% for glucose and galactose. The obtained LOD and LOQ values were, respectively, 0.25 and 0.41mg/100g for lactose, 0.14 and 0.27mg/100g for galactose, and 0.16 and 0.26mg/100g for glucose. The method was applied to 59 samples of Grana Padano PDO cheese: galactose showed the highest concentration and variability among the samples (1.36±0.89), compared to both lactose (0.45±0.12) and glucose (0.46±0.13). Considering the very low levels of sugars detected, authentic PDO Grana Padano could be safely included in the diet of people suffering from lactose intolerance.

  11. Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa.

    PubMed

    Ra, Chae Hun; Kim, Yeong Jin; Lee, Sang Yoon; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-09-01

    A total monosaccharide concentration of 39.6 g/L, representing 74.0 % conversion of 53.5 g/L total carbohydrate from 80 g dw/L (8 % w/v) Gracilaria verrucosa slurry, was obtained by thermal acid hydrolysis and enzymatic saccharification. G. verrucosa hydrolysate was used as a substrate for ethanol production by 'separate hydrolysis and fermentation' (SHF). The ethanol production and yield (Y EtOH) from Saccharomyces cerevisiae KCCM 1129 with and without adaptation to high galactose concentrations were 18.3 g/L with Y EtOH of 0.46 and 13.4 g/L with Y EtOH of 0.34, respectively. Relationship between galactose adaptation effects and mRNA transcriptional levels were evaluated with GAL gene family, regulator genes of the GAL genetic switch and repressor genes in non-adapted and adapted S. cerevisiae. The development of galactose adaptation for ethanol fermentation of G. verrucosa hydrolysates allowed us to enhance the overall ethanol yields and obtain a comprehensive understanding of the gene expression levels and metabolic pathways involved.

  12. Effects of rhein lysinate on D-galactose-induced aging mice

    PubMed Central

    ZHEN, YONG-ZHAN; LIN, YA-JUN; LI, KAI-JI; ZHANG, GUANG-LING; ZHAO, YU-FANG; WANG, MEI-MEI; WEI, JING-BO; WEI, JIE; HU, GANG

    2016-01-01

    The aim of the present study was to investigate the anti-aging effects of rhein lysinate (RHL), and to explore its mechanism of action in a D-galactose-induced aging mouse model. Aging was induced by D-galactose (100 mg/kg/day) that was subcutaneously injected to animals for 8 weeks. RHL was simultaneously administered once a day by intragastric gavage. The appetite, mental condition, body weight and organ index of the mice were monitored. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined, and the levels of malondialdehyde (MDA) in the liver, kidney and serum were measured by appropriate assay kits. Western blot analysis was used to detect proteins associated with age. The results indicated that RHL may improve the appetite, mental state and organ conditions of the model mice, improve the activities of SOD and GSH-Px, reduce MDA levels and modulate the expression of age-associated proteins (Sirtuin 1, p21 and p16) in D-galactose-induced mice. Therefore, RHL may be effective at suppressing the aging process through a combination of enhancing antioxidant activity, scavenging free radicals and modulating aging-associated gene expression. PMID:26889258

  13. The galactose-recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule.

    PubMed

    Kelm, S; Schauer, R

    1988-08-01

    Resident rat peritoneal macrophages express a galactose-recognizing system, which mediates binding and uptake of cells and glycoproteins exposing terminal galactose residues. Here we describe the identification, isolation, and characterization of the corresponding receptor molecule. Using photoaffinity labelling of adherent peritoneal macrophages with the 4-azido-6-125I-salicylic acid derivative of anti-freeze glycoprotein 8 followed by SDS-PAGE and autoradiography, we identified the receptor of these cells as a protein with an apparent molecular mass of 42 kDa. Furthermore, cell surface receptors were radioiodinated by an affinity-supported labelling technique using the conjugate of asialoorosomucoid and lactoperoxidase, followed by extraction and isolation by affinity chromatography. Finally, the native receptor was isolated and analysed. To estimate its binding activity in solutions, a suitable binding assay was developed, using the precipitation of receptor-ligand complex with polyethylene glycol to separate bound from unbound 125I-asialoorosomucoid, which was used as ligand. It is shown that the isolated receptor binds to galactose-exposing particles and distinguishes between sialidase-treated and -untreated erythrocytes, similar to peritoneal macrophages. The binding characteristics of the membrane-bound and the solubilized receptor are described in the following paper of Lee et al.

  14. Yulangsan polysaccharide improves redox homeostasis and immune impairment in D-galactose-induced mimetic aging.

    PubMed

    Doan, Van Minh; Chen, Chunxia; Lin, Xing; Nguyen, Van Phuc; Nong, Zhihuan; Li, Weisi; Chen, Qingquan; Ming, Jianjun; Xie, Qiuqiao; Huang, Renbin

    2015-05-01

    Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity. In this study, we evaluated the protective effect of YLSP against D-galactose-induced impairment of oxidative stress and the immune system and evaluated its possible mechanism of action. D-galactose was subcutaneously injected into the dorsal neck of mice daily for 8 weeks to establish the aging model. YLSP was simultaneously administered once daily. The results indicate that YLSP significantly improves the general appearance of the aging mice. YLSP significantly increased the levels of antioxidant enzymes, such as super oxide dismutase, glutathione peroxidase, catalase and total anti-oxidation capability, while decreasing the content of malondialdehyde in different tissues, including the liver, brain, and serum. YLSP also increased the interleukin-2 level while decreasing the interleukin-6 level. Moreover, YLSP significantly inhibited advanced glycation end product formation. Furthermore, YLSP decreased p21 and p53 gene expressions in the liver and brain of D-galactose-treated mice. These results suggest that YLSP may have a protective effect suppressing the aging process by enhancing antioxidant activity and immunity, as well as modulating aging-related gene expression.

  15. Hsp90 mediates the crosstalk between galactose metabolism and cell morphology pathways in yeast.

    PubMed

    Gopinath, Rajaneesh Karimpurath; Leu, Jun-Yi

    2017-02-01

    Galactose metabolism in the yeast Saccharomyces cerevisiae is carried out by a specialized GAL pathway consisting of structural and regulatory proteins. It is known that cells with unbalanced Gal proteins accumulate toxic metabolic intermediates and exhibit severe growth defects. Recently, we found that the molecular chaperone Hsp90 controls the abundance of multiple Gal proteins, possibly to prevent these defects. Hsp90 regulates various cellular processes including cell morphology in response to environmental cues. Yeast cells are known to resort to filamentous growth upon exposure to galactose or other environmental stresses. Our previous and current findings support the "Hsp90 titration model" of Hsp90 buffering, which links the cell morphology and galactose pathways. Our results suggest that, when a large proportion of Hsp90 molecules are used to help Gal proteins, the Hsp90 client proteins in cell morphology pathways are left unattended, leading to filamentous growth. It remains unclear whether this phenomenon serves any biological function or simply reflects a cellular constraint. Nonetheless, it provides an alternative explanation why the GAL pathway is degenerated in some yeast species.

  16. Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality.

    PubMed

    Gopinath, Rajaneesh Karimpurath; Leu, Jun-Yi

    2016-05-01

    Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.

  17. GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose.

    PubMed

    Malakar, Pushkar; Venkatesh, Kareenhalli V

    2014-03-01

    The GAL regulon in Saccharomyces cerevisiae is a well-characterized genetic network that is utilized for the metabolism of galactose as an energy source. The network contains a transcriptional activator, Gal4p, which binds to its cognate-binding site to express GAL genes. Further, Gal80p and Gal3p are the repressor and galactose sensor, respectively, which are also under the regulation of GAL regulon. It is shown that the wild-type strain produces only about 80% of the maximum expression feasible from the regulon, which is observed in a mutant strain lacking Gal80p. This raises a fundamental question regarding the optimality of expression from the GAL regulon in S. cerevisiae. To address this issue, we evaluated the burden on growth due to the synthesis of GAL proteins in S. cerevisiae. The analysis demonstrated that both the media type and the extent of enzyme synthesized play a role in determining the burden on growth. We show that the burden can be quantified by relating to a parameter, β, the ratio of enzyme activity to the initial substrate concentration. The analysis demonstrated that the GAL regulon of the wild-type strain performed effectively to optimize growth on galactose. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2013-03-01

    Adaptive evolution offers many opportunities in metabolic engineering; however, several constraints still exist as evolutionary trade-offs may impose collateral cost to obtain new traits. The application of adaptive evolution for strains development could be further improved by elucidating the molecular mechanisms. In this study, adaptively evolved yeast mutants with improved galactose utilization ability showed impaired glucose utilization. The molecular genetic basis of this trade-off was investigated using a systems biology approach. Transcriptional and metabolic changes resulting from the improvement of galactose utilization were found maintained during growth on glucose. Moreover, glucose repression related genes showed conserved expression patterns during growth on both sugars. Mutations in the RAS2 gene that were identified as beneficial for galactose utilization in evolved mutants exhibited significant correlation with attenuation of glucose utilization. These results indicate that antagonistic pleiotropy is the dominant mechanism in the observed trade-off, and it is likely realized by changes in glucose signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499.

    PubMed

    Moktaduzzaman, Md; Galafassi, Silvia; Capusoni, Claudia; Vigentini, Ileana; Ling, Zhihao; Piškur, Jure; Compagno, Concetta

    2015-03-01

    Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  20. IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia.

    PubMed

    Stockmann, Henning; Coss, Karen P; Rubio-Gozalbo, M Estela; Knerr, Ina; Fitzgibbon, Maria; Maratha, Ashwini; Wilson, James; Rudd, Pauline; Treacy, Eileen P

    2016-01-01

    Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme (EC 2.7.7.12). The cause of the long-term complications, including neurological, cognitive and fertility problems in females, remains poorly understood. The relatively small number of patients with galactosaemia and the lack of validated biomarkers pose a substantial challenge for determining prognosis and monitoring disease progression and responses to new therapies. We report an improved method of automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analysis for the measurement of IgG N-glycan galactose incorporation ratios applied to the monitoring of adult patients with classical galactosaemia. We analysed 40 affected adult patients and 81 matched healthy controls. Significant differences were noted between the G0/G1 and G0/G2 incorporation ratios between galactosaemia patients and controls (p < 0.001 and <0.01, respectively). Our data indicate that the use of IgG N-glycosylation galactose incorporation analysis may be now applicable for monitoring patient dietary compliance, determining prognosis and the evaluation of potential new therapies.

  1. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  2. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria.

    PubMed

    Koizumi, S; Endo, T; Tabata, K; Ozaki, A

    1998-09-01

    A large-scale production system of uridine 5'-diphospho-galactose (UDP-Gal) has been established by the combination of recombinant Escherichia coli and Corynebacterium ammoniagenes. Recombinant E. coli that overexpress the UDP-Gal biosynthetic genes galT, galK, and galU were generated. C. ammoniagenes contribute the production of uridine triphosphate (UTP), a substrate for UDP-Gal biosynthesis, from orotic acid, an inexpensive precursor of UTP. UDP-Gal accumulated to 72 mM (44 g/L) after a 21 h reaction starting with orotic acid and galactose. When E. coli cells that expressed the alpha1,4-galactosyltransferase gene of Neisseria gonorrhoeae were coupled with this UDP-Gal production system, 372 mM (188 g/L) globotriose (Galalpha1-4Galbeta1-4Glc), a trisaccharide portion of verotoxin receptor, was produced after a 36 h reaction starting with orotic acid, galactose, and lactose. No oligosaccharide by-products were observed in the reaction mixture. The production of globotriose was several times higher than that of UDP-Gal. The strategy of producing sugar nucleotides by combining metabolically engineered recombinant E. coli with a nucleoside 5'-triphosphate producing microorganism, and the concept of producing oligosaccharides by coupling sugar nucleotide production systems with glycosyltransferases, can be applied to the manufacture of other sugar nucleotides and oligosaccharides.

  3. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase.

    PubMed

    Roh, H J; Kim, P; Park, Y C; Choi, J H

    2000-02-01

    D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harbouring the L-arabinose isomerase gene (araA) from Escherichia coli, Bacillus subtilis and Salmonella typhimurium were constructed because L-arabinose isomerase was suggested previously as an enzyme that mediates the bioconversion of galactose into tagatose as well as that of arabinose to ribulose. The constructed plasmids were named pTC101, pTC105 and pTC106, containing araA from E. coli, B. subtilis and S. typhimurium respectively. In the cultures of recombinant E. coli with pTC101, pTC105 and pTC106, tagatose was produced from galactose in 9.9, 7.1 and 6.9% yields respectively. The enzyme extract of E. coli with the plasmid pTC101 also converted galactose into tagatose with a 96.4% yield.

  4. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.

    PubMed

    Yin, DeLu Tyler; Urresti, Saioa; Lafond, Mickael; Johnston, Esther M; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H; Davies, Gideon J; Brumer, Harry

    2015-12-18

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.

  5. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats.

    PubMed

    Stahel, Priska; Kim, Julie J; Xiao, Changting; Cant, John P

    2017-01-01

    Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut

  6. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  7. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    PubMed

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders.

  8. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats

    PubMed Central

    Kim, Julie J.; Xiao, Changting; Cant, John P.

    2017-01-01

    Background Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Methods Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Results Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Conclusions Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen

  9. Growth Inhibition and Metabolite Pool Levels in Plant Tissues Fed d-Glucosamine and d-Galactose

    PubMed Central

    Roberts, R. M.; Heishman, A.; Wicklin, C.

    1971-01-01

    The growth of corn (Zea mays) roots and barley (Hordeum vulgare) coleoptiles is sensitive to the presence of external d-glucosamine and d-galactose. In order to investigate this effect, tissues were fed the radioactive monosaccharides at concentrations that ranged from those that were strongly inhibitory to those that had little influence on growth. At low concentrations, d-glucosamine is converted to uridine diphosphate-N-acetyl-d-glucosamine, phosphate esters of N-acetylglucosamine, and free N-acetylglucosamine. As the external concentrations were increased, the pool levels of each of these metabolites rose several fold; and, in corn roots, two unidentified compounds, which had not been detected previously, began to accumulate in the tissues. The major products of d-galactose metabolism were uridine diphosphate-d-galactose and d-galactose 1-phosphate at all the concentrations tested. Both these compounds showed a marked increase as the external galactose concentrations were raised to inhibitory levels. The experiments indicate that efficient pathways exist in plants for the metabolism of d-glucosamine and d-galactose. These pathways, however, do not appear to be under strict control, so that metabolites accumulate in unusually high amounts and presumably interfere competitively with normal carbohydrate metabolism. Images PMID:16657729

  10. One-Pot Synthesis of Hyperoside by a Three-Enzyme Cascade Using a UDP-Galactose Regeneration System.

    PubMed

    Pei, Jianjun; Chen, Anna; Zhao, Linguo; Cao, Fuliang; Ding, Gang; Xiao, Wei

    2017-07-26

    Hyperoside exhibits many biological properties and is more soluble in water than quercetin. A uridine 5'-diphosphate (UDP) galactose regeneration system and one-pot synthesis of hyperoside was described herein. Glycine max sucrose synthase (GmSUS) was coupled with Escherichia coli UDP-galactose 4-epimerase (GalE) to regenerate UDP-galactose from sucrose and UDP. Petunia hybrida glycosyltransferase (PhUGT) with high activity toward quercetin was used to synthesize hyperoside via the UDP-galactose regeneration system. The important factors for optimal synergistic catalysis were determined. Through the use of a fed-batch operation, the final titer of hyperoside increased to 2134 mg/L, with a corresponding molar conversion of 92% and maximum number of UDP-galactose regeneration cycles (RCmax) of 18.4 under optimal conditions. Therefore, the method described herein for the regeneration of UDP-galactose from UDP and sucrose can be widely used for the glycosylation of flavonoids and other bioactive substances.

  11. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward-facing conformation of vSGLT.

    PubMed

    Bisha, Ina; Rodriguez, Alex; Laio, Alessandro; Magistrato, Alessandra

    2014-12-01

    Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transporter (vSGLT). Several aspects of the transport mechanism of this symporter remain to be clarified: (i) a detailed kinetic and thermodynamic characterization of the exit path of the two ligands is still lacking; (ii) contradictory conclusions have been drawn concerning the gating role of Y263; (iii) the role of Na+ in modulating the release path of galactose is not clear. In this work, we use bias-exchange metadynamics simulations to characterize the free energy profile of the galactose and Na+ release processes toward the intracellular side. Surprisingly, we find that the exit of Na+ and galactose is non-concerted as the cooperativity between the two ligands is associated to a transition that is not rate limiting. The dissociation barriers are of the order of 11-12 kcal/mol for both the ion and the substrate, in line with kinetic information concerning this type of transporters. On the basis of these results we propose a branched six-state alternating access mechanism, which may be shared also by other members of the LeuT-fold transporters.

  12. The Human Synaptic Vesicle Protein, SV2A, Functions as a Galactose Transporter in Saccharomyces cerevisiae * ♦

    PubMed Central

    Madeo, Marianna; Kovács, Attila D.; Pearce, David A.

    2014-01-01

    SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function. PMID:25326386

  13. Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose.

    PubMed

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-06-01

    An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37°C, with 23°C being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (µmax) within each temperature were similar. When galactose was the only sugar, compared with ribose, µmax was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640 nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar µmax values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is

  14. Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/galactose systems

    SciTech Connect

    Hale, P.D.; Skotheim, T.A.

    1988-01-01

    Recent work has shown that the synthetic metal TTF-TCNQ can be used as an electrode material for the oxidation of enzymes containing the prosthetic group flavin adenine dinucleotide (FAD). This direct electron transfer (direct in the sense that oxygen is not a mediator) between reduced enzyme and electrode, a process which does not occur to any measurable extent at a typical metal electrode, is not very well understood. In the present work, electron transfer between reduced glucose oxidase and TTF-TCNQ is investigated using cyclic voltammetry, and it is also shown that TCNQ itself can mediate this electron transfer between the enzyme and a platinum electrode. In addition to the glucose oxidase studies, cyclic voltammetric experiments have been performed on the galactose oxidase system, which contains a copper redox center rather than FAD. The results of these experiments demonstrate that the catalytic ability of TTF-TCNQ in enzyme-based electrochemical sensors is quite general. 15 refs., 4 figs.

  15. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose

    PubMed Central

    Commins, Scott P.; James, Hayley R.; Kelly, Elizabeth A.; Pochan, Shawna L.; Workman, Lisa J.; Perzanowski, Matthew S.; Kocan, Katherine M.; Fahy, John V.; Nganga, Lucy W.; Ronmark, Eva; Cooper, Philip J.; Platts-Mills, Thomas A. E.

    2011-01-01

    Background In 2009, we reported a novel form of delayed anaphylaxis to red meat, which is related to serum IgE antibodies to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal). Most of these patients had tolerated meat for many years previously. The implication is that some exposure in adult life had stimulated the production of these IgE antibodies. Objectives To investigate possible causes of this IgE antibody response, focusing on evidence related to tick bites, which are common in the region where these reactions occur. Methods Serum assays were carried out using biotinylated proteins and extracts bound to a streptavidin ImmunoCAP. Results Prospective studies on IgE antibodies in three subjects following tick bites showed an increase in IgE to alpha-gal of twenty-fold or greater. Other evidence included i) a strong correlation between histories of tick bites and IgE to alpha-gal (χ2=26.8, p<0.001), ii) evidence that these IgE antibodies are common in areas where the tick Amblyomma americanum is common, and iii) a significant correlation between IgE antibodies to alpha-gal and IgE antibodies to proteins derived from A. americanum (rs=0.75, p<0.001). Conclusion The results presented here provide evidence that tick bites are a cause, or possibly the only cause, of IgE specific for alpha-gal in this area of the United States. Both the number of subjects becoming sensitized and the titer of IgE antibodies to alpha-gal are striking. Here we report the first example of a response to an ectoparasite giving rise to an important form of food allergy. PMID:21453959

  16. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-α-1,3-galactose

    PubMed Central

    Commins, Scott P.; Satinover, Shama M.; Hosen, Jacob; Mozena, Jonathan; Borish, Larry; Lewis, Barrett D.; Woodfolk, Judith A.; Platts-Mills, Thomas A. E.

    2012-01-01

    Background Carbohydrate moieties are frequently encountered in food and can elicit IgE responses, the clinical significance of which has been unclear. Recent work, however, has shown that IgE antibodies to galactose-α-1,3-galactose (α-gal), a carbohydrate commonly expressed on nonprimate mammalian proteins, are capable of eliciting serious, even fatal, reactions. Objective We sought to determine whether IgE antibodies to α-gal are present in sera from patients who report anaphylaxis or urticaria after eating beef, pork, or lamb. Methods Detailed histories were taken from patients presenting to the University of Virginia Allergy Clinic. Skin prick tests (SPTs), intradermal skin tests, and serum IgE antibody analysis were performed for common indoor, outdoor, and food allergens. Results Twenty-four patients with IgE antibodies to α-gal were identified. These patients described a similar history of anaphylaxis or urticaria 3 to 6 hours after the ingestion of meat and reported fewer or no episodes when following an avoidance diet. SPTs to mammalian meat produced wheals of usually less than 4 mm, whereas intradermal or fresh-food SPTs provided larger and more consistent wheal responses. CAP-RAST testing revealed specific IgE antibodies to beef, pork, lamb, cow’s milk, cat, and dog but not turkey, chicken, or fish. Absorption experiments indicated that this pattern of sensitivity was explained by an IgE antibody specific for α-gal. Conclusion We report a novel and severe food allergy related to IgE antibodies to the carbohydrate epitope α-gal. These patients experience delayed symptoms of anaphylaxis, angioedema, or urticaria associated with eating beef, pork, or lamb. PMID:19070355

  17. Cell-based galactosemia diagnosis system based on a galactose assay using a bioluminescent Escherichia coli array.

    PubMed

    Woo, Min-Ah; Kim, Moon Il; Cho, Daeyeon; Park, Hyun Gyu

    2013-11-19

    A new cell-based galactose assay system, which is comprised of two bioluminescent Escherichia coli strains immobilized within an agarose gel arrayed on a well plate, has been developed. For this purpose, a galT knockout strain [galT(-) cell] of E. coli was genetically constructed so that cell growth is not promoted by galactose but rather by glucose present in a sample. Another E. coli W strain (normal cell), which grows normally in the presence of either glucose or galactose, was employed. A luminescent reporter gene, which produces luminescence as cells grow, was inserted into both of the E. coli strains, so that cell growth could be monitored in a facile manner. The two strains were separately grown for 4 h on gel arrays to which test samples were individually supplied. The relative luminescence unit (RLU) values caused by cell growth were determined for each array, one of which is resulted by glucose only and the other of which is resulted by both glucose and galactose present in the sample. By employing this protocol, galactose concentrations present in the test sample are reflected in the differences between the RLU values for each array. The practical utility of the new assay system was demonstrated by its use in determining galactose levels in clinical blood spot specimens coming from newborn babies. Because it can be employed to diagnosis of galactosemia in newborn babies in a more rapid, convenient, and cost-effective manner, this cell-based solid-phase galactose assay system should become a powerful alternative to conventional methods, which require labor-intensive and time-consuming procedures and/or complicated and expensive equipment.

  18. Role of Adrenergic Receptors in Glucose, Fructose and Galactose-Induced Increases in Intestinal Glucose Uptake in Dogs.

    PubMed

    Salman, T M; Alada, A R A; Oyebola, D D O

    2014-12-29

    The study investigated the role of adrenergic receptors in glucose, fructose-, and galactose- induced increases in intestinal glucose uptake. Experiments were carried out on fasted male anaesthetized Nigerian local dogs divided into seven groups (with five dogs per group). Group I dogs were administered normal saline and served as control. Dogs in groups II, III and IV were intravenously infused with glucose (1.1 mg/kg/min), fructose (1.1 mg/kg/min) and galactose (1.1 mg/kg/min) respectively. Another three groups, V, VI and VII were pretreated with prazosin (0.2mg/kg), propranolol (0.5mg/kg) or a combination of prazosin (0.2mg/kg) and propranolol (0.5mg/kg) followed by glucose infusion, frutose infusion or galactose infusion respectively. Through a midline laparatomy, the upper jejunum was cannulated for blood flow measurement and blood samples were obtained for measurement of glucose content of the arterial blood and venous blood from the upper jejunal segment. Glucose uptake was calculated as the product of jejunal blood flow and the difference between arterial and venous glucose levels (A-V glucose). The results showed that pretreatment of the animal with prazosin had no effect on glucose and galactose induced increases in glucose uptake. However, pretreatment with propranolol completely abolished glucose, fructose and galactose-induced increases in intestinal glucose uptake. Prazosin also significantly reduced galactose-induced increase in intestinal glucose uptake. The results suggest that the increases in intestinal glucose uptake induced by glucose and fructose are mediated mostly by beta adrenergic receptors while that of galactose is mediated by both alpha and beta adrenergic receptors.

  19. Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the d-galactose-induced mouse model.

    PubMed

    Prakash, Atish; Kumar, Anil

    2013-09-01

    Chronic injection of d-galactose can cause gradual deterioration in learning and memory capacity, and activates oxidative stress, mitochondrial dysfunction and apoptotic cell death in the brain of mice. Thus, it serves as an animal model of ageing. Recent evidence has shown that mild cognitive impairment in humans might be alleviated by treatment with piogliatzone (peroxisome proliferator-activated receptor gamma (PPARγ) agonists). To continue exploring the effects of piogliatzone in this model, we focused on behavioural alteration, oxidative damage, mitochondrial dysfunction and apoptosis in d-galactose-induced mice. The ageing model was established by administration of d-galactose (100 mg/kg) for 6 weeks. Pioglitazone (10 and 30 mg/kg) and bisphenol A diglycidyl ether (15 mg/kg) were given daily to d-galactose-induced senescent mice. The cognitive behaviour of mice was monitored using the Morris water maze. The anti-oxidant status and apoptotic activity in the ageing mice was measured by determining mito-oxidative parameters and caspase-3 activity in brain tissue. Systemic administration of d-galactose significantly increased behavioural alterations, biochemical parameters, mitochondrial enzymes, and activations of caspase-3 and acetylcholinesterase enzyme activity as compared with the control group. Piogliatzone treatment significantly improved behavioural abnormalities, biochemical, cellular alterations, and attenuated the caspase-3 and acetylcholinesterase enzyme activity as compared with the control. Furthermore, pretreatment of BADGE (PPARγ antagonist) with pioglitazone reversed the protective effect of pioglitazone in d-galactose-induced mice. The present study highlights the protective effects of pioglitzone against d-galactose-induced memory dysfunction, mito-oxidative damage and apoptosis through activation of PPARγ receptors. These findings suggest that pioglitazone might be helpful for the prevention or alleviation of ageing.

  20. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization

    PubMed Central

    Blanchette, Krystle A.; Shenoy, Anukul T.; Milner, Jeffrey; Gilley, Ryan P.; McClure, Erin; Hinojosa, Cecilia A.; Kumar, Nikhil; Daugherty, Sean C.; Tallon, Luke J.; Ott, Sandra; King, Samantha J.; Ferreira, Daniela M.; Gordon, Stephen B.; Tettelin, Hervé

    2016-01-01

    Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro. Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo. Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role. PMID:27481242

  1. Genetics and Evolution of the Salmonella Galactose-Initiated Set of O Antigens

    PubMed Central

    Reeves, Peter R.; Cunneen, Monica M.; Liu, Bin; Wang, Lei

    2013-01-01

    This paper covers eight Salmonella serogroups, that are defined by O antigens with related structures and gene clusters. They include the serovars that are now most frequently isolated. Serogroups A, B1, B2, C2-C3, D1, D2, D3 and E have O antigens that are distinguished by having galactose as first sugar, and not N-acetyl glucosamine or N-acetyl galactosamine as in the other 38 serogroups, and indeed in most Enterobacteriaceae. The gene clusters for these galactose-initiated appear to have entered S. enterica since its divergence from E. coli, but sequence comparisons show that much of the diversification occurred long before this. We conclude that the gene clusters must have entered S. enterica in a series of parallel events. The individual gene clusters are discussed, followed by analysis of the divergence for those genes shared by two or more gene clusters, and a putative phylogenic tree for the gene clusters is presented. This set of O antigens provides a rare case where it is possible to examine in detail the relationships of a significant number of O antigens. In contrast the more common pattern of O-antigen diversity within a species is for there to be only a few cases of strains having related gene clusters, suggesting that diversity arose through gain of individual O-antigen gene clusters by lateral gene transfer, and under these circumstances the evolution of the diversity is not accessible. This paper on the galactose-initiated set of gene clusters gives new insights into the origins of O-antigen diversity generally. PMID:23874940

  2. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans

    PubMed Central

    Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C

    2013-01-01

    In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960

  3. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization.

    PubMed

    Blanchette, Krystle A; Shenoy, Anukul T; Milner, Jeffrey; Gilley, Ryan P; McClure, Erin; Hinojosa, Cecilia A; Kumar, Nikhil; Daugherty, Sean C; Tallon, Luke J; Ott, Sandra; King, Samantha J; Ferreira, Daniela M; Gordon, Stephen B; Tettelin, Hervé; Orihuela, Carlos J

    2016-10-01

    Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Mechanism of the anticataract effect of liposomal magnesium taurate in galactose-fed rats

    PubMed Central

    Iezhitsa, Igor; Saad, Sarah Diyana Bt; Zakaria, Fatin Kamilah Bt; Agarwal, Puneet; Krasilnikova, Anna; Rahman, Thuhairah Hasrah Abdul; Rozali, Khairul Nizam Bin; Spasov, Alexander; Ozerov, Alexander; Alyautdin, Renad; Ismail, Nafeeza Mohd

    2016-01-01

    Purpose Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. Methods The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca2+-ATPase, Na+,K+-ATPase, and calpain II activities. Results The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na+,K+-ATPase and Ca2+-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). Conclusions Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress. PMID:27440992

  5. Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.

    PubMed

    Gamez, Patrick; Koval, Iryna A; Reedijk, Jan

    2004-12-21

    The modelling of the active sites of metalloproteins is one of the most challenging tasks in bio-inorganic chemistry. Copper proteins form part of this stimulating field of research as copper enzymes are mainly involved in oxidation bio-reactions. Thus, the understanding of the structure-function relationship of their active sites will allow the design of effective and environmental friendly oxidation catalysts. This perspective illustrates some outstanding structural and functional synthetic models of the active site of copper proteins, with special attention given to models of galactose oxidase and hemocyanin.

  6. Effectiveness of topical caffeine in cataract prevention: Studies with galactose cataract

    PubMed Central

    Varma, Shambhu D.; Kovtun, Svitlana

    2010-01-01

    Purpose The primary objective of the study was to investigate the possible inhibition of cataract formation by topical administration of caffeine using the galactosemic rat model. It was hypothesized that caffeine will do so by acting as scavenger of reactive oxygen species known to be generated under hyperglycemic conditions. Methods Cataract was induced by feeding young rats a diet containing 24% galactose for a period of 25 days. A control group of such rats was treated with a placebo eye drop preparation containing hydroxy propyl methyl cellulose as a wetting agent. In the experimental group, the rats were treated with the above preparation mixed with 72 mM caffeine. Results Administration of caffeine eye drops was found to significantly inhibit the onset as well as the progress of cataract formation. By day 25 on the galactose diet, all the animals in the control group developed advanced white opacity spread over the entire area of the lens. In the caffeine group, the formation of such opacity remained strikingly inhibited. The lenses remained largely transparent. The transparency data paralleled the higher concentration of glutathione maintained by caffeine treatment. Its levels in the placebo group were 0.8, 0.5, and 0.4 µmoles/g lens wt. on days 5, 15, and 25 against a consistent basal control value of ~3 µmoles/g over the entire period. In the caffeine group, the corresponding values were nearly 3 µmoles/g till day 15, but decreasing to ~2 µmoles/g on day 25. The levels were hence significantly higher than in the caffeine untreated group, remaining relatively closer to the basal controls. In addition, the compound was found effective in inhibiting morphological changes induced by galactose. Conclusions Micromolar amounts of topical caffeine have been found to be significantly effective in inhibiting the formation of galactose cataract, strongly suggesting its possible usefulness against diabetic cataracts. The effects are attributed to its ability to

  7. Congenital glucose-galactose malabsorption: a novel deletion within the SLC5A1 gene.

    PubMed

    Vallaeys, L; Van Biervliet, S; De Bruyn, G; Loeys, B; Moring, A S; Van Deynse, E; Cornette, L

    2013-03-01

    Glucose-galactose malabsorption (GGM) is an autosomal recessive disease caused by mutations in the Na(+)/glucose cotransporter gene SLC5A1 (OMIM 182380, phenotype number 606824). Patients with GGM present with neonatal onset of severe life-threatening diarrhoea and dehydration. We describe a 5-day-old girl with the typical clinical course of GGM. Our clinical diagnosis was confirmed by an abnormal chromatography of the stool and normal small bowel biopsies. Mutation analysis revealed a novel, homozygous deletion within exon 10 of the SLC5A1 gene, i.e. c.1107_1109 del AGT.

  8. Effectiveness of topical caffeine in cataract prevention: studies with galactose cataract.

    PubMed

    Varma, Shambhu D; Kovtun, Svitlana; Hegde, Kavita

    2010-12-08

    The primary objective of the study was to investigate the possible inhibition of cataract formation by topical administration of caffeine using the galactosemic rat model. It was hypothesized that caffeine will do so by acting as scavenger of reactive oxygen species known to be generated under hyperglycemic conditions. Cataract was induced by feeding young rats a diet containing 24% galactose for a period of 25 days. A control group of such rats was treated with a placebo eye drop preparation containing hydroxy propyl methyl cellulose as a wetting agent. In the experimental group, the rats were treated with the above preparation mixed with 72 mM caffeine. Administration of caffeine eye drops was found to significantly inhibit the onset as well as the progress of cataract formation. By day 25 on the galactose diet, all the animals in the control group developed advanced white opacity spread over the entire area of the lens. In the caffeine group, the formation of such opacity remained strikingly inhibited. The lenses remained largely transparent. The transparency data paralleled the higher concentration of glutathione maintained by caffeine treatment. Its levels in the placebo group were 0.8, 0.5, and 0.4 µmoles/g lens wt. on days 5, 15, and 25 against a consistent basal control value of ~3 µmoles/g over the entire period. In the caffeine group, the corresponding values were nearly 3 µmoles/g till day 15, but decreasing to ~2 µmoles/g on day 25. The levels were hence significantly higher than in the caffeine untreated group, remaining relatively closer to the basal controls. In addition, the compound was found effective in inhibiting morphological changes induced by galactose. Micromolar amounts of topical caffeine have been found to be significantly effective in inhibiting the formation of galactose cataract, strongly suggesting its possible usefulness against diabetic cataracts. The effects are attributed to its ability to prevent oxidative stress and

  9. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  10. Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants.

    PubMed

    Delwing-de Lima, Daniela; Fröhlich, Monique; Dalmedico, Leticia; Aurélio, Juliana Gruenwaldt Maia; Delwing-Dal Magro, Débora; Pereira, Eduardo Manoel; Wyse, Angela T S

    2017-04-01

    We evaluated the in vitro effects of galactose at 0.1, 3.0, 5.0 and 10.0 mM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, protein carbonyl content, on the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on acetylcholinesterase (AChE) activity in the cerebral cortex, cerebellum and hippocampus of rats. We also investigated the influence of the antioxidants (each at 1 mM), α-tocopherol, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Results showed that galactose, at a concentration of 3.0 mM, enhanced TBA-RS levels in the hippocampus, cerebral cortex and cerebellum of rats. In the cerebral cortex, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and protein carbonyl content, and at 10.0 mM increased CAT activity and decreased AChE activity. In the cerebellum, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS, SOD and GSH-Px activities. In the hippocampus, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and CAT activity and at 10.0 mM decreased GSH-Px. Data showed that at the pathologically high concentration (greater than 5.0 mM), galactose induces lipid peroxidation, protein carbonylation, alters antioxidant defenses in the cerebrum, and also alters cholinesterase activity. Trolox, ascorbic acid and glutathione addition prevented the majority of alterations in oxidative stress parameters and the decrease in AChE activity that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by galactose.

  11. Effects of temporary low-dose galactose supplements in children aged 5-12 y with classical galactosemia: a pilot study.

    PubMed

    Knerr, Ina; Coss, Karen Patricia; Kratzsch, Jürgen; Crushell, Ellen; Clark, Anne; Doran, Peter; Shin, Yoon; Stöckmann, Henning; Rudd, Pauline Mary; Treacy, Eileen

    2015-09-01

    Classical galactosemia is caused by severe galactose-1-phosphate uridyltransferase deficiency. Despite life-long galactose-restriction, many patients experience long-term complications. Intoxication by galactose and its metabolites as well as over-restriction of galactose may contribute to the pathophysiology. We provided temporary low-dose galactose supplements to patients. We assessed tolerance and potential beneficial effects with clinical monitoring and measurement of biochemical, endocrine, and IgG N-glycosylation profiles. We enrolled 26 patients (8.6 ± 1.9 y). Thirteen were provided with 300 mg of galactose/day followed by 500 mg for 2 wk each (13 patient controls). We observed no clinical changes with the intervention. Temporary mild increase in galactose-1-phosphate occurred, but renal, liver, and bone biochemistry remained normal. Patients in the supplementation group had slightly higher leptin levels at the end of the study than controls. We identified six individuals as "responders" with an improved glycosylation pattern (decreased G0/G2 ratio, P < 0.05). There was a negative relationship between G0/G2 ratio and leptin receptor sOb-R in the supplementation group (P < 0.05). Temporary low-dose galactose supplementation in children over 5 y is well tolerated in the clinical setting. It leads to changes in glycosylation in "responders". We consider IgG N-glycan monitoring to be useful for determining individual optimum galactose intake.

  12. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress.

    PubMed

    Vu, Hieu Sy; Roth, Mary R; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A; Williams, Todd D; Welti, Ruth

    2014-04-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG (galactose-acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses.

  13. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2017-04-01

    Residual lactose and galactose in fermented dairy foods leads to several industrial and health concerns. There is very little information pertaining to manufacture of fermented dairy foods that are low in lactose and galactose. In the present study, comparative genomic survey demonstrated the constant presence of chromosome-encoded tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group. Lactose/galactose utilization tests and β-galactosidase assay suggest that PTS(Gal) system, PTS(Lac) system and T6P pathway are major contributors for lactose/galactose catabolism in this group of organisms. In addition, it was found than lactose catabolism by Lb. casei group accumulated very limited galactose in the MRS-lactose medium and in reconstituted skim milk, whereas Streptococcus thermophilus and Lb. delbrueckii subsp. bulgaricus (Lb. bulgaricus) strains secreted high amount of galactose extracellularly. Moreover, co-culturing Lb. casei group with Str. thermophilus showed significant reduction in galactose content, while co-culturing Lb. casei group with Lb. bulgaricus showed significant reduction in lactose content but significant increase in galactose content in milk. Overall, the present study highlighted the potential of Lb. casei group for reducing galactose accumulation in fermented milks due to its species-specific T6P pathway.

  14. Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose.

    PubMed Central

    Czyz, M; Nagiec, M M; Dickson, R C

    1993-01-01

    Transcriptional induction of genes in the lactose-galactose regulon of the yeast Kluyveromyces lactis requires the GAL4 transcription activator protein. Previous data indicated that the concentration of GAL4 was tightly regulated under basal, inducing, and glucose repressing conditions but the mechanisms were unknown. In this paper we demonstrate that transcription of the GAL4 gene (KI-GAL4) increases 3- to 4-fold during induction of the regulon. This increase requires a KI-GAL4 binding site, UASG, in front of the KI-GAL4 gene, indicating that the KI-GAL4 protein autoregulates transcription of its own gene. Our data demonstrate that the autoregulatory circuit is essential for full induction of the lactose-galactose regulon and, hence, for rapid growth on lactose or galactose. Other data indicate that basal transcription of the KI-GAL4 gene is governed by unidentified promoter elements. The existence of the autoregulatory circuit reveals an important difference between the lactose-galactose regulon and its homologue in Saccharomyces cerevisiae, the melibiose-galactose regulon. This difference may have evolved in response to different selective pressures encountered by the two organisms. PMID:8414996

  15. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides.

  16. Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected].

    PubMed

    Paixão, Laura; Oliveira, Joana; Veríssimo, André; Vinga, Susana; Lourenço, Eva C; Ventura, M Rita; Kjos, Morten; Veening, Jan-Willem; Fernandes, Vitor E; Andrew, Peter W; Yesilkaya, Hasan; Neves, Ana Rute

    2015-01-01

    The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis.

  17. [Urinary metabolomics study of the effects of Scutellaria baicalensis Georgi ethanol extract on D-galactose-induced rats].

    PubMed

    Chang, Yan-fen; Gong, Wen-xia; Zheng, Yan-hong; Li, Jian-wei; Zhou, Yu-zhi; Qin, Xue-mei; Du, Guan-hua

    2016-01-01

    The purpose of this study is to evaluate the anti-aging effects and reveal the underlying mechanism of Scutellaria baicalensis Georgi ethanol extract (SBG) in D-galactose-induced rats. Fifty rats were randomly divided into five groups: vehicle control group, D-galactose group, and D-galactose combined with 50, 100, 200 mg x kg(-1) SBG. A rat aging model was induced by injecting subcutaneously D-galactose (100 mg x kg(-1)) for ten weeks. At the tenth week, the locomotor activity (in open-field test) and the learning and memory abilities (in Morris water maze test) were examined respectively. The urine was collected using metabolic cages and analyzed by high-resolution 1H NMR spectroscopy combined with multivariate statistical analyses. The SBG at doses of 50, 100 and 200 mg x kg(-1) treatments groups could significantly ameliorate aging process in rats' cognitive performance. The 50, 100, 200 mg x kg(-1) SBG regulated citrate, pyruvate, lactate, trimethylamine (TMA), pantothenate, β-hydroxybutyrate in urine favorably toward the control group. These biochemical changes are related to the disturbance in energy metabolism, glycometabolism and microbiome metabolism, which is helpful to further understanding the D-galactose induced aging rats and the therapeutic mechanism of SBG.

  18. Quercetin ameliorates learning and memory via the Nrf2-ARE signaling pathway in d-galactose-induced neurotoxicity in mice.

    PubMed

    Dong, Fuxing; Wang, Shuang; Wang, Yiwen; Yang, Xiao; Jiang, Jiali; Wu, Dejian; Qu, Xuebin; Fan, Hongbin; Yao, Ruiqin

    2017-09-23

    Aging is accompanied by deficits in cognitive function and neuronal degeneration or loss. Quercetin is a flavonoid that exhibits powerful antioxidant activity. This study evaluated the protective effects and mechanisms of quercetin in d-galactose-induced neurotoxicity in mice. Quercetin was administered daily at doses of 20 or 50 mg/kg in d-galactose-injected (50 mg/kg/subcutaneous (s.c.)) mice for eight weeks. Morris water maze tests demonstrated that quercetin significantly improved learning and memory compared to d-galactose-treated control mice. Quercetin also prevented changes in the neuronal cell morphology and apoptosis in the hippocampus as well as increased the expression of Nrf2, HO-1 and SOD in d-galactose-treated mice. Treatment with the Nrf2 inhibitor Brusatol reversed the effects of quercetin on HO-1 and SOD expression as well as neuronal cell protection. In conclusion, quercetin protected mice from d-galactose-induced cognitive functional impairment and neuronal cell apoptosis via activation of the Nrf2-ARE signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor.

    PubMed

    Tkac, Jan; Whittaker, James W; Ruzgas, Tautgirdas

    2007-03-15

    Chitosan was chosen as a natural polymer for dispersion of single walled carbon nanotubes (SWNT) based on its ability to efficiently solubilize SWNTs to form a stable dispersion. Moreover, chitosan films deposited on a surface of a glassy carbon (GC) electrode are mechanically stable. Further stabilisation of the chitosan film containing SWNT (CHIT-SWNT) was done by chemical crosslinking with glutaraldehyde and free aldehyde groups produced a substrate used for covalent immobilisation of galactose oxidase (GalOD). Different galactose biosensor configurations were tested with optimisation of composition of inner and outer membrane; and enzyme immobilisation procedure, as well. Detection of oxygen uptake by GalOD on CHIT-SWNT layer at -400 mV is robust and, when flow injection analysis (FIA) was applied for assays, a low detection limit (25 microM) and very high assay throughput rate (150 h-1) was achieved. This new galactose biosensor offers highly reliable detection of galactose with R.S.D. well below 2% and it has been successfully applied to assaying galactose in a blood sample with recovery index between 101.2 and 102.7%.

  20. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    PubMed Central

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  1. Synthesis of three different galactose-based methacrylate monomers for the production of sugar-based polymers.

    PubMed

    Desport, Jessica S; Mantione, Daniele; Moreno, Mónica; Sardón, Haritz; Barandiaran, María J; Mecerreyes, David

    2016-09-02

    Glycopolymers, synthetic sugar-containing macromolecules, are attracting ever-increasing interest from the chemistry community. Glycidyl methacrylate (GMA) is an important building block for the synthesis of sugar based methacrylate monomers and polymers. Normally, glycidyl methacrylate shows some advantages such as reactivity against nucleophiles or milder synthetic conditions such as other reactive methacrylate monomers. However, condensation reactions of glycidyl methacrylate with for instance protected galactose monomer leads to a mixture of two products due to a strong competition between the two possible pathways: epoxide ring opening or transesterification. In this paper, we propose two alternative routes to synthesize regiospecific galactose-based methacrylate monomers using the epoxy-ring opening reaction. In the first alternative route, the protected galactose is first oxidized to the acid in order to make it more reactive against the epoxide of GMA. In the second route, the protected sugar was first treated with epichlorohydrin followed by the epoxy ring opening reaction with methacrylic acid, to create an identical analogue of the ring-opening product of GMA. These two monomers were polymerized using conventional radical polymerization and were compared to the previously known galactose-methacrylate one. The new polymers show similar thermal stability but lower glass transition temperature (Tg) with respect to the known galactose methacrylate polymer.

  2. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.

    PubMed

    Jónás, Ágota; Fekete, Erzsébet; Németh, Zoltán; Flipphi, Michel; Karaffa, Levente

    2016-09-01

    In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase. This is in contrast to the results from other fungi such as Aspergillus nidulans, Trichoderma reesei and A. niger, where the ortholog galactokinase and galactose-1-phosphate uridylyl transferase genes were constitutively expressed. As for the UDP-galactose-4-epimerase encoding gene, five candidates were identified. We could not detect Pc16g12790, Pc21g12170 and Pc20g06140 expression on any of the carbon sources tested, while for the other two loci (Pc21g10370 and Pc18g01080) transcripts were clearly observed under all tested conditions. Like the 4-epimerase specified at locus Pc21g10370, the other two structural Leloir pathway genes - UDP-glucose pyrophosphorylase (Pc21g12790) and phosphoglucomutase (Pc18g01390) - were expressed constitutively at high levels as can be expected from their indispensable function in fungal cell wall formation.

  3. A peculiar cause of anaphylaxis: no more steak? The journey to discovery of a newly recognized allergy to galactose-alpha-1,3-galactose found in mammalian meat.

    PubMed

    Wolver, Susan E; Sun, Diane R; Commins, Scott P; Schwartz, Lawrence B

    2013-02-01

    In recent years, a newly recognized allergic disease has been uncovered, and seemingly idiopathic causes of anaphylaxis now have an explanation. Individuals bitten by the lone star tick may develop IgE antibodies to the carbohydrate galactose-α-1,3-galactose (alpha-gal). Upon exposure of sensitized subjects to mammalian meat containing alpha-gal on glycoproteins or glycolipids, delayed anaphylaxis may ensue, often three to six hours after ingestion.1 Many of these individuals have negative allergy skin prick tests to meat, further obscuring the diagnosis. With the recent development of IgE alpha-gal tests, the clinical diagnosis can be confirmed in the laboratory.

  4. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain.

    PubMed

    Hong, Xiao-Ping; Chen, Tao; Yin, Ni-Na; Han, Yong-Ming; Yuan, Fang; Duan, Yan-Jun; Shen, Feng; Zhang, Yan-Hong; Chen, Ze-Bin

    2016-01-01

    Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.

  5. Elemental distribution in frozen-hydrated rat lenses with galactose cataract

    SciTech Connect

    Koyama-Ito, H. )

    1990-01-01

    The elemental distributions in frozen-hydrated rat lenses with galactose cataract were compared before and after the onset of the nuclear cataract to investigate the possible role of ion levels in the lens opacification due to the phase separation of the lens cytoplasm. The maps of the weight concentrations of the minor elements, S, Cl, K and Ca, on the basis of wet weight in the central plane of lens were obtained by X-ray analysis with the high energy ion microprobe at a resolution of 50 microns. Before the onset of the nuclear cataract, the distributions of Cl and K, were almost normal, except in the lens posterior periphery with high Cl and low K. In the lens with the nuclear opacity, sudden changes were observed. The Cl increased throughout the lens, and K decreased throughout the lens except at lens anterior thin layer. However, the totalized monovalent ion level changed only slightly. The Ca level increased throughout the lens after the onset of the nuclear cataract, suggesting a possible role of Ca in the nuclear opacification of galactose cataract of rats. The distributions of S were similar to the protein density distributions previously known both in the normal and in the cataractous lenses.

  6. Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds.

    PubMed

    Pinto, Luciano S; Nagano, Celso S; Oliveira, Taianá M; Moura, Tales R; Sampaio, Alexandre H; Debray, Henri; Pinto, Vicente P; Dellagostin, Odir A; Cavada, Benildo S

    2008-09-01

    A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B.variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.

  7. Galactose-binding lectins as markers of pregnancy-related glycoproteins.

    PubMed

    Horvat, B

    1993-01-01

    Protein extracts from pregnant mouse endometria were compared with those obtained from non-pregnant and pseudopregnant mice to detect early pregnancy-specific galactose-rich glycoproteins. Gradient gel electrophoresis combined with lectin overlay and lectin histochemistry were used to identify Ricinus communis I (RCA-I), R. communis II (RCA-II) and Cytisus scoparius (CSA) lectin binding glycoproteins. Using this approach, galactose-rich glycoproteins were identified that were maximally expressed in the estrus phase of non-pregnant endometria and also those that had peak expression in pregnancy. Lectin histochemistry revealed pregnancy related changes in three portions of mouse endometrium: endometrial glands, luminal epithelium and its basement membrane. Two major glycoproteins (RCA-I reactive 64 kDa and RCA-II reactive 35 kDa) were specifically expressed in peri-implantation endometrium on days 3 and 4 of pregnancy. The appearance of these glycoproteins during the period of the implantation window in mouse suggests that they could serve as markers of uterine receptivity to the implanting blastocyst.

  8. Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress.

    PubMed

    Wang, Li-Yan; Li, Dong; Deng, Yong-Sheng; Lv, Wei; Meng, Qing-Wei

    2013-02-15

    The GDP-L-galactose phosphorylase (GGP), which converts GDP-l-galactose to l-Gal-1-phosphate, is generally considered to be a key enzyme of the major ascorbate biosynthesis pathways in higher plants, but experimental evidence for its role in tomato is lacking. In the present study, the GGP gene was isolated from tomato (Solanum lycopersicum) and transient expression of SlGGP-GFP (green fluorescent protein) fusion protein in onion cells revealed the cytoplasmic and nucleus localization of the protein. Antisense transgenic tomato lines with only 50-75% ascorbate level of the wild type (WT) were obtained. Chilling treatment induced lower increase in AsA levels and redox ratio of ascorbate in antisense transgenic plants compared with WT plants. Under chilling stress, transgenic plants accumulated more malendialdehyde (MDA) and more O(2)(·-), leaked more electrolytes and showed lower maximal photochemical efficiency of PSII (Fv/Fm), net photosynthetic rate (Pn), and oxidizable P700 compared with WT plants. Furthermore, the antisense transgenic plants exhibited significantly higher H(2)O(2) level and lower ascorbate peroxidase (APX) activity. Our results suggested that GGP plays an important role in protecting plants against chilling stress by maintaining ascorbate pool and ascorbate redox state.

  9. The Leloir Pathway of Galactose Metabolism - A Novel Therapeutic Target for Hepatocellular Carcinoma.

    PubMed

    Tang, Manshu; Etokidem, Enoabasi; Lai, Kent

    2016-12-01

    Hepatocellular carcinoma (HCC) is one of the most lethal types of cancer worldwide, with poor prognosis and limited treatments. In order to identify novel therapeutic targets that will lead to development of effective therapies with manageable side effects, we tested the hypothesis that knocking-down galactokinase (GALK1) or galactose-1 phosphate uridylyltransferase (GALT) gene expression would control the growth of cultured hepatoma cells. Our results showed small interfering RNA (siRNA) against GALK1 or GALT inhibited the growth of HepG2 cells in culture. Western blot analysis revealed simultaneous down-regulation of multiple players of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) growth signaling pathway, as well as heat-shock protein 90 (HSP90) and poly ADP ribose polymerase (PARP). Reverse transcription-polymerase chain reaction (RT-PCR) data, however, showed no significant mRNA reduction of the encoded genes. Our study thus not only supports GALK1 and GALT as being possible novel targets for treating HCC, but also uncovers new post-transcriptional regulatory mechanisms that link the galactose metabolic pathway to protein expression of the PI3K/AKT pathway in hepatoma.

  10. Improvement of hydrogen fermentation of galactose by combined inoculation strategy.

    PubMed

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Arivalagan, Pugazhendhi; Bakonyi, Péter; Kim, Sang-Hyoun

    2017-03-01

    This study evaluated the feasibility of anaerobic hydrogen fermentation of galactose, a red algal biomass sugar, using individual and combined mixed culture inocula. Heat-treated (90°C, 30 min) samples of granular sludge (GS) and suspended digester sludge (SDS) were used as inoculum sources. The type of mixed culture inoculum played an important role in hydrogen production from galactose. Between two inocula, granular sludge showed higher hydrogen production rate (HPR) and hydrogen yield (HY) of 2.2 L H2/L-d and 1.09 mol H2/mol galactoseadded, respectively. Combined inoculation (GS + SDS) led to an elevated HPR and HY of 3.1 L H2/L-d and 1.28 mol H2/mol galactoseadded, respectively. Acetic and butyric acids are the major organic acids during fermentation. Quantitative polymerase chain reaction (qPCR) revealed that the mixed culture generated using the combined inoculation contained a higher cluster I Clostridium abundance than the culture produced using the single inoculum. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. [Biochemical and clinical findings in congenital abnormalities of galactose metabolism (author's transl)].

    PubMed

    Sitzmann, F C; Kaloud, H; Istvan, L

    1975-01-10

    Current knowledge of the biochemical basis of abnormalities in galactose metabolism are discussed. The clinical picture, analysis of frequency and therapy are described. Although the galactokinase defect hat been described only rarely, abundant literature has been published on the Gal-1-PUT defect. Five variations of this defect are known (Duarte, Los Angeles, Rennes, Indiana and Negro variants), but these simulate only partially the clinical picture of galactosaemia. The UDP-Gal-4-epimerase defect has only once been described. Defects in galactose metabolism which show autosomal recessive inheritance are demonstrated in milk-fed infants by means of the Guthrie test. If the clinical picture arouses the suspicion of a defect in Gal-1-PUT or galactokinase, then a milk-free diet should be given until the diagnosis has been verified by enzyme analysis. Children who have been fed on a lactose-free diet show normal physical and mental development. If possible the entire family of the proband should undergo enzyme analysis in order to detect and to counsel all the heterozygotes in the family. Genetic counselling is considered to be absolutely indicated in this case. Termination of pregnancy is not indicated under any circumstances.

  12. Unusual Organization for Lactose and Galactose Gene Clusters in Lactobacillus helveticus

    PubMed Central

    Fortina, Maria Grazia; Ricci, Giovanni; Mora, Diego; Guglielmetti, Simone; Manachini, Pier Luigi

    2003-01-01

    The nucleotide sequences of the Lactobacillus helveticus lactose utilization genes were determined, and these genes were located and oriented relative to one another. The lacLM genes (encoding the β-galactosidase protein) were in a divergent orientation compared to lacR (regulatory gene) and lacS (lactose transporter). Downstream from lacM was an open reading frame (galE) encoding a UDP-galactose 4 epimerase, and the open reading frame had the same orientation as lacM. The lacR gene was separated from the downstream lacS gene by 2.0 kb of DNA containing several open reading frames that were derived from fragmentation of another permease gene (lacS′). Northern blot analysis revealed that lacL, lacM, and galE made up an operon that was transcribed in the presence of lactose from an upstream lacL promoter. The inducible genes lacL and lacM were regulated at the transcriptional level by the LacR repressor. In the presence of glucose and galactose galE was transcribed from its promoter, suggesting that the corresponding enzyme can be expressed constitutively. Lactose transport was inducible by addition of lactose to the growth medium. PMID:12788721

  13. Development of an amperometric screen-printed galactose biosensor for serum analysis.

    PubMed

    Kanyong, Prosper; Pemberton, Roy M; Jackson, Simon K; Hart, John P

    2013-04-15

    The development of a disposable amperometric biosensor for the measurement of circulating galactose in serum is described. The biosensor comprises a screen-printed carbon electrode (SPCE), incorporating the electrocatalyst cobalt phthalocyanine (CoPC), which is covered by a permselective cellulose acetate (CA) membrane and a layer of immobilized galactose oxidase (GALOX). The optimal response of the biosensor, designated as GALOX-CA-CoPC-SPCE, was obtained by systematically examining the effects of enzyme loading, temperature, pH, and buffer strength. The optimal performance of the biosensor occurred with 2U of GALOX, at 35°C, using 50mM phosphate buffer solution (pH 7.0). The sensitivity was 7.00μAmM(-1)cm(-2) and the linear range from 0.1 to 25mM with a calculated limit of detection (LOD) of 0.02mM; this concentration range and LOD are appropriate to diagnose galactosemia, i.e., concentrations >1.1mM in infants. When the biosensor was used in conjunction with amperometry in stirred solution for the analysis of serum, the precision values obtained on unspiked (endogenous level of 0.153mM) and spiked serum (1mM added) (n=6) were 1.10% and 0.11%, respectively, with a calculated recovery of 99.9%. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [Biological assay for galactose-1 phosphate measurement application in subjects with galactosemia].

    PubMed

    Braham, Imene; Charfeddine, Bassem; Ben Othmene, Leila; Neffati, Souhir; Mtar, Aida; Ben Abdallah, Jihene; Ali Smach, Med; Dridi, Hedi; Limem, Khalifa

    2012-01-01

    Congenital galactosemia is a hereditary, autosomal recessive and metabolic disease. It is linked to an enzyme deficiency, more commonly known by the deficiency of galactose-1- phosphate uridyltransferase (GALT), which is responsible for an accumulation of galactose-1- phosphate in the blood. Clinical symptoms appear early in infancy from the second week of life. They generally manifested by some disorders within liver, kidney, eye, gastrointestinal, neurological and also with cataracts. Currently, the clinical diagnosis remains difficult hence the importance of further investigations based on effective biological assessments to highlight the disease. The diagnosis of galactosemia is made by the laboratory test. The latter includes the determination of Gal-1-P which is done by a fluorometric method spot test. This study was conducted in order to assess the repeatability, reproducibility, accuracy, and effectiveness of the techniques used. We have found the CV for a repeatability (CV = 5 %), reproducibility (CV = 4 %) which confirms the accuracy of the method proceeded in this study. This method allows us to have a degree of inaccuracy less than 1%. According to the study of the effectiveness of "spot test", we found that our technique is specific (Sp = 93 %) and sensitive (Se = 83 %).

  15. Ovotoxic Effects of Galactose Involve Attenuation of Follicle-Stimulating Hormone Bioactivity and Up-Regulation of Granulosa Cell p53 Expression

    PubMed Central

    Banerjee, Sayani; Chakraborty, Pratip; Saha, Piyali; Bandyopadhyay, Soma Aditya; Banerjee, Sutapa; Kabir, Syed N.

    2012-01-01

    Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented

  16. Modification of the binding site(s) of lectins by an affinity column carrying an activated galactose-terminated ligand.

    PubMed

    Moroney, S E; D'Alarcao, L J; Goldmacher, V S; Lambert, J M; Blättler, W A

    1987-12-15

    An affinity column approach is described, aimed at the modification of the galactose binding site(s) of ricin in an effort to block the binding of ricin to cells. The affinity column was prepared by linking N-(2'-mercaptoethyl)lactamine to pyridyldithio-activated polyacrylamide heads. The linker between the ligand and the solid support thus contained a disulfide bond and an unmodified terminal galactose moiety. The amino group of the ligand was allowed to react with the bifunctional cross-linking reagent 2,4-dichloro-6-methoxytriazine. The lectin was then allowed to bind to the galactose functions on the activated column at pH 7.0, prior to raising the pH to 8.6 to initiate the cross-linking reaction between the ligand and the lectin. Lectin that was not covalently linked to the functionalized galactose residues on the column was eluted with galactose or lactose. Finally, the covalent ligand-lectin complexes were released from the solid support by reducing the disulfide bond between the ligand and the support. The affinity column was used in this way to modify the galactose binding site(s) of ricin. Upon release from the affinity column, blocked ricin was purified from unmodified ricin by affinity chromatography on columns of immobilized asialofetuin (a ligand to which ricin binds very tightly). The sulfhydryl group formed by cleavage of the ligand-ricin complex from the column was labeled with [3H]-N-ethylmaleimide to provide evidence that one blocking ligand was linked per ricin molecule. The blocked ricin and a conjugate of the blocked ricin with the monoclonal antibody J5 were toxic for cultures of Namalwa cells in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Molecular and Biochemical Analysis of the Galactose Phenotype of Dairy Streptococcus thermophilus Strains Reveals Four Different Fermentation Profiles

    PubMed Central

    de Vin, Filip; Rådström, Peter; Herman, Lieve; De Vuyst, Luc

    2005-01-01

    Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related. PMID:16000774

  18. Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles.

    PubMed

    de Vin, Filip; Rådström, Peter; Herman, Lieve; De Vuyst, Luc

    2005-07-01

    Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related.

  19. Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy.

    PubMed

    Huang, Zhi Qiang; Raska, Milan; Stewart, Tyler J; Reily, Colin; King, R Glenn; Crossman, David K; Crowley, Michael R; Hargett, Audra; Zhang, Zhixin; Suzuki, Hitoshi; Hall, Stacy; Wyatt, Robert J; Julian, Bruce A; Renfrow, Matthew B; Gharavi, Ali G; Novak, Jan

    2016-11-01

    Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y1CS3, in the complementarity-determining region 3 of the heavy chain variable region compared with a Y1CA3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y1C(A/V)3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent β-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy. Copyright © 2016 by the American Society of Nephrology.

  20. Low Glucose but Not Galactose Enhances Oxidative Mitochondrial Metabolism in C2C12 Myoblasts and Myotubes

    PubMed Central

    Elkalaf, Moustafa; Anděl, Michal; Trnka, Jan

    2013-01-01

    Background Substituting galactose for glucose in cell culture media has been suggested to enhance mitochondrial metabolism in a variety of cell lines. We studied the effects of carbohydrate availability on growth, differentiation and metabolism of C2C12 myoblasts and myotubes. Methodology/Principal Findings We measured growth rates, ability to differentiate, citrate synthase and respiratory chain activities and several parameters of mitochondrial respiration in C2C12 cells grown in media with varying carbohydrate availability (5 g/l glucose, 1 g/l glucose, 1 g/l galactose, and no added carbohydrates). C2C12 myoblasts grow more slowly without glucose irrespective of the presence of galactose, which is not consumed by the cells, and they fail to differentiate without glucose in the medium. Cells grown in a no-glucose medium (with or without galactose) have lower maximal respiration and spare respiratory capacity than cells grown in the presence of glucose. However, increasing glucose concentration above physiological levels decreases the achievable maximal respiration. C2C12 myotubes differentiated at a high glucose concentration showed higher dependency on oxidative respiration under basal conditions but had lower maximal and spare respiratory capacity when compared to cells differentiated under low glucose condition. Citrate synthase activity or mitochondrial yield were not significantly affected by changes in the available substrate concentration but a trend towards a higher respiratory chain activity was observed at reduced glucose levels. Conclusions/Significance Our results show that using galactose to increase oxidative metabolism may not be applicable to every cell line, and the changes in mitochondrial respiratory parameters associated with treating cells with galactose are mainly due to glucose deprivation. Moderate concentrations of glucose (1 g/l) in a growth medium are optimal for mitochondrial respiration in C2C12 cell line while supraphysiological

  1. Synthesis and Biophysical Investigations of Oligonucleotides Containing Galactose-Modified DNA, LNA, and 2'-Amino-LNA Monomers.

    PubMed

    Ries, Annika; Kumar, Rajesh; Lou, Chenguang; Kosbar, Tamer; Vengut-Climent, Empar; Jørgensen, Per T; Morales, Juan C; Wengel, Jesper

    2016-11-18

    Galactose-modified thymidine, LNA-T, and 2'-amino-LNA-T nucleosides were synthesized, converted into the corresponding phosphoramidite derivatives and introduced into short oligonucleotides. Compared to the unmodified control strands, the galactose-modified oligonucleotides in general, and the N2'-functionalized 2'-amino-LNA derivatives in particular, showed improved duplex thermal stability against DNA and RNA complements and increased ability to discriminate mismatches. In addition, the 2'-amino-LNA-T derivatives induced remarkable 3'-exonuclease resistance. These results were further investigated using molecular modeling studies.

  2. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  3. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    PubMed Central

    Vu, Hieu Sy; Roth, Mary R.; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A.; Williams, Todd D.; Welti, Ruth

    2014-01-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  4. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  5. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  6. Quantification of galactose-1-phosphate uridyltransferase enzyme activity by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2010-05-01

    The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for GALT enzyme activity measurement. Our assay used stable isotope-labeled alpha- galactose-1-phosphate ([(13)C(6)]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([(13)C(6)]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [(13)C(6)]-Glu-1-P (265 > 79) as an internal standard. The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) mumol x (g Hgb)(-1) x h(-1) in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 micromol x (g Hgb)(-1) x h(-1) (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent K(m) of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. This LC-MS/MS-based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities.

  7. Role of Snf1p in Regulation of Intracellular Sorting of the Lactose and Galactose Transporter Lac12p in Kluyveromyces lactis†

    PubMed Central

    Wiedemuth, Christian; Breunig, Karin D.

    2005-01-01

    The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H+ symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis. PMID:15821131

  8. Determination of hepatic galactose elimination capacity using 2-[18F]fluoro-2-deoxy-D-galactose PET/CT: reproducibility of the method and metabolic heterogeneity in a normal pig liver model

    PubMed Central

    SØRENSEN, MICHAEL

    2011-01-01

    Objective A PET method is developed for non-invasive measurement of regional metabolic liver function using the galactose analog 2-[18F]fluoro-2-deoxy-D-galactose, FDGal. The aim of the present study was to determine the reproducibility of the method in pigs before translating it to human studies. Material and methods Five anesthetized pigs were studied twice within an interval of three days. A dynamic PET recording was performed with an injection of 100 MBq FDGal. Non-radioactive galactose was administered throughout the PET recordings to achieve near-saturated elimination kinetics. Arterial blood samples were collected for determination of blood concentrations of FDGal and galactose (cgal). Net metabolic clearance of FDGal, KFDGal, was calculated from linear representation of data. The approximate maximal hepatic removal rate, Vmax, of galactose (mmol/l tissue/min) was calculated as KFDGal cgal. The estimates from Day 1 and Day 2 were compared and the coefficient of variation, COV, of the estimates calculated. Functional heterogeneity in normal pig liver was evaluated as COV of the tissue concentration of radioactivity during quasi steady-state metabolism. Results There was no significant difference between Vmax from Day 1 and Day 2 (p = 0.38), and the reproducibility was good with a COV of 14% for the whole liver. In normal pig liver tissue, mean COV after an injection of FDGal was on average 15.6% with no day-to-day variation (p = 0.7). Conclusions The novel FDGal PET method for determination of hepatic metabolic function has a good reproducibility and is promising for future human studies of regional liver function. PMID:20695723

  9. Microbial responses to various process disturbances in a continuous hydrogen reactor fed with galactose.

    PubMed

    Kumar, Gopalakrishnan; Park, Jeong-Hoon; Sivagurunathan, Periyasamy; Lee, Sang-Hoon; Park, Hee-Deung; Kim, Sang-Hyoun

    2017-02-01

    In this study, microbial responses of a continuous hydrogen reactor fed with galactose have been investigated. Process disturbances reduced H2 production performance as well as large fluctuations in microbial diversity. The peak values of the hydrogen yield (HY) was not influenced greatly during the steady state period, and accounted as 2.01 ± 0.05 and 2.14 ± 0.03 mol/mol galactoseadded, while hydraulic retention time (HRT) was at 12 and 8 h, respectively. Microbial community analysis via 454 pyrosequencing revealed that functional redundancy following changes in the microbial community distribution led to the stability of the fermentation performance. The butyrate to acetate (B/A) ratio well correlated with changes in the microbial community. The energy generation rate and energy yield resulted in the peak values of 134 kJ/L-d and 612 kJ/moladded.

  10. A Rotational Study of D-Mannose and D-Galactose

    NASA Astrophysics Data System (ADS)

    Pena, I.; Daly, A. M.; Cabezas, C.; Mata, S.; Alonso, J. L.

    2013-06-01

    The rotational spectrum of two aldohexoses, D-mannose and D-galactose, has been investigated in the 6 - 12 GHz frequency range by means of a combination of laser ablation and broadband Fourier transform microwave spectroscopy (CP-FTMW). Five conformers of α-D-mannopyranose and two of α-D-galactopyranose, showing the ^{4}C_{1} ring configuration, have been identified from the rotational constants in conjunction with ab initio computations. Stabilization factors, which include stereolectronic effects, such as anomeric effect or gauche effect, and the network of clockwise or anticlockwise hydrogen bonds have been analyzed in terms of the observed conformers. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91.

  11. Effect of nanoscale confinement on dielectric relaxations in a 3wt.% water-galactose mixture

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2012-04-01

    We studied the effect of nanoscale confinement on dielectric relaxations in a water-galactose mixture with 3 wt.% water content (WGMIX) in the temperature range that covered the supercooled and the glassy states. We used a confining matrix with nanoporous of 3.5 nm, 8 nm, and 18 nm. For pore sizes of 3.5 nm and 8 nm, the α-relaxation process in the confined WGMIX was significantly accelerated compared to that in bulk WGMIX and approached the Johari-Goldstein (JG) β-relaxation process as the pore size decreased. The correlation length predicted by the number of correlation unit theory is an order of a few nanometers and is consistent with our results. In addition, the stretched exponent of the α-relaxation decreased with decreasing as predicted by the coupling model.

  12. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose.

    PubMed Central

    Bourne, Yves; Astoul, Corinne Houlès; Zamboni, Véronique; Peumans, Willy J; Menu-Bouaouiche, Laurence; Van Damme, Els J M; Barre, Annick; Rougé, Pierre

    2002-01-01

    Evidence is presented that the specificity of jacalin, the seed lectin from jack fruit (Artocarpus integrifolia), is not directed exclusively against the T-antigen disaccharide Galbeta1,3GalNAc, lactose and galactose, but also against mannose and oligomannosides. Biochemical analyses based on surface-plasmon-resonance measurements, combined with the X-ray-crystallographic determination of the structure of a jacalin-alpha-methyl-mannose complex at 2 A resolution, demonstrated clearly that jacalin is fully capable of binding mannose. Besides mannose, jacalin also interacts readily with glucose, N-acetylneuraminic acid and N-acetylmuramic acid. Structural analyses demonstrated that the relatively large size of the carbohydrate-binding site enables jacalin to accommodate monosaccharides with different hydroxyl conformations and provided unambiguous evidence that the beta-prism structure of jacalin is a sufficiently flexible structural scaffold to confer different carbohydrate-binding specificities to a single lectin. PMID:11988090

  13. Protective Effect of Artemisia annua L. Extract against Galactose-Induced Oxidative Stress in Mice

    PubMed Central

    Kim, Mi Hye; Seo, Ji Yeon; Liu, Kwang Hyun; Kim, Jong-Sang

    2014-01-01

    Artemisia annua L. (also called qinghao) has been well known as a source of antimalarial drug artemisinins. In addition, the herb was reported to have in vitro antioxidative activity. The present study investigated the protective effect of aqueous ethanol extract of Qinghao (AA extract) against D-galactose-induced oxidative stress in C57BL/6J mice. Feeding AA extract-containing diet lowered serum levels of malondialdehyde and 8-OH-dG that are biomarkers for lipid peroxidation and DNA damage, respectively. Furthermore, AA extract feeding enhanced the activity of NQO1, a typical antioxidant marker enzyme, in tissues such as kidney, stomach, small intestine, and large intestine. In conclusion, AA extract was found to have antioxidative activity in mouse model. PMID:24988450

  14. A galactose-specific lectin from the hemolymph of the pearl oyster, Pinctada fucata martensii.

    PubMed

    Suzuki, T; Mori, K

    1989-01-01

    1. A lectin in the serum of Pinctada fucata martensii was purified by a combination of affinity chromatography on Sepharose 4B coupled with bovine submaxillary gland mucine, anion exchange chromatography on Mono Q and gel filtration on Superose 6. 2. The purified lectin was indicated to be homogeneous by polyacrylamide electrophoresis and rechromatography on Mono Q. 3. The purified lectin was approximately 440,000 in molecular weight and was composed of identical subunits with a molecular weight of approximately 20,000. 4. D-galactose and N-acetylgalactosamine gave a 50% inhibition of agglutination of horse erythrocytes by the lectin at 0.3 and 1.2 mM, respectively. 5. The antibody obtained from rabbit immunized with the purified lectin was monospecific to the lectin judged from the hemagglutination blocking test, immunoelectrophoresis and immunoblotting.

  15. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  16. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.

    PubMed

    Velagapudi, Vidya R; Wittmann, Christoph; Schneider, Konstantin; Heinzle, Elmar

    2007-12-01

    New methods for an extended physiological characterization of yeast at a microtiter plate scale were applied to 27 deletion mutants of Saccharomyces cerevisiae cultivated on glucose and galactose as sole carbon sources. In this way, specific growth rates, specific rates of glucose consumption and ethanol production were determined. Flux distribution, particularly concerning branching into the pentose phosphate pathway was determined using a new (13)C-labelling method using MALDI-ToF-mass spectrometry. On glucose, the growth was predominantly fermentative whereas on galactose respiration was more active with correspondingly lower ethanol production. Some deletion strains showed unexpected behavior providing very informative data about the function of the corresponding gene. Deletion of malic enzyme gene, MAE1, did not show any significant phenotype when grown on glucose but a drastically increased branching from glucose 6-phosphate into the pentose phosphate pathway when grown on galactose. This allows the conclusion that MAE1 is important for the supply of NADPH during aerobic growth on galactose.

  17. Molecular cloning and characterization of the mouse CGT gene encoding UDP-galactose ceramide-galactosyltransferase (cerebroside synthetase)

    SciTech Connect

    Bosio, A.; Binczek, E.; Stoffel, W.

    1996-07-01

    UDP-galactose ceramide galactosyltransferase, CGT, EC 2.4.1.45, is the key enzyme in the biosynthesis of cerebrosides and sulfatides, which are the most abundant glycosphingolipids in the myelin of the central nervous system and the peripheral nervous system.

  18. The Rapid and Sensitive Quantitative Determination of Galactose by Combined Enzymatic and Colorimetric Method: Application in Neonatal Screening.

    PubMed

    Kianmehr, Anvarsadat; Mahrooz, Abdolkarim; Ansari, Javad; Oladnabi, Morteza; Shahbazmohammadi, Hamid

    2016-05-01

    The quantitative measurement of galactose in blood is essential for the early diagnosis, treatment, and dietary monitoring of galactosemia patients. In this communication, we aimed to develop a rapid, sensitive, and cost-effective combined method for galactose determination in dry blood spots. This procedure was based on the combination of enzymatic reactions of galactose dehydrogenase (GalDH), dihydrolipoyl dehydrogenase (DLD), and alkaline phosphates with a colorimetric system. The incubation time and the concentration of enzymes used in new method were also optimized. The analytical performance was studied by the precision, recovery, linearity, and sensitivity parameters. Statistical analysis was applied to method comparison experiment. The regression equation and correlation coefficient (R (2)) were Y = 0.0085x + 0.032 and R (2) = 0.998, respectively. This assay exhibited a recovery in the range of 91.7-114.3 % and had the limit detection of 0.5 mg/dl for galactose. The between-run coefficient of variation (CV) was between 2.6 and 11.1 %. The within-run CV was between 4.9 and 9.2 %. Our results indicated that the new and reference methods were in agreement because no significant biases exist between them. Briefly, a quick and reliable combined enzymatic and colorimetric assay was presented for application in newborn mass screening and monitoring of galactosemia patients.

  19. Hepatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry.

    PubMed

    Sakashita, Mizuha; Mochizuki, Shinichi; Sakurai, Kazuo

    2014-10-01

    Highly efficient drug carriers targeting hepatocyte is needed for treatment for liver diseases such as liver cirrhosis and virus infections. Galactose or N-acetylgalactosamine is known to be recognized and incorporated into the cells through asialoglycoprotein receptor (ASGPR) that is exclusively expressed on hepatocyte and hepatoma. In this study, we synthesized a galactose-modified lipid with aromatic ring with click chemistry. To make a complex with DNA, termed 'lipoplex', we prepared a binary micelle composed of cationic lipid; dioleoyltrimethylammoniumpropane (DOTAP) and galactose-modified lipid (D/Gal). We prepared lipoplex from plasmid DNA (pDNA) and D/Gal and examined the cell specificity and transfection efficiency. The lipoplex was able to interact with ASGPR immobilized on gold substrate in the quartz-crystal microbalance (QCM) sensor cell. The lipoplex induced high gene expression to HepG2 cells, a human hepatocellular carcinoma cell line, but not to A549 cells, a human alveolar adenocarcinoma cell line. The treatment with asialofetuin, which is a ligand for ASGPR and would work as a competitive inhibitor, before addition of the lipoplexes decreased the expression to HepG2 cells. These results indicate that D/Gal lipoplex was incorporated into HepG2 cells preferentially through ASGPR and the uptake was caused by galactose specific receptor. This delivery system to hepatocytes may overcome the problems for gene therapy and be used for treatment of hepatitis and hepatic cirrhosis.

  20. Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain.

    PubMed

    Banji, Otilia J F; Banji, David; Ch, Kalpana

    2014-12-01

    D-galactose, a reducing sugar, induces oxidative stress resulting in alteration in mitochondrial dynamics and apoptosis of neurons. Curcumin and hesperidin are antioxidants possessing multimodal functions; hence, their contribution in minimizing D-galactose induced ageing was assessed in the present study. A week prior to D-galactose treatment (150 mg/kg; s.c. for 56 days), animals were treated with curcumin alone, hesperidin alone and a combination of curcumin (50 and 100 mg/kg; orally) with hesperidin (10 and 25 mg/kg; orally) for 63 days. A naïve control was also maintained. Behavioural studies, tricarboxylic acid cycle enzymes, mitochondrial complexes, protein and lipid oxidation and glutathione levels were assessed in the brain mitochondrial fraction. Western blot analysis of caspase-3, cleaved caspase-3 and histological assessment of the CA1 region of the hippocampus were carried out. D-galactose induced significant cognitive deficits, biochemical changes and histological alterations. Individually, curcumin was more effective than hesperidin in reducing the levels of oxidized lipids, proteins, cleaved caspase-3 expression and mitochondrial enzymes. The combination reduced the expression of cleaved caspase-3, malondialdehyde, improved mitochondrial enzymes and glutathione levels. In combination, curcumin and hesperidin protect the morphological facets and improve biochemical functions of neurons thereby improving cognition.

  1. Structural characterization of bovine beta-lactoglobulin-galactose/tagatose Maillard complexes by electrophoretic, chromatographic, and spectroscopic methods.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2008-06-11

    To investigate the influence of the type of carbonyl group of the sugar on the structural changes of proteins during glycation, an exhaustive structural characterization of glycated beta-lactoglobulin with galactose (aldose) and tagatose (ketose) has been carried out. Conjugates were prepared via Maillard reaction at 40 and 50 degrees C, pH 7, and a w = 0.44. The progress of the Maillard reaction was followed by indirect formation of Amadori and Heyns compounds, advanced glycation end products, and brown polymers. The structural characterization of glycoconjugates was conducted by using a number of analytical techniques such as RP-HPLC, isoelectric focusing, MALDI-ToF, SDS-PAGE, size exclusion chromatography, and spectrofluorimetry (tryptophan fluorescence). In addition, the surface hydrophobicity of the beta-lactoglobulin glycoconjugates was also assessed. The results showed a higher reactivity of galactose than tagatose to form the glycoconjugates, probably due to the higher electrophilicity of the aldehyde group. At 40 degrees C, more aggregation was produced when beta-lactoglobulin was conjugated with tagatose as compared to galactose. However, at 50 degrees C hardly any difference was observed in the aggregation produced by galactose and tagatose. These results afford more insight into the importance of the functional group of the carbohydrate moiety during the formation of protein-carbohydrate conjugates via Maillard reaction.

  2. Phycocyanin may suppress D-galactose-induced human lens epithelial cell apoptosis through mitochondrial and unfolded protein response pathways.

    PubMed

    Ou, Yu; Yuan, Zhijun; Li, Kepeng; Yang, Xuegan

    2012-11-23

    Apoptosis of lens epithelial cell (LEC) plays an important role in cataract formation, and its prevention may be one of the therapeutic strategies in treating cataract. This study used human lens epithelial cell (hLEC) line SRA01/04 to investigate the protective effect and mechanism of phycocyanin on glactose-induced apoptosis in hLEC. hLECs were cultured in D/F(12)-10% FBS medium containing 125mM d-galactose with or without phycocyanin. Cell viability was assessed by methylthiazol tetrazolium (MTT) assay. Cell apoptosis was elevated with Wright-Giemsa staining, AO/EB double staining, and DNA fragmentation assay. Mitochondrial apoptosis-associated molecules and unfolded protein response-associated molecules from cultured SRA01/04 cells were quantified using protein blot analysis. The results demonstrated that phycocyanin suppressed SRA01/04 cells' morphologic changes and apoptosis induced by d-galactose, inhibited the expression and activation of caspase 3, alternated the Bax/Bcl-2 ratio, and down-regulated the level of p53, GRP78, and CHOP in d-galactose-treated SRA01/04 cells. These results suggest that phycocyanin might suppress d-galactose-induced hLEC apoptosis through two pathways: mitochondrial pathway, involving p53 and Bcl-2 family protein expression, and unfolded protein response pathway, involving GRP78 and CHOP expression.

  3. Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis.

    PubMed

    Kim, Jae Hyung; Na, Jeong-Geol; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    A two-stage membrane process for the separation of galactose, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) has been proposed. The first step of nanofiltration (NF) is to remove 5-HMF and LA from galactose solution obtained by the hydrolysis of agarose, the main component of red algal galactan for the reduction of its microbial toxicity. 5-HMF and LA are inhibitory to fermentation but at the same time useful compounds themselves with many applications. The second step of electrodialysis (ED) is to separate 5-HMF and LA in the permeate from NF. More than 91% of 5-HMF and up to 62% of LA could be removed from agarose hydrolysate, while galactose was almost completely retained by NF. Further removal of LA was expected to be possible with no loss of galactose by operating the NF process in a diafiltration mode. 5-HMF and LA could be effectively separated from each other by ED. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia

    PubMed Central

    McCorvie, Thomas J; Gleason, Tyler J; Fridovich-Keil, Judith L; Timson, David J

    2013-01-01

    Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant’s level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia. PMID:23583749

  5. [Anti-aging Effect of Urtica Polysaccharides in D-galactose Induced Aging Mice].

    PubMed

    Jing, Bo; Lv, Cheng; Li, Shun-xu; FU, Mei-ling; Yin, Zhong-qiong

    2015-12-01

    To investigate the anti-aging effect of polysaccharides from Urtica lobatifolia (Urtica polysaccharides) on subacute aging mice induced by D-galactose. 90 mice were randomly divided into six groups: normal group, aging mice model group, V(E) group [100 mg/(kg x d), ig], high level of Urtica polysaccharides group [200 mg/(kg x d), ig], medium level of Urtica polysaccharides group [100 mg/(kg x d), ig] and low level of Urtica polysaccharides group [50 mg/(kg x d), ig]. The normal group was injected saline [10 mL/(kg x d), sc], while the other groups were injected D-galactose [150 mg/(kg x d), sc]. After six weeks, all the animals were weighed. After eight arm maze experiment and swimming endurance experiment, serum, liver and brain was collected. The content of protein in serum,liver and brain was detected. Total antioxidant capacity (T-AOC), activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) content in liver and brain samples were evaluated by kits. Compared with the model group, Urtica polysaccharides groups mice had larger body weight, longer swimming time, shorter time out of the maze and fewer numbers of error, as well as higher protein content in serum, liver and brain. The capacity of T-AOC, the activities of SOD and GSH-Px of polysaccharides groups in brain and liver tissue were increased significantly, and the MDA content was decreased significantly. Polysaccharides from Urtica lobatifolia has anti-aging effects on aging model mice, and the mechanism may be related to its antioxidant effect.

  6. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.

    PubMed

    Kong, Yingzhen; Peña, Maria J; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G; Darvill, Alan G; York, William S; O'Neill, Malcolm A

    2015-04-01

    Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia.

    PubMed

    McCorvie, Thomas J; Gleason, Tyler J; Fridovich-Keil, Judith L; Timson, David J

    2013-08-01

    Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.

  8. Galactose-Depleted Xyloglucan Is Dysfunctional and Leads to Dwarfism in Arabidopsis1

    PubMed Central

    Kong, Yingzhen; Peña, Maria J.; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T.; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G.; Darvill, Alan G.; York, William S.; O’Neill, Malcolm A.

    2015-01-01

    Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. PMID:25673778

  9. Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a d-galactose-induced mouse model.

    PubMed

    Khan, Muhammad Zahid; Atlas, Nagina; Nawaz, Waqas

    2016-12-01

    Cognitive deficiency and oxidative stress have been well documented in aging disorders including Alzheimer's disease. The aim of this study was to investigate the therapeutic efficacy of Caralluma tuberculata methanolic extract (CTME) on cognitive impairment in mice induced with d-galactose. In this study we assessed the therapeutic efficacy of CTME on cognitive impairment in mice induced with d-galactose by conduction of behavioral and cognitive performance tests. In order to explore the possible role of CTME against d-galactose-induced oxidative damages, various biochemical indicators were assessed. Chronic administration of d-galactose (150mg/kgd, s.c.) for 7 weeks significantly impaired cognitive performance (in step-through passive, active avoidance test, Hole-Board test, Novel object recognition task and Morris water maze) and oxidative defense as compared to the control group. The results revealed that CTME treatment for two weeks (100, 200 and 300mg/kg p.o) significantly ameliorated cognitive performance and oxidative defense. All groups of CTME enhanced the learning and memory ability in step-through passive, active avoidance test, Hole-Board test Novel object recognition task and Morris water maze. Furthermore, high and middle level of CTME (300 and 200mg/kg p.o) significantly increased Total antioxidative capacity (T-AOC), Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression while Nitric Oxide (NO), Nitric Oxide Synthase (NOS) activity and Malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. The present study showed that CTME have a significant relieving effect on learning, memory and spontaneous activities in d-galactose-induced mice model, and ameliorates cognitive impairment and biochemical dysfunction in mice.

  10. Influence of a family 29 carbohydrate binding module on the activity of galactose oxidase from Fusarium graminearum.

    PubMed

    Mollerup, Filip; Parikka, Kirsti; Vuong, Thu V; Tenkanen, Maija; Master, Emma

    2016-02-01

    Galactose oxidase (GaO) selectively oxidizes the primary hydroxyl of galactose to a carbonyl, facilitating targeted chemical derivatization of galactose-containing polysaccharides, leading to renewable polymers with tailored physical and chemical properties. Here we investigate the impact of a family 29 glucomannan binding module on the activity and binding of GaO towards various polysaccharides. Specifically, CBM29-1-2 from Piromyces equi was separately linked to the N- and C-termini of GaO. Both GaO-CBM29 and CBM29-GaO were successfully expressed in Pichia pastoris, and demonstrated enhanced binding to galactomannan, galactoglucomannan and galactoxyloglucan. The position of the CBM29 fusion affected the enzyme function. Particularly, C-terminal fusion led to greatest increases in galactomannan binding and catalytic efficiency, where relative to wild-type GaO, kcat/Km values increased by 7.5 and 19.8 times on guar galactomannan and locust bean galactomannan, respectively. The fusion of CBM29 also induced oligomerization of GaO-CBM29. Similar to impacts of cellulose-binding modules associated with cellulolytic enzymes, increased substrate binding impeded the action of GaO fusions on more concentrated preparations of galactomannan, galactoglucomannan and galactoxyloglucan; this was especially true for GaO-CBM29. Given the N-terminal positioning of the native galactose-binding CBM32 in GaO, the varying impacts of N-terminal versus C-terminal fusion of CBM29-1-2 may reflect competing action of neighboring CBMs. This study thoroughly examines and discusses the effects of CBM fusion to non-lignocellulytic enzymes on soluble polysaccharides. Herein kinetics of GaO on galactose containing polysaccharides is presented for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by D-galactose.

    PubMed

    Gong, Yu-Shi; Guo, Juan; Hu, Kun; Gao, Yong-Qing; Xie, Bi-Jun; Sun, Zhi-Da; Yang, Er-Ning; Hou, Fang-Li

    2016-02-01

    This study mainly investigated the ameliorative effect of lotus seedpod proanthocyanidins (LSPC) and the mechanism underlying such effect on cognitive impairment and brain aging induced by d-galactose. Aging mice induced by d-galactose (150 mg/kg, sc injection daily for 6 weeks) were chosen for the experiment. LSPCs (30, 60, and 90 mg/kg, ig) were provided after d-galactose injection. Learning and memory functions were detected by Y-maze and step-down avoidance tests. Then, some biochemical indexes related to cognitive ability and aging were measured. Histopathological feature and P53 protein expression in the hippocampus were observed. Results showed that the three different doses of LSPC could significantly ameliorate the learning and memory abilities impaired by d-galactose. LSPC significantly reduced the levels of malondialdehyde and nitric oxide (i.e. 90 mg/kg LSPC group vs. model group, P=0.008), reduced the content of β-amyloid peptide 1-42 (i.e. 90 mg/kg LSPC group vs. model group, P=0.009), decreased the activities of acetylcholinesterase, monoamine oxidase B, total nitric oxide synthase (i.e. 90 mg/kg LSPC group vs. model group, P=0.006), and neuronal nitric oxide synthase and synchronously increased the activities of superoxide dismutase and glutathione peroxidase in the brain. Furthermore, LSPC could prevent neuron damage and could lessen the expression of P53 protein in the hippocampus. These findings demonstrated that LSPC effectively attenuated cognitive damage and improved parameters related to brain aging in senescent mice induced by d-galactose, and may be used to treat Alzheimer's disease.

  12. Constitutive expression in gal7 mutants of Kluyveromyces lactis is due to internal production of galactose as an inducer of the Gal/Lac regulon.

    PubMed Central

    Cardinali, G; Vollenbroich, V; Jeon, M S; de Graaf, A A; Hollenberg, C P

    1997-01-01

    The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway. PMID:9032299

  13. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    PubMed Central

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  14. Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase.

    PubMed

    Kim, Baek-Joong; Hong, Seung-Hye; Shin, Kyung-Chul; Jo, Ye-Seul; Oh, Deok-Kun

    2014-11-01

    The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cat/K m of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cat/K m of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.

  15. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    PubMed Central

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  16. In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of D-galactose-induced cognitive impairment.

    PubMed

    Lei, Yongfang; Chen, Jinglou; Zhang, Wenting; Fu, Wei; Wu, Guanghua; Wei, Han; Wang, Qing; Ruan, Jinlan

    2012-12-15

    The potential of three natural flavonols (galangin, kaempferol and myricetin) to protect against D-galactose-induced cognitive impairment in mice was investigated. After 8 weeks treatment, the mice were assessed by behavioural tests. The levels of oxidative stress, the amount of Na(+),K(+)-ATPase and extracellular signal-regulated kinases (ERK)-cyclic AMP response element binding protein (CREB) signaling pathway in hippocampus were also analysed. It was found that all the three dietary flavonols could ameliorate the oxidative stress, enhance the activity of Na(+),K(+)-ATPase and regulate the expression of ERK-CREB pathway in mice. However, only kaempferol and myricetin could significantly improve the learning and memory capability when compared with D-galactose model. Our results suggest that the presence of hydroxyl groups in the B ring of flavonols may have contribution to the neuroprotective activity.

  17. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na[superscript +]/sugar symport

    SciTech Connect

    Faham, S.; Watanabe, A.; Besserer, G.M.; Cascio, D.; Specht, A.; Hirayama, B.A.; Wright, E.M.; Abramson, J.

    2009-08-27

    Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The -3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2 to TM6 and TM7 to TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to that of the leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.

  18. Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas.

    PubMed

    Zhang, Tiehui; Zhao, Binhai; Li, Jia; Zhang, Chunlei; Li, Hongzhi; Wu, Jiang; Zhang, Shiming; Hui, Guozhen

    2015-04-01

    In general, pituitary tumors are benign with low mitotic activity. Premature senescence has been considered to be a significant mechanism underlying this uniquely benign pituitary tumor. The present study aims to compare the expression of the associated proteins involved in premature senescence pathways among normal, aging and pituitary adenoma cells. We successfully induced the aging pituitary using continuous D‑galactose (D‑gal) injection as well as a prolactin‑secreting pituitary tumor via diethylstilbestrol implants. Compared with normal pituitary cells, the aging pituitary tissues revealed increased expression of IL‑6, C/EBPβ, p53, p21 and p16 and decreased expression of pituitary tumor transforming gene. In contrast, the expression of IL‑6, p21 and p16 was decreased in pituitary tumor cells compared with normal pituitary tissues. Taken together, multiple pathways including IL‑6/C/EBPβ, p53/p21 and p16 were activated in aging pituitary cells in response to D‑gal treatment. However, all these pathways were immune to pituitary tumors treated by chronic estrogen. The findings and the involvement of cytokines in a highly prevalent natural disease model (pituitary adenomas) indicate a potential use of this pathway as a target for effective therapy for tumor silencing and prevention of adenoma progression towards malignancy.

  19. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study.

    PubMed

    Russo, Laura; Russo, Teresa; Battocchio, Chiara; Taraballi, Francesca; Gloria, Antonio; D'Amora, Ugo; De Santis, Roberto; Polzonetti, Giovanni; Nicotra, Francesco; Ambrosio, Luigi; Cipolla, Laura

    2015-03-20

    The grafting of galactose units onto poly(ε-caprolactone) (PCL) substrates by a wet chemistry two-step procedure is proposed. Even though a reduction of hardness from 0.58-0.31 GPa to 0.12-0.05 GPa is achieved, the chemical functionalization does not negatively affect the tensile modulus (332.2±31.3 MPa and 328.5±34.7 MPa for unmodified and surface-modified PCL, respectively) and strength (15.1±1.3 MPa and 14.8±1.5 MPa as assessed before and after the surface modification, respectively), as well as the mechanical behaviour evaluated through small punch test. XPS and enzyme-linked lectin assay (ELLA) demonstrate the presence, and also the correct exposition of the saccharidic epitope on PCL substrates. The introduction of carbohydrate moieties on the PCL surfaces clearly enhances the hydrophilicity of the substrate, as the water contact angle decreases from 82.1±5.8° to 62.1±4.2°. Furthermore, preliminary biological analysis shows human mesenchymal stem cell viability over time and an improvement of cell adhesion and spreading.

  20. Superparamagnetic Iron Oxide Nanoparticles Coated with Galactose-Carrying Polymer for Hepatocyte Targeting

    PubMed Central

    Yoo, Mi Kyong; Kim, In Yong; Kim, Eun Mi; Jeong, Hwan-Jeong; Lee, Chang-Moon; Jeong, Yong Yeon; Akaike, Toshihiro; Cho, Chong Su

    2007-01-01

    Our goal is to develop the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) demonstrating the capacities to be delivered in liver specifically and to be dispersed in physiological environment stably. For this purpose, SPIONs were coated with polyvinylbenzyl-O-β-D-galactopyranosyl-D-gluconamide (PVLA) having galactose moieties to be recognized by asialoglycoprotein receptors (ASGP-R) on hepatocytes. For use as a control, we also prepared SPIONs coordinated with 2-pyrrolidone. The sizes, size distribution, structure, and coating of the nanoparticles were characterized by transmission electron microscopy (TEM), electrophoretic light scattering spectrophotometer (ELS), X-ray diffractometer (XRD), and Fourier transform infrared (FT-IR), respectively. Intracellular uptake of the PVLA-coated SPIONs was visualized by confocal laser scanning microscopy, and their hepatocyte-specific delivery was also investigated through magnetic resonance (MR) images of rat liver. MRI experimental results indicated that the PVLA-coated SPIONs possess the more specific accumulation property in liver compared with control, which suggests their potential utility as liver-targeting MRI contrast agent. PMID:18317519

  1. Pneumococcal galactose catabolism is controlled by multiple regulators acting on pyruvate formate lyase

    PubMed Central

    Al-Bayati, Firas A. Y.; Kahya, Hasan F. H.; Damianou, Andreas; Shafeeq, Sulman; Kuipers, Oscar P.; Andrew, Peter W.; Yesilkaya, Hasan

    2017-01-01

    Catabolism of galactose by Streptococcus pneumoniae alters the microbe’s metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe’s virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid fermentation. Functional PFL requires the activities of two enzymes: pyruvate formate lyase activating enzyme (coded by pflA) and pyruvate formate lyase (coded by pflB). To understand the genetic basis of mixed acid fermentation, transcriptional regulation of pflA and pflB was studied. By microarray analysis of ΔpflB, differential regulation of several transcriptional regulators were identified, and CcpA, and GlnR’s role in active PFL synthesis was studied in detail as these regulators directly interact with the putative promoters of both pflA and pflB, their mutation attenuated pneumococcal growth, and their expression was induced on host-derived sugars, indicating that these regulators have a role in sugar metabolism, and multiple regulators are involved in active PFL synthesis. We also found that the influence of each regulator on pflA and pflB expression was distinct in terms of activation and repression, and environmental condition. These results show that active PFL synthesis is finely tuned, and feed-back inhibition and activation are involved. PMID:28240278

  2. Elucidation of Substrate Specificity in Aspergillus nidulans UDP-Galactose-4-Epimerase

    PubMed Central

    Dalrymple, Sean A.; Ko, John; Sheoran, Inder; Kaminskyj, Susan G. W.; Sanders, David A. R.

    2013-01-01

    The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results. PMID:24116166

  3. Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation.

    PubMed

    Frederick, Jesse R; Petri, William A

    2005-12-01

    Entamoeba histolytica, an intestinal protozoan parasite, is a major cause of morbidity and mortality in developing countries. The pathology of the disease is caused by the colonization of the large intestine by the amoebic trophozoites and the invasion of the intestinal epithelium. Some of the trophozoites will eventually differentiate into the infectious cyst form, allowing them to be transmitted out of the bowel and into water supplies to be passed from person to person. Both the virulence of the organism and the differentiation process relies on a galactose-/N-acetylgalactosamine (GalNAc)-binding lectin that is expressed on the surface of trophozoites. The functional activity of this lectin has been shown to be involved in host cell binding, cytotoxicity, complement resistance, induction of encystation, and generation of the cyst wall. The role of the lectin in both differentiation and virulence suggests that it may be a pivotal molecule that determines the severity of the infection from a commensal state resulting from increased encystation to an invasive state. The lectin-glycan interactions that initiate these diverse processes are discussed with emphasis on comparing the binding of host ligands and the interactions involved in encystation.

  4. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    NASA Astrophysics Data System (ADS)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  5. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase.

    PubMed

    McCorvie, Thomas J; Kopec, Jolanta; Pey, Angel L; Fitzpatrick, Fiona; Patel, Dipali; Chalk, Rod; Shrestha, Leela; Yue, Wyatt W

    2016-06-01

    Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants. © The Author 2016. Published by Oxford University Press.

  6. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates.

    PubMed

    Nguyen, Trung Hau; Ra, Chae Hun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-07-28

    Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121°C using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45°C for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae.

  7. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  8. Steady state recycling chromatography with an integrated solvent removal unit - separation of glucose and galactose.

    PubMed

    Hellstén, Sanna; Siitonen, Jani; Mänttäri, Mika; Sainio, Tuomo

    2012-08-17

    A process concept where a solvent removal unit is integrated to a steady-state recycling chromatography process (SSR-SR) offers a possibility to significantly increase the performance of single column chromatographic separation. The advantages of solvent removal for a difficult separation task at conditions typical for industrial scale chromatography were demonstrated by investigating the performance of SSR-SR in separation of glucose and galactose. Two limits for the extent of solvent removal were imposed: maximum total concentration of the solution fed into the column (viscosity limit) and the maximum total concentration achievable in the solvent removal unit (solubility or osmotic pressure limit). The process was optimized using numerical simulation. Three SSR-SR configurations with different positions of the solvent removal unit were compared with (1) the conventional batch process, (2) SSR without solvent removal, and (3) batch process with solvent removal. SSR-SR was found to always improve the productivity. In addition, solvent removal reduced eluent consumption in most cases. The concentration limits and the concentration of the fresh feed were shown to determine which SSR-SR configuration yields the best performance.

  9. Combined administration of D-galactose and aluminium induces Alzheimer-like lesions in brain.

    PubMed

    Xiao, Fei; Li, Xiao-Guang; Zhang, Xiao-Yu; Hou, Jun-Dai; Lin, Lian-Feng; Gao, Qin; Luo, Huan-Min

    2011-06-01

    It has been reported that D-galactose (D-gal) can model subacute aging, and aluminum (Al) acts as a neurotoxin, but combined effects of them have not been reported. The present work aimed to reveal the effect of combined administration of D-gal and Al in mice and compare the effect of D-gal treatment with that of Al treatment. Al was intragastrically administered and D-gal was subcutaneously injected into Kunming mice for 10 consecutive weeks. Learning and memory, cholinergic systems, as well as protein levels of amyloid β (Aβ) and hyperphosphorylated tau were determined using Morri water maze test, biochemical assays and immunohistochemical staining, respectively. The mice with combined treatment had obvious learning and memory deficits, and showed decreases in brain acetylcholine (ACh) level and in activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE). Formation of senile plaque (SP)-like and neurofibrillary tangle (NFT)-like structures was also observed. The behavioral and pathological changes persisted for at least 6 weeks after withdrawal of D-gal and Al. Combined use of D-gal and Al is an effective way to establish the non-transgenic Alzheimer's disease (AD) animal model, and is useful for studies of AD pathogenesis and therapeutic evaluation.

  10. Antiaging Effect of Inula britannica on Aging Mouse Model Induced by D-Galactose

    PubMed Central

    Chen, Hui; Long, Yuanyuan; Guo, Lei

    2016-01-01

    The antiaging effect of Inula britannica flower total flavonoids (IBFTF) on aging mice induced by D-galactose and its mechanism was examined in this study. From the results, the biochemical indexes and histological analysis of skin tissues showed that IBFTF could effectively improve the antioxidant enzyme activity of the aging mice, enhance the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) of skin tissue, and decrease the malondialdehyde (MDA) content. Besides, IBFTF could maintain the skin collagen, hydroxyproline (Hyp), dermal thickness, and moisture content. Meanwhile, IBFTF could significantly reduce the number of cells arrested in G0/G1 phase, and from the point of view of protein and mRNA expression level in skin tissue, IBFTF could significantly increase the expression of Sirt1 and CyclinD1 but decrease the expression of p16 and p21, and its effect was not less than that of the well-known vitamin E (VE). Overall, these results seem to be implying that IBFTF is a potential natural anti-skin aging agent with great antioxidant ability. PMID:27066100

  11. Assessment of ataxia phenotype in a new mouse model of galactose-1 phosphate uridylyltransferase (GALT) deficiency.

    PubMed

    Chen, Wyman; Caston, Rose; Balakrishnan, Bijina; Siddiqi, Anwer; Parmar, Kamalpreet; Tang, Manshu; Feng, Merry; Lai, Kent

    2017-01-01

    Despite adequate dietary management, patients with classic galactosemia continue to have increased risks of cognitive deficits, speech dyspraxia, primary ovarian insufficiency, and abnormal motor development. A recent evaluation of a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model revealed reduced fertility and growth restriction. These phenotypes resemble those seen in human patients. In this study, we further assess the fidelity of this new mouse model by examining the animals for the manifestation of a common neurological sequela in human patients: cerebellar ataxia. The balance, grip strength, and motor coordination of GALT-deficient and wild-type mice were tested using a modified rotarod. The results were compared to composite phenotype scoring tests, typically used to evaluate neurological and motor impairment. The data demonstrated abnormalities with varying severity in the GALT-deficient mice. Mice of different ages were used to reveal the progressive nature of motor impairment. The varying severity and age-dependent impairments seen in the animal model agree with reports on human patients. Finally, measurements of the cerebellar granular and molecular layers suggested that mutant mice experience cerebellar hypoplasia, which could have resulted from the down-regulation of the PI3K/Akt signaling pathway.

  12. Effect of Colla corii asini (E'jiao) on D-galactose induced aging mice.

    PubMed

    Wang, Dongliang; Liu, Maoxuan; Cao, Jichao; Cheng, Yanna; Zhuo, Chen; Xu, Hongyan; Tian, Shousheng; Zhang, Yan; Zhang, Jian; Wang, Fengshan

    2012-01-01

    Colla corii asini (E'jiao), donkey-hide gelatin prepared by stewing and concentrating from Equus asinus L. donkey hide, is a traditional Chinese medicine preparation widely used in clinical hematic antanemic therapy in China. The aim of the present study was to investigate potential anti-aging effect of Colla corii asini and explore related mechanisms in D-galactose (gal) induced aging model mice. The mice were artificially induced aging by subcutaneously injection with D-gal at the dose of 100 mg/kg·d for 8 weeks. Colla corii asini was simultaneously treated to them once daily by intragastric gavage. Appetite, mental condition, body weight, and organ index were observed. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as levels of malondialdehyde (MDA) in serum, brain, and liver were determined by according assay kits. Western blotting analysis was used to detect p16 and p21 expression. Results indicated that Colla corii asini could improve appetite, mental condition, body weight, and organ condition of model mice, improve SOD, CAT, and GSH-Px activities, reduce MDA levels, and modulate age-related genes expression in D-gal induced mice. Therefore, Colla corii asini may have effect to suppress the aging process through enhancing antioxidant activity, scavenging free radicals, and modulating aging-related gene expression.

  13. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis.

    PubMed

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio; Temple, Henry; Herter, Thomas; Link, Bruce; Doñas-Cofré, Daniela; Moreno, Adrián; Saéz-Aguayo, Susana; Blanco, Francisca; Mortimer, Jennifer C; Schultink, Alex; Reiter, Wolf-Dieter; Dupree, Paul; Pauly, Markus; Heazlewood, Joshua L; Scheller, Henrik V; Orellana, Ariel

    2014-08-05

    Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.

  14. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase

    PubMed Central

    McCorvie, Thomas J.; Kopec, Jolanta; Pey, Angel L.; Fitzpatrick, Fiona; Patel, Dipali; Chalk, Rod; Shrestha, Leela; Yue, Wyatt W.

    2016-01-01

    Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants. PMID:27005423

  15. A Novel, Noncatalytic Carbohydrate-binding Module Displays Specificity for Galactose-containing Polysaccharides through Calcium-mediated Oligomerization*

    PubMed Central

    Montanier, Cedric Y.; Correia, Márcia A. S.; Flint, James E.; Zhu, Yanping; Baslé, Arnaud; McKee, Lauren S.; Prates, José A. M.; Polizzi, Samuel J.; Coutinho, Pedro M.; Lewis, Richard J.; Henrissat, Bernard; Fontes, Carlos M. G. A.; Gilbert, Harry J.

    2011-01-01

    The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the “cellulosome.” Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to d-galactose and l-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing α- and β-galactose residues, show that the ligand-binding site in the β-sandwich protein is located in the loops that connect the two β-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM. PMID:21454512

  16. Evidence for Conformational Mechanism on the Binding of TgMIC4 with β-Galactose-Containing Carbohydrate Ligand.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Zorzetto-Fernandes, André Luiz; Gimenez-Romero, David; Monzó, Isidro; Bueno, Paulo R

    2015-11-10

    A deeper understanding of the role of sialic/desialylated groups during TgMIC4-glycoproteins interactions has importance to better clarify the odd process of host cell invasion by members of the apicomplexan phylum. Within this context, we evaluated the interaction established by recombinant TgMIC4 (the whole molecule) with sialylated (bovine fetuin) and desialylated (asialofetuin) glycoproteins by using functionalized quartz crystal microbalance with dissipation monitoring (QCM-D). A suitable receptive surface containing recombinant TgMIC4 for monitoring β-galactose-containing carbohydrate ligand (limit of quantification ∼ 40 μM) was designed and used as biomolecular recognition platform to study the binding and conformational mechanisms of TgMIC4 during the interaction with glycoprotein containing (fetuin), or not, terminal sialic group (asialofetuin). It was inferred that the binding/interaction monitoring depends on the presence/absence of sialic groups in target protein and is possible to be differentiated through a slower binding kinetic step using QCM-D approach (which we are inferring to be thus associated with β-galactose ligand). This slower binding/interaction step is likely supposed (from mechanical energetic analysis obtained in QCM-D measurements) to be involved with Toxoplasma gondii (the causative agent of toxoplasmosis) parasitic invasion accompanied by ligand (galactose) induced binding conformational change (i.e., cell internalization process can be additionally dependent on structural conformational changes, controlled by the absence of sialic groups and to the specific binding with galactose), in addition to TgMIC4-glycoprotein solely recognition binding process.

  17. Galactose-limited fed-batch cultivation of Escherichia coli for the production of lacto-N-tetraose.

    PubMed

    Baumgärtner, Florian; Sprenger, Georg A; Albermann, Christoph

    2015-01-01

    Lacto-N-tetraose (Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) is one of the most abundant oligosaccharide structures in human milk. We recently described the synthesis of lacto-N-tetraose by a whole-cell biotransformation with recombinant Escherichia coli cells. However, only about 5% of the lactose was converted into lacto-N-tetraose by this approach. The major product obtained was the intermediate lacto-N-triose II (GlcNAc(β1-3)Gal(β1-4)Glc). In order to improve the bioconversion of lactose to lacto-N-tetraose, we have investigated the influence of the carbon source on the formation of lacto-N-tetraose and on the intracellular availability of the glycosyltransferase substrates, UDP-N-acetylglucosamine and UDP-galactose. By growth of the recombinant E. coli cells on D-galactose, the yield of lacto-N-tetraose (810.8 mg L(-1) culture) was 3.6-times higher compared to cultivation on D-glucose. Using fed-batch cultivation with galactose as sole energy and carbon source, a large-scale synthesis of lacto-N-tetraose was demonstrated. During the 26 h feeding phase the growth rate (μ = 0.05) was maintained by an exponential galactose feed. In total, 16 g L(-1) lactose were fed and resulted in final yields of 12.72 ± 0.21 g L(-1) lacto-N-tetraose and 13.70 ± 0.10 g L(-1) lacto-N-triose II. In total, 173 g of lacto-N-tetraose were produced with a space-time yield of 0.37 g L(-1) h(-1).

  18. Stereoselective synthesis of UDP-2-(2-ketopropyl)galactose aided by di-tert-butylsilylene protecting group.

    PubMed

    Sakamoto, Yasuharu; Ohta, Tsuyoshi; Ito, Yukishige

    2015-10-01

    UDP-2-(2-ketopropyl)galactose (1) has been utilized as a valuable probe for profiling proteins modified by O-GlcNAc. In this work, we developed a protocol for efficient synthesis of 1. Thus, 2-methallylgalactose derivative 11, a synthetic intermediate for the compound 1, was prepared by stereoselective iodination and methallylation at C-2 position, through exploitation of 4,6-O-di-tert-butylsilylene protecting group.

  19. Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance.

    PubMed

    Jentjens, R L P G; Jeukendrup, A E

    2003-01-01

    The glycaemic and insulinaemic responses to different carbohydrates vary and these have been suggested to affect performance. The purpose of the present study was to determine the effects of pre-exercise ingestion of glucose (GLU), galactose (GAL) and trehalose (TRE) on metabolic responses at rest and during exercise and on subsequent time-trial (TT) performance. Eight well-trained male cyclists completed three exercise trials separated by at least 3 days. At 45 min before the start of exercise subjects consumed 500 ml of a beverage containing 75 g of either glucose, galactose or trehalose. The exercise trials consisted of 20 min of submaximal steady-state exercise (SS) at 65% of maximal power output immediately followed by a [mean (SEM)] 702 (25) kJ TT. Plasma glucose concentration 15 min postprandial was significantly higher in GLU compared to GAL and TRE ( P<0.05). This was accompanied by a more than twofold greater rise in plasma insulin concentration in GLU compared to GAL and TRE (118% and 145%, respectively). During SS exercise four subjects in GLU and one subject in TRE developed a rebound hypoglycaemia (plasma glucose concentration less than 3.5 mmol.l(-1)). No differences were observed in TT performance between the three trials. Pre-exercise ingestion of trehalose and galactose resulted in lower plasma glucose and insulin responses prior to exercise and reduced the prevalence of rebound hypoglycaemia. Despite the attenuated insulin and glucose responses at rest and during exercise following pre-exercise ingestion of galactose and trehalose, there was no difference in TT performance compared with pre-exercise ingestion of glucose.

  20. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.

  1. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.

    PubMed

    Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik

    2012-02-17

    In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg.

  2. Regulation of the β-Methylgalactoside Transport System and the Galactose-Binding Protein by the Cell Cycle of Escherichia coli

    PubMed Central

    Shen, Bernard H. P.; Boos, Winfried

    1973-01-01

    The synthesis of the periplasmic galactose-binding protein of E. coli is regulated by events occurring during its cell cycle, and proceeds in synchronized cells for only a short period after cell division is completed. Transport activity mediated by the β-methylgalactoside transport system follows closely the synthesis pattern of the binding protein. A mutant, E. coli BUG-6, exhibits temperature-sensitive cell division [Reeve et al. (1970) J. Bacteriol. 104, 1052-1064], synthesizing galactose-binding protein at the permissive but not at the nonpermissive temperature. Galactose-binding protein synthesized at the permissive temperature is not degraded after the culture is shifted to the nonpermissive temperature. Polyacrylamide gel electrophoresis of the periplasmic proteins of BUG-6 grown at the permissive and nonpermissive temperatures suggests that several, but not all, periplasmic proteins are subject to the same regulatory control by the cell cycle as the galactose-binding protein. Images PMID:4197092

  3. Doxorubicin-loaded galactose-conjugated poly(d,l-lactide-co-glycolide) nanoparticles as hepatocyte-targeting drug carrier.

    PubMed

    Margarida Cardoso, M; Peça, Inês N; Raposo, Cláudia D; Petrova, Krasimira T; Teresa Barros, M; Gardner, Rui; Bicho, A

    2016-06-01

    The objective of this work is to produce doxorubicin-loaded galactose-conjugated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to be specifically recognised by human hepatoma cellular carcinoma (Hep G2) cells and assess NPs cytotoxicity. Doxorubicin-unloaded and doxorubicin-loaded galactose-conjugated PLGA NPs were prepared using an emulsion method and characterised for morphology, size, drug release behaviour, Hep G2 recognition and cell cytotoxicity. The produced doxorubicin-loaded PLGA-galactose-conjugate nanoparticles (PLGA-GAL NPs) are spherical in shape with a size of 365 ± 74 nm, a drug encapsulation efficiency of 69% and released in a biphasic pattern with higher release rates at pH 5. In vitro cell studies confirmed the specific interaction between the receptors of Hep G2 and the PLGA-GAL NPs. Cell cytotoxicity tests showed that unloaded NPs are non-toxic and that doxorubicin-loaded NPs caused a cellular viability decrease of around 80%, therefore representing a promising approach to improve liver-specific drug delivery.

  4. Osmanthus fragrans Flower Extract and Acteoside Protect Against d-Galactose-Induced Aging in an ICR Mouse Model.

    PubMed

    Xiong, Lina; Mao, Shuqin; Lu, Baiyi; Yang, Jiajia; Zhou, Fei; Hu, Yinzhou; Jiang, Yirong; Shen, Canxi; Zhao, Yajing

    2016-01-01

    Osmanthus fragrans flower extract (OFE) is an organic extract from O. fragrans flower, which exhibits neuroprotective, free radical scavenging, and antioxidant effects. Therefore, the protective effect of OFE and acteoside against aging was studied. An aging ICR mouse model was established by chronically administering d-galactose (250 mg/kg) for 8 weeks. d-galactose induced spatial learning and memory impairments that were successfully inhibited by OFE and acteoside, which could shorten escape latency, improve platform crossing times, and increase zone time. The antioxidant potential of OFE and acteoside in vivo was evaluated by estimating the following: activities of antioxidant enzymes, such as glutathione peroxidase and aging-related enzyme, particularly monoamine oxidase; contents of lipid peroxidation methane dicarboxylic aldehyde, advanced glycation end products, and 8-hydroxy-2'-deoxyguanosine (a DNA damage product); and levels of nuclear factor-erythroid 2-related factor 2. OFE and acteoside also inhibited d-galactose-induced neurological aging by suppressing the increase in glial fibrillary acidic protein and neurotrophin-3. Considering the dose-dependent protective effects of OFE and acteoside, we concluded that OFE, rich in acteoside, was a good source of natural antiaging compounds.

  5. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose.

    PubMed

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Park, Jeong-Hoon; Park, Jong-Hun; Park, Hee-Deung; Yoon, Jeong-Jun; Kim, Sang-Hyoun

    2016-04-01

    The effects of hydraulic retention times (HRTs-6, 3 and 2 h) on H2 production, operational stability and bacterial population response in a continuously stirred tank reactor (CSTR) were evaluated using galactose. A peak hydrogen production rate (HPR) of 25.9 L H2/L-d was obtained at a 3 h HRT with an organic loading rate (OLR) of 120 g/L-d, while the maximum hydrogen yield (HY) of 2.21 mol H2/mol galactose was obtained at a 6 h HRT (60 g galactose/L-d). Butyrate was dominant and the lactate concentration increased as HRT decreased, which significantly affected the HY. Biomass concentration (VSS) decreased from 16 to 3g/L at a 2 h HRT, leading to failure. A 3 h HRT supported the favorable growth of Clostridium species, as indicated by an increase in their populations from 25.4% to 27%, while significantly reducing Bacilli populations from 61.6% to 54.2%, indicating that this was the optimal condition.

  6. Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

    PubMed

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-03-25

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.

  7. Crystallization and preliminary X-ray crystallographic analysis of a galactose-specific lectin from Dolichos lablab

    SciTech Connect

    Lavanya Latha, V.; Kulkarni, Kiran A.; Nagender Rao, R.; Siva Kumar, N.; Suguna, K.

    2006-02-01

    The galactose-specific lectin from the seeds of a leguminous plant, D. lablab, has been crystallized. Molecular-replacement solution using 3.0 Å X-ray diffraction data showed the lectin to be a tetramer. The galactose-specific lectin from the seeds of Dolichos lablab has been crystallized using the hanging-drop vapour-diffusion technique. The crystals belong to space group P1, with unit-cell parameters a = 73.99, b = 84.13, c = 93.15 Å, α = 89.92, β = 76.01, γ = 76.99°. X-ray diffraction data to a resolution of 3.0 Å have been collected under cryoconditions (100 K) using a MAR imaging-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the available structures of legume lectins as search models revealed that the galactose-specific lectin from D. lablab forms a tetramer similar to soybean agglutinin; two such tetramers are present in the asymmetric unit.

  8. Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose.

    PubMed

    Park, Ha-Young; Park, Chang-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2007-10-15

    We purified recombinant galactose 6-phosphate isomerase (LacAB) from Lactococcus lactis using HiTrap Q HP and Phenyl-Sepharose columns. The purified LacAB had a final specific activity of 1.79units/mg to produce d-allose. The molecular mass of native galactose 6-phosphate isomerase was estimated at 135.5kDa using Sephacryl S-300 gel filtration, and the enzyme exists as a hetero-octamer of LacA and LacB subunits. The activity of galactose 6-phosphate isomerase was maximal at pH 7.0 and 30 degrees C, and enzyme activity was independent of metal ions. When 100g/L of d-psicose was used as the substrate, 25g/L of d-allose and 13g/L of d-altrose were simultaneously produced at pH 7.0 and 30 degrees C after 12h of incubation. The enzyme had broad specificity for various aldoses and ketoses. The interconversion of sugars with the same configuration except at the C2 position was driven by using a large amount of enzyme in extended reactions. The interconversion occurred via two isomerization reactions, i.e., the interconversion of d-allose<-->d-psicose<-->d-altrose, and d-allose to d-psicose reaction was faster than d-altrose to d-psicose reaction.

  9. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-01-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficial effects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacification was observed, and swelling and membrane rupture of the lens fiber cells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficial cortical fibers during cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significantly inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers, via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  10. Minocycline ameliorates D-galactose-induced memory deficits and loss of Arc/Arg3.1 expression.

    PubMed

    Li, Xu; Lu, Fen; Li, Wei; Xu, Jun; Sun, Xiao-Jing; Qin, Ling-Zhi; Zhang, Qian-Lin; Yao, Yong; Yu, Qing-Kai; Liang, Xin-Liang

    2016-10-01

    Dysfunction of learning and memory is widely found in many neurological diseases. Understanding how to preserve the normal function of learning and memory will be extremely beneficial for the treatment of these diseases. However, the possible protective effect of minocycline in memory impairment is unknown. We used the well-established D-galactose rat amnesia model and two behavioral tasks, the Morris water maze and the step-down task, for memory evaluation. Western blot and PCR were used to examine the protein and mRNA levels of Arc/Arg3.1. We report that minocycline supplementation ameliorates both the spatial and fear memory deficits caused by D-galactose. We also found that Arc/Arg3.1, c-fos, and brain-derived neurotrophic factor levels are decreased in the D-galactose animal model, and that minocycline reverses the protein and mRNA levels of Arc in the hippocampus, suggesting the potential role of Arc/Arg3.1 in minocycline's neuroprotective mechanism. Our study strongly suggests that minocycline can be used as a novel treatment for memory impairment in neurological diseases.

  11. Production and characterisation of potato patatin-galactose, galactooligosaccharides, and galactan conjugates of great potential as functional ingredients.

    PubMed

    Seo, Sooyoun; Karboune, Salwa; Archelas, Alain

    2014-09-01

    Potato proteins are of high interest because of their high nutritional quality and multiple health benefits, but they are currently undervalued due to their limited solubility and stability. Glycated patatin (PTT) with galactose, galactooligosaccharides (GOSs) and galactan were produced through the Maillard reaction and characterised structurally and functionally. Fourier-transform infrared and fluorescence spectroscopy data revealed important changes in total secondary structures through glycation with GOSs (61.2%) and galactan (36.7%) and also significant tertiary structural changes leading to an exposure of tryptophan residues. These structural changes led to more heat stable forms of PTT with a higher unfolding temperature (70-90 °C) than the unmodified protein (50-70 °C) and with higher antioxidant activity. PTT:galactose conjugates exhibited similar thermal stability and pH-structural behaviour to native PTT. However, the high level of galactose conjugation to PTT and increased exposure of hydrophobic residues led to a significant increase in its emulsifying stability at pH 3.

  12. A galactose-binding lectin isolated from Aplysia kurodai (sea hare) eggs inhibits streptolysin-induced hemolysis.

    PubMed

    Hasan, Imtiaj; Watanabe, Miharu; Ishizaki, Naoto; Sugita-Konishi, Yoshiko; Kawakami, Yasushi; Suzuki, Jun; Dogasaki, Chikaku; Rajia, Sultana; Kawsar, Sarkar M A; Koide, Yasuhiro; Kanaly, Robert A; Sugawara, Shigeki; Hosono, Masahiro; Ogawa, Yukiko; Fujii, Yuki; Iriko, Hideyuki; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2014-09-05

    A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.

  13. Affinity of a galactose-specific legume lectin from Dolichos lablab to adenine revealed by X-ray cystallography.

    PubMed

    Shetty, Kartika N; Latha, Vakada Lavanya; Rao, Rameshwaram Nagender; Nadimpalli, Siva Kumar; Suguna, Kaza

    2013-07-01

    Crystal structure analysis of a galactose-specific lectin from a leguminous food crop Dolichos lablab (Indian lablab beans) has been carried out to obtain insights into its quaternary association and lectin-carbohydrate interactions. The analysis led to the identification of adenine binding sites at the dimeric interfaces of the heterotetrameric lectin. Structural details of similar adenine binding were reported in only one legume lectin, Dolichos biflorus, before this study. Here, we present the structure of the galactose-binding D. lablab lectin at different pH values in the native form and in complex with galactose and adenine. This first structure report on this lectin also provides a high resolution atomic view of legume lectin-adenine interactions. The tetramer has two canonical and two DB58-like interfaces. The binding of adenine, a non-carbohydrate ligand, is found to occur at four hydrophobic sites at the core of the tetramer at the DB58-like dimeric interfaces and does not interfere with the carbohydrate-binding site. To support the crystallographic observations, the adenine binding was further quantified by carrying out isothermal calorimetric titration. By this method, we not only estimated the affinity of the lectin to adenine but also showed that adenine binds with negative cooperativity in solution.

  14. The D-galactose-binding lectin of the octocoral Sinularia lochmodes: characterization and possible relationship to the symbiotic dinoflagellates.

    PubMed

    Jimbo, M; Yanohara, T; Koike, K; Koike, K; Sakai, R; Muramoto, K; Kamiya, H

    2000-02-01

    A D-galactose binding lectin (SLL-2) was isolated from Sinularia lochmodes, an octocoral, by a combination of affinity chromatography on acid-treated agarose and FPLC on Superdex 200. SLL-2 agglutinated rabbit and horse erythrocytes while SLL-1, a minor component, reacted only with rabbit erythrocytes. SLL-2 is a glycoprotein with a molecular mass of 122 kDa and is composed of eight identical subunits (15 kDa). The sequence of the amino terminal region of SLL-2 did not show any apparent homology to the sequences of other animal and plant lectins. D-Galactose, N-acetyl-D-galactosamine, lactose, and melibiose were moderate inhibitors to the agglutination of rabbit erythrocytes. In contrast, horse erythrocytes were much more susceptible to agglutination by SLL-2, which was inhibited by sugars and glycoproteins such as D-galactose, N-acetyl-D-galactosamine, lactose, melibiose, and porcine stomach mucin. SLL-2 showed considerable tolerance to heating and kept its activity after heating at 80 degrees C for 60 min. In immuno-histochemical studies using an anti-SLL-2 antiserum and protein A gold conjugate, SLL-2 was found to be present in high amounts in the nematocysts. SLL-2 was also detected on the surface of symbiotic dinoflagellate, Symbiodinium sp. cells irrespective whether they were surrounded with or without host cells. These observations suggest the presence of lectin-mediated interaction between symbiotic dinoflagellates and S. lochmodes.

  15. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    SciTech Connect

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-20

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  16. Treatment with dehydroepiandrosterone increases peripheral benzodiazepine receptors of mitochondria from cerebral cortex in D-galactose-induced aged rats.

    PubMed

    Chen, Chunfu; Lang, Senyang; Zuo, Pingping; Yang, Nan; Wang, Xiangqing

    2008-12-01

    The aim of this study was to determine whether dehydroepiandrosterone (DHEA) could regulate the expression of peripheral benzodiazepine receptors of mitochondria in cerebral cortex. The rats were divided into five groups. Those, in the vehicle-physiological or senescent group, received physiological or d-galactose (subcutaneously) once a day. Rats, in the vehicle-dimethyl sulfoxide- or DHEA-treated senescent group, received 2% of dimethyl sulfoxide or DHEA (intraperitoneally) every other day besides D-galactose (subcutaneously) once a day. Rats in the DHEA-treated normal group received physiological once a day and DHEA every other day. After 8-week, spatial learning was assessed for 5 days by water maze methods. Following behavioural testing, the cerebral cortex mitochondria were purified for PK11195 binding analysis. When compared to the respective vehicle, D-galactose alone induced a significant impairment in water maze performance accompanied by a reduction (30.7%) in peripheral benzodiazepine receptor density of mitochondria, and DHEA displayed a significant enhancement in learning memory accompanied by the elevation (18.3%) of peripheral benzodiazepine receptor density but not affinity in senescent rats. DHEA showed insignificant effects on both learning/memory ability and peripheral benzodiazepine receptors in normal rats when compared to physiological saline. These results suggest that chronic treatment with DHEA enhance cognitive function and increase peripheral benzodiazepine receptor density in cerebral cortex mitochondria in middle-aged senescent rats.

  17. D-Galactose High-Dose Administration Failed to Induce Accelerated Aging Changes in Neurogenesis, Anxiety, and Spatial Memory on Young Male Wistar Rats.

    PubMed

    Cardoso, Armando; Magano, Sara; Marrana, Francisco; Andrade, José P

    2015-12-01

    The model of accelerated senescence with the prolonged administration of d-galactose is used in anti-aging studies because it mimics several aging-associated alterations such as increase of oxidative stress and decline of cognition. However, there is no standardized protocol for this aging model, and recently some reports have questioned its effectiveness. To clarify this issue, we used a model of high-dose d-galactose on 1-month-old male Wistar rats and studied the hippocampus, one of the most affected brain regions. In one group (n = 10), d-galactose was daily administered intraperitoneally (300 mg/kg) during 8 weeks whereas age-matched controls (n = 10) were injected intraperitoneally with saline. A third group (n = 10) was treated with the same dose of d-galactose and with oral epigallocatechin-3-gallate (EGCG) (2 grams/L), a green tea catechin with anti-oxidant and neuroprotective properties. After treatments, animals were submitted to open-field, elevated plus-maze and Morris water maze tests, and neurogenesis in the dentate gyrus subgranular layer was quantified. There were no significant alterations when the three groups were compared in the number of doublecortin- and Ki-67-immunoreactive cells, and also on anxiety levels, spatial learning, and memory. Therefore, d-galactose was not effective in the induction of accelerated aging, and EGCG administered to d-galactose-treated animals did not improve behavior and had no effects on neurogenesis. We conclude that daily 300 mg/kg of d-galactose administered intraperitoneally may not be a suitable model for inducing age-related neurobehavioral alterations in young male Wistar rats. More studies are necessary to obtain a reliable and reproducible model of accelerated senescence in rodents using d-galactose.

  18. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model.

    PubMed

    Ali, Tahir; Badshah, Haroon; Kim, Tae Hyun; Kim, Myeong Ok

    2015-01-01

    Melatonin acts as a pleiotropic agent in various age-related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D-galactose-induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D-galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D-galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y-maze test) results revealed that chronic melatonin treatment alleviated D-galactose-induced memory impairment. Additionally, melatonin treatment reversed D-galactose-induced synaptic disorder via increasing the level of memory-related pre-and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D-galactose-treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D-galactose-induced neuroinflammation through inhibition of microgliosis (Iba-1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p-IKKβ, p-NF-K B65, COX2, NOS2, IL-1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p-JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase-9, caspase-3 and PARP-1, and prevent neurodegeneration. Hence, melatonin attenuated the D-galactose-induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF-K B/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age-related neurodegenerative diseases such as Alzheimer's disease (AD).

  19. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger.

    PubMed

    Mojzita, Dominik; Koivistoinen, Outi M; Maaheimo, Hannu; Penttilä, Merja; Ruohonen, Laura; Richard, Peter

    2012-02-01

    For the catabolism of D-galactose three different metabolic pathways have been described in filamentous fungi. Apart from the Leloir pathway and the oxidative pathway, there is an alternative oxido-reductive pathway. This oxido-reductive pathway has similarities to the metabolic pathway of L-arabinose, and in Trichoderma reesei (Hypocrea jecorina) and Aspergillus nidulans the same enzyme is employed for the oxidation of L-arabitol and galactitol. Here we show evidence that in Aspergillus niger L-arabitol dehydrogenase (LadA) is not involved in the D-galactose metabolism; instead another dehydrogenase encoding gene, ladB, is induced in response to D-galactose and galactitol and functions as a galactitol dehydrogenase. Deletion of ladB in A. niger results in growth arrest on galactitol and significantly slower growth on D-galactose supplemented with a small amount of D-xylose. D-galactose alone cannot be utilised by A. niger and the addition of D-xylose stimulates growth on D-galactose via transcriptional activation of the D-xylose-inducible reductase gene, xyrA. XyrA catalyses the first step of the D-galactose oxido-reductive pathway, the reduction to galactitol, which in turn seems to be an inducer of the downstream genes such as LadB. The deletion of xyrA results in reduced growth on D-galactose. The ladB gene was expressed in the heterologous host Saccharomyces cerevisiae and the tagged and purified enzyme characterised. LadB and LadA have similar in vitro activity with galactitol. It was confirmed that the reaction product of the LadB reaction from galactitol is L-xylo-3-hexulose as in the case of the T. reesei Lad1. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. RADIOAUTOGRAPHIC COMPARISON OF THE UPTAKE OF GALACTOSE-H3 AND GLUCOSE-H3 IN THE GOLGI REGION OF VARIOUS CELLS SECRETING GLYCOPROTEINS OR MUCOPOLYSACCHARIDES

    PubMed Central

    Neutra, Marian; Leblond, C. P.

    1966-01-01

    The radioautographic distribution of the label of galactose-H3 was compared with that of glucose-H3 in a series of secretory cells of the rat. Whereas the glucose label appeared in all mucous cells, the galactose label was incorporated only into certain mucous cells. Whenever either label was incorporated, however, it was located first in the Golgi region and later in the secretion product, mucus. Several lines of evidence, including extraction of glucose label with peracetic acid—beta glucuronidase, indicated that the material synthesized in the Golgi region was glycoprotein in nature. In chondrocytes, both the galactose and the glucose label appeared first in the Golgi region and later in cartilage matrix; extraction of glucose label with hyaluronidase indicated that much of it consisted of mucopolysaccharide. In all secretory cells, the extraction of glycogen by amylase had no effect on Golgi radioactivity. Such extraction did not eliminate the scattered cytoplasmic label also seen after glucose-H3 injection, but completely eliminated that seen after galactose-H3. Consequently, the galactose-H3 label in the Golgi region stood out more clearly, and was detected in many cells: pancreas, liver, epididymis, and intestinal columnar cells. In the latter, label later appeared in the surface coat. Thus, radioautography after injection of galactose-H3, as after glucose-H3, indicates that synthesis of complex carbohydrates takes place in the Golgi region of many secretory cells. PMID:4226008

  1. UDP-galactose transporter gene hUGT1 expression in tobacco plants leads to hyper-galactosylated cell wall components.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Asai, Toshihiko; Ishihara, Nami; Kitamura, Kenji; Ishida, Nobuhiro; Tanaka, Nobukazu

    2016-05-01

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants.

  2. Galactose protects hepatocytes against TNF-α-induced apoptosis by promoting activation of the NF-κB signaling pathway in acute liver failure.

    PubMed

    Liu, Yanmin; Zhu, Liuluan; Liang, Shuntao; Yao, Shanshan; Li, Rui; Liu, Sanhai; Ma, Yaluan; Zhou, Xiaobing; Zhang, Jinliang; Zeng, Hui; Wang, Xianbo

    2015-05-01

    Saccharides are reported to protect hepatocytes from acute liver injury through distinct mechanisms. To date, the protective role of galactose against acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN) has been attributed to competition with D-GalN. Here, we showed that in addition to its effects on LPS/D-GalN and tumor necrosis factor alpha (TNF-α)/D-GalN models, galactose improves hepatic injury in mice challenged with LPS alone or TNF-α/actinomycin D. Consistent with this result, galactose enhanced the viability of TNF-α-stimulated Chang Liver and Hu7.5 hepatic cell lines. Specifically, galactose prevented TNF-α-induced apoptosis of hepatocytes through promoting phosphorylation of nuclear factor kappa B (NF-κB) p65. Additionally, galactose enhanced expression of the anti-apoptotic genes, c-IAP1 and A20, and inhibited cleavage of caspase-8 and caspase-3. These findings collectively suggest that galactose prevents TNF-α-induced liver injury through activation of the NF-κB signaling pathway. Considering that monosaccharides protect against liver injury via distinct mechanisms, these compounds may represent a promising clinical approach to treat acute liver failure.

  3. Metabolism of D-galactose is dispensable for the induction of the beta-galactosidase (bgaD) and lactose permease (lacpA) genes in Aspergillus nidulans.

    PubMed

    Orosz, Anita; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2014-10-01

    In this study, we analyze the expression of the Aspergillus nidulans bgaD-lacpA gene couple (encoding an intracellular beta-galactosidase and a lactose permease) in the presence of D-galactose. This monosaccharide can be catabolized via alternative, independent pathways in this model organism. The inductive capabilities of intermediates of the two alternative routes of D-galactose utilization were addressed in loss-of-function mutants defective in a defined step in one of the two pathways. In a galactokinase (galE9) mutant, the cluster is strongly induced by D-galactose, suggesting that formation of Leloir pathway intermediates is not required. The expression profiles of bgaD and lacpA were similar in wild type, L-arabinitol dehydrogenase (araA1), and hexokinase (hxkA1) negative backgrounds, indicating that intermediates of the oxido-reductive pathway downstream of galactitol are not necessary either. Furthermore, bgaD-lacpA transcription was not induced in any of the tested strains when galactitol was provided as the growth substrate. An hxkA1/galE9 double mutant cannot grow on d-galactose at all, but still produced bgaD and lacpA transcripts upon transfer to d-galactose. We therefore concluded that the physiological inducer of the bgaD-lacpA gene cluster upon growth on D-galactose is the nonmetabolized sugar itself.

  4. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice

    PubMed Central

    Oroojan, A. A.; Ahangarpour, A.; Khorsandi, L.; Najimi, S. A.

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr levels were not significantly changed in the D-galactose and natural aged animals in comparison to control group. Histological changes such as nuclear pyknosis, proximal cell swelling, infiltration of inflammatory cells, tubular dilatation and, vasodilatation were observed in both D-galactose and natural aged mice. Further, glomerules diameter was decreased in them. Administration of VAC could attenuate the histological alterations. These results indicate that VAC may have beneficial effects on aging and aging related kidney disease. PMID:27822252

  5. Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.

    PubMed Central

    Lindén, T; Peetre, J; Hahn-Hägerdal, B

    1992-01-01

    From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein). Images PMID:1622236

  6. Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model.

    PubMed

    Reichen, J; Widmer, T; Cotting, J

    1991-09-01

    We retrospectively analyzed the predictive accuracy of serial determinations of galactose elimination capacity in 61 patients with primary biliary cirrhosis. Death was predicted from the time that the regression line describing the decline in galactose elimination capacity vs. time intersected a value of 4 mg.min-1.kg-1. Thirty-one patients exhibited decreasing galactose elimination capacity; in 11 patients it remained stable and in 19 patients only one value was available. Among those patients with decreasing galactose elimination capacity, 10 died and three underwent liver transplantation; prediction of death was accurate to 7 +/- 19 mo. This criterion incorrectly predicted death in two patients with portal-vein thrombosis; otherwise, it did better than or as well as the Mayo clinic score. The latter was also tested on our patients and was found to adequately describe risk in yet another independent population of patients with primary biliary cirrhosis. Cox regression analysis selected only bilirubin and galactose elimination capacity, however, as independent predictors of death. We submit that serial determination of galactose elimination capacity in patients with primary biliary cirrhosis may be a useful adjunct to optimize the timing of liver transplantation and to evaluate new pharmacological treatment modalities of this disease.

  7. Differential Selectivity of the Escherichia coli Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose▿

    PubMed Central

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-01-01

    An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746

  8. Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose.

    PubMed

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-04-01

    An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.

  9. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.

    PubMed

    Choi, Eun-Ji; Kim, Jin-Woo; Kim, Soo-Jung; Seo, Seung-Oh; Lane, Stephan; Park, Yong-Cheol; Jin, Yong-Su; Seo, Jin-Ho

    2016-11-01

    Galactose and glucose are two of the most abundant monomeric sugars in hydrolysates of marine biomasses. While Saccharomyces cerevisiae can ferment galactose, its uptake is tightly controlled in the presence of glucose by catabolite repression. It is desirable to construct engineered strains capable of simultaneous utilization of glucose and galactose for producing biofuels and chemicals from marine biomass. The MTH1 gene coding for transcription factor in glucose signaling was mutated in a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae expressing heterologous 2,3-butanediol (2,3-BD) biosynthetic genes. The engineered S. cerevisiae strain consumed glucose and galactose simultaneously and produced 2,3-BD as a major product. Total sugar consumption rates increased with a low ratio of glucose/galactose, though, occurrence of the glucose depletion in a fed-batch fermentation decreased 2,3-BD production substantially. Through optimizing the profiles of sugar concentrations in a fed-batch cultivation with the engineered strain, 99.1 ± 1.7 g/L 2,3-BD was produced in 143 hours with a yield of 0.353 ± 0.022 g 2,3-BD/g sugars. This result suggests that simultaneous and efficient utilization of glucose and galactose by the engineered yeast might be applicable to the economical production of not only 2,3-BD, but also other biofuels and chemicals from marine biomass. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice

    PubMed Central

    Shahroudi, Mahdieh Jafari; Mehri, Soghra; Hosseinzadeh, Hossein

    2017-01-01

    Objectives: Aging is an unconscious and gradual process that can lead to changes in biological systems. Induction of oxidative stress and apoptosis, hepatotoxicity and neurotoxicity are involved in the aging process. Regarding the antioxidant property of black seed oil, the aim of this study was to evaluate the anti-aging effect of Nigella sativa (N. sativa) oil on d-galactose-induced aging in mice. Methods: For induction of aging, D-galactose (500 mg/kg, subcoutaneously SC) was administrated to male mice for 42 days. Animals were treated with D-galactose alone or with b lack seed oil (0.1, 0.2, 0.5 mL/kg, intraperitoneally (ip)). Additionally, vitamin E (200 mg/kg) was used as a positive control. At the end of treatment, the malondialdehyde (MDA) and the glutathione (GSH) contents in brain and liver tissues were measured. Also, enzymes in serum, including aspartate aminotransferase (AST) and alanine amino transferase (ALT), were determined. The levels of the proteins Bax, Bcl2, caspase-3 (pro and cleaved) in brain and liver tissues were evaluated. Results: Administration of D-galactose (500 mg/kg, SC) for 42 days increased serum levels of ALT and AST, as well as the MDA content, in brain and liver tissues, but decreased the GSH content. Additionally, the levels of apoptotic proteins, including Bax, procaspase-3 and caspase-3 cleaved, were markedly increased. N. sativa oil (0.1 and 0.2 mL/kg) diminished the levels of the biochemical markers ALT and AST. Administration of black seed oil (0.1, 0.2 and 0.5 mL/kg) reduced lipid peroxidation and at doses 0.1 and 0.2 mL/kg significantly recovered the GSH content. The oil decreased Bax/Bcl2 levels and at 0.1 mL/kg down-regulated the expressions of caspase-3 (pro and cleaved) proteins in brain and liver tissues. Conclusion: Through its antioxidant and anti-apoptosis properties, black seed oil exhibited an anti-aging effect in a model of aging induced with D-galactose. PMID:28392960

  11. Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice.

    PubMed

    Shahroudi, Mahdieh Jafari; Mehri, Soghra; Hosseinzadeh, Hossein

    2017-03-01

    Aging is an unconscious and gradual process that can lead to changes in biological systems. Induction of oxidative stress and apoptosis, hepatotoxicity and neurotoxicity are involved in the aging process. Regarding the antioxidant property of black seed oil, the aim of this study was to evaluate the anti-aging effect of Nigella sativa (N. sativa) oil on d-galactose-induced aging in mice. For induction of aging, D-galactose (500 mg/kg, subcoutaneously SC) was administrated to male mice for 42 days. Animals were treated with D-galactose alone or with b lack seed oil (0.1, 0.2, 0.5 mL/kg, intraperitoneally (ip)). Additionally, vitamin E (200 mg/kg) was used as a positive control. At the end of treatment, the malondialdehyde (MDA) and the glutathione (GSH) contents in brain and liver tissues were measured. Also, enzymes in serum, including aspartate aminotransferase (AST) and alanine amino transferase (ALT), were determined. The levels of the proteins Bax, Bcl2, caspase-3 (pro and cleaved) in brain and liver tissues were evaluated. Administration of D-galactose (500 mg/kg, SC) for 42 days increased serum levels of ALT and AST, as well as the MDA content, in brain and liver tissues, but decreased the GSH content. Additionally, the levels of apoptotic proteins, including Bax, procaspase-3 and caspase-3 cleaved, were markedly increased. N. sativa oil (0.1 and 0.2 mL/kg) diminished the levels of the biochemical markers ALT and AST. Administration of black seed oil (0.1, 0.2 and 0.5 mL/kg) reduced lipid peroxidation and at doses 0.1 and 0.2 mL/kg significantly recovered the GSH content. The oil decreased Bax/Bcl2 levels and at 0.1 mL/kg down-regulated the expressions of caspase-3 (pro and cleaved) proteins in brain and liver tissues. Through its antioxidant and anti-apoptosis properties, black seed oil exhibited an anti-aging effect in a model of aging induced with D-galactose.

  12. Genes Involved in Control of Galactose Uptake in Lactobacillus brevis and Reconstitution of the Regulatory System in Bacillus subtilis

    PubMed Central

    Djordjevic, Gordana M.; Tchieu, Jason H.; Saier, Milton H.

    2001-01-01

    The heterofermentative lactic acid bacterium Lactobacillus brevis transports galactose and the nonmetabolizable galactose analogue thiomethyl-β-galactoside (TMG) by a permease-catalyzed sugar:H+ symport mechanism. Addition of glucose to L. brevis cells loaded with [14C]TMG promotes efflux and prevents accumulation of the galactoside, probably by converting the proton symporter into a uniporter. Such a process manifests itself physiologically in phenomena termed inducer expulsion and exclusion. Previous evidence suggested a direct allosteric mechanism whereby the phosphocarrier protein, HPr, phosphorylated at serine-46 [HPr(Ser-P)], binds to the galactose:H+ symporter to uncouple sugar transport from proton symport. To elucidate the molecular mechanism of inducer control in L. brevis, we have cloned the genes encoding the HPr(Ser) kinase, HPr, enzyme I, and the galactose:H+ symporter. The sequences of these genes were determined, and the relevant phylogenetic trees are presented. Mutant HPr derivatives in which the regulatory serine was changed to either alanine or aspartate were constructed. The cloned galP gene was integrated into the chromosome of Bacillus subtilis, and synthesis of the mutant HPr proteins in this organism was shown to promote regulation of GalP, as expected for a direct allosteric mechanism. We have thus reconstituted inducer control in an organism that does not otherwise exhibit this phenomenon. These results are consistent with the conclusion that inducer exclusion and expulsion in L. brevis operates via a multicomponent signal transduction mechanism wherein the presence of glycolytic intermediates such as fructose 1,6-bisphosphate (the intracellular effector), derived from exogenous glucose (the extracellular effector), activates HPr(Ser) kinase (the sensor) to phosphorylate HPr on Ser-46 (the messenger), which binds to the galactose:H+ symporter (the target), resulting in uncoupling of sugar transport from proton symport (the response

  13. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats.

    PubMed

    Budni, Josiane; Pacheco, Robson; da Silva, Sabrina; Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; de Medeiros, Jesiel; Voss, Bruna Constantino; Steckert, Amanda Valnier; Valvassori, Samira da Silva; Quevedo, João

    2016-04-01

    d-Galactose (d-gal) is a reducing sugar that can be used to mimic the characteristics of aging in rodents; however, the effects of d-gal administration by oral route are not clear. Therefore, the aim of this study was to elucidate if the oral administration of d-gal induces cognitive impairments, neuronal loss, and oxidative damage, mimicking an animal model of aging. Male adult Wistar rats (4 months old) received d-gal (100mg/kg) via the oral route for a period of 1, 2, 4, 6 or 8 weeks. The results showed cognitive impairments in the open-field test in the 4th and 6th weeks after d-gal administration, as well as an impairment in spatial memory in the radial maze test after the 6th week of d-gal administration. The results indicated increase of levels of thiobarbituric acid reactive species-TBARS-and carbonyl group content in the prefrontal cortex from the 4th week, and in all weeks of d-gal administration, respectively. An increase in the levels of TBARS and carbonyl group content was observed in the hippocampus over the entire period of d-gal treatment. In the 8th week of d-gal administration, we also observed reductions in synaptophysin and TAU protein levels in the prefrontal cortex. Thus, d-gal given by oral route caused cognitive impairments which were accompanied by oxidative damage. Therefore, these results indicate that orally administered d-gal can induce the behavioral and neurochemical alterations that are observed in the natural aging process. However, oral d-gal effect in rats deserve further studies to be better described. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Protective effect of atorvastatin on d-galactose-induced aging model in mice.

    PubMed

    Kaviani, Elham; Rahmani, Mohammadreza; Kaeidi, Ayat; Shamsizadeh, Ali; Allahtavakoli, Mohamad; Mozafari, Nazanin; Fatemi, Iman

    2017-09-15

    Atorvastatin (Ator), competitive inhibitors of 3-hydroxymethyl-3-glutaryl-coenzyme-A reductase, is a cholesterol lowering drug. Ator has been shown to have neuroprotective, antioxidant and anti-inflammatory properties making that a potential candidate for the treatment of central nervous system (CNS) disorders. Here we assessed the effect of Ator on the d-galactose (d-gal)-induced aging in mice. For this purpose, Ator (0.1 and 1mg/kg/p.o.), was administrated daily in d-gal-received (500mg/kg/p.o.) mice model of aging for six weeks. Anxiety-like behaviors and cognitive functions were evaluated by the elevated plus-maze and novel object recognition tasks, respectively. Physical power was assessed by forced swimming capacity test. Animals brains were analyzed for the superoxide dismutase (SOD) and brain-derived neurotrophic factor (BDNF). We found that Ator decreases the anxiety-like behaviors in d-gal-treated mice. Also, our behavioral tests showed that Ator reverses the d-gal induced learning and memory impairment. Furthermore, we found that Ator increases the physical power of d-gal-treated mice. Our results indicated that the neuroprotective effect of Ator on d-gal induced neurotoxicity is mediated, at least in part, by an increase in the SOD and BDNF levels. The results of present study suggest that Ator could be used as a novel therapeutic strategy for the treatment of age-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron-lipid amphiphiles.

    PubMed

    Trant, John F; Jain, Namrata; Mazzuca, Delfina M; McIntosh, James T; Fan, Bo; Haeryfar, S M Mansour; Lecommandoux, Sebastien; Gillies, Elizabeth R

    2016-10-14

    Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron-lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron-lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2(nd) generation systems and micelles for the 3(rd) and 4(th) generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron-lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer.

  16. A role for a galactose lectin and its ligands during encystment of Entamoeba.

    PubMed

    Eichinger, D

    2001-01-01

    In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.

  17. Heterodimer formation and activity in the human enzyme galactose-1-phosphate uridylyltransferase.

    PubMed Central

    Elsevier, J P; Wells, L; Quimby, B B; Fridovich-Keil, J L

    1996-01-01

    One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits. Images Fig. 1 Fig. 4 Fig. 6 PMID:8692963

  18. Conformational analysis of champedak galactose-binding lectin under different urea concentrations.

    PubMed

    Kameel, Nurul Iman Ahamed; Wong, Yin How; Shuib, Adawiyah Suriza; Tayyab, Saad

    2016-01-01

    Conformational analysis of champedak galactose-binding (CGB) lectin under different urea concentrations was studied in phosphate-buffered saline (pH 7.2) using far-ultraviolet circular dichroism (far-UV CD), tryptophan (Trp) fluorescence and ANS fluorescence. In all cases, CGB lectin displayed a two-step, three-state transition. The first transition (from the native state to the intermediate state) started at ∼2.0 M urea and ended at ∼4.5 M urea, while the second transition (from the intermediate state to the completely denatured state) was characterized by the start- and end-points at ∼5.75 M and ∼7.5 M urea, respectively, when analyzed by the emission maximum of Trp fluorescence. A marked increase in the Trp fluorescence, ANS fluorescence and -CD values at 218 nm (-CD218 nm) represented the first transition, whereas a decrease in these parameters defined the second transition. On the other hand, emission maximum of the Trp fluorescence showed a continuous increase throughout the urea concentration range. Transformation of tetramer into monomer represented the first transition, whereas the second transition reflected the unfolding of monomer. Far-UV CD, Trp fluorescence and ANS fluorescence spectra were used to characterize the native, the intermediate and the completely denatured states of CGB lectin, obtained at 0.0 M, 5.0 M and 9.0 M urea, respectively. The intermediate state was characterized by the presence of higher secondary structures, increased ANS binding as well as increased Trp fluorescence intensity. A gradual decrease in the hemagglutination activity of CGB lectin was observed with increasing urea concentrations, showing complete loss at 4.0 M urea. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Galactose-1-phosphate uridyltransferase dried blood spot quality control materials for newborn screening tests.

    PubMed

    Adam, Barbara W; Flores, Sharon R; Hou, Yu; Allen, Todd W; De Jesus, Victor R

    2015-04-01

    We aimed to prepare dried-blood-spot (DBS) quality control (QC) materials for galactose-1-phosphate uridyltransferase (GALT), to evaluate their stability during storage and use, and to evaluate their performance in five DBS GALT test methods. We prepared and characterized GALT-normal and GALT-deficient DBS materials and compared GALT activities in DBSs after predetermined storage intervals at controlled temperatures and humidities. External evaluators documented the suitability of the DBS QC materials for use in five GALT test methods. GALT activity losses from DBSs stored in low (<30%) humidity for 14 days at 45°C, 35 days at 37°C, 91 days at room temperature, 182 days at 4°C, and 367 days at -20°C were 54%, 53%, 52% 23%, and 7% respectively. In paired DBSs stored in high humidity (>50%) for identical intervals, losses were: 45°C-68%; 37°C-79%; room temperature-72%, and 4°C-63%. GALT activities in DBSs stored at 4°C were stable throughout 19 excursions to room temperature. Twenty-five of 26 external evaluators, using five different GALT test methods, classified the GALT-deficient DBSs as "outside normal limits". All evaluators classified the GALT-normal DBSs as "within normal limits". Most of the GALT activity loss from DBSs stored at elevated or room temperature was attributable to the effects of storage temperature. Most of the loss from DBSs stored at 4°C was attributable to the effects of elevated humidity. Loss from DBSs stored at -20°C was insignificant. The DBS materials were suitable for monitoring performance of all five GALT test methods. Copyright © 2014 The Canadian Society of Clinical Chemists. All rights reserved.

  20. Galactose-1-phosphate Uridyltransferase Dried Blood Spot Quality Control Materials for Newborn Screening Tests

    PubMed Central

    Adam, Barbara W.; Flores, Sharon R.; Hou, Yu; Allen, Todd W.; De Jesus, Victor R.

    2015-01-01

    Objectives We aimed to prepare dried-blood-spot (DBS) quality control (QC) materials for galactose-1-phosphate uridyltransferase (GALT), to evaluate their stability during storage and use, and to evaluate their performance in five DBS GALT test methods. Design and Methods We prepared and characterized GALT-normal and GALT-deficient DBS materials and compared GALT activities in DBSs after predetermined storage intervals at controlled temperatures and humidities. External evaluators documented the suitability of the DBS QC materials for use in five GALT test methods. Results GALT activity losses from DBSs stored in low (<30%) humidity for 14 days at 45°C, 35 days at 37°C, 91 days at room temperature, 182 days at 4°C, and 367 days at −20°C were 54%, 53%, 52% 23%, and 7% respectively. In paired DBSs stored in high humidity (>50%) for identical intervals, losses were: 45°C—68%; 37°C—79%; room temperature—72%, and 4°C—63%. GALT activities in DBSs stored at 4°C were stable throughout 19 excursions to room temperature. Twenty-five of 26 external evaluators, using five different GALT test methods, classified the GALT-deficient DBSs as “outside normal limits”. All evaluators classified the GALT-normal DBSs as “within normal limits”. Conclusions Most of the GALT activity loss from DBSs stored at elevated or room temperature was attributable to the effects of storage temperature. Most of the loss from DBSs stored at 4°C was attributable to the effects of elevated humidity. Loss from DBSs stored at −20°C was insignificant. The DBS materials were suitable for monitoring performance of all five GALT test methods. PMID:25528144

  1. Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli

    PubMed Central

    2004-01-01

    The monomeric D-glucose/D-galactose-binding protein (GGBP) from Escherichia coli (Mr 33000) is a periplasmic protein that serves as a high-affinity receptor for the active transport and chemotaxis towards both sugars. The effect of D-glucose binding on the thermal unfolding of the GGBP protein at pH 7.0 has been measured by differential scanning calorimetry (DSC), far-UV CD and intrinsic tryptophanyl residue fluorescence (Trp fluorescence). All three techniques reveal reversible, thermal transitions and a midpoint temperature (Tm) increase from 50 to 63 °C produced by 10 mM D-glucose. Both in the absence and presence of D-glucose a single asymmetric endotherm for GGBP is observed in DSC, although each endotherm consists of two transitions about 4 °C apart in Tm values. In the absence of D-glucose, the protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. In the presence of D-glucose protein, unfolding is more co-operative than in the absence of the ligand, and the experimental data are best fitted to a model that assumes two ideal (two-state) sequential transitions. Thus D-glucose binding changes the character of the GGBP protein folding/unfolding by linking the two domains such that protein unfolding becomes a cooperative, two two-state process. A KA′ value of 5.6×106 M−1 at 63 °C for D-glucose binding is estimated from DSC results. The domain with the lower stability in DSC measurements has been identified as the C-terminal domain of GGBP from thermally induced Trp fluorescence changes. PMID:15032747

  2. Adipose stem cells' antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function.

    PubMed

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-09-01

    This study aims to discuss adipose stem cells' (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control

  3. d-Galactose High-Dose Administration Failed to Induce Accelerated Aging Changes in Neurogenesis, Anxiety, and Spatial Memory on Young Male Wistar Rats

    PubMed Central

    Magano, Sara; Marrana, Francisco; Andrade, José P.

    2015-01-01

    Abstract The model of accelerated senescence with the prolonged administration of d-galactose is used in anti-aging studies because it mimics several aging-associated alterations such as increase of oxidative stress and decline of cognition. However, there is no standardized protocol for this aging model, and recently some reports have questioned its effectiveness. To clarify this issue, we used a model of high-dose d-galactose on 1-month-old male Wistar rats and studied the hippocampus, one of the most affected brain regions. In one group (n = 10), d-galactose was daily administered intraperitoneally (300 mg/kg) during 8 weeks whereas age-matched controls (n = 10) were injected intraperitoneally with saline. A third group (n = 10) was treated with the same dose of d-galactose and with oral epigallocatechin-3-gallate (EGCG) (2 grams/L), a green tea catechin with anti-oxidant and neuroprotective properties. After treatments, animals were submitted to open-field, elevated plus-maze and Morris water maze tests, and neurogenesis in the dentate gyrus subgranular layer was quantified. There were no significant alterations when the three groups were compared in the number of doublecortin- and Ki-67–immunoreactive cells, and also on anxiety levels, spatial learning, and memory. Therefore, d-galactose was not effective in the induction of accelerated aging, and EGCG administered to d-galactose–treated animals did not improve behavior and had no effects on neurogenesis. We conclude that daily 300 mg/kg of d-galactose administered intraperitoneally may not be a suitable model for inducing age-related neurobehavioral alterations in young male Wistar rats. More studies are necessary to obtain a reliable and reproducible model of accelerated senescence in rodents using d-galactose. PMID:25936362

  4. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation

    PubMed Central

    Daenzer, Jennifer M. I.; Jumbo-Lucioni, Patricia P.; Ryan, Emily L.

    2016-01-01

    ABSTRACT Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila. Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved. PMID

  5. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation.

    PubMed

    Daenzer, Jennifer M I; Jumbo-Lucioni, Patricia P; Hopson, Marquise L; Garza, Kerry R; Ryan, Emily L; Fridovich-Keil, Judith L

    2016-11-01

    Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved.

  6. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage.

    PubMed

    Fan, Yanling; Xia, Jieyu; Jia, Daoyong; Zhang, Mengsi; Zhang, Yanyan; Huang, Guoning; Wang, Yaping

    2016-09-01

    Context Ginseng is a widely used herbal medicine in China but its mechanism of action remains unclear. Objective The objectives of this work were to study the protective effect of ginsenoside Rg1 on subacute murine renal damage induced by d-galactose and its mechanism. Materials and methods C57BL/6J mice were injected with 120 mg/kg/d (sc) d-galactose for 1 week, followed by a combined treatment of Rg1 20 mg/kg/d (ip) and 120 mg/kg/d d-galactose (sc) for 5 weeks. Mice were injected with the 0.9% saline 0.2 mL/d (sc) and 120 mg/kg/d d-galactose (sc) for 6 weeks in the control group and the d-galactose group, respectively. After 6 weeks, urea, creatinine, uric acid, cystatin (Cys-C), senescence-associated β-galactosidase (SA-β-gal) staining positive kidney cells, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), glycation end products (AGEs) and 8-hydroxy-2 deoxyguanosine (8-OH-dG) were measured. Results Treatment with Rg1 ameliorated kidney function and aging state (urea from 17.19 ± 1.09 to 15.77 ± 1.22 mmol·L (-) (1), creatinine from 29.40 ± 5.72 to 22.60 ± 3.97 μmol·L (-) (1), uric acid from 86.80 ± 5.97 to 72.80 ± 10.61 μmol·L (-) (1), Cys-C from 0.23 ± 0.03 to 0.18 ± 0.05 mg·L (-) (1), ROD of SA-β-gal from 56.32 ± 10.48 to 26.78 ± 7.34, SOD from 150.22 ± 19.07 to 190.56 ± 15.83 U·(mg·prot) (-1), MDA from 9.28 ± 1.59 to 3.17 ± 0.82 nmol·(mg·prot) (-1), GSH-PX from 15.68 ± 2.11 to 20.32 ± 2.96 U·(mg·prot) (-1) as well as regulated glomerulus morphology (glomerulus diameter from 775.77 ± 18.41 to 695.04 ± 14.61 μm, renal capsule width from 39.56 ± 3.51 to 31.42 ± 2.70 μm, glomerulus basement membrane from 206.03 ± 16.22 to 157.27 ± 15.70 nm, podocyte slit from 55.21 ± 8.55 to 37.63 ± 6.65 nm). Conclusions Ginsenoside Rg1 can antagonise d-galactose

  7. [Study on establishment of kidney deficient aging model and comparison with D-galactose induced aging model].

    PubMed

    Li, Zhan; Liu, Renhui; Kang, Xue; Wang, Xiujuan

    2012-08-01

    To establish a kidney deficient aging model (KDAM), assess it in antioxidant capacity, HPAT axis function and bone metabolism, and compare with D-galactose aging model. Aging rat model was established by injecting D-galactose solution, meanwhile dexamethasone solution was injected to establish kidney deficient aging model. Then these models were evaluated by serum MDA (malondialdehyde) and GSH-Px (glutathione peroxidase), liver SOD (superoxide dismutase), adrenal, thymus and spleen index, CD4(+), CD8(+), and serum COR (cortisol), BGP (bone Gla-protein), plasma ACTH (adrenocorticotropic hormone) and CRH (corticotropin-releasing hormone). Compared with the normal group, the aging model group and the kidney deficient aging group showed significant decrease in liver SOD activity (P < 0.01 on average) and significant increase in serum MDA content (P < 0.01 on average) , and the kidney deficient aging group revealed remarkable decline in plasma ACTH content (P < 0.05). Compared with the normal group and the aging model group, the kidney deficient aging model group's weight, serum GSH-Px decreased (P < 0.01, P < 0.05), adrenal index decreased (P < 0.05, P < 0.01), serum COR decreased (P < 0.05 on average), plasma CRH increased (P < 0.05, P < 0.01), serum BGP content significantly decreased (P < 0.01 on average), value of CD4(+), CD8(+) decreased (P < 0.05, P < 0.01), CD4(+)/CD8(+) increased, but without significant difference. The kidney deficient aging model shows significant decrease in antioxidant capacity, dysfunction of HPAT axis disorder and abnormal bone metabolism. However, D-galactose aging model only shows a significant difference in antioxidant capacity.

  8. Oxidative Stress and Galactose-Deficient IgA1 as Markers of Progression in IgA Nephropathy

    PubMed Central

    Camilla, Roberta; Suzuki, Hitoshi; Daprà, Valentina; Loiacono, Elisa; Peruzzi, Licia; Amore, Alessandro; Ghiggeri, Gian Marco; Mazzucco, Gianna; Scolari, Francesco; Gharavi, Ali G.; Appel, Gerald B.; Troyanov, Stéphan; Novak, Jan; Julian, Bruce A.

    2011-01-01

    Summary Background and objectives We assessed the activation of the oxidative stress pathway in patients with IgA nephropathy (IgAN), while evaluating the classic marker of the disease (galactose-deficient serum IgA1). Design, setting, participants, & measurements Sera from 292 patients and 69 healthy controls from Italy and the United States were assayed for advanced oxidation protein products (AOPPs), free sulfhydryl groups on albumin (SH-Alb), and IgA1 with galactose-deficient hinge-region O-glycans (Gd-IgA1). Gd-IgA1 was detected by binding to Helix aspersa agglutinin (HAA) and expressed as total Gd-IgA1 or as degree of galactose deficiency relative to a standard Gd-IgA1 myeloma protein (%HAA). Results Sera from IgAN patients showed higher levels of Gd-IgA1, %HAA, and AOPPs, but lower levels of SH-Alb in comparison to that from healthy controls. Serum levels of AOPPs significantly correlated with serum Gd-IgA1 and %HAA. The relationship between these biomarkers and clinical features at sampling and during follow-up was assessed in 62 patients with long-term follow-up. AOPPs and %HAA correlated with proteinuria at sampling and independently associated with subsequent proteinuria. Levels of AOPPs correlated with rate of decline in renal function after sampling. The combination of a high level of AOPPs and a high level of %HAA associated with decline in estimated GFR. Conclusions Serum levels of aberrantly glycosylated IgA1 are elevated and oxidative stress pathways are activated in patients with IgAN; the intensity of the stress correlated with expression and progression of the disease. We speculate that oxidative stress may modulate the nephrotoxicity of aberrantly glycosylated IgA1 in IgAN. PMID:21784819

  9. Selective recovery of tagatose from mixtures with galactose by direct extraction with supercritical CO2 and different cosolvents.

    PubMed

    Montañés, Fernando; Fornari, Tiziana; Martín-Alvarez, Pedro J; Corzo, Nieves; Olano, Agustin; Ibañez, Elena

    2006-10-18

    A selective fractionation method of carbohydrate mixtures of galactose/tagatose, using supercritical CO(2) and isopropanol as cosolvent, has been evaluated. Optimization was carried out using a central composite face design and considering as factors the extraction pressure (from 100 to 300 bar), the extraction temperature (from 60 to 100 degrees C), and the modifier flow rate (from 0.2 to 0.4 mL/min, which corresponded to a total cosolvent percentage ranging from 4 to 18% vol). The responses evaluated were the amount (milligrams) of tagatose and galactose extracted and their recoveries (percent). The statistical analysis of the results provided mathematical models for each response variable. The corresponding parameters were estimated by multiple linear regression, and high determination coefficients (>0.96) were obtained. The optimum conditions of the extraction process to get the maximum recovery of tagatose (37%) were 300 bar, 60 degrees C, and 0.4 mL/min of cosolvent. The predicted value was 24.37 mg of tagatose, whereas the experimental value was 26.34 mg, which is a 7% error from the predicted value. Cosolvent polarity effects on tagatose extraction from mixtures of galactose/tagatose were also studied using different alcohols and their mixtures with water. Although a remarkable increase of the amount of total carbohydrate extracted with polarity was found, selective extraction of tagatose decreased with increase of polarity of assayed cosolvents. To improve the recovery of extracted tagatose, additional experiments outside the experimental domain were carried out (300 bar, 80 degrees C, and 0.6 mL/min of isopropanol); recoveries >75% of tagatose with purity >90% were obtained.

  10. Zoledronate derivatives as potential inhibitors of uridine diphosphate-galactose ceramide galactosyltransferase 8: A combined molecular docking and dynamic study.

    PubMed

    Pannuzzo, Giovanna; Graziano, Adriana Carol Eleonora; Pannuzzo, Martina; Masman, Marcelo Fabricio; Avola, Rosanna; Cardile, Venera

    2016-11-01

    Krabbe's disease is a neurodegenerative disorder caused by deficiency of galactocerebrosidase activity that affects the myelin sheath of the nervous system, involving dysfunctional metabolism of sphingolipids. It has no cure. Because substrate inhibition therapy has been shown to be effective in some human lysosomal storage diseases, we hypothesize that a substrate inhibition therapeutic approach might be appropriate to allow correction of the imbalance between formation and breakdown of glycosphingolipids and to prevent pathological storage of psychosine. The enzyme responsible for the biosynthesis of galactosylceramide and psychosine is uridine diphosphate-galactose ceramide galactosyltransferase (2-hydroxyacylsphingosine 1-β-galactosyltransferase; UGT8; EC 2.4.1.45), which catalyzes the transferring of galactose from uridine diphosphate-galactose to ceramide or sphingosine, an important step of the biosynthesis of galactosphingolipids. Because some bisphosphonates have been identified as selective galactosyltransferase inhibitors, we verify the binding affinity to a generated model of the enzyme UGT8 and investigate the molecular mechanisms of UGT8-ligand interactions of the bisphosphonate zoledronate by a multistep framework combining homology modeling, molecular docking, and molecular dynamics simulations. From structural information on UGTs' active site stereochemistry, charge density, and access through the hydrophobic environment, the molecular docking procedure allowed us to identify zoledronate as a potential inhibitor of human ceramide galactosyltransferase. More importantly, zoledronate derivates were designed through computational modeling as putative new inhibitors. Experiments in vivo and in vitro have been planned to verify the possibility of using zoledronate and/or the newly identified inhibitors of UGT8 for a substrate inhibition therapy useful for treatment of Krabbe's disease and/or other lysosomal disorders. © 2016 Wiley Periodicals, Inc.

  11. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice.

    PubMed Central

    Seymour, L. W.; Ulbrich, K.; Wedge, S. R.; Hume, I. C.; Strohalm, J.; Duncan, R.

    1991-01-01

    N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers containing doxorubicin (DOX) and galactosamine can be targeted to the hepatocyte galactose receptor for organ-specific chemotherapy of primary and metastatic liver cancer. Here we report the dose-dependent pharmacokinetics of this macromolecular conjugate. Following intravenous administration to mice most efficient liver targeting was seen at low dose (0.05 mg DOX kg-1), with receptor saturation observed using higher bolus doses. Repeated low dose bolus injections did not cause down-regulation of the galactose receptor and targeted drug delivery rates of greater than or equal to 2 micrograms DOX g-1 liver h-1 were achieved. DOX is released from such conjugates intracellularly via action of lysosomal proteinases. It was shown that isolated rat liver lysosomal enzymes (Tritosomes) can release unmodified DOX from the peptidyl side chain Gly-Phe-Leu-Gly at a rate greater than or equal to 3 micrograms DOX g-1 liver h-1 i.e. the hydrolytic capacity is greater than the observed rate of drug delivery to the liver lysosomes in vivo. Although most conjugate would be captured by normal hepatocytes following intravenous administration, it was shown that the human hepatoma cell line HepG2 retains the galactose receptor, accumulating and processing the conjugate efficiently. Potential dose limiting toxicities of such drug conjugates could include cardio- or hepatotoxicity. Administration of conjugate reduced the 15 min heart level of DOX approximately 100-fold compared with that observed for an equivalent dose of free drug. Preliminary experiments showed that plasma levels of alkaline phosphatase, alanine transaminase and asparate transaminase did not change following administration of HPMA copolymer-daunorubicin (DNR) (10 mg DNR kg-1) indicating no significant heptatoxicity. PMID:1648946

  12. Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies.

    PubMed

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2011-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([(13)C(6)]-uridine diphosphate galactose in GALT assay and [(13)C(6)]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4±4.2 and GALK activity of 1.8±0.47 (mean±SD) μmol⋅(g Hgb)(-1) h(-1). Erythrocyte GALT activities in a cohort of 16 patients with classic or severe galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analyzed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test.

  13. Ultra Fast and Sensitive Liquid Chromatography Tandem Mass Spectrometry Based Assay for Galactose-1-Phosphate Uridylyltransferase and Galactokinase Deficiencies

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([13C6]-uridine diphosphate galactose in GALT assay and [13C6]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4 ± 4.2 and GALK activity of 1.8 ± 0.47 (mean ± SD) µmol·(g Hgb) −1·hr−1. Erythrocyte GALT activities in a cohort of 16 patients with classic galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analzyed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test. PMID:20863731

  14. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus.

    PubMed

    Robitaille, G; Tremblay, A; Moineau, S; St-Gelais, D; Vadeboncoeur, C; Britten, M

    2009-02-01

    To prevent textural defects in low-fat and fat-free yogurts, fat substitutes are routinely added to milk. In situ production of exopolysaccharides (EPS) by starter cultures is an acknowledged alternative to the addition of biothickeners. With the aim of increasing in situ EPS production, a recombinant galactose-positive EPS(+) Streptococcus thermophilus strain, RD-534-S1, was generated and compared with the parent galactose-negative EPS(+) strain RD-534. The RD-534-S1 strain produced up to 84 mg/L of EPS during a single-strain milk fermentation process, which represented 1.3 times more than the EPS produced by strain RD-534. Under conditions that mimic industrial yogurt production, the starter culture consisting of RD-534-S1 and (EPS(-)) Lactobacillus bulgaricus L210R strain (RD-534-S1/L210R) led to an EPS production increase of 1.65-fold as compared with RD-534-S1 alone. However, the amount of EPS produced did not differ from that found in yogurts produced using an isogenic starter culture that included the parent S. thermophilus strain RD-534 and Lb. bulgaricus L210R (RD-534/L210R). Moreover, the gel characteristics of set-style yogurt and the rheological properties of stirred-style yogurt produced using RD-534-S1/L210R were similar to the values obtained for yogurts made with RD-534/L210R. In conclusion, it is possible to increase the production of EPS by ropy S. thermophilus strains through genetic engineering of galactose metabolism. However, when used in combination with Lb. bulgaricus for yogurt manufacture, the EPS overproduction of recombinant strain is not significant.

  15. The effect of galactose ingestion on affect and perceived exertion in recreationally active females.

    PubMed

    Duckworth, Lauren C; Backhouse, Susan H; Stevenson, Emma J

    2013-12-01

    The beneficial effects of acute carbohydrate (CHO) supplementation on exercise performance have been well described. Also reported is the attenuation of perceived exertion and enhancement of affect during prolonged exercise following CHO ingestion. However, no studies to date have assessed the impact of the type of CHO ingested on affective responses during moderate intensity exercise, lasting 60 min or less. Therefore, the aim of the present study was to investigate the effects of consuming a galactose (GAL) CHO drink versus a glucose (GLU) CHO or placebo (PLA) drink before and during exercise on affect and perceived exertion. Nine recreationally active females undertook three trials, each consisting of running for 60 min at 65% VO2max followed immediately by a 90 min rest period. Prior to (300 ml) and at every 15 min during exercise (150 ml), participants consumed either a GLU or GAL drink each containing 45 g of CHO, or an artificially-sweetened PLA drink. Ratings of pleasure-displeasure and perceived activation were measured throughout exercise and the rest period and measures of perceived exertion were measured during exercise. Plasma glucose and serum insulin were significantly greater throughout exercise and rest following the GLU trial compared with the GAL and PLA trials (P<0.05). Measures of perceived activation and pleasure-displeasure were not enhanced nor RPE reduced as a result of ingestion of a CHO solution. In conclusion, the GAL beverage elicited a more favourable metabolic profile in the exercising females but this did not translate into an enhanced affective profile. Indeed, CHO ingestion had no noticeable effect on the assessed psychological indices during 60 min of moderate-intensity exercise in females. It is suggested that the maintenance of a positive affective profile may be explained more by the level of hydration as opposed to fuel availability. Therefore, those seeking to use beverages containing CHO to enhance their exercise experience

  16. Optimizing a Male Reproductive Aging Mouse Model by d-Galactose Injection

    PubMed Central

    Liao, Chun-Hou; Chen, Bing-Huei; Chiang, Han-Sun; Chen, Chiu-Wei; Chen, Mei-Feng; Ke, Chih-Chun; Wang, Ya-Yun; Lin, Wei-Ning; Wang, Chi-Chung; Lin, Ying-Hung

    2016-01-01

    The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8–10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies

  17. Production of Normal Mammalian Organ Culture Using a Medium Containing Mem-Alpha, Leibovitz L 15, Glucose Galactose Fructose

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor)

    1999-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under micro- gravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. The medium used for culturing the cells, especially a mixture of epithelial and mesenchymal cells contains a mixture of Mem-alpha and Leibovits L15 supplemented with glucose, galactose and fructose.

  18. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins

    PubMed Central

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H.; Cogdell, Richard J.

    2014-01-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding. PMID:24915077

  19. A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red ginseng.

    PubMed

    Park, Sok; Kim, Chan-Sik; Min, Jinah; Lee, Soo Hwan; Jung, Yi-Sook

    2014-01-01

    Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury.

  20. Epimerization of D-glucose to L-galactose during the biosynthesis of a sulfated L-galactan in the ascidian tunic

    SciTech Connect

    Mourao, P.A.S. )

    1991-04-09

    The sulfated polysaccharides occurring in the tunic of ascidians are unique among known sulfated polysaccharides in that their major constituent sugar is galactose, which occurs exclusively in the L-enantiomeric form. In vitro incorporation experiments using tunic slices incubated with {sup 14}C-labeled sugars revealed that cells from this tissue epimerize D-isomers of hexose into L-galactose during the biosynthesis of their constituent polysaccharides. Compared with other hexoses, the precursor D-({sup 14}C)glucose has the highest rate of incorporation and produces the highest proportion of L-galactose units. This metabolic pathway is distinct from the epimerization of D-mannose to L-galactose through its guanosine 5{prime}-diphosphate nucleotide, described previously in an alga and in a snail. Therefore, the epimerization of D-glucose to L-galactose in the ascidian tunic occurs through a novel metabolic route, which involves inversion of the configuration of carbon atoms 2, 3, and 5 of the hexosyl moieties.

  1. Saponins from Aralia taibaiensis attenuate D-galactose-induced aging in rats by activating FOXO3a and Nrf2 pathways.

    PubMed

    Li, Ying-Na; Guo, Yu; Xi, Miao-Miao; Yang, Pei; Zhou, Xue-Ying; Yin, Shuang; Hai, Chun-Xu; Li, Jin-Gang; Qin, Xu-Jun

    2014-01-01

    Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats.

  2. Saponins from Aralia taibaiensis Attenuate D-Galactose-Induced Aging in Rats by Activating FOXO3a and Nrf2 Pathways

    PubMed Central

    Li, Ying-Na; Guo, Yu; Xi, Miao-Miao; Yang, Pei; Zhou, Xue-Ying; Yin, Shuang; Hai, Chun-Xu; Li, Jin-Gang; Qin, Xu-Jun

    2014-01-01

    Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats. PMID:24669284

  3. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    PubMed

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  4. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    PubMed

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  5. Enzymic transfer of 6-modified D-galactosyl residues: synthesis of biantennary penta- and hepta-saccharides having two 6-deoxy-D-galactose residues at the nonreducing end and evaluation of 6-deoxy-D-galactosyl transfer to glycoprotein using bovine beta-(1-->4)-galactosyltransferase and UDP-6-deoxy-D-galactose.

    PubMed

    Kajihara, Y; Endo, T; Ogasawara, H; Kodama, H; Hashimoto, H

    1995-04-19

    UDP-6-Deoxy-D-galactose and UDP-6-deoxy-6-fluoro-D-galactose were synthesized and their transfer to 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine) by beta-(1-->4)-galactosyltransferase was examined. The transfer rates of 6-deoxy-D-galactose and 6-deoxy-6-fluoro-D-galactose were 1.3 and 0.2% of that of D-galactosyl transfer, respectively. The 2-acetamido-4-O-(6-deoxy-beta-D-galactopyranosyl)-2-deoxy-D-glucopyranose (6'-deoxy-N-acetyllactosamine) and methyl 2-acetamido-4-O-(6-deoxy-6-fluoro-beta-D-galactopyranosyl)-2-deoxy-D- glucopyranoside (6'-deoxy-6'-fluoro-N-acetyllactosamine) were synthesized enzymatically in 30 and 59% yields, respectively. Further, 6-deoxy-D-galactose could be completely transferred to N-linked type biantennary oligosaccharides having two N-acetyl-D-glucosaminyl residues at the nonreducing end to give the corresponding penta- and hepta-saccharides in 55 and 57% yields, respectively. An assay of 6-deoxy-D-galactosyl transfer using asialo agalacto alpha 1-acid glycoprotein as an acceptor suggested that 6-deoxy-D-galactose was transferred to about 30% of the N-acetyl-D-glucosaminyl residues in the N-linked oligosaccharides of the glycoprotein.

  6. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum.

    PubMed

    Koroney, Abdoul Salam; Plasson, Carole; Pawlak, Barbara; Sidikou, Ramatou; Driouich, Azeddine; Menu-Bouaouiche, Laurence; Vicré-Gibouin, Maïté

    2016-07-06

    Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root-microbe interactions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Splenocyte proliferation and anaphylaxis induced by BSA challenge in a D-galactose-induced aging mouse model

    PubMed Central

    Park, Ji-Hun

    2016-01-01

    We previously found a cross-reactive autoantibody that bound to bovine serum albumin generated in a D-galactose-induced aging mouse model. Also, we confirmed that other reducing sugars (glucose and fructose) could induce the formation of autoantibody, and only following subcutaneous injection, not oral or intraperitoneal administration. Mice that had never been exposed to bovine serum albumin produced an anti-bovine serum albumin autoantibody following repeated subcutaneous injection of D-galactose (D-gal). In this study, we investigated the involvement of the adaptive immune system in the production of this autoantibody. In particular, we examined bovine serum albumin-induced splenocyte proliferation and bovine serum albumin-induced active cutaneous and systemic anaphylaxis in D-gal-treated mice. We find our results particularly interesting: bovine serum albumin stimulates splenocyte proliferation and induces both active cutaneous and systemic anaphylaxis in D-gal-treated mice. In summary, our results suggest that adaptive immune response participates in the autoantibody formation against bovine serum albumin in D-gal-treated mice. PMID:27833452

  8. Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat.

    PubMed

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing; Liu, Fangjun; Liu, Dalie

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  9. Structural differences between two lectins from Cytisus scoparius, both specific for D-galactose and N-acetyl-D-galactosamine.

    PubMed

    Young, N M; Watson, D C; Williams, R E

    1984-08-15

    Three lectin fractions were obtained from seeds of the leguminous plant Cytisus scoparius (Scotch broom) by means of affinity chromatography on a N-acetyl-D-galactosamine medium. The first fraction, termed CSIa, was equally well inhibited in haemagglutination experiments by D-galactose and by N-acetyl-D-galactosamine and consisted of a group of isolectins formed from closely related polypeptide chains of approx. Mr 30000. The second fraction, CSIb, was closely related to CSIa in specificity, c.d. and other properties. The third fraction contained a homogeneous lectin, CSII, formed from subunits again of approx. Mr 30000. CSII was 100 times more readily inhibited by N-acetyl-D-galactosamine than by D-galactose. Despite the similarity in specificity, comparative studies of their amino acid composition, c.d. and N-terminal amino acid sequence showed that the CSIa and CSII lectins diverged considerably in structure. The lectin from Cytisus sessilifolius, specific for chitobiose, was also examined and resembled CSIa in composition and c.d. properties.

  10. Structural and functional mimic of galactose oxidase by a copper complex of a sterically demanding [N2O2] ligand.

    PubMed

    John, Alex; Shaikh, Mobin M; Ghosh, Prasenjit

    2008-06-07

    A structural and functional mimic of the galactose oxidase (GOase) enzyme active-site by a copper complex supported over a sterically demanding ligand having [N2O2] donor sites is reported. Specifically, the binding of the histidine (496 and 581) and tyrosine (272 and 495) residues to the copper center in a square-pyramidal fashion in the active-site of galactose oxidase (GOase) enzyme has been modeled in a copper complex, ([(3-tert-butyl-5-methyl-2-hydoxybenzyl)(3'-tert-butyl-5'-methyl-2'-oxobenzyl)(2-pyridylmethyl)]amine)Cu(OAc)) (1b), stabilized over a sterically demanding ligand in which the two phenolate-O atoms mimicked the tyrosine binding while an amine-N and pyridyl-N atoms emulated the histidine binding to the metal center, similar to that in the enzyme active-site. Furthermore, the copper complex 1b is found to be an effective functional model of the enzyme as it efficiently catalyzed the chemoselective oxidation of primary alcohols to aldehydes in high turnover numbers under ambient conditions. An insight into the nature of the active-species was obtained by EPR and CV studies, which in conjunction with the DFT studies, revealed that the active-species is an anti-ferromagnetically coupled diamagnetic radical cation, (1)1b+, obtained by one electron oxidation at the equatorial phenolate-O atom of the ligand in the 1b complex.

  11. Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing D-galactose 4,6-cyclophosphate.

    PubMed

    Knirel, Y A; Paredes, L; Jansson, P E; Weintraub, A; Widmalm, G; Albert, M J

    1995-09-01

    The capsular polysaccharide (CPS) of Vibrio cholerae O139 synonym Bengal, which is thought to carry determinants of O-specificity, was isolated by phenol/water extraction followed by delipidation of the contaminating lipopolysaccharide at pH 4.2 and gel-permeation chromatography. The CPS contained D-galactose, 3,6-dideoxy-L-xylo-hexose (colitose, Col), 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), D-galacturonic acid (D-GalA), and phosphate. The CPS was studied by NMR spectroscopy, methylation analysis, and selective degradations, including partial acid hydrolysis at pH 3.1 and dephosphorylation with aqueous 48% hydrofluoric acid, which both resulted in complete cleavage of Col. It was concluded that the CPS is built up of hexasaccharide repeating units containing inter alia D-galactose 4,6-cyclophosphate and having the following structure [structure: see text] These data basically confirm the structure of the V. cholerae CPS proposed on the basis of an NMR study [L. M. Preston et al. (1995) J. Bacteriol. 177, 835-838] and specify exactly the absolute configurations of the constituent monosaccharides and the position of the cyclic phosphate.

  12. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli

    SciTech Connect

    Cairns, M.T.; McDonald, T.P.; Horne, P.; Henderson, P.J.; Baldwin, S.A. )

    1991-05-05

    Cytochalasin B is a potent inhibitor of mammalian passive glucose transporters. The recent demonstration of sequence similarities between these proteins and several bacterial proton-linked sugar transporters suggested that cytochalasin B might be a useful tool for investigation of the galactose/H+ symport protein (GalP) of Escherichia coli. Equilibrium binding studies using membranes from a GalP-constitutive (GalPc) strain of E. coli revealed a single set of high affinity binding sites for cytochalasin B with a Kd of 0.8-2.2 microM. Binding was inhibited by D-glucose, but not by L-glucose. UV irradiation of the membranes in the presence of (4-{sup 3}H)cytochalasin B photolabeled principally a protein of apparent Mr 38,000, corresponding to the GalP protein. Labeling was inhibited by greater than 80% in the presence of 500 mM D-glucose or D-galactose, the major substrates of the GalP system. The extent of inhibition of photolabeling by different sugars and sugar analogues showed that the substrate specificity of GalP closely resembles that of the mammalian passive glucose transporters. Structural similarity to the latter was revealed by tryptic digestion of (4-{sup 3}H)cytochalasin B-photolabeled GalP, which yielded a radiolabeled fragment of apparent Mr 17,000-19,000, similar to that previously reported for the human erythrocyte glucose transporter.

  13. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum

    PubMed Central

    Koroney, Abdoul Salam; Plasson, Carole; Pawlak, Barbara; Sidikou, Ramatou; Driouich, Azeddine; Menu-Bouaouiche, Laurence; Vicré-Gibouin, Maïté

    2016-01-01

    Background and aims Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. Methods In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Key Results Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Conclusions Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root–microbe interactions. PMID:27390353

  14. Protein-bound carbohydrates in breast cancer. Liquid-chromatographic analysis for mannose, galactose, fucose, and sialic acid in serum.

    PubMed

    Mrochek, J E; Dinsmore, S R; Tormey, D C; Waalkes, T P

    1976-09-01

    We describr high-resolution chromatographic analysis for protein-bound sialic acid in serum, with use of a cerate oxidimetric detector. Values for sera from normal women averaged 680.5 mg/liter, with a coefficient of variation of 23%. Including data obtained by previously developed chromatographic procedures for protein-bound mannose, galactose, and fucsoe, we assessed sera from breast-cancer patients whose malignancy had been categorized as either stable, responsive, or progressive (based on clinical observations spaced from two to five months apart). All of 12 responsive patients had decreases of protein-bound fucose averaging 34.5% (SD, 16.1) and all of 10 patients with progressive disease had increases averaging 38.3% (SD 21.5). Changes in fucose averaged less than 6.7% (SD, 4.9) for eight patients with clinically stable breast cancer. Changes in protein-bound mannose, galactose, and sialic acid did not correlate as well as did fucose with the clinical disease status of the patients.

  15. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    PubMed Central

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  16. Size-optimized galactose-capped gold nanoparticles for the colorimetric detection of heat-labile enterotoxin at nanomolar concentrations.

    PubMed

    Poonthiyil, Vivek; Golovko, Vladimir B; Fairbanks, Antony J

    2015-05-14

    The development of a galactose-capped gold nanoparticle-based colorimetric sensor for the detection of the lectin heat-labile enterotoxin is reported. Heat-labile enterotoxin is one of the pathogenic agents responsible for the intestinal disease called 'traveller's diarrhoea'. By means of specific interaction between galactose moieties attached to the surface of gold nanoparticles and receptors on the B-subunit of heat-labile enterotoxin (LTB), the gold nanoparticles reported here act as an efficient colorimetric sensor, which can detect the toxin at nanomolar concentrations. The effect of gold nanoparticle size on the detection sensitivity was investigated in detail. Amongst the various sizes of gold nanoparticles studied (2, 7, 12, and 20 nm), the 12 nm sized gold nanoparticles were found to be the most efficient, with a minimum heat-labile enterotoxin detection concentration of 100 nM. The red to purple colour change of the gold nanoparticle solution occurred within two minutes, indicating rapid toxin sensing.

  17. Apigenin exhibits protective effects in a mouse model of d-galactose-induced aging via activating the Nrf2 pathway.

    PubMed

    Sang, Ying; Zhang, Fan; Wang, Heng; Yao, Jianqiao; Chen, Ruichuan; Zhou, Zhengdao; Yang, Kun; Xie, Yan; Wan, Tianfeng; Ding, Hong

    2017-06-21

    The aim of the present research was to study the protective effects and underlying mechanisms of apigenin on d-galactose-induced aging mice. Firstly, apigenin exhibited a potent antioxidant activity in vitro. Secondly, d-galactose was administered by subcutaneous injection once daily for 8 weeks to establish an aging mouse model to investigate the protective effect of apigenin. We found that apigenin supplementation significantly ameliorated aging-related changes such as behavioral impairment, decreased organic index, histopathological injury, increased senescence-associated β-galactosidase (SAβ-gal) activity and advanced glycation end product (AGE) level. Further data showed that apigenin facilitated Nrf2 nuclear translocation both in aging mice and normal young mice, and the Nrf2 expression of normal young mice was higher than that of natural senile mice. In addition, the expressions of Nrf2 downstream gene targets, including HO-1 and NQO1, were also promoted by apigenin administration. Moreover, apigenin also decreased the MDA level and elevated SOD and CAT activities. In conclusion, focusing on the Nrf2 pathway is a suitable strategy to delay the aging process, and apigenin may exert an anti-senescent effect process via activating the Nrf2 pathway.

  18. Protection of gerbils from amebic liver abscess by immunization with the galactose-specific adherence lectin of Entamoeba histolytica.

    PubMed Central

    Petri, W A; Ravdin, J I

    1991-01-01

    No protective antigens from Entamoeba histolytica have been previously defined. We tested the ability of the galactose-specific adherence lectin of E. histolytica to elicit a protective immune response in conjunction with Freund's incomplete and complete adjuvants. The gerbil (Meriones unguiculatus) model of an experimental amebic liver abscess was used. Gerbils were immunized intraperitoneally or subcutaneously with 10 micrograms of the affinity-purified lectin in complete Freund's adjuvant and then at 2 and 4 weeks with 10 micrograms of the lectin in incomplete Freund's adjuvant. All of the immunized animals developed antilectin antibody titers of greater than 1/1,024 as measured by a radioimmunoassay. The gerbil antilectin antibodies were shown by Western immunoblotting to be directed to the heavy subunit but not the light subunit of the lectin. Immune gerbil sera inhibited amebic adherence by 100% at a 1/10 dilution. Immune and control gerbils were challenged at 6 weeks by the intrahepatic injection of 5 x 10(5) E. histolytica trophozoites. Four independent trials demonstrated complete protection from amebic liver abscess formation in 67% of lectin-immunized gerbils. Unexpectedly, liver abscess weights were significantly higher in the gerbils that failed to become immune than in the control animals. Our results demonstrate that the galactose lectin is a protective antigen and provide an immune-animal model to study the mechanisms of protection and potential disease exacerbation conferred by the antilectin immune response. Images PMID:1987067

  19. Isolation and characterization of a galactose binding lectin with insulinomimetic activities. From the seeds of the bitter gourd Momordica charantia (Family Cucurbitaceae).

    PubMed

    Ng, T B; Wong, C M; Li, W W; Yeung, H W

    1986-08-01

    A galactose binding lectin was isolated from the seeds of the bitter gourd Momordica charantia by delipidation with petroleum ether, extraction with phosphate buffered saline, ammonium sulfate precipitation and affinity chromatography on lactogel. The lectin had a molecular weight of 124,000 and approximately 5% carbohydrate content. The molecular weights of the individual subunits were 37,000, 35,000 and 33,000. The lectin exhibited potent hemagglutinating activity. In addition, it demonstrated antilipolytic and lipogenic activities in isolated rat adipocytes although it did not possess intrinsic lipolytic activity. The antilipolytic activity was susceptible to destruction by heat, trypsin, chymotrypsin, glutathione and galactose, indicating that the integrity of the protein moiety, the disulfide linkages, and galactose, which is the sugar specifically bound by the lectin, all play an important role in interaction with the adipocyte leading to an expression of this insulin-like activity.

  20. Microchip in situ electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns' urine samples.

    PubMed

    García-Carmona, Laura; Rojas, Daniel; González, María Cristina; Escarpa, Alberto

    2016-10-17

    This work describes for the first time the coupling of microfluidic chips (MC) to electrosynthetized silver metallic oxide clusters (AgMOCs). As an early demonstration of this novel approach, the ultrafast detection of galactose in galactosemic newborns' urine samples is proposed. AgMOCs were in situ electrosynthetized on integrated microchip platinum electrodes using a double pulse technique and characterized in full using scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques revealing the presence of silver oxides and electrocatalysis towards galactose as a galactosemia biomarker. Galactose detection in galactosemic newborns' urine samples proceeded in less than 30 s, differentiating between ill and healthy urine samples and requiring negligible urine sample consumption. The significance of the newborns' urine samples confirmed the analytical potency of the MC-AgMOCs approach for future implementation of screening for rare disease diagnosis such as galactosemia.

  1. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model.

    PubMed

    Woo, Jae-Yeon; Gu, Wan; Kim, Kyung-Ah; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2014-06-01

    Aging is associated with Alzheimer's disease (AD), cardiovascular disease and cancer. Oxidative stress is considered as a major factor that accelerates the aging process. To understand the ability of lactic acid bacteria to ameliorate memory impairment caused by aging, we investigated the effect of Lactobacillus pentosus var. plantarum (C29), which is known to protect against scopolamine-induced memory impairment, on oxidative stress (D-galactose)-induced memory impairment in mice. D-Galactose was subcutaneously injected to 20-week old male C57BL/6J mice for 10 weeks, with oral administration of C29 for the final 5 weeks. Excessive intake of D-galactose not only impaired memory, which was indicated by passive avoidance, Y-maze, and Morris water-maze tasks, but also reduced the expression of brain-derived neurotrophic factor (BDNF) and hippocampal doublecortin (DCX) and the activation of cAMP response element-binding protein (CREB). C29 treatment ameliorated D-galactose-induced memory impairment and reversed the suppression of BDNF and DCX expression and CREB activation. Moreover, C29 decreased the expression of a senescence marker p16 and inflammation markers p-p65, p-FOXO3a, cyclooxygenase (COX)-2, and inducible NO synthase (iNOS). C29 treatment inhibited D-galactose-induced expression of M1 polarization markers tumor necrosis factor-α and arginase II, and attenuated the d-galactose-suppressed expression of M2 markers IL-10, arginase I and CD206. Taken together, these findings suggest that C29 may ameliorate memory impairment and M1 macrophage-polarized inflammation caused by aging.

  2. The UDP-galactose translocator gene is mapped to band Xp11. 23-p11. 22 containing the Wiskott-Aldrich Syndrome Locus

    SciTech Connect

    Hara, Takahiko; Hoshino, Masato; Aoki, Kazuhisa; Ayusawa, Dai; Kawakita, Masao ); Yamauchi, Masatake; Takahashi, Ei-ichi )

    1993-11-01

    The authors have cloned a segment of the human gene encoding UDP-galactose translocator by genetic complementation of its defective mutant in mouse FM3A cells. Chromosome mapping using fluorescent in situ hybridization revealed that the cloned gene hybridized to the Xp11.23-11.23 region of the X chromosome. This region is shared by the locus of Wiskott-Aldrich syndrome, an X-linked recessive immunodeficiency disorder, characterized by defective sugar chains on cell surface components. Genetic and phenotypic similarities suggest a possible link between UDP-galactose translocator and the Wiskott-Aldrich syndrome (WAS).

  3. Evidence for an increase in positive surface charge and an increase in susceptibility to trypsin of Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina) on its interaction with galactose, a hapten sugar of the lectin.

    PubMed

    Komano, H; Kurama, T; Nagasawa, Y; Natori, S

    1992-05-15

    When Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina), an insect humoral lectin, was eluted from a column of DEAE-cellulose in the presence of galactose (a hapten sugar of this lectin), it emerged at a lower salt concentration than when galactose was absent. In the presence of galactose the lectin was, in addition, more susceptible to trypsin digestion. The lectin was found to have an affinity for basic proteins such as histone H3 and sarcotoxin IA, but this property was lost in the presence of galactose. These results suggested that the lectin changes its conformation on interaction with galactose. This change is suggested to result in the exposure of some hidden lysine and/or arginine residues.

  4. Evidence for an increase in positive surface charge and an increase in susceptibility to trypsin of Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina) on its interaction with galactose, a hapten sugar of the lectin.

    PubMed Central

    Komano, H; Kurama, T; Nagasawa, Y; Natori, S

    1992-01-01

    When Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina), an insect humoral lectin, was eluted from a column of DEAE-cellulose in the presence of galactose (a hapten sugar of this lectin), it emerged at a lower salt concentration than when galactose was absent. In the presence of galactose the lectin was, in addition, more susceptible to trypsin digestion. The lectin was found to have an affinity for basic proteins such as histone H3 and sarcotoxin IA, but this property was lost in the presence of galactose. These results suggested that the lectin changes its conformation on interaction with galactose. This change is suggested to result in the exposure of some hidden lysine and/or arginine residues. Images Fig. 1. Fig. 3. PMID:1599400

  5. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  6. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models

    PubMed Central

    Lyons, Christopher T.; Stack, T. Daniel P.

    2012-01-01

    The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GOox) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GOox, one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GOox. PMID:23264696

  7. Synthesis and immunodetection of 6-O-methyl-phosphoramidyl-α-D-galactose: a Campylobacter jejuni antigenic determinant.

    PubMed

    Jiao, Yuening; Ma, Zuchao; Ewing, Cheryl P; Guerry, Patricia; Monteiro, Mario A

    2015-12-11

    Campylobacter jejuni is a leading cause of traveler's diarrhea. Previously, we have shown that a C. jejuni capsule polysaccharide (CPS) conjugate vaccine can fully prevent C.jejuni diarrhea in non-human primates. C.jejuni CPSs are decorated with non-stoichiometric amounts of O-methyl phosphoramidate (MeOPN) units that are key serospecific markers. In the case of C.jejuni serotype complex HS23/36, the MeOPN are at positions 2 and 6 of the CPS galactose (Gal). We describe here the synthesis of the p-methoxyphenyl glycoside of MeOPN→6-α-D-Galp, and its immunodetection by antisera raised by C.jejuni CPS conjugates with MeOPN at primary positions. The synthetic approach in this work served as the foundation for a similar MeOPN→6-Gal construct used in a conjugate vaccine, whose synthesis, immunogenicity and efficacy will be described elsewhere.

  8. Synthesis of gamma-chaconine and gamma-solanine are catalyzed in potato by two separate glycosyltransferases: UDP-glucose:solanidine glucosyltransferase and UDP-galactose:solanidine galactosyltransferase.

    PubMed

    Zimowski, J

    1997-01-01

    UDP-glucose:solanidine glucosyltransferase and UDP-galactose:solanidine galactosyltransferase from cytosol of potato sprouts were partially separated by Sephadex G-100 and Q-Sepharose chromatographies, proving the existence of different glycosylation systems in biosynthesis of alpha-chaconine and alpha-solanine.

  9. Genome sequence of Vibrio sp. strain EJY3, an agarolytic marine bacterium metabolizing 3,6-anhydro-L-galactose as a sole carbon source.

    PubMed

    Roh, Hanseong; Yun, Eun Ju; Lee, Saeyoung; Ko, Hyeok-Jin; Kim, Sujin; Kim, Byung-Yong; Song, Heesang; Lim, Kwang-il; Kim, Kyoung Heon; Choi, In-Geol

    2012-05-01

    The metabolic fate of 3,6-anhydro-L-galactose (L-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize L-AHG as a sole carbon source. To elucidate the metabolic pathways of L-AHG, we have sequenced the complete genome of Vibrio sp. strain EJY3.

  10. Selenoprotein R Protects Human Lens Epithelial Cells against d-Galactose-Induced Apoptosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress

    PubMed Central

    Dai, Jie; Liu, Hongmei; Zhou, Jun; Huang, Kaixun

    2016-01-01

    Selenium is an essential micronutrient for humans. Much of selenium’s beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells. PMID:26875981

  11. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract on D-galactose-induced oxidative stress in mouse brain.

    PubMed

    Vora, Shreya R; Patil, Rahul B; Pillai, Meena M

    2009-05-01

    With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.

  12. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose.

    PubMed

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.

  13. Characterization of hypothetical protein VNG0128C from Halobacterium NRC-1 reveals GALE like activity and its involvement in Leloir pathway of galactose metabolism.

    PubMed

    Reshma, S V; Sathyanarayanan, Nitish; Nagendra, H G

    2015-01-01

    VNG0128C, a hypothetical protein from Halobacterium NRC-1, was chosen for detailed insilico and experimental investigations. Computational exercises revealed that VNG0128C functions as NAD(+) binding protein. The phylogenetic analysis with the homolog sequences of VNG0128C suggested that it could act as UDP-galactose 4-epimerase. Hence, the VNG0128C sequence was modeled using a suitable template and docking studies were performed with NAD and UDP-galactose as ligands. The binding interactions strongly indicate that VNG0128C could plausibly act as UDP-galactose 4-epimerase. In order to validate these insilico results, VNG0128C was cloned in pUC57, subcloned in pET22b(+), expressed in BL21 cells and purified using nickel affinity chromatography. An assay using blue dextran was performed to confirm the presence of NAD binding domain. To corroborate the epimerase like enzymatic role of the hypothetical protein, i.e. the ability of the enzyme to convert UDP-galactose to UDP-glucose, the conversion of NAD to NADH was measured. The experimental assay significantly correlated with the insilico predictions, indicating that VNG0128C has a NAD(+) binding domain with epimerase activity. Consequently, its key role in nucleotide-sugar metabolism was thus established. Additionally, the work highlights the need for a methodical characterization of hypothetical proteins (less studied class of biopolymers) to exploit them for relevant applications in the field of biology.

  14. Selenoprotein R Protects Human Lens Epithelial Cells against D-Galactose-Induced Apoptosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Dai, Jie; Liu, Hongmei; Zhou, Jun; Huang, Kaixun

    2016-02-10

    Selenium is an essential micronutrient for humans. Much of selenium's beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells.

  15. Changes to the galactose/mannose ratio in galactomannans during coffee bean ( Coffea arabica L.) development: implications for in vivo modification of galactomannan synthesis.

    PubMed

    Redgwell, Robert J; Curti, Delphine; Rogers, John; Nicolas, Pierre; Fischer, Monica

    2003-06-01

    Endosperm was isolated from Arabica Caturra coffee beans 11, 15, 21, 26, 31 and 37 weeks after flowering, and the chemical composition and relative solubility of its component polysaccharides determined at each growth stage. Chemical analysis of the total mannan content of the cell wall material was done after solubilisation of galactomannans by alkaline extraction of the cell wall material followed by enzymatic digestion of the alkali-insoluble residue with a mixture of endo-mannanse and endo-glucanase. Eleven weeks after flowering, galactomannans accounted for approximately 10% of the polysaccharides but were highly substituted, with galactose/mannose ratios between 1:2 and 1:7. As the bean matured, galactomannan became the predominant polysaccharide, until 31 weeks after flowering it accounted for approximately 50% of the polysaccharides. However, it was less substituted, possessing galactose/mannose ratios between 1:7 and 1:40. Early in bean growth, up to 50% of the cell wall polysaccharides were extractable but as the galactomannan content of the bean increased there was a reduction in the extractability of all polysaccharides. The decrease in the galactose/mannose ratio of the galactomannans commenced between 21 and 26 weeks after flowering and was in synchrony with a rise in the concentration of free galactose in the beans. The results indicated that the degree of substitution of the galactomannans in coffee beans is developmentally regulated and may result, in part, from the modification of a primary synthetic product by the action of an alpha-galactosidase.

  16. Anti-Skin-Aging Effect of Epigallocatechin Gallate by Regulating Epidermal Growth Factor Receptor Pathway on Aging Mouse Model Induced by D-Galactose.

    PubMed

    Chen, Jiming; Li, Yifan; Zhu, Qiangqiang; Li, Tong; Lu, Hao; Wei, Nan; Huang, Yewei; Shi, Ruoyu; Ma, Xiao; Wang, Xuanjun; Sheng, Jun

    2017-03-23

    Epigallocatechin gallate(EGCG) is a monomer separated from tea catechins, as an well-known antioxidant, which helps fight wrinkles and rejuvenate skin cells. In this study, we investigated the anti-aging effect of EGCG, and to clarify underlying mechanism of skin aging in a D-galactose-induced aging mouse model. Forty-five male mice were divided into 5 groups and treated with different dose of EGCG, Vitamin C (VitC) to mice as a positive control. All groups except vehicle were established aging model induced by D-galactose (200mg/kg/day) that was subcutaneously injected to mice for 8 weeks. Two weeks after injection of D-galactose, EGCG and Vit C groups were simultaneously administered once a day by subcutaneously inject after 5hours for injecting D-galactose. The results show that EGCG can be absorbed by the skin. Overall, the conditions of the skin of EGCG-treatment groups were improved, the whole structure of skin were better than control groups, and the levels of oxidative stress and the expression of relate with EGFR proteins were significantly higher than control group after EGCG treatment. All these findings suggest that EGCG can resist skin senility effectively. And the EGFR with relate of downstream proteins are implicated in the skin aging.

  17. Raffinose Family Oligosaccharides Act As Galactose Stores in Seeds and Are Required for Rapid Germination of Arabidopsis in the Dark

    PubMed Central

    Gangl, Roman; Tenhaken, Raimund

    2016-01-01

    Raffinose synthase 5 (AtRS5, At5g40390) was characterized from Arabidopsis as a recombinant enzyme. It has a far higher affinity for the substrates galactinol and sucrose than any other raffinose synthase previously reported. In addition raffinose synthase 5 is also working as a galactosylhydrolase, degrading galactinol, and raffinose under certain conditions. Together with raffinose synthase 4, which is predominantly a stachyose synthase, both enzymes contribute to the raffinose family oligosaccharide (RFO) accumulation in seeds. A double knockout in raffinose synthase 4 and raffinose synthase 5 (ΔAtRS4,5) was generated, which is devoid of RFOs in seeds. Unstressed leaves of 4 week old ΔAtRS4,5 plants showed drastically 23.8-fold increased concentrations of galactinol. Unexpectedly, raffinose appeared again in drought stressed ΔAtRS4,5 plants, but not under other abiotic stress conditions. Drought stress leads to novel transcripts of raffinose synthase 6 suggesting that this isoform is a further stress inducible raffinose synthase in Arabidopsis. ΔAtRS4,5 seeds showed a 5 days delayed germination phenotype in darkness and an elevated expression of the transcription factor phytochrome interacting factor 1 (AtPIF1) target gene AtPIF6, being a repressor of germination. This prolonged dormancy is not seen during germination in the light. Exogenous galactose partially promotes germination of ΔAtRS4,5 seeds in the dark suggesting that RFOs act as a galactose store and repress AtPIF6 transcripts. PMID:27507985

  18. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway

    PubMed Central

    Kiryluk, Krzysztof; Moldoveanu, Zina; Suzuki, Hitoshi; Reily, Colin; Hou, Ping; Xie, Jingyuan; Mladkova, Nikol; Prakash, Sindhuri; Fischman, Clara; Shapiro, Samantha; Bradbury, Drew; Ionita-Laza, Iuliana; Eitner, Frank; Rauen, Thomas; Maillard, Nicolas; Floege, Jürgen; Chen, Nan; Zhang, Hong; Scolari, Francesco; Wyatt, Robert J.; Julian, Bruce A.; Gharavi, Ali G.; Novak, Jan

    2017-01-01

    Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10−11) and C1GALT1C1 (rs5910940, P = 2.7 x 10−8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer. PMID:28187132

  19. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels.

    PubMed

    Moldoveanu, Z; Wyatt, R J; Lee, J Y; Tomana, M; Julian, B A; Mestecky, J; Huang, W-Q; Anreddy, S R; Hall, S; Hastings, M C; Lau, K K; Cook, W J; Novak, J

    2007-06-01

    Immunoglobulin A (IgA) nephropathy is the most prevalent form of glomerulonephritis worldwide. A renal biopsy is required for an accurate diagnosis, as no convenient biomarker is currently available. We developed a serological test based upon the observation that this nephropathy is characterized by undergalactosylated IgA1 in the circulation and in mesangial immune deposits. In the absence of galactose, the terminal saccharide of O-linked chains in the hinge region of IgA1 is terminal or sialylated N-acetylgalactosamine. A lectin from Helix aspersa, recognizing N-acetylgalactosamine, was used to develop an enzyme-linked immunosorbent assay that measures galactose-deficient IgA1 in serum. The median serum lectin-binding IgA1 level was significantly higher for 153 Caucasian adult patients with IgA nephropathy without progression to end-stage renal disease as compared with that for 150 healthy Caucasian adult controls. As the lectin-binding IgA1 levels for the controls were not normally distributed, the 90th percentile was used for determination of significant elevation. Using a value of 1076 U/ml as the upper limit of normal, 117 of the 153 patients with IgA nephropathy had an elevated serum lectin-binding IgA1 level. The sensitivity as a diagnostic test was 76.5%, with specificity 94%; the positive predictive value was 88.6% and the negative predictive value was 78.9%. We conclude that this lectin-binding assay may have potential as a noninvasive diagnostic test for IgA nephropathy.

  20. UDP-galactose 4'-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors.

    PubMed

    Zinsser, Veronika L; Lindert, Steffen; Banford, Samantha; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2015-03-01

    Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.

  1. Congenital glucose-galactose malabsorption: a descriptive study of clinical characteristics and outcome from Western Saudi Arabia.

    PubMed

    Saadah, Omar I; Alghamdi, Sharifa A; Sindi, Haifa H; Alhunaitti, Huda; Bin-Taleb, Yagoub Y; Alhussaini, Bakr H

    2014-03-01

    Congenital glucose galactose malabsorption (CGGM) is a rare autosomal recessive disorder caused by a defect in the sodium-coupled transport of glucose and galactose across the intestinal brush border presenting with neonatal diarrhoea. The aim of this study was to report the clinical and laboratory characteristics of patients with CGGM from the Western Saudi Arabia. This is a retrospective review of CGGM patients in three major hospitals in the city of Jeddah, Saudi Arabia, namely King Abdulaziz University Hospital, King Faisal Specialist Hospital and Research Centre, and Maternity Children Hospital in the period between November 2001 and October 2011. Twenty-four patients with CGGM have been described. The median age at diagnosis was 4.5 months. Twelve (50%) were males. Sixteen (66.7%) were Saudi and 8 (33.3%) were non Saudi (5 Arabs and 3 Asians). Parents of 21 patients were consanguineous. Nine (37.5%) had affected siblings with CGGM. All presented with diarrhoea resulted in dehydration. Hypernatremia was seen in 7 (29.2%) patients, renal tubular acidosis in 4 patients. Renal stones and nephrocalcinosis were detected in 3 (12.5%) patients at 8 months, 12 months and 7 years, respectively. The median follow up was 41.6 months. All but three demonstrated normal weight gain. Five patients reported one or more symptoms of bloating (n=3), diarrhoea (n=3) and abdominal pain (n=1) during follow up. All had normal development and none had neurological complications secondary to dehydration. Early recognition and management of this condition are crucial to prevent consequences of dehydration and death. Copyright © 2014 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All rights reserved.

  2. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    SciTech Connect

    Wadelius, C.; Lagerkvist, A. Uppsala Univ. ); Molin, A.K.; Larsson, A. ); Von Doebeln, U. )

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  3. Mouse macrophage galactose-type lectin (mMGL) is critical for host resistance against Trypanosoma cruzi infection.

    PubMed

    Vázquez, Alicia; Ruiz-Rosado, Juan de Dios; Terrazas, Luis I; Juárez, Imelda; Gomez-Garcia, Lorena; Calleja, Elsa; Camacho, Griselda; Chávez, Ana; Romero, Miriam; Rodriguez, Tonathiu; Espinoza, Bertha; Rodriguez-Sosa, Miriam

    2014-01-01

    The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or β-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 10(4) T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1β and NO during the early phase of infection.

  4. Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery.

    PubMed

    Fu, Liyi; Sun, Chunyang; Yan, Lifeng

    2015-01-28

    Theranostic polymeric nanomaterials are of special important in cancer treatment. Here, novel galactose targeted pH-responsive amphiphilic multiblock copolymer conjugated with both drug and near-infrared fluorescence (NIR) probe has been designed and prepared by a four-steps process: (1) ring-opening polymerization (ROP) of N-carboxy anhydride (NCA) monomers using propargylamine as initiator; (2) reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methacrylate (OEGMA) and gal monomer by an azido modified RAFT agent; (3) combing the obtained two polymeric segments by click reaction; (4) NIR copolymer prodrug was synthesized by chemical linkage of both cyanine dye and anticancer drug doxorubicin to the block copolymer via amide bond and hydrazone, respectively. The obtained NIRF copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and its was measured by means of micelles dynamic light scattering (DLS), field emission transmission electron microscopy (FETEM), and UV-vis and fluorescence spectrophotometry. The prodrug has strong fluorescence in the near-infrared region, and a pH sensitive drug release was confirmed at pH of 5.4 via an in vitro drug release experiment. Confocal laser scanning microscopy (CLSM) and flow cytometry experiments of the prodrug on both HepG2 and NIH3T3 cells reveal that the galactose targeted polymeric prodrug shows a fast and enhanced endocytosis due to the specific interaction for HepG2 cells, indicating the as-prepared polymer is a candidate for theranosis of liver cancer.

  5. Establishing New Cut-Off Limits for Galactose 1-Phosphate-Uridyltransferase Deficiency for the Dutch Newborn Screening Programme.

    PubMed

    Kemper, E A; Boelen, A; Bosch, A M; van Veen-Sijne, M; van Rijswijk, C N; Bouva, M J; Fingerhut, R; Schielen, P C J I

    2017-01-01

    Newborn screening for classical galactosemia in the Netherlands is performed by five laboratories and is based on the measurement of galactose 1-phosphate-uridyltransferase (GALT) activity and total galactose (TGAL) in heel prick blood spots. Unexpected problems with the GALT assay posed a challenge to switch to a new assay. The aim of this study was to make an analytical and clinical evaluation of GALT assays to replace the current assay and to establish new cut-off values (COVs).First, the manual assay from PerkinElmer (NG-1100) and the GSP assay were compared by analyzing 626 anonymous heel prick samples in parallel. Secondly, a manual GSP method was evaluated and 2,052 samples were compared with the automated GSP assay. Finally, a clinical evaluation was performed by collecting data from 93 referred newborns.No satisfactory correlation was observed between GALT activity measured with the manual NG-1100 assay and the automated GSP assay. An acceptable correlation was found between the manual and automated GSP assay. Intra- and inter-assay variation of the automated GSP were 1.8-10.0% and 3.1-13.9%, respectively. Evaluation of clinical data demonstrated that adjusting the COVs for GALT to 2.0 U/dl and TGAL to 1,100 μmol/l improved specificity of screening for classical galactosemia.An assay designed for automated processing to measure GALT activity in heel prick samples works equally well when processed manually. We therefore adopted both methods in the Dutch screening laboratories. As a result of this evaluation new COVs for GALT and TGAL have been introduced and are valid from July 2015.

  6. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway.

    PubMed

    Kiryluk, Krzysztof; Li, Yifu; Moldoveanu, Zina; Suzuki, Hitoshi; Reily, Colin; Hou, Ping; Xie, Jingyuan; Mladkova, Nikol; Prakash, Sindhuri; Fischman, Clara; Shapiro, Samantha; LeDesma, Robert A; Bradbury, Drew; Ionita-Laza, Iuliana; Eitner, Frank; Rauen, Thomas; Maillard, Nicolas; Berthoux, Francois; Floege, Jürgen; Chen, Nan; Zhang, Hong; Scolari, Francesco; Wyatt, Robert J; Julian, Bruce A; Gharavi, Ali G; Novak, Jan

    2017-02-01

    Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10-11) and C1GALT1C1 (rs5910940, P = 2.7 x 10-8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer.

  7. Lactose and galactose content in cheese results in overestimation of moisture by vacuum oven and microwave methods.

    PubMed

    Lee, H; Rankin, S A; Fonseca, L M; Milani, F X

    2014-05-01

    Moisture determination in cheese is a critical test for regulatory compliance, functionality, and economic reasons. Common methods for moisture determination in cheese rely upon the thermal volatilization of water from cheese and calculation of moisture content based on the resulting loss of mass. Residual sugars, such as lactose and galactose, are commonly present in cheeses at levels ranging from trace amounts to 5%. These sugars are capable of reacting with other compounds in cheese, especially under the thermal conditions required for moisture determination, to yield volatile reaction products. The hypothesis of this work is that residual sugars in cheese will be converted into volatile compounds over the course of moisture determination at a level sufficient to result in overestimated cheese moisture. A full-factorial statistical design was used to evaluate the effects of cheese type, sugar type, sugar level, method type, and all interactions. Cheddar and low-moisture, part-skim (LMPS) Mozzarella cheeses were prepared with 1, 3, and 5% added lactose or galactose, and subjected to either vacuum oven or microwave-based moisture determination methods. Browning index and colorimetry were measured to characterize the color and extent of browning. Volatile analyses were performed to provide chemical evidence of the reactions proposed. The presence of residual sugars altered moisture calculations as a function of cheese type, sugar type, sugar level, method type, and numerous interactions. At higher concentrations of residual sugar, the percentage moisture determinations were increased by values of up to 1.8. Measures of browning reactions, including browning index, colorimetry, and volatile profiles demonstrate that the proposed browning reactions played a causative role. This work establishes the need to consider cheese type, sugar type, sugar levels, and method type as a means of more accurately determining moisture levels. Copyright © 2014 American Dairy Science

  8. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    SciTech Connect

    Khan, Faaizah; Pickup, John C.

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  9. A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2.

    PubMed

    Fang, Fang; Liu, Gengtao

    2007-12-01

    The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.

  10. Improvement of Galactose Uptake in Saccharomyces cerevisiae through Overexpression of Phosphoglucomutase: Example of Transcript Analysis as a Tool in Inverse Metabolic Engineering

    PubMed Central

    Bro, Christoffer; Knudsen, Steen; Regenberg, Birgitte; Olsson, Lisbeth; Nielsen, Jens

    2005-01-01

    Through genome-wide transcript analysis of a reference strain and two recombinant Saccharomyces cerevisiae strains with different rates of galactose uptake, we obtained information about the global transcriptional response to metabolic engineering of the GAL gene regulatory network. One of the recombinant strains overexpressed the gene encoding the transcriptional activator Gal4, and in the other strain the genes encoding Gal80, Gal6, and Mig1, which are negative regulators of the GAL system, were deleted. Even though the galactose uptake rates were significantly different in the three strains, we surprisingly did not find any significant changes in the expression of the genes encoding the enzymes catalyzing the first steps of the pathway (i.e., the genes encoding Gal2, Gal1, Gal7, and Gal10). We did, however, find that PGM2, encoding the major isoenzyme of phosphoglucomutase, was slightly up-regulated in the two recombinant strains with higher galactose uptake rates. This indicated that PGM2 is a target for overexpression in terms of increasing the flux through the Leloir pathway, and through overexpression of PGM2 the galactose uptake rate could be increased by 70% compared to that of the reference strain. Based on our findings, we concluded that phosphoglucomutase plays a key role in controlling the flux through the Leloir pathway, probably due to increased conversion of glucose-1-phosphate to glucose-6-phosphate. This conclusion was supported by measurements of sugar phosphates, which showed that there were increased concentrations of glucose-6-phosphate, galactose-6-phosphate, and fructose-6-phosphate in the strain construct overexpressing PGM2. PMID:16269670

  11. Interleukin-1beta reduces galactose transport in intestinal epithelial cells in a NF-kB and protein kinase C-dependent manner.

    PubMed

    Viñuales, Carmen; Gascón, Sonia; Barranquero, Cristina; Osada, Jesús; Rodríguez-Yoldi, Ma Jesús

    2013-09-15

    Interleukins (IL), aside from their role in the regulation of the immune cascade, they have also been shown to modulate intestinal transport function. IL-1β is a potent inflammatory cytokine involved in many important cellular functions. The aim of this work was to study the in vitro effect of IL-1β on d-galactose transport across intestinal epithelia in rabbit jejunum and Caco-2 cells. The results showed that d-galactose intestinal absorption was diminished in IL-1β treated jejunum rabbits without affecting the Na(+), K(+)-ATPase activity. The presence of IL-1 cell-surface receptors was confirmed by addition to tissue of a specific IL-1 receptor antagonist (IL-1ra). The cytokine did not inhibit either the uptake of d-galactose nor modified the sodium-glucose transport (SGLT1) protein levels in the brush border membrane vesicles, suggesting an indirect IL effect. The IL-inhibition was significantly reversed in the presence of inhibitors of protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The proteasome selective inhibitor completely abolished the IL-effect. Furthermore, the cytokine inhibition on galactose transport related to NF-kB activation was also confirmed in Caco-2 cells. In summary, the direct addition of IL-1β to intestinal epithelia inhibits d-galactose transport by a possible reduction in the SGLT1 activity. This event may be mediated by several transduction pathways activated during the inflammatory processes related to several protein kinases and nuclear factor, NF-kB. The IL-effect is independent of hormonal milieu and nervous stimuli.

  12. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway

    PubMed Central

    Badejo, Adebanjo Ayobamidele; Wada, Keiko; Gao, Yongshun; Maruta, Takanori; Sawa, Yoshihiro; Shigeoka, Shigeru; Ishikawa, Takahiro

    2012-01-01

    The D-mannose/L-galactose pathway for the biosynthesis of vitamin C (L-ascorbic acid; AsA) has greatly improved the understanding of this indispensable compound in plants, where it plays multifunctional roles. However, it is yet to be proven whether the same pathway holds for all the different organs of plants, especially the fruit-bearing plants, at different stages of development. Micro-Tom was used here to elucidate the mechanisms of AsA accumulation and regulation in tomato fruits. The mRNA expression of the genes in the D-mannose/L-galactose pathway were inversely correlated with increasing AsA content of Micro-Tom fruits during ripening. Feeding L-[6-14C]AsA to Micro-Tom plants revealed that the bulk of the label from AsA accumulated in the source leaf was transported to the immature green fruits, and the rate of translocation decreased as ripening progressed. L-Galactose feeding, but neither D-galacturonate nor L-gulono-1,4-lactone, enhanced the content of AsA in immature green fruit. On the other hand, L-galactose and D-galacturonate, but not L-gulono-1,4-lactone, resulted in an increase in the AsA content of red ripened fruits. Crude extract prepared from insoluble fractions of green and red fruits showed D-galacturonate reductase- and aldonolactonase-specific activities, the antepenultimate and penultimate enzymes, respectively, in the D-galacturonate pathway, in both fruits. Taken together, the present findings demonstrated that tomato fruits could switch between different sources for AsA supply depending on their ripening stages. The translocation from source leaves and biosynthesis via the D-mannose/L-galactose pathway are dominant sources in immature fruits, while the alternative D-galacturonate pathway contributes to AsA accumulation in ripened Micro-Tom fruits. PMID:21984649

  13. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    PubMed

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  14. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme.

    PubMed

    Conklin, Patricia L; Gatzek, Stephan; Wheeler, Glen L; Dowdle, John; Raymond, Marjorie J; Rolinski, Susanne; Isupov, Mikhail; Littlechild, Jennifer A; Smirnoff, Nicholas

    2006-06-09

    In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for L-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted L-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within a beta-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, L-Gal-1-P phosphatase activity in vtc4-1 was approximately 50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-(3)H]Man into L-galactosyl residues suggesting that the mutation increases the availability of GDP-L-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in L-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed L-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that L-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis.

  15. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin.

    PubMed

    Konozy, Emadeldin H E; Mulay, Ranjana; Faca, Vitor; Ward, Richard John; Greene, Lewis Joel; Roque-Barriera, Maria Cristina; Sabharwal, Sushma; Bhide, Shobhana V

    2002-10-01

    Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.

  16. Neuroprotective effect of hydroalcoholic extract of dried fruits of Trapa bispinosa Roxb on lipofuscinogenesis and fluorescence product in brain of D-galactose induced ageing accelerated mice.

    PubMed

    Ambikar, D B; Harle, U N; Khandare, R A; Bore, V V; Vyawahare, N S

    2010-04-01

    Effect of hydroalcoholic extract T. bispinosa (TB) was studied on fluorescence product and biochemical parameter like lipid peroxidation, catalase activity and glutathione peroxidase activity in the brain of female albino mice. Ageing was accelerated by the treatment of 0.5 ml 5% D-galactose for 15 days. This resulted in increased fluorescence product, increase lipid peroxidation and decrease antioxidant enzyme like glutathione peroxides and catalase in cerebral cortex. After cotreatment with hydroalcoholic extract of TB (500 mg/kg, po) there was decrease in fluorescence product in cerebral cortex. Moreover, TB inhibited increase lipid peroxidation and restores glutathione peroxidase and catalase activity in cerebral cortex as compare to ageing accelerated control group. To conclude TB found to be effective antioxidative agent which could to some extent reverse D-galactose induced ageing changes resulted due to oxidative damage.

  17. Cerebralcare Granule(®), a Chinese Herb Compound Preparation, Attenuates D-Galactose Induced Memory Impairment in Mice.

    PubMed

    Qu, Zhuo; Yang, Honggai; Zhang, Jingze; Huo, Liqin; Chen, Hong; Li, Yuming; Liu, Changxiao; Gao, Wenyuan

    2016-09-01

    Cerebralcare granule(®) (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against D-galactose (gal)-induced memory impairment and to explore the mechanism of its action. D-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by D-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of D-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of D-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of D-gal produced memory deficit, meanwhile CG can protect neuron from D-gal insults and improve memory ability.

  18. Autoinducer 2 Signaling via the Phosphotransferase FruA Drives Galactose Utilization by Streptococcus pneumoniae, Resulting in Hypervirulence

    PubMed Central

    McAllister, Lauren J.; Chen, Austen; Wang, Hui; Paton, Adrienne W.; Oggioni, Marco R.; McDevitt, Christopher A.

    2017-01-01

    ABSTRACT Communication between bacterial cells is crucial for the coordination of diverse cellular processes that facilitate environmental adaptation and, in the case of pathogenic species, virulence. This is achieved by the secretion and detection of small signaling molecules called autoinducers, a process termed quorum sensing. To date, the only signaling molecule recognized by both Gram-positive and Gram-negative bacteria is autoinducer 2 (AI-2), synthesized by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase) as a by-product of the activated methyl cycle. Homologues of LuxS are ubiquitous in bacteria, suggesting a key role in interspecies, as well as intraspecies, communication. Gram-negative bacteria sense and respond to AI-2 via the Lsr ABC transporter system or by the LuxP/LuxQ phosphorelay system. However, homologues of these systems are absent from Gram-positive bacteria and the AI-2 receptor is unknown. Here we show that in the major human pathogen Streptococcus pneumoniae, sensing of exogenous AI-2 is dependent on FruA, a fructose-specific phosphoenolpyruvate-phosphotransferase system that is highly conserved in Gram-positive pathogens. Importantly, AI-2 signaling via FruA enables the bacterium to utilize galactose as a carbon source and upregulates the Leloir pathway, thereby leading to increased production of capsular polysaccharide and a hypervirulent phenotype. PMID:28119473

  19. Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)–copper(II) galactose oxidase model complexes

    PubMed Central

    Pratt, Russell C.; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel. P.

    2012-01-01

    Non-symmetric substitution of salen (1R1,R2) and reduced salen (2R1,R2) CuII-phenoxyl complexes with a combination of -tBu, -SiPr, and -OMe substituents leads to dramatic differences in their redox and spectroscopic properties, providing insight into the influence of the cysteine-modified tyrosine cofactor in the enzyme galactose oxidase (GO). Using a modified Marcus-Hush analysis, the oxidized copper complexes are characterized as Class II mixed-valent due to the electronic differentiation between the two substituted phenolates. Sulfur K-edge X-ray absorption spectroscopy (XAS) assesses the degree of radical delocalization onto the single sulfur atom of non-symmetric [1tBu,SMe]+ at 7%, consistent with other spectroscopic and electrochemical results that suggest preferential oxidation of the -SMe bearing phenolate. Estimates of the thermodynamic free-energy difference between the two localized states (ΔG∘) and reorganizational energies (λR1R2) of [1R1,R2]+ and [2R1,R2]+ leads to accurate predictions of the spectroscopically observed IVCT transition energies. Application of the modified Marcus-Hush analysis to GO using parameters determined for [2R1,R2]+ predicts a νmax of ~ 13600 cm−1, well within the energy range of the broad Vis-NIR band displayed by the enzyme. PMID:22471355

  20. Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers.

    PubMed

    Khodaei, Nastaran; Fernandez, Benoit; Fliss, Ismail; Karboune, Salwa

    2016-01-20

    Galactose-rich oligosaccharides/oligomers (oligo-RG I) were produced by the enzymatic treatment of potato galactan-rich rhamnogalacturonan I (RG I) with endo-β-1,4-galactanase and Depol 670L multi-enzymatic preparation. The digestibility study revealed that 81.6 and 79.3% of RG I and its corresponding oligomers remained unhydrolyzed, respectively. The prebiotic properties of RG I and its hydrolysates were investigated using a continuous culture system inoculated with immobilized fecal microbiota. Both RG I and oligo-RG I have stimulated the growth of Bifidobacterium spp. and Lactobacillus spp., with oligo-RG I hydrolysates being more selectively fermented by these beneficial bacteria. Furthermore, none of RG I nor its hydrolysates increased the populations of Bacteroidetes and Clostridium leptum. Total amounts of short chain fatty acids, generated upon the fermentation of oligo-RG I, were higher than those obtained with its parent RG I and the positive control (fructooligosaccharides). The overall study contributes to the understandings of the prebiotic properties of potato RG I and its corresponding oligosaccharides/oligomers.

  1. A Laterally Acquired Galactose Oxidase-Like Gene Is Required for Aerial Development during Osmotic Stress in Streptomyces coelicolor

    PubMed Central

    Liman, Recep; Facey, Paul D.; van Keulen, Geertje; Dyson, Paul J.; Del Sol, Ricardo

    2013-01-01

    Phylogenetic reconstruction revealed that most Actinobacterial orthologs of S. coelicolor SCO2837, encoding a metal-dependent galactose oxidase-like protein, are found within Streptomyces and were probably acquired by horizontal gene transfer from fungi. Disruption of SCO2837 (glxA) caused a conditional bld phenotype that could not be reversed by extracellular complementation. Studies aimed at characterising the regulation of expression of glxA showed that it is not a target for other bld genes. We provide evidence that glxA is required for osmotic adaptation, although independently from the known osmotic stress response element SigB. glxA has been predicted to be part of an operon with the transcription unit comprising the upstream cslA gene and glxA. However, both phenotypic and expression studies indicate that it is also expressed from an independent promoter region internal to cslA. GlxA displays an in situ localisation pattern similar to that one observed for CslA at hyphal tips, but localisation of the former is independent of the latter. The functional role of GlxA in relation to CslA is discussed. PMID:23326581

  2. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells

    PubMed Central

    Oliveira, Carla; Nicolau, Ana; Teixeira, José A.; Domingues, Lucília

    2011-01-01

    Frutalin is the α-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microscopy. Despite having different carbohydrate-binding affinities, native and recombinant frutalin showed an identical magnitude of cytotoxicity on HeLa cells growth (IC50~100 μg/mL) and equally induced cell apoptosis. The interaction studies showed that both lectins were rapidly internalised and targeted to HeLa cell's nucleus. Altogether, these results indicate that frutalin action is not dependent on its sugar-binding properties. This study provides important information about the bioactivity of frutalin and contributes to the understanding of the plant lectins cytotoxic activity. PMID:22131813

  3. Aqueous root extract of Asparagus cochinchinensis (Lour.) Merr. Has antioxidant activity in D-galactose-induced aging mice.

    PubMed

    Lei, Linghua; Chen, Yanhua; Ou, Lijun; Xu, Yinglong; Yu, Xiaoying

    2017-09-25

    Extracts of plants have been considered as sources of natural antioxidant agents. In this study, we aimed to explore the antioxidant capacity of the aqueous root extract of Asparagus cochinchinensis (Lour.) Merr. Using vitamin C (Vc) as a positive control, we analyzed the aqueous root extract of A. cochinchinensis free radical scavenging ability in vitro. We also established a mouse aging model using D-galactose and then treated it with aqueous root extract or Vc. The blood cell count and superoxide dismutase (SOD), catalase (CAT), and nitric oxide synthase (NOS) activities as well as malondialdehyde (MDA) and nitric oxide (NO) contents were measured; pathological examination of tissues was performed; and SOD, glutathione peroxidase (GPX), and NOS expression levels in the serum, liver, and brain tissues were investigated. In vitro, compared with the antioxidant Vc, the aqueous root extract showed similar 1,1-Diphenyl-2-picrylhydrazyl radical and 3-ethylbenzothiazoline-6-sulfonic·scavenging activities and even significantly increased superoxide anion (p < 0.05) and hydroxyl radical (OH) (p < 0.01) scavenging activities. The aqueous extract significantly increased the white blood cell count as well as enhanced SOD, CAT, and NOS activities (p < 0.01) in aging mice. In addition, the aqueous extract increased the NO content (p < 0.05) and reduced the MDA content (p < 0.05). The aqueous root extract of A. cochinchinensis showed as strong antioxidant ability as Vc and might prevent aging by reducing radicals.

  4. 3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol.

    PubMed

    Yun, Eun Ju; Lee, Ah Reum; Kim, Jung Hyun; Cho, Kyung Mun; Kim, Kyoung Heon

    2017-04-15

    The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by D-galactose.

    PubMed

    Tsai, Shih-jei; Yin, Mei-chin

    2012-09-01

    Protocatechuic acid (PCA) at 0.5%, 1% or 2% was supplied to D-galactose (DG) treated mice for 8 week. PCA intake at 2% increased its deposit in brain. DG treatment increased brain level of reactive oxygen species, protein carbonyl, carboxymethyllysine, pentosidine, sorbitol, fructose and methylglyoxal (P<0.05). PCA intake, at 1% and 2%, lowered brain level of these parameters (P<0.05). DG treatments enhanced activity and protein expression of aldose reductase (AR) and sorbitol dehydrogenase, as well as declined glyoxalase I (GLI) activity and protein expression (P<0.05). PCA intake at 1% and 2% reduced activity and protein expression of AR (P<0.05), and at 2% restored GLI activity and expression (P<0.05). DG injection also elevated cyclooxygenase (COX)-2 activity and expression, and increased the release of interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha and prostaglandin E(2) in brain (P<0.05). PCA intake decreased these cytokines (P<0.05), and at 1% and 2% suppressed COX-2 activity and expression (P<0.05). PCA intake at 1% and 2% also lowered DG-induced elevation in activity, mRNA expression and protein production of nuclear factor kappa B p65 (P<0.05). These findings suggest that the supplement of protocatechuic acid might be helpful for the prevention or alleviation of aging.

  6. Efficacy of low-power laser irradiation in the prevention of D-galactose-induced senescence in human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Wu, Shengnan; Xing, Da

    2011-03-01

    Low-power laser (He-Ne) irradiation (LPLI) has been found to modulate various biological effects, especially those involved in promoting cell proliferation and metabolic regulation. However, the underlying mechanisms that LPLI prevents human cell senescence remain undefined. Herein, we devised a model enabling cell senescence using D-galactose for two days then treat with or without LPLI(< 15J/cm2), and investigated whether LPLI delays cell senescent in human dermal fibroblasts cells (HDF-a). First in this study, using SA-β-gal staining, compared with control cell we detected a lower frequency of SA-β-gal staining under the treatment of LPLI. Moreover, we found the growth rates of cell with LPLI was higher using CCK-8 analysis. Additionally, we also found LPLI induced HDF-a entered the irreversible G1 arrest measured by flow cytometry system. Therefore, LPLI may promote cell proliferation by stimulating cell-cycle progression and delay human cell senescence. Taken together, Low-power laser irradiation delay HDF-a cells senescence provides new information for the mechanisms of biological effects of LPLI.

  7. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells.

    PubMed

    Lakshminarayanan, Abirami; Reddy, B Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K; Sood, A K; Jayaraman, N; Das, Saumitra

    2015-10-28

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.

  8. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.

    PubMed Central

    Fry, S C

    1982-01-01

    1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed. PMID:7115300

  9. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.

    PubMed

    Fry, S C

    1982-05-01

    1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed.

  10. Affinity labeling of the galactose/N-acetylgalactosamine-specific receptor of rat hepatocytes: preferential labeling of one of the subunits

    SciTech Connect

    Lee, R.T.; Lee, Y.C.

    1987-10-06

    The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which (43 kilodalton (kDa)) exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an /sup 125/I-labeled high-affinity reagent the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. The authors postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work.

  11. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice.

    PubMed

    An, Fang; Yang, Guodong; Tian, Jiaming; Wang, Shuhua

    2012-11-25

    Total flavonoids are the main pharmaceutical components of Trollius chinensis Bunge, and orientin and vitexin are the monomer components of total flavonoids in Trollius chinensis Bunge. In this study, an aged mouse model was established through intraperitoneal injection of D-galactose for 8 weeks, followed by treatment with 40, 20, or 10 mg/kg orientin, vitexin, or a positive control (vitamin E) via intragastric administration for an additional 8 weeks. Orientin, vitexin, and vitamin E improved the general medical status of the aging mice and significantly increased their brain weights. They also produced an obvious rise in total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase levels in the serum, and the levels of superoxide dismutase, catalase and glutathione peroxidase, Na(+)-K(+)-ATP enzyme, and Ca(2+)-Mg(2+)-ATP enzyme in the liver, brain and kidneys. In addition, they significantly reduced malondialdehyde levels in the liver, brain and kidney and lipofuscin levels in the brain. They also significantly improved the neuronal ultrastructure. The 40 mg/kg dose of orientin and vitexin had the same antioxidant capacity as vitamin E. These experimental findings indicate that orientin and vitexin engender anti-aging effects through their antioxidant capacities.

  12. Recognition of the galactose- or N-acetylgalactosamine-binding lectin of Entamoeba histolytica by human immune sera.

    PubMed Central

    Petri, W A; Joyce, M P; Broman, J; Smith, R D; Murphy, C F; Ravdin, J I

    1987-01-01

    Cure of amebic liver abscess is associated with resistance to recurrent invasive amebiasis and the development of a humoral and cell-mediated immune response. We determined whether human immune sera contain blocking antibody for the 170-kilodalton (kDa) galactose or N-acetylgalactosamine (Gal/GalNAc)-binding lectin of Entamoeba histolytica. By Western blot (immunoblot) of whole amebae subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all eight immune sera studied here prominently recognized a 170-kDa amebic protein. Western blot of the purified Gal/GalNAc lectin with pooled human immune sera (PHIS) confirmed that the 170-kDa band was the adherence lectin. Immunoprecipitation of [35S]methionine-metabolically-labeled amebae with the antilectin monoclonal antibody H8-5 and with PHIS demonstrated that the 170-kDa lectin was the major antigen recognized by PHIS. The in vitro adherence of E. histolytica trophozoites to CHO cells at 4 degrees C was inhibited by prior exposure of amebae to greater than or equal to 1.0% PHIS. The humoral response to the Gal/GalNAc-binding lectin of the parasite may contribute to the development of protective immunity against invasive amebiasis. Images PMID:2888730

  13. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    PubMed

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.

  14. Glutamine synthetase plays a role in D-galactose-induced astrocyte aging in vitro and in vivo.

    PubMed

    Shen, Yao; Gao, Hongchang; Shi, Xiaojie; Wang, Na; Ai, Dongdong; Li, Juan; Ouyang, Li; Yang, Jianbo; Tian, Yueyang; Lu, Jianxin

    2014-10-01

    Astrocytes play multiple roles in physiological and pathological conditions in brain. However, little is known about the alterations of astrocytes in age-related changes, and few aging models of the astrocytes in vitro have been established. Therefore, in the present study, we used d-galactose (D-Gal) to establish astrocyte aging model to explore the alterations of astrocytes in brain aging. We also used (1)H nuclear magnetic resonance ((1)H NMR) spectra to verify the metabolic changes in the cerebral cortex of mice injected with D-gal. The results showed that D-gal (55mM) treatment for 1 week induced senescence characteristics in cultured cortical astrocytes. Real-time PCR and western blot analysis showed that the levels of glutamine synthetase (GS) mRNA and protein were strikingly decreased in the cultured senescent astrocytes, and the senescent astrocytes showed less resistance to the glutamate-induced gliotoxicity. The impairments of glutamate-glutamine cycle and astrocytes were also found in the cerebral cortex of mice treatment with D-gal (100mg/kg) for 6 weeks, and the level of GS mRNA was also found to be reduced markedly, being consistent with the result obtained from the senescent astrocytes in vitro. These results indicate that astrocyte may be the predominant contributor to the pathogenic mechanisms of D-gal-induced brain aging in mice, and GS might be one of the potential therapeutic targets of the aged brain induced by D-gal.

  15. EPA or DHA enhanced oxidative stress and aging protein expression in brain of d-galactose treated mice.

    PubMed

    Hsu, Yuan-Man; Yin, Mei-Chin

    2016-06-01

    Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. These findings suggest that these two PUFAs have toxic effects toward aging brain.

  16. The Macrophage Galactose-Type Lectin Can Function as an Attachment and Entry Receptor for Influenza Virus

    PubMed Central

    Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.

    2014-01-01

    Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596

  17. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine.

    PubMed

    Khan, Faaizah; Pickup, John C

    2013-08-30

    Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  18. Identification of the Plasticity-Relevant Fucose-α(1−2)-Galactose Proteome from the Mouse Olfactory Bulb†

    PubMed Central

    2009-01-01

    Fucose-α(1−2)-galactose [Fucα(1−2)Gal] sugars have been implicated in the molecular mechanisms that underlie neuronal development, learning, and memory. However, an understanding of their precise roles has been hampered by a lack of information regarding Fucα(1−2)Gal glycoproteins. Here, we report the first proteomic studies of this plasticity-relevant epitope. We identify five classes of putative Fucα(1−2)Gal glycoproteins: cell adhesion molecules, ion channels and solute carriers/transporters, ATP-binding proteins, synaptic vesicle-associated proteins, and mitochondrial proteins. In addition, we show that Fucα(1−2)Gal glycoproteins are enriched in the developing mouse olfactory bulb (OB) and exhibit a distinct spatiotemporal expression that is consistent with the presence of a “glycocode” to help direct olfactory sensory neuron (OSN) axonal pathfinding. We find that expression of Fucα(1−2)Gal sugars in the OB is regulated by the α(1−2)fucosyltransferase FUT1. FUT1-deficient mice exhibit developmental defects, including fewer and smaller glomeruli and a thinner olfactory nerve layer, suggesting that fucosylation contributes to OB development. Our findings significantly expand the number of Fucα(1−2)Gal glycoproteins and provide new insights into the molecular mechanisms by which fucosyl sugars contribute to neuronal processes. PMID:19527073

  19. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a D-galactose-induced mouse model.

    PubMed

    Wang, Cong; He, Ling; Yan, Ming; Zheng, Guang-yao; Liu, Xiao-yang

    2014-01-01

    Cognitive deficiency and oxidative stress have been well documented in aging and in neurodegenerative disorders such as Alzheimer's disease. In this study, we assessed the therapeutic effect of polyprenols on D-galactose-induced cognitive impairment in mice by testing on of behavioral and cognitive performance. In order to explore the possible role of polyprenols against D-galactose-induced oxidative damages, we assessed various biochemical indicators. Chronic administration of D-galactose (150 mg/kg·d, s.c.) for 7 weeks significantly impaired cognitive performance (both in step-through passive and active avoidance tests) and locomotor activity (in open-field test) and the ability of spatial learning and memory (in Morris water maze test) compared with the control group. The results revealed that polyprenols treatment for 2 weeks significantly ameliorated model mice's cognitive performance and oxidative defense. All groups of polyprenols enhanced the learning and memory ability in step-through passive and active avoidance tests, locomotor activity in open-field test, and the ability of spatial learning and memory in Morris water maze test. Furthermore, high and middle level of polyprenols significantly increased total antioxidative capacity (T-AOC), glutathione peroxidase (GSH-Px), super oxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression, while nitric oxide (NO), nitric oxide synthase (NOS) activity, malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. Polyprenols have a significant relieving effect on learning, memory, and spontaneous activities in a D-galactose-induced mouse model and ameliorates cognitive impairment and biochemical dysfunction in mice. In summary, we have demonstrated that polyprenols may ameliorate memory and cognitive impairment via enhancing oxidative defense and affecting generation and dissimilation of Aβ-related enzymes, suggesting that

  20. Genome Sequence of Vibrio sp. Strain EJY3, an Agarolytic Marine Bacterium Metabolizing 3,6-Anhydro-l-Galactose as a Sole Carbon Source

    PubMed Central

    Roh, Hanseong; Yun, Eun Ju; Lee, Saeyoung; Ko, Hyeok-Jin; Kim, Sujin; Kim, Byung-Yong; Song, Heesang; Lim, Kwang-il

    2012-01-01

    The metabolic fate of 3,6-anhydro-l-galactose (l-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize l-AHG as a sole carbon source. To elucidate the metabolic pathways of l-AHG, we have sequenced the complete genome of Vibrio sp. strain EJY3. PMID:22535948

  1. Altered cofactor binding affects stability and activity of human UDP-galactose 4′-epimerase: implications for type III galactosemia

    PubMed Central

    McCorvie, Thomas J.; Liu, Ying; Frazer, Andrew; Gleason, Tyler J.; Fridovich-Keil, Judith L.; Timson, David J.

    2012-01-01

    Deficiency of UDP-galactose 4′-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and inability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD+. p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD+. These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation. PMID:22613355

  2. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect.

  3. Allergy to Red Meat: A Diagnosis Made by the Patient and Confirmed by an Assay for IgE Antibodies Specific for Alpha-1,3-Galactose

    PubMed Central

    Kaloga, Mamadou; Kourouma, Sarah; Kouassi, Yao Isidore; Ecra, Elidje Joseph; Gbery, Ildevert Patrice; Allou, Ange S.; Diabate, Almamy; Djeha, Djokouehi; Sangaré, Abdoulaye; Yoboue, Yao Pauline

    2016-01-01

    We report the first case of allergy to red meat observed in Ivory Coast. A 49-year-old male presented with pruritus. The diagnosis of allergy to red meat was confirmed by an assay for IgE antibodies specific for alpha-1,3 galactose. Interestingly, the disease was considered a spell to the patient who was suspected of being a sorcerer by the community. PMID:26933408

  4. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.

    PubMed Central

    Zenke, F T; Zachariae, W; Lunkes, A; Breunig, K D

    1993-01-01

    We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulat