Science.gov

Sample records for galaxies hosting x-ray-selected

  1. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-10-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  2. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  3. The host galaxies of ultra hard X-ray selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.

    One of the great mysteries surrounding active galactic nuclei (AGN) is their triggering mechanism. Since the discovery that almost all massive galaxies host nuclear supermassive black holes, it has become clear that a trigger mechanism is required to 'turn on' and continue to fuel the central black hole. While it is established that accretion processes are responsible for the energy emitted, the source of the accreting material is still controversial. Furthermore, the energy input from phases of black hole growth is thought to be a key regulator in the formation of galaxies and the establishment of various scaling relations. Theorists often invoke galaxy mergers as the violent mechanism to drive gas into the central regions and ignite luminous quasars, but among more common moderate luminosity AGN, there has been great controversy whether secular processes or mergers dominate AGN fueling. A survey in the ultra hard X-ray band (14--195 keV) is an important new way to answer the fundamental question of AGN fueling. This method is independent of selection effects such as dust extinction and obscuration that plague surveys at other wavelengths because of the ability of the primary continuum to easily pass through large columns of obscuring gas and dust (<10 24 cm-2). In this PhD, we have assembled the largest sample of ultra hard X-ray selected AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift BAT sample. We find that these AGN show much higher rates of both mergers and massive spirals suggesting both mergers and accretion of cold gas in late type systems are important in AGN fueling. We also find that the most common AGN survey technique, optical line diagnostics, is heavily biased against finding AGN in mergers or spirals. Finally, in agreement with the merger driven AGN link, we find that dual AGN systems may be more common than current observation suggest since some of them are only detected using high

  4. The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering

    NASA Technical Reports Server (NTRS)

    Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.

  5. Star Formation and AGN activity of X-ray selected AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon

    2017-01-01

    One of the ongoing issues for understanding the galaxy formation and evolution is how active galactic nuclei (AGNs) affect the growth of their host galaxies. We investigate the correlations between AGN activity and star formation properties of a large sample of ~3700 X-ray selected AGNs over a wide range of luminosities (42 < log Lx < 45) up to z~5 in the Chandra-COSMOS Legacy Survey. We perform a multi-component modeling from the far-infrared, when available, to the near-UV using AGN emission from the big-blue-bump (for Type 1 AGNs), a nuclear dust torus model, a galaxy model and a starburst component for the spectral energy distributions (SEDs). Through detailed analysis of SEDs, we derive AGN host galaxy properties, such as stellar masses, star formation rates (SFRs), and AGN luminosities. We find that AGN host galaxies have, on average, similar SFRs compared to the normal star-forming main sequence galaxies, suggesting no significant enhancement or quenching of star formation. The average SFR of AGN host galaxies shows a flat distribution in bins of AGN luminosity, consistent with recent ideas that the shorter variability timescale of AGN compared to star formation can lead to a flat relationship between the SFR and black hole accretion rates. Our results suggest that both star formation and nuclear activity in the majority of AGN host galaxies might be driven more by internal secular processes at z<3, implying that they have substantially grown at much earlier epoch.

  6. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    SciTech Connect

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.; and others

    2013-01-20

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z {approx} 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z {approx} 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z {approx} 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z {approx}> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  7. The host galaxies of X-ray selected active galactic nuclei to z = 2.5: Structure, star formation, and their relationships from CANDELS and Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; Alexander, D. M.; Bauer, F. E.; Bell, E. F.; Berta, S.; Brandt, W. N.; Conselice, C. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Genzel, R.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Lotz, J. M.; Magnelli, B.; Maiolino, R.; Mozena, M.; Mullaney, J. R.; Papovich, C. J.; Popesso, P.; Tacconi, L. J.; Trump, J. R.; Avadhuta, S.; Bassett, R.; Bell, A.; Bernyk, M.; Bournaud, F.; Cassata, P.; Cheung, E.; Croton, D.; Donley, J.; DeGroot, L.; Guedes, J.; Hathi, N.; Herrington, J.; Hilton, M.; Lai, K.; Lani, C.; Martig, M.; McGrath, E.; Mutch, S.; Mortlock, A.; McPartland, C.; O'Leary, E.; Peth, M.; Pillepich, A.; Poole, G.; Snyder, D.; Straughn, A.; Telford, O.; Tonini, C.; Wandro, P.

    2015-01-01

    We study the relationship between the structure and star formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z ~ 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z ~ 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise from a more pronounced bulge in AGN hosts or extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favor one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z> 1.5. At z< 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift, towards a minor role for mergers and interactions at z> 1.5. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  8. Optical nebulosity in X-ray-selected, early type galaxies

    NASA Technical Reports Server (NTRS)

    Shields, Joseph C.

    1991-01-01

    This paper presents the results of an H-alpha + N II forbidden line narrowband imaging survey of X-ray-selected E and S0 galaxies. A novel technique is described for objectively optimizing the removal of stellar continuum light while providing well-defined estimates of systematic errors. The procedure has the additional benefit of eliminating sky contamination, specifically in image regions occupied by galaxy light. Consideration of the measured spectral energy distributions is included in the flux calibration procedure, and emission-line luminosities (or upper limits), corrected for Galactic foreground extinction, are tabulated for metric apertures. No connection is found between the 'boxiness' or 'diskiness' of stellar isophotes and emission-line or far-infrared luminosity. It is suggested that optical nebulosity in early-type galaxies contains a significant multiparameter dependence on active Galactic nuclei behavior, accretion from the hot interstellar medium, and mass injection from external sources.

  9. PROPERTIES OF GALAXIES HOSTING X-RAY-SELECTED ACTIVE GALACTIC NUCLEI IN THE CL1604 SUPERCLUSTER AT z = 0.9

    SciTech Connect

    Kocevski, Dale D.; Lubin, Lori M.; Lemaux, Brian C.; Gal, Roy R.; Fassnacht, Christopher D.; Lin, Robin; Squires, Gordon K.

    2009-08-01

    Recent galaxy evolution models suggest that feedback from active galactic nuclei (AGNs) may be responsible for suppressing star formation in their host galaxies and the subsequent migration of these systems onto the red sequence. To investigate the role of AGNs in driving the evolution of their hosts, we have carried out a study of the environments and optical properties of galaxies harboring X-ray luminous AGNs in the Cl1604 supercluster at z {approx} 0.9. Making use of Chandra, HST/ACS and Keck/DEIMOS observations, we examine the integrated colors, morphologies, and spectral properties of nine moderate-luminosity (L {sub X} {approx} 10{sup 43} erg s{sup -1}) type 2 Seyferts detected in the Cl1604 complex. We find that the AGNs are predominantly hosted by luminous spheroids and/or bulge-dominated galaxies which have colors that place them in the valley between the blue cloud and red sequence in color-magnitude space, consistent with predictions that AGN hosts should constitute a transition population. Half of the hosts have bluer overall colors as a result of blue resolved cores in otherwise red spheroids and a majority show signs of recent or pending interactions. We also find a substantial number exhibit strong Balmer absorption features indicative of post-starburst galaxies, despite the fact that we detect narrow [O II] emission lines in all of the host spectra. If the [O II] lines are due in part to AGN emission, as we suspect, then this result implies that a significant fraction of these galaxies (44%) have experienced an enhanced level of star formation within the last {approx}1 Gyr which was rapidly suppressed. Furthermore we observe that the hosts galaxies tend to avoid the densest regions of the supercluster and are instead located in intermediate density environments, such as the infall region of a massive cluster or in poorer systems undergoing assembly. Overall we find that the properties of the nine host galaxies are generally consistent with a

  10. The Host Galaxies of X-Ray Selected Active Galactic Nuclei to z - 2.5: Structure, Star-Formation and Their Relationships from CANDELS and Herschel/Pacs

    NASA Technical Reports Server (NTRS)

    Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; Alexander, D. M.; Bauer, F. E.; Bell, E. F.; Berta, S.; Brandt, W. N.; Conselice, C. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Genzel, R.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Straughn, A.

    2014-01-01

    We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15

  11. Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z ˜ 1

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Pérez-González, Pablo G.; Barro, Guillermo; Aird, James; Ferreras, Ignacio; Cava, Antonio; Cardiel, Nicolás; Esquej, Pilar; Gallego, Jesús; Nandra, Kirpal; Rodríguez-Zaurín, Javier

    2014-10-01

    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34 < z < 1.07 with ultradeep (mAB = 26.5, 3σ) optical medium-band (R ˜ 50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Å break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (LX < 1044 erg s-1) are hosted by massive galaxies (typically M* >1010.5 M⊙) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependences of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U - V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 Å breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U - V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000) ˜ 1.4 and light-weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognizing these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.

  12. Fraction of the X-ray selected AGNs with optical emission lines in galaxy groups

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Qirong; Bian, Weihao; Chen, Xi; Yan, Pengfei

    2017-04-01

    Compared with numerous X-ray dominant active galactic nuclei (AGNs) without emission-line signatures in their optical spectra, the X-ray selected AGNs with optical emission lines are probably still in the high-accretion phase of black hole growth. This paper presents an investigation on the fraction of these X-ray detected AGNs with optical emission-line spectra in 198 galaxy groups at z<1 in a rest frame 0.1-2.4 keV luminosity range 41.3 < log(LX/erg s^{-1}) < 44.1 within the Cosmological Evolution Survey (COSMOS) field, as well as its variations with redshift and group richness. For various selection criteria of member galaxies, the numbers of galaxies and the AGNs with optical emission lines in each galaxy group are obtained. It is found that, in total 198 X-ray groups, there are 27 AGNs detected in 26 groups. AGN fraction is on average less than 4.6 (±1.2)% for individual groups hosting at least one AGN. The corrected overall AGN fraction for whole group sample is less than 0.98 (±0.11) %. The normalized locations of group AGNs show that 15 AGNs are found to be located in group centers, including all 6 low-luminosity group AGNs (L_{ 0.5-2 keV} < 10^{42.5} erg s^{-1}). A week rising tendency with z are found: overall AGN fraction is 0.30-0.43% for the groups at z<0.5, and 0.55-0.64% at 0.5 < z < 1.0. For the X-ray groups at z>0.5, most member AGNs are X-ray bright, optically dull, which results in a lower AGN fractions at higher redshifts. The AGN fraction in isolated fields also exhibits a rising trend with redshift, and the slope is consistent with that in groups. The environment of galaxy groups seems to make no difference in detection probability of the AGNs with emission lines. Additionally, a larger AGN fractions are found in poorer groups, which implies that the AGNs in poor groups might still be in the high-accretion phase, whereas the AGN population in rich clusters is mostly in the low-accretion, X-ray dominant phase.

  13. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Grewing, M.

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.

  14. a Snapshot Survey of X-Ray Selected Central Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Edge, Alastair

    1999-07-01

    Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.

  15. The Far-Infrared Spectral Energy Distributions of X-Ray-selected Active Galaxies

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna K.; Wilkes, Belinda J.; Hooper, Eric J.; McLeod, Kim K.; Wood, Kenneth; Bjorkman, Jon; Delain, Kisha M.; Hughes, David H.; Elvis, Martin S.; Impey, Chris D.; Lonsdale, Carol J.; Malkan, Matt A.; McDowell, Jonathan C.; Whitney, Barbara

    2003-06-01

    Hard X-ray selection is, arguably, the optimal method for defining a representative sample of active galactic nuclei (AGNs). Hard X-rays are unbiased by the effects of obscuration and reprocessing along the line of sight intrinsic/external to the AGN, which result in unknown fractions of the population being missed from traditional optical/soft X-ray samples. We present the far-infrared (far-IR) observations of 21 hard X-ray-selected AGNs from the HEAO 1 A2 sample observed with Infrared Space Observatory (ISO). We characterize the far-IR continua of these X-ray-selected AGNs and compare them with those of various radio and optically selected AGN samples and with models for an AGN-heated, dusty disk. The X-ray-selected AGNs show broad, warm IR continua covering a wide temperature range (~20-1000 K in a thermal emission scenario). Where a far-IR turnover is clearly observed, the slopes are less than 2.5 in all but three cases so that nonthermal emission remains a possibility, although the presence of cooler dust resulting in a turnover at wavelengths longward of the ISO range is considered more likely. The sample also shows a wider range of optical/UV shapes than the optical/radio-selected samples, extending to redder near-IR colors. The bluer objects are type 1 Seyfert galaxies, while the redder AGNs are mostly intermediate or type 2 Seyfert galaxies. This is consistent with a modified unification model in which obscuration increases as we move from a face-on toward a more edge-on line of sight. However, this relation does not extend to the mid-infrared as the 25/60 μm ratios are similar in Seyfert galaxies with differing type and optical/UV reddening. The resulting limits on the column density of obscuring material through which we are viewing the redder AGNs (NH~1022 cm-2) are inconsistent with standard optically thick torus models (NH~1024 cm-2) and simple unification models. Instead our results support more complex models in which the amount of obscuring

  16. AN X-RAY-SELECTED GALAXY CLUSTER IN THE LOCKMAN HOLE AT REDSHIFT 1.753

    SciTech Connect

    Patrick Henry, J.; Salvato, Mara; Hasinger, Guenther; Finoguenov, Alexis; Brunner, Hermann; Burwitz, Vadim; Buschkamp, Peter; Foerster-Schreiber, Natasha; Genzel, Reinhard; Rovilos, Manolis; Szokoly, Gyula; Bouche, Nicolas; Egami, Eiichi; Fotopoulou, Sotiria; Mainieri, Vincenzo

    2010-12-10

    We have discovered an X-ray-selected galaxy cluster with a spectroscopic redshift of 1.753. The redshift is of the brightest cluster galaxy (BCG), which is coincident with the peak of the X-ray surface brightness. We also have concordant photometric redshifts for seven additional candidate cluster members. The X-ray luminosity of the cluster is (3.68 {+-} 0.70) x 10{sup 43} erg s{sup -1} in the 0.1-2.4 keV band. The optical/IR properties of the BCG imply that its formation redshift was {approx}5 if its stars formed in a short burst. This result continues the trend from lower redshift in which the observed properties of BCGs are most simply explained by a single monolithic collapse at very high redshift instead of the theoretically preferred gradual hierarchical assembly at later times. However, the models corresponding to different formation redshifts are more clearly separated as our observation epoch approaches the galaxy formation epoch. Although our infrared photometry is not deep enough to define a red sequence, we do identify a few galaxies at the cluster redshift that have the expected red sequence photometric properties.

  17. A MULTIWAVELENGTH STUDY OF SUPERNOVA REMNANTS IN SIX NEARBY GALAXIES. I. DETECTION OF NEW X-RAY-SELECTED SUPERNOVA REMNANTS WITH CHANDRA

    SciTech Connect

    Leonidaki, I.; Boumis, P.; Zezas, A.

    2010-12-10

    We present results from a study of the supernova remnant (SNR) population in a sample of six nearby galaxies (NGC 2403, NGC 3077, NGC 4214, NGC 4449, NGC 4395, and NGC 5204) based on Chandra archival data. We have detected 244 discrete X-ray sources down to a limiting flux of 10{sup -15} erg s{sup -1} cm{sup -2}. We identify 37 X-ray-selected thermal SNRs based on their X-ray colors or spectra, 30 of which are new discoveries. In many cases, the X-ray classification is confirmed based on counterparts with SNRs identified in other wavelengths. Three of the galaxies in our sample (NGC 4214, NGC 4395, and NGC 5204) are studied for the first time, resulting in the discovery of 13 thermal SNRs. We discuss the properties (luminosity, temperature, and density) of the X-ray-detected SNRs in the galaxies of our sample in order to address their dependence on their environment. We find that X-ray-selected SNRs in irregular galaxies appear to be more luminous than those in spirals. We attribute this to the lower metallicities and therefore more massive progenitor stars of irregular galaxies or the higher local densities of the interstellar medium. We also discuss the X-ray-selected SNR populations in the context of the star formation rate of their host galaxies. A comparison of the numbers of observed luminous X-ray-selected SNRs with those expected based on the luminosity functions of X-ray SNRs in the Magellanic Clouds and M33 suggest different luminosity distributions between the SNRs in spiral and irregular galaxies with the latter tending to have flatter distributions.

  18. STRUCTURE AND MORPHOLOGY OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS HOSTS AT 1 < z < 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan, Lulu; Chen, Yang; Li, Jinrong; Lv, Xuanyi; Kong, Xu; Fang, Guanwen; Knudsen, Kirsten K.

    2014-03-20

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M {sub 20} index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

  19. Structure and Morphology of X-Ray-selected Active Galactic Nucleus Hosts at 1 < z < 3 in the CANDELS-COSMOS Field

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Fang, Guanwen; Chen, Yang; Li, Jinrong; Lv, Xuanyi; Knudsen, Kirsten K.; Kong, Xu

    2014-03-01

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ~ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M 20 index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ~15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

  20. X-ray selected galaxy clusters in the Pan-STARRS Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Price, P. A.; Tonry, J. L.

    2013-06-01

    We present the results of a pilot study for the extended Massive Cluster Survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z > 0.5. Our pilot study applies the eMACS concept to the 71 deg2 area extended by the 10 fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g, r, i and z bands in a 5 × 5 arcmin2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS data base, i.e. all RASS sources listed in the Bright and Faint Source Catalogues (BSC and FSC) that fall within the MDS footprint. We apply no additional constraints regarding X-ray flux, spectral hardness ratio or photon statistics and lower the redshift threshold to z > 0.3 to extend the probed luminosity range to poorer systems. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z > 0.3. In order to assess and quantify the degree of point source contamination of the observed RASS fluxes, we examine archival Chandra data obtained in targeted and serendipitous observations of six of the 11 clusters found. As expected, the diffuse emission from all six systems is contaminated by point sources to some degree, and for half of them active galactic nucleus emission dominates. X-ray follow-up observations will thus be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20 000 deg2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z ≳ 0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging

  1. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.

    1989-01-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  2. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    SciTech Connect

    Nesci, R.; Perola, G.C.; Gioia, I.M.; Maccacaro, T.; Morris, S.L.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; CNR, Istituto di Radioastronomia, Bologna; Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1989-09-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date. 28 refs.

  3. X-ray-selected galaxy groups in Boötes

    SciTech Connect

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Goulding, Andrew; Andrade-Santos, Felipe

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and perform a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster

  4. Search For Gamma-Ray Emission From X-Ray-Selected Seyfert Galaxies With Fermi -LAT

    DOE PAGES

    Ackermann, M.

    2012-02-23

    We report on a systematic investigation of the γ-ray properties of 120 hard Xray– selected Seyfert galaxies classified as ‘radio-quiet’ objects, utilizing the threeyear accumulation of Fermi–LAT data. Our sample of Seyfert galaxies is selected using the Swift–BAT 58-month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV ≥ 2.5 × 10-11 erg cm-2 s-1 at high Galactic latitudes (|b| > 10°). In order to remove ‘radio-loud’ objects from the sample, we use the ‘hard X-ray radio loudness parameter’, RrX , defined as the ratio of the total 1.4 GHz radio to 14 -more » 195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10-4, we did not find a statistically significant γ-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323–G077 and NGC 6814. The mean value of the 95% confidence level γ-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is ≃ 4×10-9 ph cm-2 s-1 , and the upper limits derived for several objects reach ≃ 1 × 10-9 ph cm-2 s-1 . Our results indicate that no prominent γ-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi–LAT upper limits derived for our sample probe the ratio of γ-ray to X-ray luminosities L /LX < 0.1, and even < 0.01 in some cases. The obtained results impose novel constraints on the models for high energy radiation of ‘radio-quiet’ Seyfert galaxies.« less

  5. Galaxies in X-Ray Selected Clusters and Groups in Dark Energy Survey Data. I. Stellar Mass Growth of Bright Central Galaxies since z~1.2

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; Perfecto, R.; Song, J.; Desai, S.; Mohr, J.; Wilcox, H.; Bermeo-Hernandez, A.; Jeltema, T.; Hollowood, D.; Bacon, D.; Capozzi, D.; Collins, C.; Das, R.; Gerdes, D.; Hennig, C.; Hilton, M.; Hoyle, B.; Kay, S.; Liddle, A.; Mann, R. G.; Mehrtens, N.; Nichol, R. C.; Papovich, C.; Sahlén, M.; Soares-Santos, M.; Stott, J.; Viana, P. T.; Abbott, T.; Abdalla, F. B.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Castander, F. J.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Eifler, T. F.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Martini, Paul; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Vikram, V.; da Costa, L. N.

    2016-01-01

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m*∝ (M200/{1.5×10}14M⊙})0.24+/-0.08 (1+z)-0.19+/- 0.34, and compare the observed relation to the model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M200,z = 1013.8 M⊙ at z = 1.0: m*,BCG appears to have grown by 0.13 ± 0.11 dex, in tension at the ˜2.5σ significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.

  6. Comparing Cool Cores in the Planck SZ Selected Samples of Clusters of Galaxies with Cool Cores in X-ray Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Santos, Felipe A.; Forman, William R.; Kraft, Ralph P.; Lovisari, Lorenzo; Arnaud, Monique; Mazzotta, Pasquale; Van Weeren, Reinout J.; Churazov, Eugene; Ferrari, Chiara; Borgani, Stefano; Chandra-Planck Collaboration

    2016-06-01

    The Planck mission provided a representative sample of clusters of galaxies over the entire sky. With completed Chandra observations of 165 Planck ESZ and cosmology sample clusters at z<0.35, we can now characterize each cluster in terms of its X-ray luminosity, gas temperature, gas mass, total mass, gas entropy, gas central cooling time, presence of active AGN, gas cavities, radio emission, and cluster morphology. In this presentation we compare the percentages of cool core and non-cool core clusters in the Planck-selected clusters with the percentages in X-ray selected cluster samples. We find a significantly smaller percentage of cool core clusters in the Planck sample than in X-ray selected cluster samples. We will discuss the primary reasons for this smaller percentage of cool-core clusters in the Planck-selected cluster sample than in X-ray-selected samples.

  7. X-ray selected quasars and Seyfert galaxies - Cosmological evolution, luminosity function, and contribution to the X-ray background

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Stocke, J. T.

    1984-01-01

    The cosmological evolution and the X-ray luminosity function of quasars and Seyfert galaxies (active galactic nuclei /AGNs/) are derived and discussed. The sample used consists of 56 objects extracted from the expanded Einstein Observatory Medium Sensitivity Survey, and it is exclusively defined by its X-ray properties. The distribution in space of X-ray selected AGNs is confirmed to be strongly nonuniform; the amount of cosmological evolution required by the data is in agreement with a previous determination based on a smaller sample of objects. The X-ray luminosity function (XLF) is derived. The high-luminosity part of the XLF is satisfactorily described by a power law of slope gamma approximately 3.6. A significant flattening is observed at low luminosities. The simultaneous determination of the cosmological evolution and of the X-ray luminosity function of AGNs is then used to estimate the contribution to the extragalactic diffuse X-ray background. Using the best fit values for the evolution of AGNs and for their volume density, it is found that they contribute approximately 80 percent of the 2 keV diffuse X-ray background. Uncertainties in this estimate are still rather large; however, it seems difficult to reconcile the data with a contribution much less than 50 percent.

  8. Hard X-Ray-selected AGNs in Low-mass Galaxies from the NuSTAR Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Chen, C.-T. J.; Brandt, W. N.; Reines, A. E.; Lansbury, G.; Stern, D.; Alexander, D. M.; Bauer, F.; Del Moro, A.; Gandhi, P.; Harrison, F. A.; Hickox, R. C.; Koss, M. J.; Lanz, L.; Luo, B.; Mullaney, J. R.; Ricci, C.; Trump, J. R.

    2017-03-01

    We present a sample of 10 low-mass active galactic nuclei (AGNs) selected from the 40-month Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The sample is selected to have robust NuSTAR detections at 3{--}24 {keV}, to be at z< 0.3, and to have optical r-band magnitudes at least 0.5 mag fainter than an {L}\\star galaxy at its redshift. The median values of absolute magnitude, stellar mass, and 2–10 X-ray luminosity of our sample are < {M}r> =-20.03, < {M}\\star > =4.6× {10}9 {M}ȯ , and < {L}2-10{keV}> =3.1× {10}42 erg s‑1, respectively. Five objects have detectable broad Hα emission in their optical spectra, indicating black hole masses of (1.1{--}10.4)× {10}6 {M}ȯ . We find that {30}-10+17 % of the galaxies in our sample do not show AGN-like optical narrow emission lines, and one of the 10 galaxies in our sample, J115851+4243.2, shows evidence for heavy X-ray absorption. This result implies that a non-negligible fraction of low-mass galaxies might harbor accreting massive black holes that are missed by optical spectroscopic surveys and < 10 {keV} X-ray surveys. The mid-IR colors of our sample also indicate that these optically normal low-mass AGNs cannot be efficiently identified with typical AGN selection criteria based on Wide Field Infrared Survey Explorer colors. While the hard (> 10 keV) X-ray-selected low-mass AGN sample size is still limited, our results show that sensitive NuSTAR observations are capable of probing faint hard X-ray emission originating from the nuclei of low-mass galaxies out to moderate redshift (z< 0.3), thus providing a critical step in understanding AGN demographics in low-mass galaxies.

  9. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  10. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~1014–1015 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precise (Δz ~ 0.001)more » redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  11. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    SciTech Connect

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J. -P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y. -T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H. -J.; Tinker, J.

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~1014–1015 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precise (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.

  12. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  13. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2

    DOE PAGES

    Zhang, Y.; Miller, C.; McKay, T.; ...

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.

  14. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z˜ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z˜ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  15. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  16. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Takey, A.; Shoukry, A.

    2016-07-01

    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1-0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

  17. The EMSS catalog of X-ray-selected clusters of galaxies. 1: An atlas of CCD images of 41 distant clusters

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Luppino, G. A.

    1994-01-01

    An atlas of deep, wide-field R-band charge coupled device (CCD) images of a complete sample of distant, X-ray-selected clusters of galaxies is presented. These clusters are the 41 most distant (z is greater than or equal to 0.15) and most X-ray-luminous (L(sub x) is greater than or equal to 2 x 10(exp 44) ergs/s) clusters in the Einstein Observatory Extended Medium Sensitivity Survey (EMSS) catalog that are observable from Mauna Kea (delta is greater than -40 deg). The sample spans a redshift range of 0.15 is less than or equal to z is less than or equal to 0.81 and includes at least two and possibly as many as six rich clusters with z is greater than 0.5. For the most part, the data are of superior quality, with a median seeing of 0.8 sec full width half-maximum (FWHM) and coverage of at least 1 Mpc x 1 Mpc in the cluster frame (H(sub 0) = 50; q(sub 0) = 1/2). In addition, we update the available optical, X-ray, and radio data on the entire EMSS sample of 104 clusters. We outline the cluster selection criteria in detail and emphasize that X-ray-selected cluster samples may prove to be more useful for cosmological studies than optically selected samples. The EMSS cluster sample in particular can be exploited for diverse cosmological investigations, as demonstrated by the detection of evolution in the X-ray luminosity function previously reported, and more recently by the discovery of a large number of gravitationally lensed images in these clusters.

  18. Search For Gamma-Ray Emission From X-Ray-Selected Seyfert Galaxies With Fermi -LAT

    SciTech Connect

    Ackermann, M.

    2012-02-23

    We report on a systematic investigation of the γ-ray properties of 120 hard Xray– selected Seyfert galaxies classified as ‘radio-quiet’ objects, utilizing the threeyear accumulation of Fermi–LAT data. Our sample of Seyfert galaxies is selected using the Swift–BAT 58-month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV ≥ 2.5 × 10-11 erg cm-2 s-1 at high Galactic latitudes (|b| > 10°). In order to remove ‘radio-loud’ objects from the sample, we use the ‘hard X-ray radio loudness parameter’, RrX , defined as the ratio of the total 1.4 GHz radio to 14 - 195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10-4, we did not find a statistically significant γ-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323–G077 and NGC 6814. The mean value of the 95% confidence level γ-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is ≃ 4×10-9 ph cm-2 s-1 , and the upper limits derived for several objects reach ≃ 1 × 10-9 ph cm-2 s-1 . Our results indicate that no prominent γ-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi–LAT upper limits derived for our sample probe the ratio of γ-ray to X-ray luminosities L /LX < 0.1, and even < 0.01 in some cases. The obtained results impose novel constraints on the models for high energy radiation of ‘radio-quiet’ Seyfert galaxies.

  19. 1E 1415.6+2557 - An X-ray-selected BL Lacertae object in a luminous galaxy

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Impey, C. D.; Bothun, G. D.; Tapia, S.; Skillman, E. D.

    1986-01-01

    The identification of a fifth serendipitous Einstein source with a new BL Lac object in a very luminous galaxy is reported. The resolved component is well fitted by an exponential disk with scale length 18 kpc and absolute magnitude of roughly -24.2. A redshift of 0.237 is derived from stellar absorption features. No emission lines are seen in the 3200-9000 A wavelength range. Decomposition of the optical spectrum into a standard galaxy plus a power law yields a spectral index of 0.5 + or - 0.5, significantly flatter than in the average BL Lac object. Linear polarization of the nonstellar component is about 6 percent in the 4500-7000 A wavelength range. The X-ray flux in the 0.3-3.5 keV band is 1.16 x 10 to the -11th ergs/sq cm/s, corresponding to a luminosity of 3.5 x 10 to the 45th ergs/s . The radio flux density is 85.6 mJy at 20 cm and 54.5 mJy at 6 cm.

  20. Galaxies in x-ray selected clusters and groups in Dark Energy Survey Data I: Stellar mass growth of bright central galaxies since Z similar to 1.2

    SciTech Connect

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; Perfecto, R.; Song, J; Desai, S.; Mohr, J. J.; Vikram, V.

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z similar to 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m(*) proportional to (M-200/1.5 x 10(14)M(circle dot))(0.24 +/- 0.08)(1+z)(-0.19 +/- 0.34), and compare the observed relation to the model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M-200,M-z = 10(13.8)M(circle dot); at z = 1.0: m(*, BCG) appears to have grown by 0.13 +/- 0.11 dex, in tension at the similar to 2.5 sigma significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.

  1. Lensed arc statistics: comparison of Millennium simulation galaxy clusters to Hubble Space Telescope observations of an X-ray selected sample

    NASA Astrophysics Data System (ADS)

    Horesh, Assaf; Maoz, Dan; Hilbert, Stefan; Bartelmann, Matthias

    2011-11-01

    It has been debated for a decade whether there is a large overabundance of strongly lensed arcs in galaxyclusters, compared to expectations from Λ cold dark matter cosmology. We perform ray tracing through the most massive haloes of the Millennium simulation at several redshifts in their evolution, using the Hubble Ultra Deep Field as a source image, to produce realistic simulated lensed images. We compare the lensed arc statistics measured from the simulations to those of a sample of 45 X-ray selected clusters, observed with the Hubble Space Telescope, that we have analysed in Horesh et al. The observations and the simulations are matched in cluster masses, redshifts, observational effects, and the algorithmic arc detection and selection. At z= 0.6, there are too few massive-enough clusters in the Millennium volume for a proper statistical comparison with the observations. At redshifts 0.3 < z < 0.5, however, we have large numbers of simulated and observed clusters, and the latter are an unbiased selection from a complete sample. For these redshifts, we find excellent agreement between the observed and simulated arc statistics, in terms of the mean number of arcs per cluster, the distribution of number of arcs per cluster and the angular separation distribution. At z≈ 0.2 some conflict remains, with real clusters being ˜3 times more efficient arc producers than their simulated counterparts. This may arise due to selection biases in the observed subsample at this redshift, to some mismatch in masses between the observed and simulated clusters or to physical effects that arise at low redshift and enhance the lensing efficiency, but which are not represented by the simulations.

  2. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  3. The XMM-BCS galaxy cluster survey: I. The X-ray selected cluster catalog from the initial 6 deg$^2$

    SciTech Connect

    Suhada, R.; Song, J.; Bohringer, H.; Mohr, J.J.; Chon, G.; Finoguenov, A.; Fassbender, R.; Desai, S.; Armstrong, R.; Zenteno, A.; Barkhouse, W.A.; /North Dakota U. /Paris, Inst. Astrophys.

    2011-11-01

    The XMM-Newton - Blanco Cosmology Survey project (XMM-BCS) is a coordinated X-ray, optical and mid-infrared cluster survey in a field also covered by Sunyaev-Zel dovich effect (SZE) surveys by the South Pole Telescope and the Atacama Cosmology Telescope. The aim of the project is to study the cluster population in a 14 deg{sup 2} field (center: {alpha} {approx} 23:29:18.4, {delta} {approx} -54:40:33.6). The uniform multi-wavelength coverage will also allow us for the first time to comprehensively compare the selection function of the different cluster detection approaches in a single test field and perform a cross-calibration of cluster scaling relations. In this work, we present a catalog of 46 X-ray selected clusters from the initial 6 deg{sup 2} survey core.We describe the XMM-BCS source detection pipeline and derive physical properties of the clusters. We provide photometric redshift estimates derived from the BCS imaging data and spectroscopic redshift measurements for a low redshift subset of the clusters. The photometric redshift estimates are found to be unbiased and in good agreement with the spectroscopic values. Our multi-wavelength approach gives us a comprehensive look at the cluster and group population up to redshifts z {approx} 1. The median redshift of the sample is 0.47 and the median mass M{sub 500} {approx} 1 x 10{sup 14} M{sub {circle_dot}} ({approx} 2 keV). From the sample, we derive the cluster log N - log S using an approximation to the survey selection function and find it in good agreement with previous studies. We compare optical mass estimates from the Southern Cosmology Survey available for part of our cluster sample with our estimates derived from the X-ray luminosity. Weak lensing masses available for a subset of the cluster sample are in agreement with our estimates. Optical masses based on cluster richness and total optical luminosity are found to be significantly higher than the X-ray values. The present results illustrate the

  4. ONE THOUSAND AND ONE CLUSTERS: MEASURING THE BULK FLOW WITH THE PLANCK ESZ AND X-RAY-SELECTED GALAXY CLUSTER CATALOGS

    SciTech Connect

    Mody, Krishnan; Hajian, Amir E-mail: ahajian@cita.utoronto.ca

    2012-10-10

    We present our measurement of the 'bulk flow' using the kinetic Sunyaev-Zel'dovich (kSZ) effect in the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. As the tracer of peculiar velocities, we use Planck Early Sunyaev-Zel'dovich Detected Cluster Catalog and a compilation of X-ray-detected galaxy cluster catalogs based on ROSAT All-Sky Survey. We build a full-sky kSZ template and fit it to the WMAP data in W band. Using a Wiener filter we maximize the signal-to-noise ratio of the kSZ cluster signal in the data. We find no significant detection of the bulk flow, and our results are consistent with the {Lambda}CDM prediction.

  5. F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. Application to a sample of 16 X-ray selected galaxy clusters at 0.6 ≤ z ≤ 1.2

    NASA Astrophysics Data System (ADS)

    Nastasi, A.; Scodeggio, M.; Fassbender, R.; Böhringer, H.; Pierini, D.; Verdugo, M.; Garilli, B. M.; Franzetti, P.

    2013-02-01

    Aims: The goal of this paper is twofold. Firstly, we present F-VIPGI, a new version of the VIMOS Interactive Pipeline and Graphical Interface (VIPGI) adapted to handle FORS2 spectroscopic data taken with the standard instrument configuration. Secondly, we investigate the spectro-photometric properties of a sample of galaxies residing in distant X-ray selected galaxy clusters, the optical spectra of which were reduced with this new pipeline. Methods: We provide basic technical information about the innovations of the new software and refer the reader to the original VIPGI paper for a detailed description of the core functions and performances. As a demonstration of the capabilities of the new pipeline, we then show results obtained for 16 distant (0.65 ≤ z ≤ 1.25) X-ray luminous galaxy clusters selected within the XMM-Newton Distant Cluster Project. We performed a spectral indices analysis of the extracted optical spectra of their members, based on which we created a library of composite high signal-to-noise ratio spectra. We then compared the average spectra of the passive galaxies of our sample with those computed for the same class of objects that reside in the field at similar high redshift and in groups in the local Universe. Finally, We computed the "photometric" properties of our templates and compared them with those of the Coma Cluster galaxies, which we took as representative of the local cluster population. Results: We demonstrate the capabilities of F-VIPGI, whose strength is an increased efficiency and a simultaneous shortening of FORS2 spectroscopic data reduction time by a factor of ~10 w.r.t. the standard IRAF procedures. We then discuss the quality of the final stacked optical spectra and provide them in electronic form as high-quality spectral templates, representative of passive and star-forming galaxies residing in distant galaxy clusters. By comparing the spectro-photometric properties of our templates with the local and distant galaxy

  6. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Šuhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-04-01

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ˜6 deg2 of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥1042 erg s-1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y500 signal that is (17 ± 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass-observable relations.

  7. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    SciTech Connect

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.;  uhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-25

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥1042 erg s-1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on

  8. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    SciTech Connect

    Liu, J.; Mohr, J. J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.

    2015-04-11

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from similar to 6 deg(2) of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (>= 10(42) erg s(-1)) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y-500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8 sigma with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8 sigma significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y-500 signal that is (17 +/- 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass

  9. Multiwavelength studies of X-ray selected extragalactic sample

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Harutyunyan, G. S.; Abrahamyan, H. V.; Gyulzadyan, M. V.

    2016-11-01

    The joint catalogue of Active Galactic Nuclei selected from optical identications of X-ray sources was created as a combination of two samples: Hamburg-ROSAT Catalogue (HRC) and Byurakan-Hamburg-ROSAT Catalogue (BHRC). Both are based on optical identications of X-ray sources from ROSAT catalogues using low-dispersion spectra of Hamburg Quasar Survey (HQS). However, HRC and BHRC contain a number of misidentications and using the recent optical and multiwavelength (MW) catalogues we have revised both samples excluding false AGN and adding new genuine ones. Thus a new large homogeneous complete sample of 4253 X-ray selected AGN was created. 3352 of them are listed in the Catalogue of QSOs and Active Galaxies and 387 also are in Roma Multifrequency Catalogue of Blazars. 901 candidate AGN are subjects for further study. We classified 173 of these objects using their SDSS DR12 spectra. Following activity types were revealed: 61 AGN, 21 HII galaxies, 12 emission-line galaxies without definite type, 71 absorption-line galaxies, 2 stars, and 6 were classified as "Unknown". A special emphasis is made on narrow-line Sy1.0-Sy1.5 galaxies and QSOs, as many of them have soft X-ray, strong FeII lines, and relatively narrow lines coming from BLR ("narrow broad lines"). As a result, the sample of genuine AGN was enlarged to 3413 objects. We have retrieved MW data from recent catalogues and carried out statistical investigations for the whole AGN sample. An attempt to find connections between fluxes in different bands for different types of sources, and to identify their characteristics thus confirming candidate AGNs has been carried out. We have analyzed X-ray properties of these sources to nd a limit between normal galaxies and X-ray AGN.

  10. Discovery of the X-ray selected galaxy cluster XMMU J0338.8+0021 at z = 1.49. Indications of a young system with a brightest galaxy in formation

    NASA Astrophysics Data System (ADS)

    Nastasi, A.; Fassbender, R.; Böhringer, H.; Šuhada, R.; Rosati, P.; Pierini, D.; Verdugo, M.; Santos, J. S.; Schwope, A. D.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mühlegger, M.; Quintana, H.

    2011-08-01

    We report the discovery of a galaxy cluster at z = 1.490 originally selected as an extended X-ray source in the XMM-Newton Distant Cluster Project. Further observations carried out with the VLT-FORS2 spectrograph allowed the spectroscopic confirmation of seven secure cluster members, providing a median system redshift of z = 1.490 ± 0.009. The color-magnitude diagram of XMMU J0338.8+0021 reveals the presence of a well-populated red sequence with z - H ≈ 3, albeit with an apparent significant scatter in color. Since we do not detect indications of any strong star formation activity in these objects, the color spread could represent the different stellar ages of the member galaxies. In addition, we found the brightest cluster galaxy in a very active dynamical state, with an interacting, merging companion located at a physical projected distance of d ≈ 20 kpc. From the X-ray luminosity, we estimate a cluster mass of M200 ~ 1.2 × 1014 M⊙. The data appear to be consistent with a scenario in which XMMU J0338.8+0021 is a young system, possibly caught in a moment of active ongoing mass assembly. Based on observations under programme ID 084.A-0844 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 1, 2 and Figs. 3-6 are available in electronic form at http://www.aanda.org

  11. EXTREME HOST GALAXY GROWTH IN POWERFUL EARLY-EPOCH RADIO GALAXIES

    SciTech Connect

    Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2012-10-01

    During the first half of the universe's life, a heyday of star formation must have occurred because many massive galaxies are in place after that epoch in cosmic history. Our observations with the revolutionary Herschel Space Observatory reveal vigorous optically obscured star formation in the ultra-massive hosts of many powerful high-redshift 3C quasars and radio galaxies. This symbiotic occurrence of star formation and black hole driven activity is in marked contrast to recent results dealing with Herschel observations of X-ray-selected active galaxies. Three archetypal radio galaxies at redshifts 1.132, 1.575, and 2.474 are presented here, with inferred star formation rates of hundreds of solar masses per year. A series of spectacular coeval active galactic nucleus/starburst events may have formed these ultra-massive galaxies and their massive central black holes during their relatively short lifetimes.

  12. Multicolor photometry of x ray selected Abell clusters

    NASA Technical Reports Server (NTRS)

    Lopez-Cruz, Omar

    1993-01-01

    Strong evidence of evolution in cluster of galaxies at relatively low redshift has been indicated by recent x-ray studies. We are conducting a comprehensive optical study of a sample of Abell clusters that are strong x-ray emitters in order to test the x-ray evolution scenarios that have been proposed. The initial observations consist of three-color (B, R, I) imaging of low-redshift (0.025 less than z less than 0.25) Abell clusters using the T2KA CCD on the 0.9m telescope at KPNO the large field (23 ft. x 23 ft., approx. 1 Mpc at z = 0.025 and approx. 7 Mpc at z = 0.25) gives the unprecedented ability to sample most of the extent of the field of low-redshift clusters using a CCD. Given the advantages of CCDs over photographic plates, we expect to improve on many of the previous studies. A list of x-ray selected cluster of galaxies provides a homogeneous sample of true clusters that cannot be mistaken from apparent over-densities due to projection effects of field galaxies. Some optical indicators of cluster evolution are the population of ratios of cluster galaxies and their spatial distribution, a regular spiral-poor cluster is expected to be more evolved than an irregular spiral-rich cluster. Also regular spiral-poor clusters present high central concentrations while irregular spiral-rich are less concentrated. Variations in the Luminosity Function (LF) can indicate evolution. But in order to build reliable LFs it is necessary to determine the Hubble types of the cluster galaxies. In the past the classifications of cluster galaxies have been done by visual inspection on photographic material, this technique is very limited and can lead to errors when the galaxies are faint. The Hubble types of cluster galaxies can be determined in an objective manner by comparing colors and profiles from surface photometry. To show that this approach is feasible, I have presented preliminary results from the photometric analysis of the Abell-cluster A1213. Colors and profiles of

  13. X-ray selected Type-2 QSOs: ongoing star formation and obscured accretion.

    NASA Astrophysics Data System (ADS)

    Mainieri, Vincenzo; Cosmos Collaboration

    2009-09-01

    Although the fraction of obscured AGN is found to decrease with luminosity from several studies, a non-negligible population of obscured QSOs is still required by the X-ray background synthesis models. We present a large sample (121 objects) of X-ray selected Type-2 QSOs from the XMM-COSMOS survey: sources with high X-ray luminosity (LX>10^{44} erg s^{-1}) and heavy obscuration (NH>10^{22} cm^{-2}), as derived from a detailed X-ray spectral analysis (see Mainieri et al.,2007, ApJS, 172, 368) of the 1800 X-ray point-like sources in this survey. Few (˜5%) of the Type-2 QSOs are best fitted with a pure reflection model. We have performed optical spectroscopy for ˜ 30% of the sample and for the remaining sources we have derived accurate photometric redshifts. The redshift range covered is wide, 0.30.8).We compare the general properties of the host galaxies with the ongoing accretion in their nuclei. Morphology: using five non-parametric diagnostics (asymmetry, concentration, Gini coefficient, M20, ellipticity) we found that ˜10% of the Type-2 QSOs are in elliptical galaxies, ˜55% in disk galaxies and ˜35% in irregular galaxies. The majority of the irregular hosts can be described as undergoing merger activity or show tidal debris. Stellar masses have been derived from SED fitting to the observed photometry(from 0.3 to 4.5 micron) and star formation rates from the [OII] or Hα line fluxes. The majority (˜75%) of QSO-2 host galaxies have stellar masses above log(Mstar)˜10.5 MSun and have ongoing star formation (˜100 MSun/yr). The value of 10.5 MSun is similar to the characteristic mass for obscured AGN (Kauffmann et al. 2003) and radio-loud AGN (Best et al. 2005) in the SDSS. It is also consistent with the more general result that the fraction of galaxies hosting AGN increases with the stellar mass.

  14. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  15. The nature of X-ray selected star candidates

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gigoyan, K. S.; Gyulzadyan, M. V.; Kostandyan, G. R.

    2016-12-01

    The joint HRC/BHRC catalogue of optical identifications of ROSAT BSC and FSC X-ray sources is based on merging the Hamburg-ROSAT Catalogue (HRC) and Byurakan-Hamburg-ROSAT Catalogue (BHRC). Both have been made by optical identifications of X-ray sources based on low-dispersion spectra of the Hamburg Quasar Survey (HQS) using the ROSAT Catalogues. HRC/BHRC contains a sample of 8132 (5341+2791) optically identified X-ray sources with count rate (CR) of photons > 0.04 ct/s in the area of the low-dispersion Hamburg Quasar Survey (HQS), [b] > 20 and DEC > 0 degrees. Based on low-dispersion spectral classification, there are 4253 AGN, 492 galaxies, 1800 stars and 1587 unknown objects in the sample. 1800 star candidates include 1429 objects listed in SDSS DR12 photometric catalogue and 433 given in SDSS spectroscopic catalogue. Using these spectra, we have carried out classification of these star candidates to reveal new interesting objects, as well as to define the true content of our sample. 34 cataclysmic variables (including 7 new ones), 19 white dwarfs, 19 late-type stars (K-M and C types), 16 early type stars (O-B), 40 hot coronal stars (A-F types), 2 composite spectrum objects, and 17 bright stars have been revealed, as well as 286 objects which turned out to be extragalactic ones; 75 emission-line galaxies (HII/SB and AGN, including QSOs, Seyferts, and LINERs) and 211 absorption line galaxies were revealed (wrong classifications in HRC/BHRC due to their faint images and low-quality spectra). We have retrieved multiwavelength data from recent catalogues and carried out statistical investigations of the multiwavelength properties for the whole sample of stars. All stars have been found in GSC 2.3.2, as well as most of them are in GALEX, USNO-B1.0, 2MASS and WISE catalogues. Relations between the radiation fluxes in different bands from X-ray to radio for different types of sources are studied and analysis of their characteristics is made. X-ray selected stars are an

  16. Optical variability of X-ray-selected QSOs

    SciTech Connect

    Pica, A.J.; Webb, J.R.; Smith, A.G.; Leacock, R.J.; Bitran, M.

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed. 22 references.

  17. Optical variability of X-ray-selected QSOs

    NASA Astrophysics Data System (ADS)

    Pica, Andrew J.; Webb, James R.; Smith, Alex G.; Leacock, Robert J.; Bitran, Mauricio

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed.

  18. The Role of Host Galaxy for the Environmental Dependence of Active Nuclei in Local Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-01-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disk-dominated and bulge-dominated galaxies is related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle, and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  19. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  20. Spectroscopy of six X-ray-selected BL Lacertae candidates

    SciTech Connect

    Margon, B.; Boroson, T.A.; Chanan, G.A.; Thompson, I.B.; Schneider, D.P.

    1986-11-01

    Results of a continuing program aimed at extending the small list of X-ray-selected BL Lac objects are reported. High-quality spectra have been obtained of six faint blue objects that lie within the positional error boxes of X-ray sources discovered serendipitously by the Einstein Observatory. Three of the objects are found to be previously uncataloged low-red-shift quasi-stellar objects, including one formerly suggested as BL Lac candidate. Two are faint galactic stars, while the final object has a featureless spectrum, and thus remains a candidate. Although X-ray selection may ultimately be an effective means of discovering faint BL Lac objects, such sources are evidently rare at the X-ray flux levels attainable by the Einstein Observatory. 15 references.

  1. AGN-host galaxy connection: multiwavelength study

    NASA Astrophysics Data System (ADS)

    Pović, M.; Sánchez-Portal, M.; García, A. M. Pérez; Bongiovanni, A.; Cepa, J.; Cepa

    2013-02-01

    The connection between active galactic nuclei (AGN) and their hosts showed to be important for understanding the formation and evolution of active galaxies. Using X-ray and deep optical data, we study how morphology and colours are related to X-ray properties at redshifts z<=2.0 for a sample of > 300 X-ray detected AGN in the Subaru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008) and Groth-Westphal Strip (GWS; Pović et al. 2009) fields. We performed our morphological classification using the galSVM code (Huertas-Company et al. 2008), which is a new method that is particularly suited when dealing with high-redshift sources. To separate objects between X-ray unobscured and obscured, we used X-ray hardness ratio HR(0.5-2 keV/2-4.5 keV). Colour-magnitude diagrams were studied in relationship to redshift, morphology, X-ray obscuration, and X-ray-to-optical flux ratio. Around 50% of X-ray detected AGN at z<=2.0 analysed in this work reside in spheroidal and bulge-dominated galaxies, while at least 18% have disk-dominated hosts. This suggests that different mechanisms may be responsible for triggering the nuclear activity. When analysing populations of X-ray detected AGN in both colour-magnitude (CMD) and colour-stellar mass diagrams (Figure 1), the highest number of sources is found to reside in the green valley at redshifts ~ 0.5-1.5. For the first time we studied CMD of these AGN in relation to morphology and X-ray obscuration, finding that they can reside in both early- and late-type hosts, where both morphological types cover similar ranges of X-ray obscuration (Figure 1). Our findings appear to confirm some previous suggestions that X-ray selected AGN residing in the green valley represent a transitional population (e.g. Nandra et al. 2007, Silverman et al. 2008, Treister et al. 2009), quenching star formation by means of different AGN feedback mechanisms and evolving to red-sequence galaxies. More details on analysis and results presented here can be found in

  2. The radio structure source of X-ray-selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.; Stocke, John T.

    1993-01-01

    Arcsecond-size radio structure for a complete sample of 14 X-ray-selected BL Lac objects (XBLs) from the Einstein Extended Medium-Sensitivity Survey is presented. Most objects possess radio morphologies which are similar to those of nearby Fanaroff-Riley type 1 (FR 1) radio galaxies once the effects of surface brightness dimming and beam dilution as a function of redshift are taken into account. In order to test the beamed FR 1 hypothesis for BL Lac objects, the core and extended power levels are determined for these sources and compared with samples of radio-selected BL Lac objects (RBLs) and FR 1 from galaxies from the literature. RBLs and XBLs are found to possess extended (and thus unbeamed) power levels and the largest angular sizes similar to those of the FR 1 galaxies both supporting the beaming hypothesis and a common parent population for XBLs and RBLs.

  3. Properties of the EMSS Sample of X-Ray-Selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Stocke, J. T.; Perlman, E. S.; Morris, S. L.; Gioia, I. M.

    1998-12-01

    We present updated, complete radio, optical and X-ray data for BL Lacs in the Einstein Medium Sensitivity Survey (EMSS). The complete ``M91" sample first presented in Morris et al. (1991) is updated; and we define a new, virtually complete sample consisting of 40 EMSS BL Lacs (the ``D40" sample). New high signal-to-noise, arcsecond-resolution VLA maps are also presented for ten EMSS BL Lacs, completing VLA observations of the M91 sample. The addition of four new objects and updated X-ray flux and redshift information has increased the < V/Vmax >\\ value for the M91 sample to 0.399+/-0.057; and < V/Vmax >\\ = 0.416+/-0.046 for the newly defined D40 sample. In conjunction with the results of Bade et al. (1998) these results strongly establish negative evolution for X-ray-selected BL Lac Objects. The positive evolution seen in radio-selected BL Lacs poses a significant problem for the unified model. Also, our VLA observations of the M91 sample confirm that X-ray-selected BL Lacs are too core-dominated to be consistent with a beamed population of FR-1s seen at an intermediate angles for the moderate outflow velocities (gamma ~ 5) suggested for XBL emitting regions. The observed spectral and radio properties of XBLs, however, are completely consistent with XBLs being the beamed population of low-luminosity, FR-1 radio galaxies.

  4. The star-forming properties of an ultra-hard x-ray selected sample of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shimizu, Thomas Taro

    This thesis provides a comprehensive examination of star formation in the host galaxies of active galactic nuclei or AGN. AGN are bright, central regions of galaxies that are powered through accretion onto a supermassive black hole (SMBH). Through accretion and the loss of gravitational potential energy, AGN emit powerful radiation over all wavelengths of the electromagnetic spectrum. This radiation can influence the AGN's host galaxy through what is known as AGN ``feedback'' and is thought to suppress star formation as well as stop accretion onto the SMBH leading to a co-evolution between the SMBH and its host galaxy. Theoretical models have long invoked AGN feedback to be able reproduce the galaxy population we see today but observations have been unclear as to whether AGN actually have an effect on star formation. To address this question, we selected a large sample of local ( z < 0.05) AGN based on their detection at ultra-hard X-ray energies (14-195 keV) with the Swift Burst Alert Telescope (BAT). Ultra-hard X-ray selection frees our sample from selection effects and biases due to obscuration and host galaxy contamination that can hinder other AGN samples. With these 313 BAT AGN we conducted a far-infrared survey using the HerschelSpace Observatory. We use the far-infrared imaging to probe the cold dust that traces recent star formation in the galaxy and construct spectral energy distributions (SEDs) from 12-500 \\micron. We decompose the SEDs to remove the AGN contribution and measure infrared luminosity which provides us with robust estimates of the star formation rate (SFR). Through a comparison with a stellar-mass matched non-AGN sample, we find that AGN host galaxies have larger dust masses, dust temperatures, and SFRs, confirming the results of previous studies that showed the optical colors of the BAT AGN are bluer than non-AGN. We find that the AGN luminosity as probed by the 14-195 keV luminosity is not related to the SFR of the host galaxy suggesting

  5. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  6. The bulge-disc decomposition of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Mortlock, A.; Kocevski, D. D.; McGrath, E. J.; Rosario, D. J.

    2016-05-01

    We present the results from a study of the morphologies of moderate luminosity X-ray-selected active galactic nuclei (AGN) host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multiwavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sérsic and multiple Sérsic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sérsic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are indistinguishable from the general galaxy population except that beyond z ≃ 1.5 they have significantly higher bulge fractions. Even including nuclear sources in our modelling, the probability of this result arising by chance is ˜1 × 10-5, alleviating concerns that previous, purely single Sérsic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This data set also allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity. Our analysis of the bulge and disc fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.

  7. A spectral energy distribution analysis of AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Civano, Francesca M.; Hasinger, Guenther; Elvis, Martin; Marchesi, Stefano

    2015-01-01

    We present the host galaxy properties of a large sample of ~ 4000 X-ray selected Active Galactic Nuclei (AGN) in the Chandra COSMOS Legacy Survey to investigate the connection between BH accretion and host galaxy. The COSMOS Legacy survey reaching X-ray fluxes of 2x10-16 (cgs) in the 0.5-2 keV band, bridges the gap between large area shallow surveys and pencil beamed one. Making use of the existing multi-wavelength photometric data available for 96.6% of the sources, COSMOS Legacy survey provides a uniquely large sample to derive host galaxy properties for both obscured and unobscured sources. We perform a multi-component modeling from far-infrared (500 μm) when available to UV (1500 Å) using a 3-component fitting (nuclear hot dust, galaxy and starburst components) for obscured AGN and a 4-component fitting (nuclear hot dust, AGN big blue bump, galaxy, and starburst components) for unobscured AGN. Galaxy templates are from the stellar population synthesis models of Bruzual & Charlot (2003), nuclear hot dust templates are taken from Silva et al. (2004), and AGN big blue bump templates are from Richards et al. (2006). We use the column density information measured in the X-ray to constrain the AGN in the infrared band when available. Through detailed analysis of the broad-band spectral energy distribution, we derive the stellar masses and the star formation rates of the host galaxy as well as the nuclear and galaxy contribution at each frequency. We study the dependence of host galaxy properties on redshifts, luminosities, and black hole masses to infer the growth history of galaxies and black holes and we compare with a sample of inactive galaxies.

  8. INFALL REGIONS AND SCALING RELATIONS OF X-RAY SELECTED GROUPS

    SciTech Connect

    Rines, Kenneth; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it

    2010-02-15

    We use the Fifth Data Release of the Sloan Digital Sky Survey (SDSS) to study X-ray-selected galaxy groups and compare their properties to clusters. We search for infall patterns around the groups and use these to measure group mass profiles to large radii. In previous work, we analyzed infall patterns for an X-ray-selected sample of 72 clusters from the ROSAT All-Sky Survey. Here, we extend this approach to a sample of systems with smaller X-ray fluxes selected from the 400 deg{sup 2} serendipitous survey of clusters and groups in ROSAT pointed observations. We identify 16 groups with SDSS DR5 spectroscopy, search for infall patterns, and compute mass profiles out to 2-6 h {sup -1} Mpc from the group centers with the caustic technique. No other mass estimation methods are currently available at such large radii for these low-mass groups, because the virial estimate requires dynamical equilibrium and the gravitational lensing signal is too weak. Despite the small masses of these groups, most display recognizable infall patterns. We use caustic and virial mass estimates to measure the scaling relations between different observables, extending these relations to smaller fluxes and luminosities than many previous surveys. Close inspection reveals that three of the groups are subclusters in the outskirts of larger clusters. A fourth group is apparently undergoing a group-group merger. These four merging groups represent the most extreme outliers in the scaling relations. Excluding these groups, we find L{sub X} {proportional_to} {sigma}{sup 3.1{+-}}{sup 1.6} {sub p}, consistent with previous determinations for both clusters and groups. Understanding cluster and group scaling relations is crucial for measuring cosmological parameters from clusters. The complex environments of our group sample reinforce the idea that great care must be taken in determining the properties of low-mass clusters and groups.

  9. CATALOG AND STATISTICAL STUDY OF X-RAY SELECTED BL LACERTAE OBJECTS

    SciTech Connect

    Kapanadze, Bidzina Z.

    2013-02-01

    This paper presents a catalog of 312 X-ray selected BL Lacerate objects (XBLs), optically identified through the end of 2011. It contains the names from different surveys, equatorial coordinates, redshifts, multifrequency flux values, and luminosities for each source. In addition, the different characteristics of XBLs are statistically investigated (redshift, radio/optical/X-ray luminosities, central black hole (BH) mass, synchrotron peak frequency, broadband spectral indices, optical flux variability). Their values are collected through an extensive bibliographic and database search or calculated by us. The redshifts range from 0.031 to 0.702 with a maximum of the distribution at z = 0.223. The 1.4 GHz luminosities of XBLs log {nu}L{sub {nu}} {approx} 39-42 erg s{sup -1} while optical V and X-ray 0.1-2.4 keV bands show log {nu}L{sub {nu}} {approx} 43-46 erg s{sup -1}. The XBL hosts are elliptical galaxies with effective radii r{sub eff} = 3.2625.40 kpc and ellipticities, in = 0.040.52. Their R-band absolute magnitudes M{sub R} range from -21.11 mag to -24.86 mag with a mean value of -22.83 mag. The V - R indices of the hosts span from 0.61 to 1.52 and reveal a fourth-degree polynomial relationship with z that enables us to evaluate the redshifts of five sources whose V - R indices were determined from the observations but whose irredshifts values are either not found or not confirmed. The XBL nuclei show a wider range of 7.31 mag for M{sub R} with the highest luminosity corresponding to M{sub R} = -27.24 mag. The masses of central BHs are found in the interval log M{sub BH} = 7.39-9.30 solar masses (with distribution maximum at log M{sub BH}/M{sub Sun} = 8.30). The synchrotron peak frequencies are spread over the range log {nu}{sub peak} = 14.56-19.18 Hz with a peak of the distribution at log {nu}{sub peak} = 16.60 Hz. The broadband radio-to-optical ({alpha}{sub ro}), optical-to-X-ray ({alpha}{sub ox}), and radio-to-X-ray ({alpha}{sub rx}) spectral indices are

  10. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  11. Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.

    1980-01-01

    The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.

  12. HST WFC3/IR OBSERVATIONS OF ACTIVE GALACTIC NUCLEUS HOST GALAXIES AT z {approx} 2: SUPERMASSIVE BLACK HOLES GROW IN DISK GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Treister, Ezequiel; Cardamone, Carolin N.; Simmons, Brooke; Yi, Sukyoung K.

    2011-02-01

    We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5 < z < 3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGNs are X-ray-selected from the Chandra Deep Field South and have typical luminosities of 10{sup 42} erg s{sup -1}host galaxies of these AGNs have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z {approx} 2 and z {approx} 0.05.

  13. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    NASA Astrophysics Data System (ADS)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15Galaxies). We will detail the search methods used in producing these samples, as well as their benefits. Only 171 BL Lacs are known and the largest complete samples are also small, with 20-50 objects each. Current data shows a discrepancy between XBL (X-ray selected BL Lac) and RBL (Radio-selected BL Lac) evolution, with = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  14. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  15. Multiwavelength Studies of X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Paronyan, G. M.; Mickaelian, A. M.; Abrahamyan, H. V.

    2016-06-01

    We present multiwavelength studies of the AGN and galaxy samples of the HRC/BHRC Joint Catalogue, optical identifications of ROSAT BSC and FSC sources. The extragalactic sample contains 4253 candidate AGN and 492 galaxies without a sign of activity. Multiwavelength data were retrieved from γ-ray to radio providing 62 photometric points in the range 100 GeV - 151 MHz. Color-color diagrams were built to investigate the nature of these objects. Activity types were taken from the SDSS DR12 spectroscopic database, as well as NED and HyperLEDA. So far, 451 objects remain as AGN candidates to be confirmed by spectroscopic observations.

  16. X-Ray Selected AGN in A Merging Cluster

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; Norman, D.; Soechting, I.; Coldwell, G.

    2012-01-01

    We investigate the X-ray AGN population and evolution in the merging galaxy cluster DLSCL J0522.2-4820 discovered via weak gravitational lensing shear from the Deep Lens Survey (DLS). Since weak lensing shear is dependent only on mass, it does not introduce the biases that typical cluster selection methods do. This cluster is of particular interest due to both its extended multiple X-ray emission peaks and the large number of X-ray point sources identified in the field. We measured the redshifts of X-ray AGN as well as cluster galaxies in order to investigate the 3-dimensional distribution and possible clustering of AGN in galaxy clusters. Of the 125 objects in our sample, 54 are galaxies in the cluster; the cluster redshift is determined to be z=0.2997±0.0096. This agrees well with a previous value of z=0.296±0.001. We identified several broad line AGN at high redshift including a quasar pair at redshift z=1.8. Currently, we have found no X-ray point sources to be within the cluster. This project was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  17. Optical Scaling Relations of X-ray Selected Clusters at Moderate Redshift

    NASA Astrophysics Data System (ADS)

    Kloster, Dylan; Rines, K.; Svoboda, B. E.; Arnold, R. L.; Welch, T. J.; Finn, R. A.; Vikhlinin, A.

    2011-01-01

    The relation between dark matter and galaxies is a fundamental problem in astrophysics. Here, we study this relation using optical observations of an X-ray-selected sample of clusters at moderate redshift (z=0.35-0.90). We collected griz images of 30 clusters with WIYN/OPTIC to measure the bright end of the luminosity function. Our imaging extends approximately 2 magnitudes fainter than M*, thus including most of the total cluster light. We use the red sequence and statistical background subtraction to estimate the richnesses and stellar luminosities of the clusters. We measure scaling relations by comparing the optical properties to X-ray mass estimates derived from Chandra observations. At low redshift, some studies indicate that total stellar luminosity is a better predictor of cluster mass than X-ray luminosity. We test whether a similar result holds at moderate redshift. In the future, we will compare the optical and X-ray properties to virial mass estimates from optical spectroscopy and to Sunyaev-Zeldovich Effect observations. If photometric properties of clusters are good predictors of cluster mass, these relations could be applied to large surveys like SPT, Planck, DES, eROSITA, and LSST to improve constraints on the properties of dark energy.

  18. Large homogeneous sample of X-ray selected AGN and its study

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Paronyan, Gurgen M.; Abrahamyan, Hayk V.

    2015-08-01

    The combined catalogue of AGN (ROSAT BSC/FSC AGN) selected from optical identifications of X-ray sources based on Hamburg--ROSAT Catalogue (HRC) and Byurakan--Hamburg--ROSAT Catalogue (BHRC) is a homogeneous sample for statistical studies. Optically identified X-ray sources from ROSAT Bright Source Catalogue (BSC) and Faint Source Catalogue (FSC) are included, 4253 X-ray selected AGN in total. All these sources are confirmed or candidate AGN based on Hamburg Quasar Survey (HQS) low-dispersion spectra. 3352 of them are listed in the Catalogue of QSOs and Active Galaxies (Véron-Cetty & Véron (2010; 13th version) and 387 are in the Multifrequency Catalogue of Blazars (Roma--BZCAT) by Massaro et al. (2012). We carried out classification for 210 of these candidate sources based on available SDSS spectra and enlarged the sample of confirmed AGN to 3650. A special emphasis is made on narrow-line Sy1.0-Sy1.5 galaxies and QSOs, as many of them have soft X-ray, strong FeII lines, and relatively narrow lines coming from BLR (“narrow broad lines”) we have classified 45 new AGN as such objects. We carried out statistical investigations of the sample, including study of luminosity function, flux-ratios for different ranges, luminosity evolution, etc. Multiwavelength SEDs have also been constructed to follow their behavior for different kinds of AGN and link these SEDs to classifications. The sample is a relevant sources for identification of new blazars.

  19. X-ray selected stars in HRC and BHRC catalogues

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.

    2014-12-01

    A joint HRC/BHRC Catalogue has been created based on merging of Hamburg ROSAT Catalogue (HRC) and Byurakan Hamburg ROSAT Catalogue (BHRC). Both have been made by optical identifications of X-ray sources based on low-dispersion spectra of the Hamburg Quasar Survey (HQS) using ROSAT Catalogues. As a result, the largest sample of 8132 (5341+2791) optically identified X-ray sources was created having count rate (CR) of photons ≤ 0.04 ct/s in the area with galactic latitudes |b|≤ 20° and declinations d≤ 0°.There are 4253 AGN, 492 galaxies, 1800 stars and 1587 unknown objects in the sample. All stars have been found in GSC 2.3.2, as well as most of them are in GALEX, USNO-B1.0, 2MASS and WISE catalogues. In addition, 1429 are in SDSS DR9 and 204 have SDSS spectra. For these stars we have carried out spectral classification and along with the bright stars, many new cataclysmic variables (CV), white dwarfs (WD) and late-type stars (K-M and C) have been revealed. For all stars, statistical studies of their multiwavelength properties have been made. An attempt to find a connection between the radiation fluxes in different bands for different types of sources, and identify their characteristics was made as well.

  20. Radio-Excess IRAS Galaxies. II. Host Galaxies

    NASA Astrophysics Data System (ADS)

    Drake, Catherine L.; McGregor, Peter J.; Dopita, Michael A.

    2004-09-01

    This is the second of a series of papers studying a sample of radio-excess IRAS galaxies. These galaxies have radio emission in excess of that expected due to star formation, but largely fall between the traditional categories of radio-loud and radio-quiet active galaxies. R-band images of the hosts of far-infrared (FIR)-luminous radio-excess galaxies are presented and analyzed. The hosts of the FIR-luminous radio-excess galaxies are luminous galaxies, on average 0.8 mag brighter than M*R. Their optical luminosities and morphologies are similar to comparison samples of radio-loud compact steep-spectrum and gigahertz peaked-spectrum sources and extended radio galaxies. We find a similar fraction of galaxies in our sample (~70%) with companions or distorted morphologies as in radio-loud comparison samples. This is consistent with radio activity being associated with tidal interaction. The majority (65%) of the FIR-luminous radio-excess galaxies have radio source sizes that are smaller than the optical host by more than an order of magnitude. These compact radio sources may be young precursors to classical radio galaxies or a different population of radio sources, possibly confined by the host interstellar medium. The host galaxy types were determined by analysis of the surface brightness distributions. The elliptical hosts have effective surface brightnesses and radii consistent with known ellipticals but inconsistent with a population of brightest cluster galaxies. Thus, it is unlikely these objects are the precursors of FR I radio galaxies. The disk hosts have smaller sizes and low radio excesses. However, they have a range of radio source sizes, which is not expected if they are radio-``loud'' Seyfert galaxies.

  1. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  2. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-07-01

    We study the spatial distribution of X-ray selected active galactic nuclei (AGN) in the framework of hierarchical coevolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the theoretical model developed by Croton et al., De Lucia & Blaizot and Marulli et al. to the output of the Millennium Run and obtained hundreds of realizations of past light cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations both in the soft and in the hard X-ray bands, except at fluxes <~10-15ergcm-2s-1, where the model systematically overestimates the observations. However, a large fraction of these faint objects are typically excluded from the spectroscopic AGN samples of the Chandra fields. We find that the spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20h-1Mpc, in close agreement with observations. Our model matches the correlation length r0 of AGN in the Chandra Deep Field-North but underestimates it in the Chandra Deep Field-South. When fixing the slope to γ = 1.4, as in Gilli et al., the statistical significance of the mismatch is 2σ-2.5σ, suggesting that the predicted cosmic variance, which dominates the error budget, may not account for the different correlation length of the AGN in the two fields. However, the overall mismatch between the model and the observed correlation function decreases when both r0 and γ are allowed to vary, suggesting that more realistic AGN models and a full account of all observational errors may significantly reduce the tension between AGN clustering in the two fields. While our results are robust to changes in the model prescriptions for the AGN light curves, the luminosity dependence of the clustering is sensitive to the different light-curve models adopted. However, irrespective of the model

  3. Host Galaxy Identification for Supernova Surveys

    SciTech Connect

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  4. Host galaxy identification for supernova surveys

    SciTech Connect

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-10

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. Here, we find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  5. Host galaxy identification for supernova surveys

    DOE PAGES

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; ...

    2016-11-10

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. Here, we find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less

  6. Host Galaxy Identification for Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D'Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  7. AGN Host Galaxy Properties And Mass Function

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angela

    2016-10-01

    Supermassive black hole growth, nuclear activity, and galaxy evolution have been found to be closely related. In the context of AGN-galaxy coevolution, I will discuss about the relation found between the host galaxy properties and the central BH and I will present the latest determination of the host galaxy stellar mass function (HGMF), and the specific accretion rate distribution function (SARDF), derived from the XMM-COSMOS sample up to z˜2.5, with particular focus on AGN feedback as possible responsible mechanism for galaxy quenching.

  8. Broad-band study of hard X-ray-selected absorbed active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de Rosa, A.; Panessa, F.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Molina, M.; Ubertini, P.

    2012-03-01

    In this paper we report on the broad-band X-ray properties of a complete sample of absorbed Seyfert galaxies hard X-ray selected with INTEGRAL. Our sample is composed of 33 sources, of which 15 are newly discovered active galactic nuclei (AGN) above 20 keV (IGR sources), while 18 are already known type 2 AGN ('known'). For 17 sources (15 IGR + 2 'known' sources) we have performed a broad-band analysis using both XMM-Newton, and INTEGRAL-IBIS data. To have a full view of the complete sample we have then complemented the analysis of the 16 remaining sources with already existing broad-band studies in the same range. The high-quality broad-band spectra are well reproduced with an absorbed primary emission with a high-energy cut-off and its scattered fraction below 2-3 keV, plus the Compton reflection features (Compton hump and Fe line emission). This study permitted a very good characterization of the primary continuum and, in turn, of all the spectral features. A high-energy cut-off is found in 30 per cent of the sample, with an average value below 150 keV, suggesting that this feature has to be present in the X-ray spectra of obscured AGN. The hard X-ray selection favours the detection of more obscured sources, with the log NH average value of 23.15 (standard deviation of 0.89). The diagnostic plot NH versus Foss(2-10 keV)/F(20-100 keV) allowed the isolation of the Compton-thick objects, and may represent a useful tool for future hard X-ray observations of newly discovered AGN. We are unable to associate the reflection components (both continuum and Fe line) with the absorbing gas as a torus (as envisaged in the Unified Model), a more complex scenario being necessary. In the Compton-thin sources, a fraction (but not all) of the Fe K line needs to be produced in a gas located closer to the black hole than the Compton-thick torus, and this is possibly associated with the optical broad-line region, responsible also for the absorption. We still need a Compton

  9. Population Synthesis Modeling of QSO Host Galaxies

    NASA Astrophysics Data System (ADS)

    Wold, Isak; Sheinis, A.

    2007-12-01

    A strong connection between AGN activity and galaxy formation/evolution has emerged over the past few years. To obtain further insight into this important evolutionary phase we wish to analyze the properties of the host galaxies of AGN, using the tools of population synthesis. To this end, we investigate the utilization of simulated annealing and down-hill simplex method of optimization in the modeling of QSO host galaxy spectra. In this technique, subtraction of residual scattered quasar light in the observed spectra is performed while simultaneously modeling the constituent stellar populations of the host galaxy. The reliability of this method is tested by generating spectra with known parameters, adding noise, and measuring the correspondence between the known input and the output of the program. Preliminary results of the application of this program to data from off-nuclear host galaxy spectra via long-slit and integral field unit observations on the Keck and WIYN telescopes will be presented.

  10. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  11. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0galaxies, in a local vicinity of 10 h-1 Mpc radius to determine some photometric and population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  12. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  13. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Horváth, István; Tóth, L. Viktor

    We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies (HGs) data and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescope. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the GRB's data. Finally, we compared the HGs distribution with standard galaxies distribution of the DEEP2 redshift survey and checked the result with the VIPERS catalogue too.

  14. Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.

    1986-01-01

    Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.

  15. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  16. Host Galaxies Of Luminous Z ˜ 0.6 Quasars: Major Mergers Are Not Prevalent At The Highest Agn Luminosities

    NASA Astrophysics Data System (ADS)

    Villforth, Carolin; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.

    2017-06-01

    Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ˜ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.

  17. Host galaxies of luminous z ∼ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities

    NASA Astrophysics Data System (ADS)

    Villforth, C.; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.

    2017-04-01

    Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ∼ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.

  18. In Search of Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Eracleous, M.; Gronwall, C.; Shemmer, O.; Netzer, H.; Sturm, E.; Ciardullo, R.

    2011-01-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Accretion-powered and star formation activity have been shown to coincide, motivating us to search for the star-forming regions in the host galaxies of quasars and to determine the star-formation rates. In this work we use calibrated narrow band emission line (H-beta and Pa-alpha) WFPC2 and NICMOS images as maps for total star formation rate. The main challenge in imaging quasar host galaxies is the separation of the quasar light from the galaxy light, especially in the case of z approximately 0.1 quasars in WFPC2 images where the PSF radius closely matches the expected host scale radius. To this this end we present a novel technique for image decomposition and subtraction of quasar light, which we have validated through extensive simulations using artificial quasar+galaxy images. The other significant challenge in mapping and measuring star forming regions is correcting for extinction, which we address using extinction maps created from the Pa-alpha/H-beta ratio. To determine the source of excitation, we utilize H-beta along with [OIII]5007 and [OII]3727 images in diagnostic line ratio (BPT) diagrams. We detect extended line emission in our targets on scales of order 1-2 kpc. A preliminary analysis suggests star formation rates of order 10 solar masses per year.

  19. Observational constraints on the specific accretion-rate distribution of X-ray-selected AGNs

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Aird, J.; Schulze, A.; Dwelly, T.; Salvato, M.; Nandra, K.; Merloni, A.; Schneider, D. P.

    2017-10-01

    This paper estimates the specific accretion-rate distribution of AGNs using a sample of 4821 X-ray sources from both deep and shallow surveys. The specific accretion-rate distribution is used as a proxy of the Eddington ratio and is defined as the probability of a galaxy with a given stellar mass and redshift hosting an active nucleus with a certain specific accretion rate. We find that the probability of a galaxy hosting an AGN increases with decreasing specific accretion rate. There is evidence that this trend reverses at low specific accretion rates, λ ≲ 10 - 4-10 - 3 (Eddington units). There is a break close to the Eddington limit, above which the probability of an accretion event decreases steeply. The specific accretion-rate distribution evolves such that the fraction of AGNs among galaxies drops towards lower redshifts. This decrease in the AGN duty cycle is responsible for the strong evolution of the accretion density of the Universe from redshift z ≈ 1-1.5 to the present day. Our analysis also suggests that this evolution is accompanied by a decoupling of accretion events on to black holes from the formation of stars in galaxies. There is also evidence that at earlier times the relative probability of high versus low specific accretion-rate events among galaxies increases. We argue that this differential redshift evolution of the AGN duty cycle with respect to λ produces the AGN downsizing trend, whereby luminous sources peak at earlier epochs compared to less luminous ones. Finally, we also find a stellar mass dependence of the specific accretion-rate distribution, with more massive galaxies avoiding high specific accretion-rate events.

  20. Host Galaxies of z=4 Quasars

    NASA Astrophysics Data System (ADS)

    McLeod, Kim K.; Bechtold, J.

    2010-01-01

    We have undertaken a project to investigate the host galaxies and environments of a sample of quasars at z 4. In this paper, we describe deep near-infrared imaging of 34 targets using the Magellan I and Gemini North telescopes. We discuss in detail special challenges of distortion and nonlinearity that must be addressed when performing PSF subtraction with data from these telescopes and their IR cameras, especially in very good seeing. We derive black hole masses from emission-line spectroscopy, and we calculate accretion rates from our Ks-band photometry, which directly samples the rest-frame B for these objects. We introduce a new isophotal diameter technique for estimating host galaxy luminosities. We report the detection of four host galaxies on our deepest, sharpest images, and present upper limits for the others. We find that if host galaxies passively evolve such that they brighten by 2 magnitudes or more in the rest-frame B band between the present and z=4, then high-z hosts are less massive at a given black hole mass than are their low-z counterparts. We argue that the most massive hosts plateau at < 10L*. We estimate the importance of selection effects on this survey and the subsequent limitations of our conclusions. These results are in broad agreement with recent semi-analytical models for the formation of luminous quasars and their host spheroids by mergers of gas-rich galaxies, with significant dissipation, and self-regulation of black hole growth and star-formation by the burst of merger-induced quasar activity.

  1. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  2. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three highredshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9(sup +0.5)(sub -0.4) x 10(sup 14) solar mass for ClJ1415.1+3612, 3.4 (sup +0.6)(sup -0.5) x 10(sup 14) solar mass for ClJ1429.0+4241 and 7.2(sup +1.3)(sub -0.9) x 10(sup 14) solar mass for ClJ1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  3. Large homogeneous sample of X-ray selected AGN and its study

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Paronyan, Gurgen; Abrahamyan, Hayk

    The combined catalogue of AGN selected from optical identifications of X-ray sources based on Hamburg-ROSAT and Byurakan-Hamburg-ROSAT catalogues is a homogeneous sample for statistical studies. Optically identified X-ray sources from ROSAT BSC and FSC are included, 4253 X-ray selected AGN in total. We carried out classification for 210 of these candidate sources based on available SDSS spectra and enlarged the sample of confirmed AGN. Statistical investigations of the sample were also carried out. Multiwavelength SEDs have also been constructed to link them to classifications.

  4. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Racz, Istvan; Gyorgy Balazs, Lajos; Toth, Viktor; Horvath, Istvan

    2015-08-01

    We studied the relationship between the Swift GRB data and the optical brightness of the host galaxy measured by the Keck telescope. We calculated the unbiased distribution of the host's optical brightness by making use the survival analysis. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we studied also the dependence of this distribution on the GRB's data.

  5. The Spiral Structure of AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kennefick, J.; Barrows, R. S.; Hughes, J. A.; Schilling, A.; Davis, B.; Shields, D.; Madey, A.; Kennefick, D.; Lacy, C.; Seigar, M.

    2014-03-01

    Recent work has uncovered a correlation between the black hole mass, M, in the centers of local spiral galaxies and the pitch angles, P, of their spiral arms. We propose to test this M-P correlation at moderate to high redshifts, using a sample of active galaxies selected from the Great Observatories Origins Survey and the Sloan Digital Sky Survey showing evidence for spiral structure in their host galaxies. The mass of the central black holes are estimated using the Hβ or Mg II lines in existing spectra using luminosity-radius scaling relations. Pitch angles are measured using an iterative 2D FFT algorithm. The aim is to establish this M-P relation beyond our local epoch, test for evolution in its form, and eventually to compute a BH mass function for late-type galaxies out to moderate redshifts.

  6. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    SciTech Connect

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  7. AGN Absorption Linked to Host Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie

    2014-07-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.

  8. A complete hard X-ray selected sample of local, luminous AGNs

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Davies, Ric; Lin, Ming-yi; Orban de Xivry, Gilles; Rosario, David

    2016-08-01

    Choosing a very well defined sample is essential for studying the AGN phenomenon. Only the most luminous AGNs can be expected to require a coherent feeding mechanism to sustain their activity and since host galaxy properties and AGN activity are essentially uncorrelated, nuclear scales must be resolved in order to shed light on the feeding mechanisms of AGNs. For these reasons we are compiling a sample of the most powerful, local AGNs. In this talk we present our on-going programme to observe a complete volume limited sample of nearby active galaxies selected by their 14-195 keV luminosity, and outline its rationale for studying the mechanisms regulating gas inflow and outflow.

  9. Circumnuclear Structures in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Pjanka, Patryk; Greene, Jenny E.; Seth, Anil C.; Braatz, James A.; Henkel, Christian; Lo, Fred K. Y.; Läsker, Ronald

    2017-08-01

    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ˜100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  10. HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs

    SciTech Connect

    Hickox, Ryan C.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Brodwin, Mark; Narayan, Ramesh; Kenter, Almus; Caldwell, Nelson; Anderson, Michael E.; Kochanek, Christopher S.; Eisenstein, Daniel; Jannuzi, Buell T.; Dey, Arjun; Brown, Michael J. I.; Stern, Daniel; Eisenhardt, Peter R.; Gorjian, Varoujan; Cool, Richard J.

    2009-05-01

    We explore the connection between different classes of active galactic nuclei (AGNs) and the evolution of their host galaxies, by deriving host galaxy properties, clustering, and Eddington ratios of AGNs selected in the radio, X-ray, and infrared (IR) wavebands. We study a sample of 585 AGNs at 0.25 < z < 0.8 using redshifts from the AGN and Galaxy Evolution Survey (AGES). We select AGNs with observations in the radio at 1.4 GHz from the Westerbork Synthesis Radio Telescope, X-rays from the Chandra XBooetes Survey, and mid-IR from the Spitzer IRAC Shallow Survey. The radio, X-ray, and IR AGN samples show only modest overlap, indicating that to the flux limits of the survey, they represent largely distinct classes of AGNs. We derive host galaxy colors and luminosities, as well as Eddington ratios, for obscured or optically faint AGNs. We also measure the two-point cross-correlation between AGNs and galaxies on scales of 0.3-10 h {sup -1} Mpc, and derive typical dark matter halo masses. We find that: (1) radio AGNs are mainly found in luminous red sequence galaxies, are strongly clustered (with M {sub halo} {approx} 3 x 10{sup 13} h {sup -1} M {sub sun}), and have very low Eddington ratios {lambda} {approx}< 10{sup -3}; (2) X-ray-selected AGNs are preferentially found in galaxies that lie in the 'green valley' of color-magnitude space and are clustered similar to the typical AGES galaxies (M {sub halo} {approx} 10{sup 13} h {sup -1} M {sub sun}), with 10{sup -3} {approx}< {lambda} {approx}< 1; (3) IR AGNs reside in slightly bluer, slightly less luminous galaxies than X-ray AGNs, are weakly clustered (M {sub halo} {approx}< 10{sup 12} h {sup -1} M {sub sun}), and have {lambda}>10{sup -2}. We interpret these results in terms of a simple model of AGN and galaxy evolution, whereby a 'quasar' phase and the growth of the stellar bulge occurs when a galaxy's dark matter halo reaches a critical mass between {approx}10{sup 12} and 10{sup 13} M {sub sun}. After this event

  11. Host Galaxies of z = 4 Quasars

    NASA Astrophysics Data System (ADS)

    McLeod, K. K.; Bechtold, Jill

    2009-10-01

    We have undertaken a project to investigate the host galaxies and environments of a sample of quasars at z ~ 4. In this paper, we describe deep near-infrared imaging of 34 targets using the Magellan I and Gemini North telescopes. We discuss in detail special challenges of distortion and nonlinearity that must be addressed when performing point-spread function (PSF) subtraction with data from these telescopes and their IR cameras, especially in very good seeing. We derive black hole masses from emission-line spectroscopy, and we calculate accretion rates from our Ks -band photometry, which directly samples the rest frame B for these objects. We introduce a new isophotal diameter technique for estimating host galaxy luminosities. We report the detection of four host galaxies on our deepest, sharpest images, and present upper limits for the others. We find that if host galaxies passively evolve such that they brighten by 2 mag or more in the rest-frame B band between the present and z = 4, then high-z hosts are less massive at a given black hole mass than are their low-z counterparts. We argue that the most massive hosts plateau at lsim10 L*. We estimate the importance of selection effects on this survey and the subsequent limitations of our conclusions. These results are in broad agreement with recent semianalytical models for the formation of luminous quasars and their host spheroids by mergers of gas-rich galaxies, with significant dissipation, and self-regulation of black hole growth and star formation by the burst of merger-induced quasar activity. Based on data obtained with the 6.5 m Baade Telescope of the Magellan Telescope, located at the Las Campans Observatory, Chile. Based in part on data taken at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  12. 4U1722 + 11 - The discovery of an X-ray selected BL Lac object

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Wilson, A. S.; Ward, M. J.; Tapia, S.; Ulvestad, J. S.

    1989-01-01

    The Uhuru X-ray source 4U1722 + 11 was observed using the microchannel-plate detector (High Resolution Imager) on the Einstein Observatory, and its coordinates measured to a precision of about 5 arcsec. A 16th-magnitude stellar object within the error circle was observed spectroscopically at CTIO, and at the AAT, and found to have a featureless continuum. Subsequent radio observations at the VLA have established that the object is a radio source at the level of 60 mJy, and optical polarization measurements have determined that the source exhibits variable polarization at the level of 10 percent. On the basis of these observations, it is concluded that 4U1722 + 11 is a member of the class of objects known as X-ray selected blazars of BL Lac objects.

  13. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  14. X-ray selected AGN in groups at redshifts z ~ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Gerke, Brian F.; Nandra, K.; Laird, E. S.; Coil, A. L.; Cooper, M. C.; Newman, J. A.

    2008-11-01

    We explore the role of the group environment in the evolution of active galactic nuclei (AGN) at the redshift interval 0.7 < z < 1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEGIS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99 per cent confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91 per cent level only. Restricting the sample to 0.7 < z < 0.9 and MB < -20mag in order to control systematics, we find that X-ray AGN represent (4.7 +/- 1.6) and (4.5 +/- 1.0) per cent of the optical galaxy population in groups and in the field, respectively. These numbers are consistent with the AGN fraction in low-redshift clusters, groups and the field. The above results, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98 per cent level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z ~ 1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters).

  15. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  16. Broad-band characteristics of seven new hard X-ray selected cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D. M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G.

    2017-10-01

    We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM-Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ˜296-6098 s, identifying them as members of the magnetic class. Swift J0927.7-6945, Swift J0958.0-4208, Swift J1701.3-4304, Swift J2113.5+5422 and possibly PBC J0801.2-4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7-6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3-4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7-6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ˜ 1022 - 23 cm-2). In Swift J0958.0-4208 and Swift J1701.3-4304, a soft X-ray blackbody (kT ˜ 50 and ˜80 eV) is detected, adding them to the growing group of `soft' IPs. White dwarf masses are determined in the range of ˜ 0.58-1.18 M⊙, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3-1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.

  17. Morphology and Evolution of the Largest Complete Sample of X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton

    2003-07-01

    The nature of the relationship between galaxy properties and their central supermassive black holes can be uniquely addressed by studying large, homogeneous samples of Active Galactic Nuclei {AGN} selected according to their hard X-ray emission. The combination of HST and Chandra/XMM provdes the potential to directly study the physical nature of these relationships. We propose an archival study using the GEMS survey of the Chandra Deep Field Soiuth {CDFS} which has the potential to increase by at least a factor of 5 the number of AGN from the GOODS survey, by virtue of the fact that the entire XMM field is covered {30' diameter}. The resulting sample of 700 - 800 AGN will allow us tro address the nature of the relationship between AGN and host properties, as well as their environments, as a function of cosmic time.

  18. Deficiency of "Thin" Stellar Bars in Seyfert Host Galaxies.

    PubMed

    Shlosman; Peletier; Knapen

    2000-06-01

    Using all available major samples of Seyfert galaxies and their corresponding closely matched control samples of nonactive galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in nonactive galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., "thin" or "strong" bars) in Seyfert galaxies compared to nonactive galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their nonactive counterparts on scales of a few kiloparsecs.

  19. Coevolution of Supermassive Black Holes and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Hiner, Kyle Devon

    The role of black holes in galaxy evolution has come under intense scrutiny since it was discovered that every galaxy in the local universe contains a supermassive black hole (SMBH) at its nucleus. The existence of scaling relations between the SMBH and its host galaxy show that their presence is not coincidental, but rather that SMBHs and their hosts have a shared evolution. The nature of this coevolution is still debated with some proposing it to be a natural result of hierarchical merging models, while others invoke SMBH feedback mechanisms that couple BH growth with that of the host galaxy. In this dissertation, I examine different regimes of SMBH activity and host galaxy properties. I investigate a sample of post-starburst galaxies to gain insight into the morphological and spectrophotometric evolution of galaxies through galaxy interactions and mergers. I plot detailed comparisons of the galaxy kinematics as measured from different stellar populations. I also investigate post-starburst galaxies that simultaneously host an AGN. I develop a technique to study the properties of both the host galaxy and the SMBH in these objects, directly investigating the scaling relation between the two. I describe analysis performed on red quasars in another study that directly probes the scaling relations in the non-local universe. Lastly, I conduct SED fitting of quasars to illuminate the differences between two major spectral types, and investigate host galaxy properties including star formation. All of these projects focus on the relationship between the SMBH and host galaxy. I show that a range of galaxy interactions can lead to black hole growth and are part of galaxy evolution over cosmic time.

  20. Star Forming Galaxies and AGN Hosts: The Seagull Wings

    NASA Astrophysics Data System (ADS)

    Stasińska, Grazyna; Cid Fernandes, Roberto; Mateus, Abîlio; Sodré, Laerte; Asari, Natalia V.

    2007-05-01

    We discuss the spectral signatures of normal star forming (NSF) galaxies and of AGN hosts of and present physically motivated techniques to distinguish these two classes of galaxies. We have determined the emission line intensities for a complete sample of galaxies extracted from the Sloan Digital sky Survey, after subtracting the stellar continuum obtained from spectral synthesis. With the help of sequences of photoionization models, we explain why, in the famous [OIII]/Hbeta vs [NII]/Halpha diagram, NSF galaxies and AGN hosts form two separate sequences, which look like the open wings of a seagull. We also examine other techniques to distinguish star forming galaxies from AGN hosts. Finally, we propose a new diagnostic diagram which can be used with optical spectra of galaxies with redshifts up to z=1.3. This new diagram has also the advantage of allowing one to show all the galaxies of a sample in one plot, including passive galaxies.

  1. The Chandra Multi-wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-Ray-selected AGNs

    NASA Astrophysics Data System (ADS)

    Trichas, Markos; Green, Paul J.; Silverman, John D.; Aldcroft, Tom; Barkhouse, Wayne; Cameron, Robert A.; Constantin, Anca; Ellison, Sara L.; Foltz, Craig; Haggard, Daryl; Jannuzi, Buell T.; Kim, Dong-Woo; Marshall, Herman L.; Mossman, Amy; Pérez, Laura M.; Romero-Colmenero, Encarni; Ruiz, Angel; Smith, Malcolm G.; Smith, Paul S.; Torres, Guillermo; Wik, Daniel R.; Wilkes, Belinda J.; Wolfgang, Angie

    2012-06-01

    strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy.

  2. Scattering and absorption in soft X-ray selected AGN: an optical polarization survey

    NASA Astrophysics Data System (ADS)

    Grupe, D.; Wills, Beverley J.; Wills, D.; Beuermann, K.

    1998-05-01

    We have surveyed the optical linear polarization of a completely identified sample of 43 bright soft-X-ray-selected ROSAT AGN. Most (40) of these AGN show low polarization (~1%), and no clear optical reddening. This supports the suggestion from rapid X-ray variability, disk-like spectral energy distributions, and lack of cold X-ray absorption, that we are viewing a bare AGN disk. IRASF12397+3333 and IRAS13349+2438 show high polarization increasing to the UV - clear evidence for scattering. As well as steep, soft-X-ray spectra, they show optical reddening and rapid X-ray variability, but almost no cold X-ray absorption - a combination that suggests dusty ionized gas along the line-of-sight. Brandt et al. suggested and found these `warm absorbers' for IRAS13349+2438. IRASF12397+3333 is a new candidate. Combining our data with the optical and X-ray spectra of the high polarization narrow-line Seyfert 1 nuclei (NLSy1s) investigated by Goodrich reveals strong correlations among optical reddening indicators (alpha_opt and Hα /Hβ ), [OIII]/Hβ_b , and cold intrinsic X-ray absorption Delta N_H. Optical reddening underpredicts the cold X-ray absorption, suggesting dusty warm absorbers in all the highly polarized AGN. The existence of these scattering-polarized and reddened NLSy1s suggests an orientation Unified Scheme within the class of NLSy1s, analogous to that linking Seyfert 1 and Seyfert 2 nuclei. For some highly polarized and optically selected AGN we present new analysis of archival X-ray data, and for the highly polarized AGN new optical spectroscopy is presented in an appendix.

  3. AGN multi-wavelength identification and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team; PRIMUS Team

    2017-01-01

    I present results on AGN identification, selection biases, and host galaxy properties at z~2.3 and results on the relation between AGN accretion and star formation activity at z~0.8. In the MOSDEF survey, with a sample of X-ray, IR, and optically selected AGN at z~2.3, using rest-frame optical spectra obtained with the Keck/MOSFIRE instrument, I find clear selection biases in identifying AGN at these wavelengths. There is a strong bias against identifying AGN at any wavelength in low mass galaxies, and an additional bias against identifying IR AGN in the most massive galaxies. While AGN hosts span a wide range of SFR, IR AGN are mainly in less dusty galaxies with relatively higher SFR and optical AGN are in dusty galaxies with relatively lower SFR in our sample. X-ray AGN selection does not display a bias with host SFR. I also consider the relation between the growth of galaxies and their SMBHs using a large sample of X-ray AGN in the PRIMUS survey. I do not find a significant correlation between SFR and AGN instantaneous luminosity. However, I find a weak but significant correlation between the average luminosity of AGN and SFR, which likely reflects that AGN luminosities vary on shorter timescales than host galaxies SFR. My results indicate that AGN are also often hosted by quiescent galaxies, and within both the star-forming and quiescent galaxy populations the probability of hosting an AGN is a power-law distribution as a function of specific accretion rate. However, at a given stellar mass, I find that a star-forming galaxy is ~2-3 times more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation, while in quiescent galaxies increases with SFR.

  4. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  5. X-ray Selected Symbiotic Candidates in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Hynes, Robert I.; Wetuski, Joshua` D.; Jonker, Peter; Torres, Manuel; Heinke, Craig O.; Maccarone, Tom; Steeghs, Danny; Britt, Christopher; Johnson, Christopher; Nelemans, Gijs

    2017-06-01

    The Galactic Bulge Survey (GBS) is a broad, shallow survey of Bulge X-ray sources with extensive multiwavelength support. The limiting sensitivity, about 2×1032 erg/s at the Bulge distance, is well suited to finding symbiotic X-ray binaries (SyXBs) containing neutron stars accreting from a cool giant wind, as well as X-ray bright white dwarf systems. Giant counterparts can be securely detected in IR photometry, allowing us to estimate the total number of symbiotics detected by the GBS, and identify a good number of promising candidates. Such an X-ray selected symbiotic sample may be quite different to the traditional symbiotic star population which is usually selected by optical spectroscopy, and consequently biased towards systems with rich line emission. Of the 1640 unique X-ray sources identified by the GBS we find 91 significant matches with candidate Bulge giants. We expect 68 coincidences, so estimate a total sample of about 23 X-ray emitting cool giants detected by the GBS. Most of these are likely to be SyXBs or symbiotics of some type. Narrowing our search to sources coincident to 1", we find 23 matches, with only 8 coincidences expected, so this subsample has a relatively high purity, and likely includes most of the GBS symbiotics. The properties of this subsample are mostly consistent with cool giants, with typical SEDs, long-term lightcurves, and spectra. The sources are inconsistent in color with nearby M dwarfs and show small proper motions, so the foreground contamination is likely small. We present a selection of the best studied objects, focusing on one extremely variable X-ray source coincident with a carbon giant. This is quite an unusual object as carbon stars are rare in the Bulge. The scientific results reported in this article are based on observations made by the Chandra X-ray Observatory and data obtained from the Chandra Data Archive. Support for this work was provided by the National Aeronautics and Space Administration through Chandra

  6. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  7. Dust effects on LGRB host galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Bignone, L. A.; Pellizza, L. J.; Tissera, P. B.

    2016-08-01

    The very energetic long gamma-ray bursts (LGRBs) constitute an extremely important tool to study the cosmological evolution of the Universe up to very high redshift. In this work we study the properties of LGRB host galaxies using numerical simulations of galaxy formation. We combine the galaxy catalogue of a hydrodynamical cosmological simulation with a model for LGRBs, which includes constrains for the mass and metallicity of their progenitors. This allows us to analyse the chemical and physical properties of both LGRBs and their hosts. A current problem is to disentangle the bias introduced on the observed host properties by a possible metallicity dependence of the progenitors, from the selection effects produced by dust obscuration in the hosts. We explore this issue by modelling the effect of dust in host galaxies, using radiative transfer codes. In this work we present preliminary results of this research line.

  8. Discovery of a bright quasar without a massive host galaxy.

    PubMed

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  9. The coevolution of supermassive black holes and galaxies at z [ge] 1: Galaxy morphology, gravitational lensing, and quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Peng, Chien Yi

    Supermassive black holes are ubiquitous in nearby galaxies. The strong correlations between black hole masses and their host galaxy bulges suggest they are intimately connected. To understand their coevolution we study quasars where both quantities can be probed out to high redshifts. To overcome the well known obstacles in studying quasar hosts at z > 1, we study 28 gravitationally lensed host galaxies, located at 1 <= z s <= 4.5, which are stretched out into arcs and Einstein rings. Applying two new algorithms, GALFIT and LENSFIT, to images obtained in the HST NICMOS F160W filter, we clearly resolve the host galaxies. Many have evidences of multiple components, interaction, offset galaxy components, or bulges and disks. The host galaxies at z > 1 are mostly brighter than [Special characters omitted.] galaxies today, but would become fainter than [Special characters omitted.] today after accounting for passive evolution. Furthermore, they have modest sizes ( R e < 6 kpc), and the profiles of the hosts are roughly equally split between bulge dominated and disk dominated. Due to these evidences, the quasar hosts may not be fully evolved early-type galaxies undergoing passive evolution if they evolve into [Special characters omitted.] galaxies today. Moreover, comparing the hosts of radio-loud quasars and radio-quiet quasars, there is not a significant difference in their luminosities. Finally, we study the bulge luminosities ( L bulge ) and black hole masses ( [Special characters omitted.] ) at z [approximate] 1 and z [approximate] 2, finding that the hosts at z > 2 already lie near the same L bulge vs. [Special characters omitted.] relationship as for z = 0 normal galaxies . Accounting for an early-type galaxy evolution, they would fade below the relationship at present day. Therefore, the hosts at z [approximate] 2 must undergo a stellar mass buildup by a factor of 3-5, if they evolve into early-type galaxies. This implies their [Special characters omitted

  10. Do Low Surface Brightness Galaxies Host Stellar Bars?

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-09-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  11. Host Galaxies of X-Shaped Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Cheung, C. C.

    2007-05-01

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Classical double-lobed radio galaxies are characterized by a single pair of "active" radio lobes. A small subset show an additional pair of lower surface brightness 'wings' of emission, thus forming an overall winged or X-shaped appearance. Two competing mechanisms have been proposed to explain the "winged" morphology. One model posits that these are the remnants left over from a relatively recent merger of a binary supermassive black hole system. Others have argued that they result naturally from strong backflow in a radio jet cocoon expanding into an asymmetric medium. We used available Sloan Digital Sky Survey r-band images of 11 X-shaped sources to measure the host galaxy ellipticities. By analyzing the host galaxy shapes, we trace the surrounding gas distribution. The radio morphologies are compared to the host galaxy parameters to analogize between differing model expectations. This work was funded by the Department of Energy's Student Undergraduate Laboratory Internship Program and the Stanford Linear Accelerator Center.

  12. Radio morphology and parent population of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Moellenbrock, G. A.; Feigelson, E. D.

    1993-01-01

    High-dynamic range (typically 1700:1) radio maps of 15 X-ray BL Lac (XBL) objects from the HEAO-1 Large Area Sky Survey are presented. Morphological characteristics of these sources are compared with Fanaroff-Riley (FR) class I radio galaxies in the context of unified schemes, with reference to one-sided kiloparsec-scale emission. Evidence that cluster membership of XBLs is significantly higher than previously thought is also presented. It is shown that the extended radio powers, X-ray emission, core-to-lobe ratios, and linear sizes of the radio selected BL Lac (RBL) and XBL populations are consistent with an FR I radio galaxy parent population. A source list and VLA observing log and map parameters are provided.

  13. Radio morphology and parent population of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Moellenbrock, G. A.; Feigelson, E. D.

    1993-01-01

    High-dynamic range (typically 1700:1) radio maps of 15 X-ray BL Lac (XBL) objects from the HEAO-1 Large Area Sky Survey are presented. Morphological characteristics of these sources are compared with Fanaroff-Riley (FR) class I radio galaxies in the context of unified schemes, with reference to one-sided kiloparsec-scale emission. Evidence that cluster membership of XBLs is significantly higher than previously thought is also presented. It is shown that the extended radio powers, X-ray emission, core-to-lobe ratios, and linear sizes of the radio selected BL Lac (RBL) and XBL populations are consistent with an FR I radio galaxy parent population. A source list and VLA observing log and map parameters are provided.

  14. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  15. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  16. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  17. Near-Infrared Properties of Quasar and Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1995-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale

  18. Near-infrared properties of quasar and Seyfert host galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1994-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is

  19. Comparing the host galaxies of different type supernovae

    NASA Astrophysics Data System (ADS)

    Liang, Y. C.; Shao, X.; Dennefeld, M.; Chen, X. Y.; Zhou, L.; Hammer, F.

    We compare the host galaxies of 902 supernovae, including Type Ia, II and Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the SDSS DR7. We further selected 213 galaxies by requiring the light fraction of spectral observations > 15%, which could represent well the global properties of the galaxies. The diagrams related to D n (4000), HδA, stellar masses, SFRs and specific SFRs for the SNe hosts show that almost all SNe II and most of SNe Ibc occur in SF galaxies. A significant fraction of SNe Ia occurs in AGNs and Absorp galaxies. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures < 15% of the total light. These comparison galaxies appear biased towards higher 12+log(O/H) (~0.1dex) at a given stellar mass, suggesting the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  20. Identifying the host galaxy of the short GRB 100628A

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.; Klose, S.; Palazzi, E.; Greiner, J.; Michałowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Krühler, T.; Knust, F.; Masetti, N.; Olivares E., F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.

    2015-11-01

    We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 m telescope, ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O ii], [O iii], Hα and Hβ, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the GRB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 × 1011L⊙ this galaxy resembles the probable giant elliptical host of the first well-localized short burst, GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population. Based on observations collected at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO programme 087.D-0503 and 290.D-5194; PI: A. Nicuesa Guelbenzu; 090.A-0825; PI: D. Malesani), GROND (PI: J. Greiner), and ATCA (Program C

  1. The host galaxies of quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Hamilton, Timothy Scott

    The results of an archival study of 71 medium-redshift QSOs observed with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope are presented. The QSOs have magnitudes MV ≤ -23 mag (total nuclear + host light) and red shifts 0.06 ≤ z ≤ 0.46, with no additional criteria imposed. For each object, the nuclear light component is subtracted, using two-dimensional image fits, and the luminosity and size of the underlying host galaxy are determined by fitting both an r1/4 and an exponential light profile, which represent a bulge and disk component, respectively. The total number of objects considered is more than triple that of previous studies, and the general QSO population for redshifts z ≤ 0.46 is reasonably sampled. A luminosity function which is not grossly affected by selection criteria is derived for the QSO host galaxies. This luminosity function is compared with that of normal galaxies and a ratio of luminosity functions for QSO hosts and normal galaxies is derived. The logarithm of this ratio follows a nearly straight line when plotted against galaxy magnitude. Previous results which indicate that QSO hosts are more luminous than typical bright galaxies are confirmed. The relationship between host and nuclear luminosity is studied in the context of morphology and radio-loudness. The surface brightnesses of the host galaxies are compared to the known relationships between the effective surface magnitude and size of Brightest Cluster Galaxies. The surface brightness distribution is also examined in the context of radio-loudness and the merger history of the hosts. Black hole masses for a subset of the QSOs are taken from the literature and used to calculate the Eddington limit for those objects. The black hole mass, the nuclear luminosity, and the nuclear luminosity as a fraction of the Eddington limit are examined as functions of each other. Multi-parameter analyses are performed using Principal Components Analysis to search for

  2. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    PubMed

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  3. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS

    SciTech Connect

    Kelly, Patrick L.; Kirshner, Robert P.

    2012-11-10

    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.

  4. The host galaxies of AGN with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.310^27 WHz^-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4GHz = 10^23.7 - 10^28.3WHz^-1, allowing us to divide our sample into high-excitation (quasar-mode; HERGs) and low-excitation (radio-mode; LERGs) radio galaxies. The host galaxies of our sample are bright and seem to follow the Kormendy relation. Nuclear emission (dominated by non-thermal mechanisms) and host-galaxy magnitudes show a slightly negative weak trend for LERGs. On the other hand, the m_bulge -m_nuc relation is statistically significant for HERGs. Although it may be affected by selection effects, this correlation suggests a close coupling between the relativistic jets and their host galaxy. Our findings are consistent with the excitation state (LERG/HERG) scenario. In this view, LERGs emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and HERGs are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  5. Long-Wavelength Demographics of GRB Host Galaxies

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2017-01-01

    We present new VLA observations of 32 Swift and pre-Swift GRB host galaxies, supplemented by new ALMA and Herschel observations. Although our observations are quite deep, we securely detect only a few targets in the sample. Indeed, we rule out several claimed detections of ULIRG-like host galaxies in the previous literature, including every pre-Swift ULIRG-like host: these now appear to have been due to residual afterglow contamination or source confusion. Our results indicate that only a small minority of GRBs (~10%) occur in ULIRG-like galaxies and that intense star-formation does little to directly facilitate GRB production. This suggests in turn that dynamical interactions or ultra-massive stellar progenitors are not likely to be critical ingredients in GRB formation. Every GRB securely associated with a ULIRG is observed to significantly dust-obscured, consistent with the large dust optical depths and covering frations thought to be characteristic of these systems.

  6. Toward An Understanding of Cluster Evolution: A Deep X-Ray Selected Cluster Catalog from ROSAT

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2002-01-01

    In the past year, we have focussed on studying individual clusters found in this sample with Chandra, as well as using Chandra to measure the luminosity-temperature relation for a sample of distant clusters identified through the ROSAT study, and finally we are continuing our study of fossil groups. For the luminosity-temperature study, we compared a sample of nearby clusters with a sample of distant clusters and, for the first time, measured a significant change in the relation as a function of redshift (Vikhlinin et al. in final preparation for submission to Cape). We also used our ROSAT analysis to select and propose for Chandra observations of individual clusters. We are now analyzing the Chandra observations of the distant cluster A520, which appears to have undergone a recent merger. Finally, we have completed the analysis of the fossil groups identified in ROM observations. In the past few months, we have derived X-ray fluxes and luminosities as well as X-ray extents for an initial sample of 89 objects. Based on the X-ray extents and the lack of bright galaxies, we have identified 16 fossil groups. We are comparing their X-ray and optical properties with those of optically rich groups. A paper is being readied for submission (Jones, Forman, and Vikhlinin in preparation).

  7. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Kupcu-Yoldas, A.; McBreen, S.; Olivares, E.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  8. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Comastri, A.; Simmons, B. D.; Mignoli, M.; Zamorani, G.; Vignali, C.; Brusa, M.; Shankar, F.; Lutz, D.; Trump, J. R.; Maiolino, R.; Gilli, R.; Bolzonella, M.; Puccetti, S.; Salvato, M.; Impey, C. D.; Civano, F.; Elvis, M.; Mainieri, V.; Silverman, J. D.; Koekemoer, A. M.; Bongiorno, A.; Merloni, A.; Berta, S.; Le Floc'h, E.; Magnelli, B.; Pozzi, F.; Riguccini, L.

    2012-09-01

    Bolometric luminosities and Eddington ratios of both X-ray selected broad-line (Type-1) and narrow-line (Type-2) active galactic nuclei (AGN) from the XMM-Newton survey in the Cosmic Evolution Survey field are presented. The sample is composed of 929 AGN (382 Type-1 AGN and 547 Type-2 AGN) and it covers a wide range of redshifts, X-ray luminosities and absorbing column densities. About 65 per cent of the sources are spectroscopically identified as either Type-1 or Type-2 AGN (83 and 52 per cent, respectively), while accurate photometric redshifts are available for the rest of the sample. The study of such a large sample of X-ray selected AGN with a high-quality multiwavelength coverage from the far-infrared (now with the inclusion of Herschel data at 100 and 160 μm) to the optical-ultraviolet allows us to obtain accurate estimates of bolometric luminosities, bolometric corrections and Eddington ratios. The kbol - Lbol relations derived in this work are calibrated for the first time against a sizable AGN sample, and rely on observed redshifts, X-ray luminosities and column density distributions. We find that kbol is significantly lower at high Lbol with respect to previous estimates by Marconi et al. and Hopkins et al. Black hole (BH) masses and Eddington ratios are available for 170 Type-1 AGN, while BH masses for Type-2 AGN are computed for 481 objects using the BH mass-stellar mass relation and the morphological information. We confirm a trend between kbol and λEdd, with lower hard X-ray bolometric corrections at lower Eddington ratios for both Type-1 and Type-2 AGN. We find that, on average, the Eddington ratio increases with redshift for all types of AGN at any given MBH, while no clear evolution with redshift is seen at any given Lbol.

  9. Discovery of rare double-lobe radio galaxies hosted in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Sievers, Jonathan; Wadadekar, Yogesh; Hilton, Matt; Beelen, Alexandre

    2015-12-01

    Double-lobe radio galaxies in the local Universe have traditionally been found to be hosted in elliptical or lenticular galaxies. We report the discovery of four spiral-host double-lobe radio galaxies (J0836+0532, J1159+5820, J1352+3126, and J1649+2635) that are discovered by cross-matching a large sample of 187 005 spiral galaxies from SDSS DR7 (Sloan Digital Sky Survey Data Release 7) to the full catalogues of FIRST (Faint Images of the Radio Sky at Twenty-cm) and NVSS (NRAO VLA Sky Survey). J0836+0532 is reported for the first time. The host galaxies are forming stars at an average rate of 1.7-10 M⊙ yr-1 and possess supermassive black holes (SMBHs) with masses of a few times 108 M⊙. Their radio morphologies are similar to Fanaroff-Riley type II radio galaxies with total projected linear sizes ranging from 86 to 420 kpc, but their total 1.4-GHz radio luminosities are only in the range 1024-1025 W Hz-1. We propose that the formation of spiral-host double-lobe radio galaxies can be attributed to more than one factor, such as the occurrence of strong interactions, mergers, and the presence of unusually massive SMBHs, such that the spiral structures are not destroyed. Only one of our sources (J1649+2635) is found in a cluster environment, indicating that processes other than accretion through cooling flows e.g. galaxy-galaxy mergers or interactions could be plausible scenarios for triggering radio-loud active galactic nuclei activity in spiral galaxies.

  10. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    SciTech Connect

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana; Rossi, Andrea; Klose, Sylvio; Savaglio, Sandra; Michalowski, Michal; Pian, Elena

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formation rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.

  11. The Extremely Red Host Galaxy of GRB 080207

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra; Cresci, Giovanni; Klose, Sylvio; Michałowski, Michał; Pian, Elena

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 μm/R-band flux ~1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 μm photometric "bump," typical of evolved stellar populations. We use this bump to establish the photometric redshift z phot as 2.2+0.2 - 0.3, using a vast library of SED templates, including M 82. The star formation rate (SFR) inferred from the SED fitting is ~119 M sun yr-1, the stellar mass 3 × 1011 M sun, and AV extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.

  12. The SEDs and host galaxies of the dustiest GRB afterglows

    NASA Astrophysics Data System (ADS)

    Krühler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Küpcü-Yoldaş, A.; McBreen, S.; Olivares, F.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-10-01

    Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust. Aims: Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (AVGRB ≳ 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples. Methods: This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host's stellar mass, luminosity, color-excess, and star-formation rate. Results: For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787 ± 0.0005), and the visual extinction towards GRBs 081109 (AVGRB = 3.4-0.3+0.4 mag) and 100621A (AVGRB = 3.8±0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the afterglow's metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder (⟨ (R - K)AB ⟩ ~ 1.6 mag), more luminous (⟨ L ⟩ ~ 0.9 L∗), and massive (⟨ log M∗ [M⊙] ⟩ ~ 9.8) than the hosts of optically-bright events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the

  13. Jet Feedback on the Hosts of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Alatalo, K.; Appleton, P. N.

    2016-06-01

    Feedback due to active galactic nuclei is one of the key components of the current paradigm of galaxy evolution; however our understanding of the process remains incomplete. Radio galaxies with strong rotational H_2 emission provide an interesting window into the effect of radio jet feedback on their host galaxies, since the large masses of warm (>100 K) H_2 cannot solely be heated by star formation, instead requiring jet-driven ISM turbulence to power the molecular emission. I will discuss the insights multiwavelength (X-ray to submm) observations of 22 H_2 luminous radio galaxies yield on the process of jet feedback in these galaxies and the impact on star formation activity. Specifically, I find that the diffuse X-ray and warm H_2 emission are consistent with both being powered by dissipation of the jet's mechanical energy into the interstellar medium (ISM) and that the resulting turbulence injected into the ISM by this process results in the suppression of star formation activity by a factor of 3--6. The hosts of these galaxies show a wide range of star formation activity and optical and IR colors, indicating a diversity of evolutionary states in which this process may be active.

  14. Host galaxies are the obscurers of Gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-08-01

    The luminous, high-energy emission of gamma-ray bursts (GRBs) makes them efficient probes of the high-redshift universe. The origin of the obscuration of gamma-ray burst afterglow is still unclear. We study the afterglows metal column densities along the line-of-sight of all Swift-detected long GRBs with an improved hierarchical Bayesian analysis methodology. We characterise follow-up biases and side-step them using SHOALS, an unbiased sub-sample with highly complete follow-up. That survey also measures Spitzer host masses. Overall, the column densities shows little redshift evolution but a significant correlation with host stellar mass. A simple geometrical model explains the width and shape of the column density distribution and the trend with galaxy mass correlation. Our findings implicate the host's galaxy-scale metal gas as the dominant obscurer. From a galaxy evolution perspective, our study places new constraints on the metal gas mass inside galaxies at z=0.5-4. We compare these with modern cosmological simulations (Illustris and EAGLE) and discuss implications for the obscuration of other sources inside high redshift galaxies, such as active galactic nuclei.

  15. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Ho, Luis C.

    2013-08-01

    Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass [Formula: see text] and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from [Formula: see text] in brightest cluster ellipticals to [Formula: see text] in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105-106M⊙ are found in many bulgeless galaxies. Therefore, classical (elliptical-galaxy-like) bulges are not necessary for BH formation. On the other hand, although they live in galaxy disks, BHs do not correlate with galaxy disks. Also, any [Formula: see text] correlations with the properties of disk-grown pseudobulges and dark matter halos are weak enough to imply no close coevolution. The above and other correlations of host-galaxy parameters with each other and with [Formula: see text] suggest that there are four regimes of BH feedback. (1) Local, secular, episodic, and stochastic feeding of small BHs in largely bulgeless galaxies involves too little energy to result in coevolution. (2) Global feeding in major, wet galaxy mergers rapidly grows giant BHs in short-duration, quasar-like events whose energy feedback does affect galaxy evolution. The resulting hosts are classical bulges and coreless

  16. Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications

    NASA Astrophysics Data System (ADS)

    Mosby, G.; Tremonti, C. A.; Hooper, E. J.; Wolf, M. J.; Sheinis, A. I.; Richards, J. W.

    2015-02-01

    To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host is comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag arcsec-2) and the resulting spectrum might have such low signal-to-noise ratio (S/N) that it hinders analysis with standard stellar population modelling techniques. To address this problem, we have developed a method that can recover galaxy star formation histories (SFHs) from rest-frame optical spectra with S/N ˜ 5 Å-1. This method uses the statistical technique diffusion k-means to tailor the stellar population modelling basis set. Our diffusion k-means minimal basis set, composed of four broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an analytic prescription for seeing conditions, we are able to simultaneously model scattered quasar light and the SFH of quasar host galaxies (QHGs). We use synthetic data to compare results of our novel method with previous techniques. We also present the modelling results on a previously published QHG and show that galaxy properties recovered from a diffusion k-means basis set are less sensitive to noise added to this QHG spectrum. Our new method has a clear advantage in recovering information from QHGs and could also be applied to the analysis of other low S/N galaxy spectra such as those typically obtained for high redshift objects or integral field spectroscopic surveys.

  17. Disentangling AGN-Host Galaxy Interactions with Chandra

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2014-11-01

    The circum-nuclear region in active galaxies is often complex with presence of high excitation gas, collimated radio outflow, and star forming regions, besides the active central supermassive black hole. In Chandra studies of a number of archetypal Seyfert galaxies to investigate AGN-host galaxy interaction, we were able to evaluate the mass outflow rate and shock heating by radio jet. For galaxies in the throes of a violent merging event such as NGC6240, we were able to resolve 70MK hot gas surrounding the double nuclei and discovered a large scale soft X-ray halo. The unique resolving power of Chandra also enables more discovery of such dual AGN systems and signs of past AGN outburst activities.

  18. Host Galaxies of X-Shaped Radio Sources

    SciTech Connect

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  19. Identifying the host galaxy of gravitational wave signals

    SciTech Connect

    Nuttall, Laura K.; Sutton, Patrick J.

    2010-11-15

    One of the goals of the current LIGO-GEO-Virgo science run is to identify transient gravitational wave (GW) signals in near real time to allow follow-up electromagnetic (EM) observations. An EM counterpart could increase the confidence of the GW detection and provide insight into the nature of the source. Current GW-EM campaigns target potential host galaxies based on overlap with the GW sky error box. We propose a new statistic to identify the most likely host galaxy, ranking galaxies based on their position, distance, and luminosity. We test our statistic with Monte Carlo simulations of GWs produced by coalescing binaries of neutron stars and black holes, one of the most promising sources for ground-based GW detectors. Considering signals accessible to current detectors, we find that when imaging a single galaxy, our statistic correctly identifies the true host {approx}20% to {approx}50% of the time, depending on the masses of the binary components. With five narrow-field images the probability of imaging the true host increases from {approx}50% to {approx}80%. When collectively imaging groups of galaxies using large field-of-view telescopes, the probability improves from {approx}30% to {approx}60% for a single image and from {approx}70% to {approx}90% for five images. For the advanced generation of detectors (circa 2015+), and considering binaries within 100 Mpc (the reach of the galaxy catalogue used), the probability is {approx}40% for one narrow-field image, {approx}75% for five narrow-field images, {approx}65% for one wide-field image, and {approx}95% for five wide-field images, irrespective of binary type.

  20. Type Ia supernova host galaxies as seen with IFU spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanishev, V.; Rodrigues, M.; Mourão, A.; Flores, H.

    2012-09-01

    Context. Type Ia supernovae (SNe Ia) have been widely used in cosmology as distance indicators. However, to fully exploit their potential in cosmology, a better control over systematic uncertainties is required. Some of the uncertainties are related to the unknown nature of the SN Ia progenitors. Aims: We aim to test the use of integral field unit (IFU) spectroscopy for correlating the properties of nearby SNe Ia with the properties of their host galaxies at the location of the SNe. The results are to be compared with those obtained from an analysis of the total host spectrum. The goal is to explore this path of constraining the nature of the SN Ia progenitors and further improve the use of SNe Ia in cosmology. Methods: We used the wide-field IFU spectrograph PMAS/PPAK at the 3.5 m telescope of Calar Alto Observatory to observe six nearby spiral galaxies that hosted SNe Ia. Spatially resolved 2D maps of the properties of the ionized gas and the stellar populations were derived. Results: Five of the observed galaxies have an ongoing star formation rate of 1-5 M⊙ yr-1 and mean stellar population ages ~5 Gyr. The sixth galaxy shows no star formation and has an about 12 Gyr old stellar population. All galaxies have stellar masses larger than 2 × 1010 M⊙ and metallicities above solar. Four galaxies show negative radial metallicity gradients of the ionized gas up to -0.058 dex kpc-1 and one has nearly uniform metallicity with a possible shallow positive slope. The stellar components show shallower negative metallicity gradients up to -0.03 dex kpc-1. We find no clear correlation between the properties of the galaxy and those of the supernovae, which may be because of the small ranges spanned by the galaxy parameters. However, we note that the Hubble residuals are on average positive while negative Hubble residuals are expected for SNe Ia in massive hosts such as the galaxies in our sample. Conclusions: The IFU spectroscopy on 4-m telescopes is a viable technique for

  1. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Leah, Simon E.; Hamann, F. W.

    2006-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independant abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES for 8 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and ecompassing a typical rest-frame spectral range from approximatly 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present lower limits on column densities, as well as estimates for the absorber locations relative to the quasar. We place rough estimates on the abundances where possible. We find covering fractions which vary with velocity, and a significant fraction of absorption lines which exhibit variability, indicating their intrinsic nature. Saturated lines inhibit concrete abundance analysis, but present excellent opportunities for future research proposals.

  2. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Leah; Hamann, F.

    2007-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) - M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independent abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES, Keck-HIRES and Magellan-MIKE for 18 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and encompassing a typical rest-frame spectral range from approximately 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present column densities, as well as estimates for the absorber locations relative to the quasar. We place solid limits on the C/H abundances, and find a wide range of values, from one hundredth solar to several times solar. We find covering fractions which vary with velocity, indicating the intrinsic nature of the absorbing gas. Saturated lines inhibit concrete abundance analysis in some systems, but are still useful for placing limits based on Gaussian fits to the lines.

  3. The Host Galaxies of Micro-Jansky Radio Sources

    NASA Astrophysics Data System (ADS)

    Luchsinger, K. M.; Lacy, M.; Jones, K. M.; Mauduit, J. C.; Pforr, J.; Surace, J. A.; Vaccari, M.; Farrah, D.; Gonzales-Solares, E.; Jarvis, M. J.; Maraston, C.; Marchetti, L.; Oliver, S.; Afonso, J.; Cappozi, D.; Sajina, A.

    2015-09-01

    We combine a deep 0.5 deg2, 1.4 GHz deep radio survey in the Lockman Hole with infrared and optical data in the same field, including the Spitzer Extragalactic Representative Volume Survey (SERVS) and UKIDSS near-infrared surveys, to make the largest study to date of the host galaxies of radio sources with typical radio flux densities ˜ 50 μJy. 87% (1274/1467) of radio sources have identifications in SERVS to {AB}≈ 23.1 at 3.6 or 4.5μm, and 9% are blended with bright objects (mostly stars), leaving only 4% (59 objects), which are too faint to confidently identify in the near-infrared. We are able to estimate photometric redshifts for 68% of the radio sources. We use mid-infrared diagnostics to show that the source population consists of a mixture of star-forming galaxies, rapidly accreting (cold mode) active galactic nuclei (AGNs) and low accretion rate (hot mode) AGNs, with neither AGNs nor star-forming galaxies clearly dominating. We see the breakdown in the K-z relation in faint radio source samples, and show that it is due to radio source populations becoming dominated by sources with radio luminosities ˜ {10}23 {{WHz}}-1. At these luminosities, both the star-forming galaxies and the cold mode AGNs have hosts with stellar luminosities of about a factor of two lower than those of hot mode AGNs, which continue to reside in only the most massive hosts. We show that out to at least z˜ 2, galaxies with stellar masses \\gt {10}11.5 {M}⊙ have radio-loud fractions up to ˜30%. This is consistent with there being a sufficient number of radio sources for radio-mode feedback to play a role in galaxy evolution.

  4. On the environments of Type Ia supernovae within host galaxies

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; James, P. A.; Förster, F.; González-Gaitán, S.; Habergham, S. M.; Hamuy, M.; Lyman, J. D.

    2015-03-01

    We present constraints on Type Ia supernovae (SNe Ia) progenitors through an analysis of the environments found at the explosion sites of 102 events within star-forming host galaxies. Hα and Galaxy Evolution Explorer near-ultraviolet (UV) images are used to trace on-going and recent star formation (SF), while broad-band B, R, J, K imaging is also analysed. Using pixel statistics we find that SNe Ia show the lowest degree of association with Hα emission of all supernova (SN) types. It is also found that they do not trace near-UV emission. As the latter traces SF on time-scales less than 100 Myr, this rules out any extreme `prompt' delay times as the dominant progenitor channel of SNe Ia. SNe Ia best trace the B-band light distribution of their host galaxies. This implies that the population within star-forming galaxies is dominated by relatively young progenitors. Splitting SNe by their (B - V) colours at maximum light, `redder' events show a higher degree of association with H II regions and are found more centrally within hosts. We discuss possible explanations of this result in terms of line-of-sight extinction and progenitor effects. No evidence for correlations between SN stretch and environment properties is observed.

  5. Molecular Gas in Three z ˜ 7 Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Ferkinhoff, Carl; Weiß, Axel; Findlay, Joseph R.; McMahon, Richard G.; Sutherland, Will J.; Meijerink, Rowin

    2017-08-01

    We present ALMA band 3 observations of the CO(6-5), CO(7-6), and [C i] 369 μm emission lines in three of the highest-redshift quasar host galaxies at 6.6< z< 6.9. These measurements constitute the highest-redshift CO detections to date. The target quasars have previously been detected in [C ii] 158 μm emission and the underlying FIR dust continuum. We detect (spatially unresolved, at a resolution of >2″, or ≳14 kpc) CO emission in all three quasar hosts. In two sources, we detect the continuum emission around 400 μm (rest-frame), and in one source we detect [C i] at low significance. We derive molecular gas reservoirs of (1-3) × 1010 {M}⊙ in the quasar hosts, i.e., approximately only 10 times the mass of their central supermassive black holes. The extrapolated [C ii]-to-CO(1-0) luminosity ratio is 2500-4200, consistent with measurements in galaxies at lower redshift. The detection of the [C i] line in one quasar host galaxy and the limit on the [C i] emission in the other two hosts enables a first characterization of the physical properties of the interstellar medium in z ˜ 7 quasar hosts. In the sources, the derived global CO/[C ii]/[C i] line ratios are consistent with expectations from photodissociation regions, but not X-ray-dominated regions. This suggest that quantities derived from the molecular gas and dust emission are related to ongoing star-formation activity in the quasar hosts, providing further evidence that the quasar hosts studied here harbor intense starbursts in addition to their active nucleus.

  6. OPTICAL PROPERTIES OF HOST GALAXIES OF EXTRAGALACTIC NUCLEAR WATER MASERS

    SciTech Connect

    Zhu Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz ({lambda} = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (M{sub B} ), larger velocity dispersion ({sigma}), and higher [O III] {lambda}5007 luminosity, with [O III] {lambda}5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] {lambda}5007 flux when available. This prioritization would improve maser detection efficiency, from an overall {approx}3% without pre-selection to {approx}16% for the strongest intrinsic [O III] {lambda}5007 emitters, by a factor of {approx}5.

  7. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  8. HST Observations of the Host Galaxy of GRB970508

    NASA Astrophysics Data System (ADS)

    Fruchter, A.; Pian, E.

    1998-08-01

    The field of GRB970508 was imaged by HST with the STIS CCD in open filter mode (50CCD) on 1998 August 5.78-6.03 for a total exposure time of 11,568 seconds. An extended object, which we believe to be the host galaxy of GRB970508, was detected at the astrometric position of the optical transient of GRB970508. The galaxy has high signal-to-noise in our data and is clearly resolved, with a major axis of approximately 0."5 .

  9. Erratum: A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Kinney, Anne L.; Storchi-Bergmann, Thaisa; Antonucci, Robert

    1997-08-01

    In the paper ``A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies'' by Henrique R. Schmitt, Anne L. Kinney, Thaisa Storchi-Bergmann, & Robert Antonucci (ApJ, 477, 623 [1997]), there are errors in Table 1 and Figure 6, and there is a reference to a previous work that should be stated. With respect to the latter, the authors compare the position angle of small-scale radio structures in Seyfert galaxies with the position angle of their host galaxy major axis. In their analysis they find a zone of avoidance, where the small-scale radio axis avoids close alignment with the host galaxy minor axis. The authors wish to note that J. S. Ulvestad and A. S. Wilson (ApJ, 285, 439 [1984]) already observed a paucity of radio structures aligned with the host galaxy minor axis in Seyfert 2 galaxies, although on a smaller sample. Ulvestad & Wilson was referenced in their paper as Ulvestad & Wilson (1984b). In Table 1 there were errors in the references listed in the note to the table. A new version of Table 1 with correct references is given here, and the following reference entries should be added to the reference list of the original paper: Mulchaey, J. S., Wilson, A. S., & Tsvetanov, Z. I. 1996, ApJS, 102, 309; Oke, J. B., & Lauer, T. R. 1979, ApJ, 230, 360; Simkin, S. M. 1975, ApJ, 200, 567. Figure 6a was printed twice, once correctly and once incorrectly in place of Figure 6c. The correct version of Figure 6c appears below.

  10. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  11. Mid- and Near-infrared spectral properties of a sample of Swift-BAT X-ray selected AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Malkan, Matthew A.; Ichikawa, Kohei; Ueda, Yoshihiro; Shirahata, M.; Nakagawa, Takao; Imanishi, Masatoshi; Oyabu, Shinki

    2015-08-01

    We present a comparative study of the mid- (MIR) to near-infrared (NIR) properties of a sample of X-ray selected AGNs from the Swift/Burst Alert Telescope (BAT) 70-month all-sky hard X-ray (14-195 keV) survey. For a sample of 78 AGNs, including both Seyfert 1 and Seyfert 2 sources with black hole masses derived from 2MASS K-band magnitudes and literature, we obtain spectroscopic data from the IRC (2.5 - 5 μm) and IRS (in the 5-14 μm band) instruments onboard the Akari and Spitzer satellites, respectively. We test possible correlations between the 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm polycyclic aromatic hydrocarbon (PAH) emission features, the continuum slope and CO optical depth, as well as CO2, H2O, and amorphous silicates. Using the 3.3, 6.2 and 11.3 μm PAH emission features as a proxy for the star-formation rate (SFR) we report the AGN type and Eddington-ratio dependences of circum-nuclear star formation.

  12. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel; Gnedin, Nickolay Y.

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  13. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2006-12-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  14. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2007-05-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  15. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  16. What are the galaxies that host MIR-selected AGN?

    NASA Astrophysics Data System (ADS)

    Rosario, David

    2016-08-01

    Infra-red selection techniques, sensitive to dust strongly heated by an AGN, offer a way to identify some of the most obscured accretion events in the Universe. I will describe the results of a comprehensive multi-wavelength study of AGN to z>2 selected using Spitzer/IRAC based methods in the COSMOS field. Armed with AGN-optimised redshifts and stellar masses, we explore the dust emission from the active nucleus and the host galaxy. We demonstrate that IR-selected AGN tend to be found in low mass host galaxies, when compared to other AGN identification methods. The star-formation rates of obscured and unobscured IR-selected AGN are very similar, implying that large-scale obscuration with co-eval star-bursts are not found in a major proportion of heavily obscured AGN.

  17. Morphology of QSO host galaxies --- a look at the SED

    NASA Astrophysics Data System (ADS)

    Andrei, A.; Coelho, B.; Anton, S.

    2015-08-01

    The Gaia Initial QSO Catalogue presents several characteristics of its 1,248,372 listed objects, among which the optical morphological type. From this a program studies the host galaxies of QSOs present in the SDSS up to its 8th release, based on retrieving a data bank of images in the five ugriz colors for the 105,783 objects spectroscopically found as QSOs. The first scope of this program is to study QSOs for which the isophotes of the host galaxy are not pronounced, so that the centroid determination is not affected for those fundamental grid-points of the Gaia Celestial Reference Frame. Since the target images come from relatively short exposures, we developed an approach to access disturbances of the target PSF relatively to the nearby stars. Here we focus on the first results for absolute magnitude of QSOs combining the SDSS colors and the SED library from Gaia.

  18. GRB 990712 optical decay: indication of bright host galaxy.

    NASA Astrophysics Data System (ADS)

    Hjorth, J.; Courbin, F.; Cuadra, J.; Minniti, D.

    We have obtained a 5-min R-band exposure of the optical afterglow of GRB 990712 (Frontera, GCN #385; Bakos et al., GCN #387) with the ESO 3.5-m NTT on 16.403 July 1999 UT. We detect an unresolved (seeing FWHM = 1.8") object at RA (2000) = 22 31 53.03, Dec (2000) = -73 24 28.3 (with a positional uncertainty of +- 0.6" relative to the USNO-A2.0 system), consistent with the position of the bright decaying source discovered by Bakos et al. (IAUC 7225). We have tied our photometry to the PLANET photometric zeropoint (K. Sahu, personal communication) and find that the object has continued to fade to R = 21.48 +- 0.02 (systematic) +- 0.05 (random). The combined SAAO data (Bakos et al., IAUC 7225) and NTT data indicate that the light curve is leveling off relative to a power law decline. Assuming that the light curve can be modeled as the combined effects of a power law decline of the OT and a constant contribution from the host galaxy we find an OT decay slope of -0.81 (i.e. a rather slow decay) and a bright host galaxy with R = 22.0. Such a bright host galaxy would be consistent with its fairly low redshift (z = 0.43) and would possibly even account for the prominent emission lines seen in the VLT spectrum (Galama et al., GCN #388). We caution however that the hypothesis of a bright host galaxy is based on just a few data points. To test this hypothesis continued monitoring of the system is therefore urged. The NTT image and the R-band light curve are posted at http://www.astro.ku.dk/~jens/grb990712/ .

  19. Locating star-forming regions in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  20. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    SciTech Connect

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  1. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  2. Starburst-driven Superwinds in Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Barthel, Peter; Podigachoski, Pece; Wilkes, Belinda; Haas, Martin

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s-1. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  3. A 2.5-5 μm spectroscopic study of hard X-ray selected AGNs with AKARI

    NASA Astrophysics Data System (ADS)

    Castro, A.; Miyaji, T.; Shirahata, M.; Oyabu, S.; Clark, D.; Ichikawa, K.; Imanishi, M.; Nakagawa, T.; Ueda, Y.

    2014-07-01

    We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E <~ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (N H) towards the AGNs. We use the 3.3 μm PAH luminosity (L 3.3μm) as a proxy for star formation activity and hard X-ray luminosity (L 14-195keV) as an indicator of the AGN activity. We searched for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. Our regression analysis of log L 14-195keV versus log L 3.3μm shows a positive correlation and the slope seems steeper for type 1/unobscured AGNs than that of type 2/obscured AGNs. The same trend has been found for the log (L 14-195keV/M BH) versus log (L 3.3μm/MBH) correlation. Our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs.

  4. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    SciTech Connect

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.

  5. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  6. Quasars, their host galaxies and their central black holes

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Kukula, M. J.; Baum, S. A.; O'Dea, C. P.; Hughes, D. H.

    2003-04-01

    We present the final results from our deep Hubble Space Telescope (HST) imaging study of the host galaxies of radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs). We describe and analyse new Wide Field & Planetary Camera 2 (WFPC2) R-band observations for 14 objects, which when combined with the first tranche of HST imaging reported in McLure et al., provide a complete and consistent set of deep, red, line-free images for statistically matched samples of 13 RQQs, 10 RLQs and 10 RGs in the redshift band 0.1 < z < 0.25. We also report the results of new deep VLA imaging that has yielded a 5-GHz detection of all but one of the 33 active galactic nuclei (AGN) in our sample. Careful modelling of our images, aided by a high dynamic-range point spread function, has allowed us to determine accurately the morphology, luminosity, scalelength and axial ratio of every host galaxy in our sample. Armed with this information we have undertaken a detailed comparison of the properties of the hosts of these three types of powerful AGN, both internally and with the galaxy population in general. We find that spheroidal hosts become more prevalent with increasing nuclear luminosity such that, for nuclear luminosities MV < -23.5, the hosts of both radio-loud and radio-quiet AGN are virtually all massive ellipticals. Moreover, we demonstrate that the basic properties of these hosts are indistinguishable from those of quiescent, evolved, low-redshift ellipticals of comparable mass. This result rules out the possibility that radio-loudness is determined by host-galaxy morphology, and also sets severe constraints on evolutionary schemes that attempt to link low-z ultraluminous infrared galaxies with RQQs. Instead, we show that our results are as expected given the relationship between black hole and spheroid mass established for nearby galaxies, and apply this relation to estimate the mass of the black hole in each object. The results agree remarkably well with

  7. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  8. Fast outflows and star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2016-06-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only potentially able to quench star formation, and we are still lacking decisive evidence of negative feedback in action. Here we present observations obtained with the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field of two quasars at z ~ 2.4 that are characterised by fast, extended outflows detected through the [Oiii]λ5007 line. The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHM< 500 km s-1) and spatially extended components in [Oiii]λ5007 and Hα emission associated with star formation in the host galaxy. This star formation powered emission is spatially anti-correlated with the fast outflows. The ionised outflows therefore appear to be able to suppress star formation in the region where the outflow is expanding. However, the detection of narrow spatially extended Hα emission indicates star formation rates of at least ~50-90 M⊙ yr-1, suggesting either that AGN feedback does not affect the whole galaxy or that many feedback episodes are required before star formation is completely quenched. On the other hand, the narrow Hα emission extending along the edges of the outflow cone may also lead also to a positive feedback interpretation. Our results highlight the possible double role of galaxy-wide outflows in host galaxy evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A) and 091.A-0261(A).The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A28

  9. Dissecting High-Redshift Galaxies with GRBs: Three Hosts at z 6 Observed with HST

    NASA Astrophysics Data System (ADS)

    McGuire, J. T. W.

    2016-10-01

    The first detection of three GRB hosts at z 6 is presented, along with their comparison to Lyman-break galaxies, potential star formation histories and a brief look at their impact on the high-redshift galaxy luminosity function.

  10. Quasar Host Galaxies and the MSMBH-σ* Relation

    NASA Astrophysics Data System (ADS)

    Sheinis, A. I.; López-Sánchez, Á. R.

    2017-02-01

    We analyze the emission line profiles detected in deep optical spectra of quasars to derive the mass of their super-massive black holes (SMBH) following the single-epoch virial method. Our sample consists in six radio-loud (RL) quasars and four radio-quiet (RQ) quasars. We carefully fit a broad and narrow Gaussian component for each emission line in both the Hβ (10 objects) and Hα regions (5 objects). A very good agreement of the derived SMBH masses, {M}{SMBH}, is found using the fitted broad Hβ and Hα emission lines. We compare our {M}{SMBH} results with those found by previous studies. We study the relationship between the {M}{SMBH} of the quasar and the stellar velocity dispersion, {σ }* , of the host galaxy. We use the measured {M}{SMBH} and {σ }* to investigate the {M}{SMBH}-{σ }* relation for both the RL and radio-quiet subsamples. Besides the scatter, we find a good agreement between radio-quiet quasars and AGN+quiescent galaxies and between RL quasars and AGN. Our analysis does not support the hypothesis of using σ([O iii] λ5007) as a surrogate for stellar velocity dispersions in high-mass, high-luminosity quasars. We also investigate the relationship between the 5 GHz radio-continuum luminosity, {L}5{GHz}, of the quasar host galaxy with both {M}{SMBH} and {σ }* . We do not find any correlation between {L}5{GHz} and {M}{SMBH}, although we observe a trend that galaxies with larger stellar velocity dispersions have larger {L}5{GHz}. Using the results of our fitting for the narrow emission lines of [O iii] λ5007 and [N ii] λ6583 we estimate the gas-phase oxygen abundance of six quasars, being sub-solar in all cases.

  11. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  12. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  13. Black hole masses of tidal disruption event host galaxies

    NASA Astrophysics Data System (ADS)

    Wevers, Thomas; van Velzen, Sjoert; Jonker, Peter G.; Stone, Nicholas C.; Hung, Tiara; Onori, Francesca; Gezari, Suvi; Blagorodnova, Nadejda

    2017-10-01

    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV-selected TDE host galaxies (down to ghost ≤ 22 mag and z = 0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range of 3 × 105 M⊙ ≤ MBH ≤ 2 × 107 M⊙. The TDE host galaxy sample is dominated by low-mass black holes (∼ 106 M⊙), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH ≤ 107.1 M⊙ is consistent with the Eddington limit of the supermassive black hole (SMBH), whereas the two TDEs with MBH ≥ 107.1 M⊙ have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH ≥ 107.1 M⊙ is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106 M⊙ black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disc as the direct origin of the blackbody radiation at peak brightness.

  14. Simple Stellar Population Modeling of Quasar Host Galaxies with Diffusion K-Means Test Results

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Moravec, E. A.; Tremonti, C. A.; Wolf, M. J.

    2013-01-01

    In the last decade, the correlation of the masses of supermassive black holes (SMBHs) and their host galaxy stellar spheroid velocity dispersions (the M-sigma relation) was greeted as clear evidence for the co-evolution of host galaxies and their SMBHs. However, studies in the last five years have posited that this relation could arise from central-limit properties of hierarchical formation alone. To address the question of whether and how often the SMBHs evolve with their host galaxies, it is necessary to look at galaxies whose SMBHs are actively growing—quasars—and determine the host galaxy properties. The central nuclei of quasar host galaxies complicate this type of study because their high luminosity tends to wash out their host galaxies. But, by using 3-D spectroscopy with the integral field unit (IFU) Sparsepak on the WIYN telescope, we have shown that the quasar light can be mostly isolated to one fiber in order to obtain the spectra of the quasar and the host galaxy concurrently. We can then model simultaneously the scattered quasar light and the stellar populations in the host galaxy fiber using a new simple stellar population (SSP) modeling method called diffusion k-means (DFK). The objectives of the research presented in this poster are to model synthetic quasar host galaxies using a DFK basis and a more traditional basis, compare the accuracy of both modeling methods, and test the affects of various prescriptions for masking the quasar lines in the host galaxy fiber. We present results from our SSP modeling and Markov Chain Monte Carlo (MCMC) results for DFK and traditional modeling schemes using synthetic data. By determining and then using the more robust stellar population modeling method, we can more confidently study quasar host galaxies to answer remaining questions in galaxy evolution. This work was partially supported by a National Science Foundation Graduate Fellowship (NSF Grant DGE-0718123) and through the NSF's REU program (NSF Award

  15. EARLY-TYPE HOST GALAXIES OF TYPE II AND Ib SUPERNOVAE

    SciTech Connect

    Suh, Hyewon; Jeong, Hyunjin; Yi, Sukyoung K.; Yoon, Sung-chul

    2011-04-01

    Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV-optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  16. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  17. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s-1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr-1 and the mean gas mass is ˜1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH-M * scaling relation.

  18. The host galaxy of a fast radio burst.

    PubMed

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  19. A Comparison of Seyfert 1 and 2 Host Galaxies

    NASA Astrophysics Data System (ADS)

    De Robertis, M.; Virani, S.

    2000-12-01

    Wide-field, R-band CCD data of 15 Seyfert 1 and 15 Seyfert 2 galaxies taken from the CfA survey were analysed in order to compare the properties of their host galaxies. As well, B-band images for a subset of 12 Seyfert 1s and 7 Seyfert 2s were acquired and analysed in the same way. A robust technique for decomposing the three components---nucleus, bulge and disk---was developed in order determine the structural parameters for each galaxy. In effect, the nuclear contribution was removed empirically by using a spatially nearby, high signal-to-noise ratio point source as a template. Profile fits to the bulge+disk ignored data within three seeing disks of the nucleus. Of the many parameters that were compared between Seyfert 1s and 2s, only two distributions differed at greater than the 95% confidence level for the K-S test: the magnitude of the nuclear component, and the radial color gradient outside the nucleus. The former is expected. The latter could be consistent with some proposed evolutionary models. There is some suggestion that other parameters may differ, but at a lower confidence level.

  20. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  1. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  2. Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Childress, M.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kim, A. G.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.

    2013-06-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M */M ⊙) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  3. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  4. VizieR Online Data Catalog: Properties of SN host galaxies (Kelly+, 2014)

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Filippenko, A. V.; Modjaz, M.; Kocevski, D.

    2017-03-01

    We study the host galaxies of both nearby (z<0.2) core-collapse SNe discovered by "galaxy-untargeted" transient searches (e.g., the Palomar Transient Factory (PTF); Rau et al., 2009PASP..121.1334R; Law et al., 2009PASP..121.1395L), which do not target specific potential hosts or z<1.2 LGRBs detected by gamma-ray satellites. We use the SDSS spectroscopic sample to build a control sample of low-redshift star-forming galaxies and SDSS photometry and spectroscopy to measure properties of both the sample of low-redshift star-forming galaxies and the host galaxies of the nearby SNe. For the host galaxies of z<1.2 LGRBs, we estimate host properties using published photometry and HST imaging. (2 data files).

  5. An observational study of quasar host galaxies, radio galaxies, and lyman alpha emitters

    NASA Astrophysics Data System (ADS)

    Wold, Isak George Bayard

    In this thesis I provide observational constraints on quasar host galaxies, radio galaxies, and Lyman Alpha Emitters (LAEs). I develop and implement a method to provide stellar age constraints for the host galaxies of nearby (z<0.3) quasars. The observational strategy is to spectroscopically observe quasar host galaxies offset from the bright central point source to maximize the signal-to-noise of the stellar light. The central quasar is also spectroscopically observed, so that any nuclear light scattered into our off-axis spectrum can be efficiently modeled and subtracted. The reliability of my technique is tested via a Monte-Carlo routine in which the correspondence between synthetic spectra with known parameters and the model output is determined. Application of this model to a preliminary sample of 10 objects is presented and compared to previous studies. I present 1.4 GHz catalogs for the cluster fields A370 and A2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. I construct differential number counts for each field and find results consistent with previous studies. I emphasize the need to account for cosmic variance. These high resolution, ultra-deep radio catalogs will be vital to future multiwavelength studies. Finally, I apply a newly developed search method to all of the deep GALEX grism fields, which correspond to some of the most intensively studied regions in the sky. My work provides the first large sample of z=0.67-1.16 LAEs (N=60) that can be used to investigate the physical properties of these galaxies. I catalog the candidate z=1 LAE samples in each field and give optical redshifts from both archival and newly obtained observations. With X-ray, UV, and optical data, I determine the false detection rate (cases where the emission line is either not confirmed or is not Lya) and the AGN contamination rate of my sample. With the remaining LAEs, I compute the LAE galaxy luminosity function

  6. Supernovae and their host galaxies - V. The vertical distribution of supernovae in disc galaxies

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Barkhudaryan, L. V.; Karapetyan, A. G.; Mamon, G. A.; Kunth, D.; Adibekyan, V.; Aramyan, L. S.; Petrosian, A. R.; Turatto, M.

    2017-10-01

    We present an analysis of the height distributions of the different types of supernovae (SNe) from the plane of their host galaxies. We use a well-defined sample of 102 nearby SNe appearing inside high-inclined (i ≥ 85°), morphologically non-disturbed S0-Sd host galaxies from the Sloan Digital Sky Survey. For the first time, we show that in all the subsamples of spirals, the vertical distribution of core-collapse (CC) SNe is about twice closer to the plane of the host disc than the distribution of SNe Ia. In Sb-Sc hosts, the exponential scale height of CC SNe is consistent with those of the younger stellar population in the Milky Way (MW) thin disc, while the scale height of SNe Ia is consistent with those of the old population in the MW thick disc. We show that the ratio of scale lengths to scale heights of the distribution of CC SNe is consistent with those of the resolved young stars with ages from ∼10 up to ∼100 Myr in nearby edge-on galaxies and the unresolved stellar population of extragalactic thin discs. The corresponding ratio for SNe Ia is consistent with the same ratios of the two populations of resolved stars with ages from a few 100 Myr up to a few Gyr and from a few Gyr up to ∼10 Gyr, as well as with the unresolved population of the thick disc. These results can be explained considering the age-scale height relation of the distribution of stellar population and the mean age difference between Type Ia and CC SNe progenitors.

  7. The Hubble Space Telescope Survey of BL Lacertae Objects. IV. Infrared Imaging of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Urry, C. Megan; Padovani, Paolo; Calzetti, Daniela; O'Dowd, Matthew

    2000-11-01

    The Hubble Space Telescope NICMOS Camera 2 was used for H-band imaging of 12 BL Lacertae objects taken from the larger sample observed with the WFPC2 in the R band by Urry and coworkers and Scarpa and coworkers. Ten of the 12 BL Lacs are clearly resolved, and the detected host galaxies are large, bright ellipticals with average absolute magnitude =-26.2+/-0.45 mag and effective radius =10+/-5 kpc. The rest-frame integrated color of the host galaxies is on average =2.3+/-0.3, consistent with the value for both radio galaxies and normal, nonactive elliptical galaxies and indicating that the dominant stellar population is old. The host galaxies tend to be bluer in their outer regions than in their cores, with average color gradient Δ(R-H)/Δlogr=-0.2 mag, again consistent with results for normal nonactive elliptical galaxies. The infrared Kormendy relation, derived for the first time for BL Lac host galaxies, is μe=3.8logre+14.8, fully in agreement with the relation for normal ellipticals. The close similarity between BL Lac host galaxies and normal ellipticals suggests that the active nucleus has surprisingly little effect on the host galaxy. This supports a picture in which all elliptical galaxies harbor black holes that can be actively accreting for some fraction of their lifetime.

  8. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  9. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  10. Identification and properties of host galaxies of RCR radio sources

    NASA Astrophysics Data System (ADS)

    Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.

    2013-01-01

    FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the "Cold" survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects ( L ≲ 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies ( L ≳ 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.

  11. Host Galaxies of Young Dust-Reddened Quasars

    NASA Astrophysics Data System (ADS)

    Urrutia, T.; Lacy, M.; Becker, R.; Glikman, E.

    2009-10-01

    We present results on a multiwavelength campaign to identify the nature of dust-reddened Type 1 quasars. These quasars were selected by matching FIRST, 2MASS and very red optical counterparts with r'-K > 5. We find a very high fraction of Low Ionization Broad Absorption Line Quasars (LoBALs) among AGN selected with this method, perhaps a sign of quasar feedback. From X-ray observations and Balmer decrement measurements, the obscuring dust is most likely located in a cold absorber such as the host galaxy, rather than from a torus near the AGN. Hubble ACS imaging of a sub-sample of these sources showed a very high fraction of interacting and merging systems. The quasars appear to be very young in which dust from the merging galaxies is still settling in. Spitzer IRS and MIPS data show star formation signatures and deep Silicate absorption features in these objects, but overall the quasar is the dominant source in the Mid-infrared.

  12. Gas-to-Dust Ratios in GRB Host Galaxies

    SciTech Connect

    Schady, P.; Page, M. J.; De Pasquale, M.; Mason, K. O.; Morris, D. C.; Roming, P. W. A.; Berk, D. E. van den; Oates, S. R.; Immler, S.

    2008-05-22

    An understanding of GRB host galaxy properties is pivotal to determining the progenitor stars, and is critical in identifying the effect of the GRB local environment on our observations. The imprint left by dust and gas absorption on GRB X-ray and optical afterglows provides an effective probe to the immediate surroundings, and for this well-sampled, multi-wavelength afterglow observations are imperative. Swift's capabilities to obtain simultaneous X-ray and UV/optical data make it ideal to study the dust and gas content in the local environment of GRBs. In these proceedings we further the work from [1], and present the results of analysis on the combined Swift and ground-based spectra of 24 GRB afterglows, which is the largest sample of GRB afterglow spectral energy distributions thus far studied.

  13. The MOSDEF Survey: AGN Multi-wavelength Identification, Selection Biases, and Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; Aird, James; Reddy, Naveen; Shapley, Alice; Freeman, William R.; Kriek, Mariska; Leung, Gene C. K.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene; Siana, Brian

    2017-01-01

    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR, and optically selected active galactic nuclei (AGNs) at 1.4< z< 3.8. We obtain rest-frame optical spectra of galaxies and AGNs and use the BPT diagram to identify optical AGNs. We examine the uniqueness and overlap of the AGNs identified at different wavelengths. There is a strong bias against identifying AGNs at any wavelength in low-mass galaxies, and an additional bias against identifying IR AGNs in the most massive galaxies. AGN hosts span a wide range of star formation rates (SFRs), similar to inactive galaxies once stellar mass selection effects are accounted for. However, we find (at ∼2–3σ significance) that IR AGNs are in less dusty galaxies with relatively higher SFR and optical AGNs in dusty galaxies with relatively lower SFR. X-ray AGN selection does not display a bias with host galaxy SFR. These results are consistent with those from larger studies at lower redshifts. Within star-forming galaxies, once selection biases are accounted for, we find AGNs in galaxies with similar physical properties as inactive galaxies, with no evidence for AGN activity in particular types of galaxies. This is consistent with AGNs being fueled stochastically in any star-forming host galaxy. We do not detect a significant correlation between SFR and AGN luminosity for individual AGN hosts, which may indicate the timescale difference between the growth of galaxies and their supermassive black holes.

  14. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  15. AGN host galaxies at redshift z ≈ 0.7: peculiar or not?

    NASA Astrophysics Data System (ADS)

    Böhm, A.; Wisotzki, L.; Bell, E. F.; Jahnke, K.; Wolf, C.; Bacon, D.; Barden, M.; Gray, M. E.; Hoeppe, G.; Jogee, S.; McIntosh, D. H.; Peng, C. Y.; Robaina, A. R.; Balogh, M.; Barazza, F. D.; Caldwell, J. A. R.; Heymans, C.; Häußler, B.; van Kampen, E.; Lane, K.; Meisenheimer, K.; Sánchez, S. F.; Taylor, A. N.; Zheng, X.

    2013-01-01

    Aims: We perform a quantitative morphological comparison between the hosts of active galactic nuclei (AGN) and quiescent galaxies at intermediate redshifts (z ≈ 0.7). The imaging data are taken from the large HST/ACS mosaics of the GEMS and STAGES surveys. Our main aim is to test whether nuclear activity at this cosmic epoch is triggered by major mergers. Methods: Using images of quiescent galaxies and stars, we created synthetic AGN images to investigate the impact of an optical nucleus on the morphological analysis of AGN hosts. Galaxy morphologies are parameterized using the asymmetry index A, the concentration index C, the Gini coefficient G, and the M20 index. A sample of ~200 synthetic AGN was matched to 21 real AGN in terms of redshift, host brightness, and host-to-nucleus ratio to ensure a reliable comparison between active and quiescent galaxies. Results: The optical nuclei strongly affect the morphological parameters of the underlying host galaxy. Taking these effects into account, we find that the morphologies of the AGN hosts are clearly distinct from galaxies undergoing violent gravitational interactions. Indeed, the host galaxy distributions in morphological descriptor space are more similar to undisturbed galaxies than to major mergers. Conclusions: Intermediate-luminosity (LX ≲ 1044 erg/s) AGN hosts at z ≈ 0.7 show morphologies similar to the general population of massive galaxies with significant bulges at the same redshifts. If major mergers are the driver of nuclear activity at this epoch, the signatures of gravitational interactions fade rapidly before the optical AGN phase starts, making them undetectable on single-orbit HST images, at least with usual morphological descriptors. This could be investigated in future synthetic observations created from numerical simulations of galaxy-galaxy interactions.

  16. The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at z≃ 4

    NASA Astrophysics Data System (ADS)

    Targett, Thomas A.; Dunlop, James S.; McLure, Ross J.

    2012-03-01

    Deep K-band imaging of the most luminous z≃ 4 quasars currently offers the earliest possible view of the mass-dominant stellar populations of the host galaxies which house the first supermassive black holes in the Universe. This is because, until the advent of the James Webb Space Telescope, it is not possible to obtain the necessary deep, sub-arcsec resolution imaging at rest-frame wavelengths λrest > 4000 Å at any higher redshift. We here present and analyse the deepest, high-quality KS-band images ever obtained of luminous quasars at z≃ 4, in an attempt to determine the basic properties of their host galaxies less than 1 Gyr after the first recorded appearance of black holes with Mbh > 109 M⊙. To maximize the robustness of our results, we have carefully selected two Sloan Digital Sky Survey quasars at z≃ 4. With absolute magnitudes Mi < -28, these quasars are representative of the most luminous quasars known at this epoch, but they also, crucially, lie within 40 arcsec of comparably bright foreground stars (required for accurate point spread function definition), and have redshifts which ensure line-free KS-band imaging. The data were obtained in excellent seeing conditions (<0.4 arcsec) at the European Southern Observatory on the Very Large Telescope with integration times of ≃5.5 h per source. Via carefully controlled separation of host galaxy and nuclear light, we estimate the luminosities and stellar masses of the host galaxies, and set constraints on their half-light radii. The apparent KS-band magnitudes of the quasar host galaxies are consistent with those of luminous radio galaxies at comparable redshifts, suggesting that these quasar hosts are also among the most massive galaxies in existence at this epoch. However, the quasar hosts are a factor ˜5 smaller (= 1.8 kpc) than the host galaxies of luminous low-redshift quasars. We estimate the stellar masses of the z≃ 4 host galaxies to lie in the range 2-10 × 1011 M⊙, and use the C

  17. EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING

    SciTech Connect

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-15

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  18. A Bar Fuels a Supermassive Black Hole?: Host Galaxies of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Ohta, Kouji; Aoki, Kentaro; Kawaguchi, Toshihiro; Kiuchi, Gaku

    2007-03-01

    We present optical images of nearby 50 narrow-line Seyfert 1 galaxies (NLS1s) that cover all the NLS1s at z<0.0666 and δ>=-25deg known in 2001. Among the 50 NLS1s, 40 images are newly obtained by our observations and 10 images are taken from archive data. Motivated by the hypothesis that NLS1s are in an early phase of a supermassive black hole (BH) evolution, we present a study of NLS1 host galaxy morphology to examine trigger mechanism(s) of active galactic nuclei (AGNs) by seeing the early phase of AGN. With these images, we made morphological classification by visual inspection and by quantitative method, and found a high bar frequency of the NLS1s in the optical band; the bar frequency is 85%+/-7% among disk galaxies (64%-71% in total sample) which is more frequent than that (40%-70%) of broad-line Seyfert 1 galaxies (BLS1s) and normal disk galaxies, although the significance is marginal. Our results confirm the claim by Crenshaw and coworkers with a similar analysis for 19 NLS1s. The frequency is comparable to that of H II/starburst galaxies. We also examined the bar frequency against width of the broad Hβ emission line, Eddington ratio, and BH mass, but no clear trend is seen. Possible implications, such as an evolutionary sequence from NLS1s to BLS1s, are discussed briefly. Based on data collected at University of Hawaii 88 inch telescope, Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, Kitt Peak National Observatory 2.1 m telescope, which is operated by the National Optical Astronomy Observatory (NOAO), operated by AURA, Inc., under contract with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii-Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the

  19. The Host Galaxies of High-Luminosity Obscured Quasars at 2.5

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; Strauss, M. A.; Greene, J. E.; Zakamska, N. L.; Brandt, W. N.; Alexandroff, R.; Liu, G.; Smith, P. S.; The SDSS-III BOSS Quasar Working Group

    2014-01-01

    Active Galactic Nuclei play a key role in the evolution of galaxies. However, very little is known about the host galaxies of the most luminous quasars at redshift 2.5, the epoch when massive black hole growth peaked. The brightness of the quasar itself, which can easily outshine a galaxy by a large factor, makes it very difficult to study emission from extended gas or stars in the host galaxy. However, we have imaged the extended emission from the host galaxies of a unique sample of six optically extinguished (Type II) luminous quasars with 2.5, with the Hubble Space Telescope (Cycle 20, GO 13014) using ACS/F814W to access the rest-frame near-ultraviolet, and WFC3/F160W for the rest-frame optical longward of 4000A. These objects are selected from the spectroscopic database of the SDSS/Baryon Oscillation Spectroscopic Survey to have strong, narrow emission lines and weak continua. With these images, we have quantified the luminosity, morphology, and dynamical state of the host galaxies, and searched for extended scattered light from the obscured central engine. These observations are the first comprehensive study of both host galaxy light and scattered light in high-luminosity quasars at the epoch of maximum black hole growth, and give insights into the relationship between host galaxies and black holes during this important, and yet largely unexplored period.

  20. VizieR Online Data Catalog: SN host galaxies basic information (Shao+, 2014)

    NASA Astrophysics Data System (ADS)

    Shao, X.; Liang, Y. C.; Dennefeld, M.; Chen, X. Y.; Zhong, G. H.; Hammer, F.; Deng, L. C.; Flores, H.; Zhang, B.; Shi, W. B.; Zhou, L.

    2017-03-01

    We select the SNe and their host galaxies by cross-matching the Asiago Supernova Catalog (ASC, Barbon et al., cat II/227) with the SDSS DR7 main galaxy sample (MGS, Strauss et al., 2002AJ....124.1810S), only retaining spectral observations of the SNe host galaxies with good quality. In this work, we take into account SNe Ia, SNe II, and SNe Ibc (the latter two as CC-SNe) together to compare the properties of their hosts. In particular, we will use a stricter selection criterion to select the objects, for which the 3 arcsec fiber spectra of SDSS can represent the global properties of the galaxies better. We believe it is important to show the global properties of SN host galaxies since it is often difficult to acquire the local properties at the sites of an SN explosion. (1 data file).

  1. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  2. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  3. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  4. The XXL Survey. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.

    2016-06-01

    Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the

  5. The Luminosity Function of the Host Galaxies of QSOs and BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Carangelo, Nicoletta; Falomo, Renato; Treves, Aldo

    A clear insight of the galaxies hosting active galactic nuclei is of fundamental importance for understanding the processes of galaxies and nuclei formation and their cosmic evolution. A good characterization of the host galaxies properties requires images of excellent quality in order to disentangle the light of the galaxy from that of the bright nucleus. To this aim HST has provided a major improvement of data on QSOs (Disney et al. 1995; Bahcall et al. 1996,1997; Boyce et al. 1998; McLure et al. 1999; Hamilton et al. 2000; Kukula et al. 2001) and BL Lacs (Scarpa et al. 2000, Urry et al. 2000).

  6. Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS

    NASA Astrophysics Data System (ADS)

    Mainieri, V.; Bongiorno, A.; Merloni, A.; Aller, M.; Carollo, M.; Iwasawa, K.; Koekemoer, A. M.; Mignoli, M.; Silverman, J. D.; Bolzonella, M.; Brusa, M.; Comastri, A.; Gilli, R.; Halliday, C.; Ilbert, O.; Lusso, E.; Salvato, M.; Vignali, C.; Zamorani, G.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bardelli, S.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Nair, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Pozzetti, L.; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Aussel, H.; Capak, P.; Cappelluti, N.; Elvis, M.; Fiore, F.; Hasinger, G.; Impey, C.; Le Floc'h, E.; Scoville, N.; Taniguchi, Y.; Trump, J.

    2011-11-01

    Aims: We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( ⟨ Lbol ⟩ = 8 × 1045 erg s-1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. Methods: To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We evaluate the effect on galaxy properties estimates of being unable to remove the nuclear emission from the SED. The superb multi-wavelength coverage of the COSMOS field allows us to obtain reliable estimates of the total stellar masses and star formation rates (SFRs) of the hosts. We supplement this information with a morphological analysis of the ACS/HST images, optical spectroscopy, and an X-ray spectral analysis. Results: We confirm that obscured quasars mainly reside in massive galaxies (M ⋆ > 1010M⊙) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color - magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between SFR and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~ 1, ≈62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ~ 2, and 100% at z ~ 3. We also find that the evolution from z ~ 1 to z ~ 3 of the specific SFR of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge

  7. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  8. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  9. Molecular Gas in the Host Galaxies of Long-Duration Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Ohta, K.; Kohno, K.; Nakanishi, K.; Tamura, Y.; Endo, A.; Hashimoto, T.

    2016-10-01

    We conducted CO observations in 10 GRB hosts with ALMA and detected in 6 hosts (z = 1-2). We found the hosts have a star-formation efficiency similar to normal star-forming galaxies at z 1-2, suggesting that GRBs occur in normal environments at z 1-2.

  10. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-12-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  11. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    SciTech Connect

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-11-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  12. Massive relic galaxies from the Early Universe challenge the co-evolution of SMBHs and their host galaxies

    NASA Astrophysics Data System (ADS)

    Ferre-Mateu, Anna

    2015-08-01

    Several studies have reported the existence of outliers in the MBH-host galaxy local scaling relations. These outliers show extremely large SMBHs (über-massive) compared with what is expected from their velocity dispersions or stellar masses. However, a clear explanation for these deviations has not yet been found. In this talk, I will show a proposed scenario to explain the nature of such deviations, in which the hosts of these über-massive SMBHs are galaxies that have followed a different evolutionary path than the two-phase growth channel assumed for massive galaxies. Once the SMBH and the core of the galaxy are formed at z~2, the galaxy skips the second phase, remaining structurally untouched and without further mass and size increase. We show that if the outliers had followed the normal evolutionary path by growing in size via merger activity over cosmic time, the expected (mild) growth in mass would place them closer to the observed local relations. Our results suggest that by the end of the z~2 phase the SMBH is almost fully in place, being larger than expected from the galaxy stellar mass, therefore the SMBH growth epoch for the most massive galaxies stopped ~10Gyr ago (Ferré-Mateu et al. 2015, submitted to ApJ).

  13. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  14. Gamma-ray Bursts: Radio Afterglow and Host Galaxy Study with The FAST Telescope

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Huang, Y. F.; Kong, S. W.; Zhang, Z. B.; Li, D.; Luo, J. J.

    2016-02-01

    For four types of GRBs, namely high-luminosity, low-luminosity, standard and failed GRBs, we calculated their radio afterglow light curves. Meanwhile, considering contributions from host galaxies in radio bands, we statistically investigated the effect of hosts on radio afterglows. It is found that a tight anti-correlation exists between the ratio of radio flux (RRF) of host galaxy to the total radio afterglow peak flux and the observed frequency. Using this method, the host flux densities of those bursts without host measurements can be estimated at low or medium frequencies. We predicted that almost all types of radio afterglows, except that of low-luminosity GRBs, can be observed by FAST up to z = 15 or even more. FAST is expected to significantly expand the samples of GRB radio afterglows and host galaxies.

  15. Host galaxies of long gamma-ray bursts in the Millennium Simulation

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Tissera, P. B.; Pellizza, L. J.

    2010-10-01

    In this work, we investigate the nature of the host galaxies of long gamma-ray bursts (LGRBs) using a galaxy catalogue constructed from the Millennium Simulation. We developed an LGRB synthetic model based on the hypothesis that these events originate at the end of the life of massive stars following the collapsar model, with the possibility of including a constraint on the metallicity of the progenitor star. A complete observability pipeline was designed to calculate a probability estimation for a galaxy to be observationally identified as a host for LGRBs detected by present observational facilities. This new tool allows us to build an observable host galaxy catalogue which is required to reproduce the current stellar mass distribution of observed hosts. This observability pipeline predicts that the minimum mass for the progenitor stars should be ~ 75 Msolar in order to be able to reproduce BATSE observations. Systems in our observable catalogue are able to reproduce the observed properties of host galaxies, namely stellar masses, colours, luminosity, star formation activity and metallicities as a function of redshift. At z > 2, our model predicts that the observable host galaxies would be very similar to the global galaxy population. We found that ~ 88 per cent of the observable host galaxies with mean gas metallicity lower than 0.6 Zsolar have stellar masses in the range 108.5-1010.3 Msolar, in excellent agreement with observations. Interestingly in our model, observable host galaxies remain mainly within this mass range regardless of redshift, since lower stellar mass systems would have a low probability of being observed while more massive ones would be too metal-rich. Observable host galaxies are predicted to preferentially inhabit dark matter haloes in the range 1011-1011.5 Msolar, with a weak dependence on redshift. They are also found to preferentially map different density environments at different stages of evolution of the Universe. At high redshifts

  16. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  17. Constraining the nature of the most distant gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Basa, S.; Cuby, J. G.; Savaglio, S.; Boissier, S.; Clément, B.; Flores, H.; Le Borgne, D.; Mazure, A.

    2012-06-01

    Aims: Long duration gamma-ray bursts (GRBs) allow us to explore the distant Universe, and are potentially the most effective tracer of the most distant objects. Our current knowledge of the properties of GRB host galaxies at redshifts ≳ 5 is very scarce. We propose to improve this situation by obtaining more observations of high-redshift hosts to better understand their properties and help enable us to use GRBs as probes of the high-redshift universe. Methods: We performed very deep photometric observations of three high-redshift GRB host galaxies, GRB 080913 at z = 6.7, GRB 060927 at z = 5.5 and GRB 060522 at z = 5.1. Our FORS2 and HAWK-I observations at the Very Large Telescope (VLT) targeted the rest-frame ultraviolet continuum of these galaxies, allowing us to constrain their star formation rates (SFRs). In addition, we completed deep spectroscopic observations of the GRB 080913 host galaxy with X-Shooter at the VLT to search for Ly-α emission. For the sake of the discussion, we use published results on another high-redshift GRB host, GRB 050904 at z = 6.3. The sample of GRB host galaxies studied in this paper consists of four out of the five spectroscopically confirmed GRBs at z > 5. Results: Despite our presented observations being the deepest ever reported of high-redshift GRB host galaxies, we do not detect any of the hosts, neither in photometry nor in spectroscopy in the case of GRB 080913. These observations indicate that the GRB host galaxies seem to evolve with time and to have lower SFRs at z > 5 than they have at z ≲ 1. In addition, the host galaxy of GRB 080913 at z = 6.7 does not show Ly-α emission. Conclusions: While the measured properties of the galaxies in our sample agree with the properties of the general galaxy population at z > 5, our observations are not sufficiently sensitive to allow us to infer further conclusions on whether this specific population is representative of the general one. The characterization of high-redshift GRB

  18. Optical identification and study of X-ray selected weak emission-line T Tauri stars in the Taurus-Auriga outskirts based on ROSAT pointing observations

    NASA Astrophysics Data System (ADS)

    LI, Jin-zeng; Hu, Jing-yao

    Optical spectroscopic identification of X-ray selected WTTS (weak emission-line T Tauri stars) candidates in the Taurus-Auriga outskirts on the basis of ROSAT pointing observations, has resulted in the discovery of 4 WTTS and several other Li-rich sources. This paper gives the R magnitudes, coordinates (J2000) from USNO (V1.0), spectral type classifications, equivalent widths of Li I absorption and H α emission lines of all the X-ray sources investigated, and the proper motions and parallaxes of some of them, as well as the spectra of the newly discovered WTTS. For the first time, the spatial distribution of a rather complete, ROSAT-discovered sample of WTTS, including those identified from the ROSAT All-Sky Survey and PSPC pointing observations around one of the nearby star-forming regions has been provided, together with a preliminary analysis.

  19. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  20. H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction

    NASA Astrophysics Data System (ADS)

    Ding, Xuheng; Liao, Kai; Treu, Tommaso; Suyu, Sherry H.; Chen, Geoff C.-F.; Auger, Matthew W.; Marshall, Philip J.; Agnello, Adriano; Courbin, Frederic; Nierenberg, Anna M.; Rusu, Cristian E.; Sluse, Dominique; Sonnenfeld, Alessandro; Wong, Kenneth C.

    2017-03-01

    The empirical correlation between the mass of a supermassive black hole (M_BH) and its host galaxy properties is widely considered to be an evidence of their co-evolution. A powerful way to test the co-evolution scenario and learn about the feedback processes linking galaxies and nuclear activity is to measure these correlations as a function of redshift. Unfortunately, currently M_BH can only be estimated in active galaxies at cosmological distances. At these distances, bright active galactic nuclei (AGNs) can outshine the host galaxy, making it extremely difficult to measure the host's luminosity. Strongly lensed AGNs provide in principle a great opportunity to improve the sensitivity and accuracy of the host galaxy luminosity measurements as the host galaxy is magnified and more easily separated from the point source, provided the lens model is sufficiently accurate. In order to measure the M_BH-L correlation with strong lensing, it is necessary to ensure that the lens modelling is accurate, and that the host galaxy luminosity can be recovered to at least a precision and accuracy better than that of the typical M_BH measurement. We carry out extensive and realistic simulations of deep Hubble Space Telescope observations of lensed AGNs obtained by our collaboration. We show that the host galaxy luminosity can be recovered with better accuracy and precision than the typical uncertainty in M_BH(∼0.5 dex) for hosts as faint as 2-4 mag dimmer than the AGN itself. Our simulations will be used to estimate bias and uncertainties in the actual measurements to be presented in a future paper.

  1. The Properties Of The Stellar Nuclei With The Host Galaxy Morphology In The ACSVCS

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-chul

    2012-01-01

    We have revisited the ACS Virgo Cluster Survey (ACSVCS), a Hubble Space Telescope program to obtain ACS/WFC g and z bands imaging for a sample of 100 early-type galaxies in the Virgo Cluster. In this study, we examine 51 nucleated early-type galaxies in the ACSVCS in order to look into the relationship between the photometric and structural properties of stellar nuclei and their host galaxies. We morphologically dissect galaxies into five classes. We note that (1) the stellar nuclei of dwarf early-type galaxies (dS0, dE, and dE,N) are generally fainter and bluer with g > 18.95 and (g-z) < 1.40 compared to some brighter and redder counterparts of the ellipticals (E) and lenticular galaxies (S0), (2) the g-band half-light radii of stellar nuclei of all dwarf early-type galaxies (dS0, dE, and dE,N) are smaller than 20 pc and their average is about 4 pc, and (3) the colors of red stellar nuclei with (g-z) > 1.40 in bright ellipticals and lenticular galaxies are bluer than their host galaxies colors. We also show that most of the unusually RED stellar nuclei with (g-z) > 1.54 in the ACSVCS are the central parts of bright ellipticals and lenticular galaxies.

  2. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    SciTech Connect

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; Ubertini, P.; Panessa, F.; Ajello, M.; Bassani, L.; Fukazawa, Y.; D’Ammando, F.

    2012-03-21

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominated by the high-energy hump peaked at 1020–1022 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 1011–1014 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.

  3. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    DOE PAGES

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; ...

    2012-03-21

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominatedmore » by the high-energy hump peaked at 1020–1022 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 1011–1014 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.« less

  4. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  5. DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT z {approx} 1

    SciTech Connect

    Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel; Schawinski, Kevin; Treister, Ezequiel; Gawiser, Eric

    2010-09-20

    Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population, {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.

  6. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    SciTech Connect

    Hargis, Jonathan R.; Rhode, Katherine L.

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant elliptical NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.

  7. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O iii] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  8. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  9. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    SciTech Connect

    Lagos, P.; Telles, E.; Nigoche-Netro, A.

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  10. The Coevolution of Nuclear Star Clusters, Massive Black Holes, and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-01

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  11. Metallicity of Stars and Parameters of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Tikhonov, N.

    2017-06-01

    On the basis of archival ACS/WFC images of the Hubble space telescope we carried out a stellar photometry of 46 irregular galaxies. On the received Hertzsprung -Russel diagrams (CM-diagrams), branches of red supergiants and giants were allocated. We determined the distances to galaxies and metallicity of red giants by the TRGB-method. For red supergiants the color index (V-I) of stars at the level of MI = -7 was accepted as an equivalent of metallicity. We constructed the distributions of the number density of stars of different age along the radius of galaxies and determined the spatial sizes of subsystems of these stars. Dependences between metallicities of stars of different age, and also between metallicity and global parameters of galaxies — sizes of stellar subsystems and brightness of galaxies — were found.

  12. What Distinguishes the Host Galaxies of Radio-loud and Radio-quiet AGNs?

    NASA Astrophysics Data System (ADS)

    Kozieł-Wierzbowska, D.; Vale Asari, N.; Stasińska, G.; Sikora, M.; Goettems, E. I.; Wójtowicz, A.

    2017-09-01

    We compare the optical properties of the host galaxies of radio-quiet (RQ) and radio-loud (RL) Type 2 active galactic nuclei (AGNs) to infer whether the jet production efficiency depends on the host properties or is determined just by intrinsic properties of the accretion flows. We carefully select galaxies from SDSS, FIRST, and NVSS catalogs. We confirm previous findings that the fraction of RL AGNs depends on the black-hole (BH) masses, and on the Eddington ratio. The comparison of the nature of the hosts of RL and RQ AGNs, therefore, requires pair-matching techniques. Matching in BH mass and Eddington ratio allows us to study the differences between galaxies hosting RL and RQ AGNs that have the same basic accretion parameters. We show that these two samples differ predominantly in the host-galaxy concentration index, morphological type (in the RL sample the frequency of elliptical galaxies becoming larger with increasing radio loudness), and nebular extinction (galaxies with highest radio loudness showing only low nebular extinction). Contrary to some previous studies, we find no significant difference between our radio-loud and radio-quiet samples regarding merger/interaction features.

  13. Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.

    2013-01-01

    The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.

  14. Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Nazaryan, T. A.; Adibekyan, V. Zh.; Petrosian, A. R.; Aramyan, L. S.; Kunth, D.; Mamon, G. A.; de Lapparent, V.; Bertin, E.; Gomes, J. M.; Turatto, M.

    2014-11-01

    We present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of spiral host galaxies of 692 SNe from the Sloan Digital Sky Survey in different stages of galaxy-galaxy interaction and activity classes of nucleus. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the star formation rates and morphologies of galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to active galactic nuclei (AGN) classes of galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.

  15. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  16. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect

    Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  17. Morphology and the Color-mass Diagram as Clues to Galaxy Evolution at z&approx1

    NASA Astrophysics Data System (ADS)

    Powell, Meredith C.; Urry, C. Megan; Cardamone, Carolin N.; Simmons, Brooke D.; Schawinski, Kevin; Young, Sydney; Kawakatsu, Mari

    2017-01-01

    We study the significance of mergers in the quenching of star formation in galaxies at z∼ 1 by examining their color–mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ∼5000 galaxies and X-ray selected active galactic nucleus (AGN) hosts in the CANDELS/GOODS-north and south fields in the redshift range 0.7< z< 1.3. Distinguishing between bulge-dominated and disk-dominated morphologies, we find that disks and spheroids have distinct color–mass distributions, in agreement with studies at z∼ 0. The smooth distribution across colors for the disk galaxies corresponds to a slow exhaustion of gas, with no fast quenching event. Meanwhile, blue spheroids most likely come from major mergers of star-forming disk galaxies, and the dearth of spheroids at intermediate green colors is suggestive of rapid quenching. The distribution of moderate luminosity X-ray AGN hosts is even across colors, in contrast, and we find similar numbers and distributions among the two morphology types with no apparent dependence on Eddington ratio. The high fraction of bulge-dominated galaxies that host an AGN in the blue cloud and green valley is consistent with the scenario in which the AGN is triggered after a major merger, and the host galaxy then quickly evolves into the green valley. This suggests AGN feedback may play a role in the quenching of star formation in the minority of galaxies that undergo major mergers.

  18. Dusting off the star formation history of AGN hosts with SHARDS

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio

    2015-03-01

    Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

  19. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-05-01

    We present Hubble Space Telescope (HST) Wide Field Camera 3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass within the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core-collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ≈ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ˜30 per cent of SLSNe-II arising from galaxies fainter than MnIR ˜ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.

  20. Galaxies of all Shapes Host Black Holes Artist Concept

    NASA Image and Video Library

    2008-01-10

    Observations from NASA Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores in this artist concept.

  1. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  2. Morphological Differences Between Seyfert Hosts and Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac

    Using new sub-arcsecond resolution imaging we compare large-scale stellar bar fraction in CfA sample of Seyferts and a closely matched control sample of normal galaxies. We find a difference between the samples on the 2.5σ level. We further compare the axial ratios of bars in all available samples quoted in the literature and find a deficiency of small axial ratio bars in Seyferts compared to normal galaxies.

  3. Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt

    2015-10-01

    We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.

  4. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  5. Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Hogan, Craig J.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Kirshner, Robert P.; Holland, Stephen T.; Jha, Saurabh; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Maza, Jose; Phillips, Mark M.; Riess, Adam G.; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John L.

    2003-12-01

    We present the results of a study of the host galaxies of high-redshift Type Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed with the Hubble Space Telescope (HST) by the High-z Supernova Search Team, including images, scale lengths, measurements of integrated (Hubble-equivalent) BVRIZ photometry in bands where the galaxies are brighter than m~25 mag, and galactocentric distances of the supernovae. We compare the residuals of SN Ia distance measurements from cosmological fits with measurable properties of the supernova host galaxies that might be expected to correlate with variable properties of the progenitor population, such as host-galaxy color and position of the supernova. We find mostly null results; the current data are generally consistent with no correlations of the distance residuals with host-galaxy properties in the redshift range 0.42hosts shows a formally significant (3 σ) correlation between apparent V-R host color and distance residuals, the correlation is not consistent with the null results from other host colors probed by our largest samples. There is also evidence for the same correlations between SN Ia properties and host type at low redshift and high redshift. These similarities support the current practice of extrapolating properties of the nearby population to high redshifts, pending more robust detections of any correlations between distance residuals from cosmological fits and host properties. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  6. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  7. FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Tendulkar, S. P.; Adams, E. A. K.; Maddox, N.; Bogdanov, S.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Chatterjee, S.; Cordes, J. M.; Hessels, J. W. T.; Kaspi, V. M.; Law, C. J.; Marcote, B.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Spitler, L. G.; van Langevelde, H. J.

    2017-07-01

    We present optical, near-infrared, and mid-infrared imaging of the host galaxy of FRB 121102 with the Gemini North telescope, the Hubble Space Telescope, and the Spitzer Space Telescope. The FRB 121102 host galaxy is resolved, revealing a bright star-forming region located in the outskirts of the irregular, low-metallicity dwarf galaxy. The star-forming region has a half-light radius of 0.68 kpc (0\\buildrel{\\prime\\prime}\\over{.} 20), encompassing the projected location of the compact (< 0.7 pc), persistent radio source that is associated with FRB 121102. The half-light diameter of the dwarf galaxy is 5-7 kpc, and broadband spectral energy distribution fitting indicates that it has a total stellar mass of {M}\\star ˜ {10}8 {M}⊙ . The properties of the host galaxy of FRB 121102 are comparable to those of extreme emission line galaxies, also known as hosts to some hydrogen-poor superluminous supernovae and long-duration γ-ray bursts. The projected location of FRB 121102 within the star-forming region supports the proposed connection of FRBs with newly born neutron stars or magnetars.

  8. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  9. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGES

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that whileMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NSC / M ⋆ ,  tot for NSCs in spirals (at least those with Hubble typesc and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul ofMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for bothMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier thanbc appear to host systematically more massive NSCs than do typesc and later.« less

  10. The MUSE QSO Blind Survey: A Census of Absorber Host Galaxies

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie A.

    2017-03-01

    Understanding the distribution of gas in galaxies and its interaction with the IGM is crucial to complete the picture of galaxy evolution. At all redshifts, absorption features seen in QSO spectra serve as a unique probe of the gaseous content of foreground galaxies and the IGM, extending out to 200 kpc. Studies show that star formation history is intimately related to the co-evolution of galaxies and the IGM. In order to study the environments traced by absorption systems and the role of inflows and outflows, it is critical to measure the emission properties of host galaxies and their halos. We overcome the challenge of detecting absorption host galaxies with the MUSE integral field spectrograph on VLT. MUSE's large field of view and sensitivity to emission lines has allowed a never-before seen match between the number density of absorbers along QSO sightlines and the number density of emission line galaxies within 200 kpc of the QSO. These galaxies represent a sample for which previously elusive connections can be made between mass, metallicity, SFR, and absorption.

  11. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    PubMed

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  12. Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms

    NASA Astrophysics Data System (ADS)

    Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; de Lapparent, V.; Bertin, E.; Mamon, G. A.; Kunth, D.; Nazaryan, T. A.; Adibekyan, V.; Turatto, M.

    2016-07-01

    Using a sample of 215 supernovae (SNe), we analyse their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset exists between the positions of Ia and core-collapse (CC) SNe relative to the peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in GD galaxies, the positions of CC SNe relative to the peaks of arms are correlated with the radial distance from the galaxy nucleus. Inside (outside) the corotation radius, CC SNe are found closer to the inner (outer) edge. No such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of the arms than do SNe II, while in NGD galaxies they are more concentrated towards the peaks of arms. In both samples of hosts, the distributions of SNe Ia relative to the arms have broader wings. These observations suggest that shocks in spiral arms of GD galaxies trigger star formation in the leading edges of arms affecting the distributions of CC SNe (known to have short-lived progenitors). The closer locations of SNe Ibc versus SNe II relative to the leading edges of the arms supports the belief that SNe Ibc have more massive progenitors. SNe Ia having less massive and older progenitors, have more time to drift away from the leading edge of the spiral arms.

  13. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  14. Supermassive black holes: Coevolution (or not) of black holes and host galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-07-01

    Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its `proof of concept' phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M • and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M • and bulge luminosity, with the `missing light' that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade. New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105-106 M ⊙ live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH-host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies

  15. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-RedshiftRadio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; van Breugel, Wil J. M.; Heckman, Timothy M.; Miley, George K.

    1999-09-01

    We present rest-frame UV and Lyα images of spatially resolved structures (``hosts'') around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope (HST). The quasars were imaged with the PC1 through the F555W (``V''-band) filter, which at the redshifts of the quasars (2.1host galaxies that appeared to have properties similar to those of high-redshift radio galaxies. Our HST observations allow a more detailed investigation of quasar host morphologies and a comparison with similar HST studies of radio galaxies by others. Using several methods to measure and quantify the host properties we find that all five quasars are extended and that this ``fuzz'' contains ~5%-40% of the total continuum flux and 15%-65% of the Lyα flux within a radius of about 1.5". The rest-frame UV luminosities of the hosts are log λPλ~11.9-12.5 Lsolar (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low-redshift starburst galaxies. The Lyα luminosities of the hosts are log LLyα~44.3-44.9 ergs s-1, which are also similar to the those of luminous high-redshift radio galaxies and considerably larger than the Lyα luminosities of high-redshift field galaxies. To generate the Lyα luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. The UV continuum morphologies of the hosts appear complex and knotty at the relatively high surface brightness levels of our exposures (about 24 V mag arcsec-2). In two quasars we find evidence for foreground galaxies that confuse the

  16. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  17. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.

  18. INTERMEDIATE-AGE STELLAR POPULATIONS IN CLASSICAL QUASI-STELLAR OBJECT HOST GALAXIES

    SciTech Connect

    Canalizo, Gabriela; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Although mergers and starbursts are often invoked in the discussion of quasi-stellar object (QSO) activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z {approx} 0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck/LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high signal-to-noise ratio of our spectra allows us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current active galactic nucleus activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.

  19. Rapidly growing black holes and host galaxies in the distant Universe from the Herschel Radio Galaxy Evolution Project

    NASA Astrophysics Data System (ADS)

    Drouart, G.; De Breuck, C.; Vernet, J.; Seymour, N.; Lehnert, M.; Barthel, P.; Bauer, F. E.; Ibar, E.; Galametz, A.; Haas, M.; Hatch, N.; Mullaney, J. R.; Nesvadba, N.; Rocca-Volmerange, B.; Röttgering, H. J. A.; Stern, D.; Wylezalek, D.

    2014-06-01

    We present results from a comprehensive survey of 70 radio galaxies at redshifts 1 galaxies in our sample are continuously covered across 3.6-870 μm. The total 8-1000 μm restframe infrared luminosities of these radio galaxies are such that almost all of them are either ultra-(LtotIR 1012 L⊙) or hyper-luminous (LtotIR 1013 L⊙) infrared galaxies. We fit the infrared SEDs with a set of empirical templates which represent dust heated by a variety of starbursts (SB) and by an active galactic nucleus (AGN). We find that the SEDs of radio galaxies require the dust to be heated by both AGN and SB, but the luminosities of these two components are not strongly correlated. Assuming empirical relations and simple physical assumptions, we calculate the star formation rate (SFR), the black hole mass accretion rate (ṀBH), and the black hole mass (MBH) for each radio galaxy. We find that the host galaxies and their black holes are growing extremely rapidly, having SFR ≈ 100-5000 M⊙ yr-1 and ṀBH ≈ 1-100 M⊙ yr-1. The mean specific SFRs (sSFR) of radio galaxies at z> 2.5 are higher than the sSFR of typical star forming galaxies over the same redshift range, but are similar or perhaps lower than the galaxy population for radio galaxies at z< 2.5. By comparing the sSFR and the specific ṀBH (sṀBH), we conclude that black holes in radio loud AGN are already, or soon will be, overly massive compared to their host galaxies in terms of expectations from the local MBH-MGal relation. In order to catch up with the black hole, the galaxies require about an order of magnitude more time to grow in mass at the observed SFRs compared to the time the black hole is actively accreting

  20. Cepheid Variables in the Maser-host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  1. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    SciTech Connect

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  2. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    SciTech Connect

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.; /Lick Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /UNAM, Inst. Astron. /UC, Berkeley, Space Sci. Dept. /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley /UCLA /LBL, Berkeley /British Columbia U. /UC, Davis /LLNL, Livermore /Caltech, JPL

    2005-10-07

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R {approx} 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z < 1) environments that differ substantially from those of long-soft GRBs, both on individual galaxy scales and on galaxy-cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1M{sub {circle_dot}} yr{sup -1}) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M{sub {circle_dot}} yr{sup -1}. Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.

  3. The Black Hole-Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106-{10}8 {M}⊙ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}⊙ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  4. X-ray spectroscopic study of the largest X-ray selected spectroscopic AGN sample in the XMM-XXL north

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Merloni, A.; Georgakakis, A.; Menzel, M.; Buchner, J.; Nandra, K.

    2014-07-01

    The XMM-XXL survey is a large public XMM survey which covers two ˜25 deg^2 sky regions with rich multi-wavelength coverage. In the northern field, we have extracted about ˜8000 unique point-like sources, identified their optical counterparts in SDSS imaging, and obtained spectroscopic redshift for ˜2400 AGN (with high completeness down to r-band optical magnitude of r˜22) thanks to a dedicated ancillary program of the SDSS-III/BOSS survey. This is to date the largest contiguous X-ray selected AGN sample with spectroscopic redshift information. Here we present the overall X-ray spectral properties of these ˜2400 reliable AGN. We fitted each X-ray spectrum with a simple power law model, modified by Galactic and intrinsic absorption. By dividing the sample into different redshift and luminosity bins, it possible to study the average X-ray spectrum properties of AGN in different cosmic epoch. We can also study the correlations between the X-ray spectrum and the optical spectrum parameters, and how those correlations change with redshift and the other physical parameters of the source (e.g. BH mass, accretion disc luminosity, broad emission line shapes etc.). Using the X-ray spectrum stacking method, we also study the properties of the iron K line in different redshift and luminosity bins.

  5. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  6. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Technical Reports Server (NTRS)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  7. The galaxy hosts and large-scale environments of short-hard (gamma)-ray bursts

    SciTech Connect

    Prochaska, J X; Bloom, J S; Chen, H; Foley, R J; Perley, D A; Ramirez-Ruiz, E; Granot, J; Lee, W H; Pooley, D; Alatalo, K; Hurley, K; Cooper, M C; Dupree, A K; Gerke, B F; Hansen, B S; Kalirai, J S; Newman, J A; Rich, R M; Richer, H; Stanford, S A; Stern, D; van Breugel, W

    2006-04-07

    The nature of the progenitors of short duration, hard spectrum, gamma-ray bursts (GRBs) has remained a mystery. Even with the recent localizations of four short-hard GRBs, no transient emission has been found at long wavelengths that directly constrains the progenitor nature. Instead, as was the case in studying the different morphological subclasses of supernovae and the progenitors of long-duration GRBs, we suggest that the progenitors of short bursts can be meaningfully constrained by the environment in which the bursts occur. Here we present the discovery spectra of the galaxies that hosted three short-hard GRBs and the spectrum of a fourth host. The results indicate that these environments, both at the galaxy scale and galaxy-cluster scale, differ substantially from those of long-soft GRBs. The spatial offset of three bursts from old and massive galaxy hosts strongly favors an origin from the merger of compact stellar remnants, such as double neutron stars or a neutron-star black hole binary. The star-forming host of another GRB provides confirmation that, like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types. This indicates a class of progenitors with a wide distribution of delay times between formation and explosion.

  8. The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Best, P. N.

    2017-04-01

    Powerful radio Galaxies exist as either compact or extended sources, with the extended sources traditionally classified by their radio morphologies as Fanaroff-Riley (FR) type I and II sources. FRI/FRII and compact radio galaxies have also been classified by their optical spectra into two different types: high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode). We present a catalogue of visual morphologies for a complete sample of >1000 1.4-GHz-selected extended radio sources from the Sloan Digital Sky Survey. We study the environment and host galaxy properties of FRI/FRII and compact sources, classified into HERG/LERG types, in order to separate and distinguish the factors that drive the radio morphological variations from those responsible for the spectral properties. Comparing FRI LERGs with FRII LERGs at fixed stellar mass and radio luminosity, we show that FRIs typically reside in richer environments and are hosted by smaller galaxies with higher mass surface density; this is consistent with extrinsic effects of jet disruption driving the Fanaroff-Riley (FR) dichotomy. Using matched samples of HERGs and LERGs, we show that HERG host galaxies are more frequently star forming, with more evidence for disc-like structure than LERGs, in accordance with currently favoured models of fundamentally different fuelling mechanisms. Comparing FRI/FRII LERGs with compact LERGs, we find the primary difference is that compact objects typically harbour less massive black holes. This suggests that lower mass black holes may be less efficient at launching stable radio jets, or do so for shorter times. Finally, we investigate rarer sub-classes: wide-angle-tailed, head-tail, FR-hybrid and double-double sources.

  9. The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Best, P. N.

    2017-01-01

    Powerful radio galaxies exist as either compact or extended sources, with the extended sources traditionally classified by their radio morphologies as Fanaroff-Riley (FR) type I and II sources. FRI/II and compact radio galaxies have also been classified by their optical spectra into two different types: high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode). We present a catalogue of visual morphologies for a complete sample of >1000 1.4-GHz-selected extended radio sources from the Sloan Digital Sky Survey. We study the environment and host galaxy properties of FRI/II and compact sources, classified into HERG/LERG types, in order to separate and distinguish the factors that drive the radio morphological variations from those responsible for the spectral properties. Comparing FRI LERGs with FRII LERGs at fixed stellar mass and radio luminosity, we show that FRIs typically reside in richer environments and are hosted by smaller galaxies with higher mass surface density; this is consistent with extrinsic effects of jet disruption driving the FR dichotomy. Using matched samples of HERGs and LERGs, we show that HERG host galaxies are more frequently star-forming, with more evidence for disk-like structure than LERGs, in accordance with currently-favoured models of fundamentally different fuelling mechanisms. Comparing FRI/II LERGs with compact LERGs, we find the primary difference is that compact objects typically harbour less massive black holes. This suggests that lower-mass black holes may be less efficient at launching stable radio jets, or do so for shorter times. Finally, we investigate rarer sub-classes: wide-angle tail, head-tail, FR-hybrid and double-double sources.

  10. The red-sequence of 72 WINGS local galaxy clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.

    2011-12-01

    We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.

  11. VizieR Online Data Catalog: SN Ia host-galaxy/cosmological parameters (Campbell+, 2016)

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-11-01

    We have investigated correlations between SNe Ia light curves and their host galaxies and look at the effect on the cosmological constraints. For this we have used the sample of 581 photometrically classified SNe Ia from Campbell et al. (2013, Cat. J/ApJ/763/88). This sample was assembled from three years of photometry from the SDSS-II SN Survey, together with BOSS spectroscopy of the host galaxies of transients. We use the stellar population parameters derived from the BOSS DR10 results (Ahn et al., 2012ApJS..203...21A, Cat V/139) (1 data file).

  12. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P.; Hickox, R. C.; Coil, A. L.; Cooper, M. C.; Newman, J. A.; Weiner, B. J.

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  13. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES

    SciTech Connect

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-10

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  14. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  15. Detection of Three Gamma-ray Burst Host Galaxies at z ˜ 6

    NASA Astrophysics Data System (ADS)

    McGuire, J. T. W.; Tanvir, N. R.; Levan, A. J.; Trenti, M.; Stanway, E. R.; Shull, J. M.; Wiersema, K.; Perley, D. A.; Starling, R. L. C.; Bremer, M.; Stocke, J. T.; Hjorth, J.; Rhoads, J. E.; Curtis-Lake, E.; Schulze, S.; Levesque, E. M.; Robertson, B.; Fynbo, J. P. U.; Ellis, R. S.; Fruchter, A. S.

    2016-07-01

    Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, {λ }{{obs}}˜ 1.4 μ {{m}}) filter. The hosts have magnitudes (corrected for Galactic extinction) of {m}{λ {obs},{AB}}={26.34}-0.16+0.14,{27.56}-0.22+0.18, and {28.30}-0.33+0.25, respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is ≲ 2 % , indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift (z\\gt 5) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1-0.6 {L}z=6* (with {M}1600* =-20.95+/- 0.12) and half-light radii in the range 0.6-0.9 {{kpc}}. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at z˜ 6. Spectroscopic analysis of the GRB afterglows indicate low metallicities ([{{M/H}}]≲ -1) and low dust extinction ({A}{{V}}≲ 0.1) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy’s luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.

  16. SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE

    SciTech Connect

    D'Andrea, Chris B.; Gupta, Ravi R.; Sako, Masao; Morris, Matt; Nichol, Robert C.; Campbell, Heather; Lampeitl, Hubert; Brown, Peter J.; Olmstead, Matthew D.; Frieman, Joshua A.; Kessler, Richard; Garnavich, Peter; Jha, Saurabh W.; Marriner, John; Schneider, Donald P.; Smith, Mathew

    2011-12-20

    We examine the correlation between supernova (SN) host-galaxy properties and their residuals in the Hubble diagram. We use SNe discovered during the Sloan Digital Sky Survey-II Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova (SN Ia) sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M{sub r} < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star formation rates (SFRs) from host galaxies with active star formation. From a final sample of {approx}40 emission-line galaxies, we find that light-curve-corrected SNe Ia are {approx}0.1 mag brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (>3{sigma}) correlation between the Hubble Residuals of SNe Ia and the specific SFR of the host galaxy. We comment on the importance of SN/host-galaxy correlations as a source of systematic bias in future deep SN surveys.

  17. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  18. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  19. The black hole-host galaxy relation for very low mass quasars

    NASA Astrophysics Data System (ADS)

    Sanghvi, J.; Kotilainen, J. K.; Falomo, R.; Decarli, R.; Karhunen, K.; Uslenghi, M.

    2014-12-01

    Recently, the relation between the masses of the black hole (MBH) and the host galaxy (Mhost) in quasars has been probed down to the parameter space of MBH ˜ 108 M⊙ and Mhost ˜ 1011 M⊙ at z < 0.5. In this study, we have investigated the MBH-Mhost log-linear relation for a sample of 37 quasars with low black hole masses (107 M⊙ < MBH < 108.3 M⊙) at 0.5 < z < 1.0. The black hole masses were derived using virial mass estimates from Sloan Digital Sky Survey (SDSS) optical spectra. For 25 quasars, we detected the presence of the host galaxy from deep near-infrared H-band imaging, whereas upper limits for the host galaxy luminosity (mass) were estimated for the 12 unresolved quasars. We combined our previous studies with the results from this work to create a sample of 89 quasars at z < 1.0 having a large range of black hole masses (107 M⊙ < MBH < 1010 M⊙) and host galaxy masses (1010 M⊙ < Mhost < 1013 M⊙). Most of the quasars at the low-mass end lie below the extrapolation of the local relation. This apparent break in the linearity of the entire sample is due to increasing fraction of disc-dominated host galaxies in the low-mass quasars. After correcting for the disc component, and considering only the bulge component, the bilinear regression for the entire quasar sample holds over 3.5 dex in both the black hole mass and the bulge mass, and is in very good agreement with the local relation. We advocate secular evolution of discs of galaxies being responsible for the relatively strong disc domination.

  20. Sub-millimeter emission from type Ia supernova host galaxies at z=0.5

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Farrah, D.; Fox, M.; Rowan-Robinson, M.; Afonso, J.

    2004-05-01

    We present deep sub-millimetre (sub-mm) observations of sixteen galaxies at z=0.5, selected through being hosts of a type Ia supernova. Two galaxies are detected directly, and the sample, excluding the brightest detected galaxy, is detected statistically with a mean 850 μm flux of 0.92 ± 0.33 mJy. We infer that the mean value of AV in normal galaxies is 0-80% higher than locally, in agreement with galaxy chemical evolution models. The dust in the brightest sub-mm object in our sample is best interpreted as normal `cirrus' dust similar to that seen locally. This result, when combined with local surveys of type Ia supernovae, suggests that dust in supernova host galaxies at z=0.5 could produce a dimming that is comparable to the dimming attributed to accelerated expansion. This emphasizes the need to carefully monitor dust extinction when using type Ia supernovae to measure the cosmological parameters. As supernova surveys push to higher redshifts and to greater precision in extracted cosmological parameters, understanding the role of dust in these objects will become even more important.

  1. Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Simmons, Brooke D.; Urry, C. Megan; Treister, Ezequiel; Glikman, Eilat

    2012-09-01

    We explore the nature of heavily obscured quasar host galaxies at z˜ 2 using deep Hubble Space Telescope Wide Field Camera 3/infrared imaging of 28 dust-obscured galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4 per cent, at most 11-25 per cent) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90 per cent of the host galaxies are either disc dominated, or have a significant disc. This disc-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the coincidence of mergers and active galactic nucleus activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers. a MUSYC catalogue ID, see Cardamone et al. (2010). Objects with X-ray detections are marked with *. b See images shown in Fig. 1. c The ratio of the host luminosity to the point source luminosity, reported only when GALFIT requires an unresolved object to yield a physical fit. This may be due to an AGN point source (in the case of the X-ray-detected DOGs) or an unresolved bulge or central concentration, i.e. a central bulge. d See Fig. 2.

  2. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  3. Inner polar ionized-gas disks and properties of their host galaxies

    NASA Astrophysics Data System (ADS)

    Sil'chenko, Olga K.

    2015-02-01

    I have analyzed line-of-sight velocity fields of the stellar and ionized-gas components for the volume-limited sample of nearby lenticular galaxies by using the raw data of the ATLAS-3D survey undertaken with the integral-field spectrograph SAURON. Among 200 nearby lenticular galaxies, I distinguish 20 cases of nearly orthogonal rotation of the inner ionized gas with respect to the central stellar components; so I estimate a frequency of the inner polar disks in nearby S0 galaxies as 10%. Properties of the central stellar populations - mean ages, metallicities, magnesium-to-iron ratios - are derived through the Lick indices. The typical stellar population properties of the polar-disk host galaxies are exactly the same as the stellar population properties of the complete sample.

  4. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    SciTech Connect

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D.; Hartoog, O. E.; Kaper, L.; Wiersema, K.; D'Elia, V.; Afonso, P. M. J.; Covino, S.; Flores, H.; Goldoni, P.; Jakobsson, P.; Klose, S.; Levan, A. J.; and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  5. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  6. ASASSN-17di: Discovery of A Probable Supernova in an Uncatalogued Host Galaxy

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Fernandez, J. M.; Koff, R. A.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in an uncatalogued host galaxy.

  7. VizieR Online Data Catalog: Long & short GRBs with host galaxies data (Li+, 2016)

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhang, B.; Lu, H.-J.

    2017-01-01

    Our main sample includes 375 GRBs with spectroscopic redshift measurements in the literature before 2014 June 30. Also included are 32 GRBs with host galaxy information, even though no spectroscopic redshifts have been reported for these bursts. Altogether we have 407 GRBs. (5 data files).

  8. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  9. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  10. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  11. CO OBSERVATIONS OF THE HOST GALAXY OF GRB 000418 AT z = 1.1

    SciTech Connect

    Hatsukade, B.; Ohta, K.; Kohno, K.; Endo, A.; Nakanishi, K.

    2011-09-01

    We performed CO (J = 2-1) observations of the host galaxy of GRB 000418 at z = 1.1181 with the Plateau de Bure Interferometer. Previous studies show that the host galaxy has properties similar to those of an ultraluminous infrared galaxy (ULIRG). The star formation rate (SFR) of the host galaxy as derived from submillimeter and radio continuum emission is a few 100 M{sub sun} yr{sup -1}, which is an order of magnitude greater than the SFR derived from optical line emission. The large discrepancy between the SFRs derived from different observing wavelengths indicates the presence of a bulk of dust-obscured star formation and molecular gas that is enough to sustain the intense star formation. We failed to detect CO emission and derived 2{sigma} upper limits on the velocity-integrated CO (2-1) luminosity of L'{sub CO} < 6.9 x 10{sup 9} K km s{sup -1} pc{sup 2} and the molecular gas mass of M{sub H{sub 2}}< 5.5x10{sup 9} M{sub sun} by adopting a velocity width of 300 km s{sup -1} and a CO-to-H{sub 2} conversion factor of {alpha}{sub CO} = 0.8 M{sub sun} (K km s{sup -1} pc{sup 2}){sup -1}, which are standard values for ULIRGs. The lower limit on the ratio of far-infrared luminosity to CO luminosity, a measure of the star formation efficiency, is higher compared to that of other gamma-ray burst hosts and other galaxy populations, which is consistent with active star formation taking place in this galaxy.

  12. Which haloes host Herschel-ATLAS galaxies in the local Universe?

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cole, Shaun; Lacey, Cedric G.; Baugh, Carlton M.; Frenk, Carlos S.; Norberg, Peder; Auld, R.; Baldry, I. K.; Bamford, S. P.; Bourne, N.; Buttiglione, E. S.; Cava, A.; Cooray, A.; Croom, S.; Dariush, A.; de Zotti, G.; Driver, S.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Hopkins, A.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Jarvis, M.; Jones, D. H.; Kelvin, L.; Liske, J.; Loveday, J.; Maddox, S. J.; Parkinson, H.; Pascale, E.; Peacock, J. A.; Pohlen, M.; Prescott, M.; Rigby, E. E.; Robotham, A.; Rodighiero, G.; Sharp, R.; Smith, D. J. B.; Temi, P.; van Kampen, E.

    2011-04-01

    We measure the projected cross-correlation between low-redshift (z < 0.5) far-infrared selected galaxies in the science demonstration phase (SDP) field of the Herschel-ATLAS (H-ATLAS) survey and optically selected galaxies from the Galaxy and Mass Assembly (GAMA) redshift survey. In order to obtain robust correlation functions, we restrict the analysis to a subset of 969 out of 6900 H-ATLAS galaxies, which have reliable optical counterparts with r < 19.4 mag and well-determined spectroscopic redshifts. The overlap region between the two surveys is 12.6 deg2; the matched sample has a median redshift of z≈ 0.2. The cross-correlation of GAMA and H-ATLAS galaxies within this region can be fitted by a power law, with correlation length r0≈ 4.63 ± 0.51 Mpc. Comparing with the corresponding autocorrelation function of GAMA galaxies within the SDP field yields a relative bias (averaged over 2-8 Mpc) of H-ATLAS and GAMA galaxies of bH/bG≈ 0.6. Combined with clustering measurements from previous optical studies, this indicates that most of the low-redshift H-ATLAS sources are hosted by haloes with masses comparable to that of the Milky Way. The correlation function appears to depend on the 250-μm luminosity, L250, with bright (median luminosity νL250˜ 1.6 × 1010 L⊙) objects being somewhat more strongly clustered than faint (νL250˜ 4.0 × 109 L⊙) objects. This implies that galaxies with higher dust-obscured star formation rates are hosted by more massive haloes.

  13. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    NASA Astrophysics Data System (ADS)

    Tendulkar, S. P.; Bassa, C. G.; Cordes, J. M.; Bower, G. C.; Law, C. J.; Chatterjee, S.; Adams, E. A. K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Hessels, J. W. T.; Kaspi, V. M.; Lazio, T. J. W.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Spitler, L. G.; van Langevelde, H. J.; Wharton, R. S.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10‑4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, mr‧ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M* ∼ (4–7) × 107 M⊙, assuming a mass-to-light ratio between 2 to 3 M⊙ L⊙‑1. Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M⊙ yr‑1 and a substantial host dispersion measure (DM) depth ≲324 pc cm‑3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  14. PROBING THE LONG GAMMA-RAY BURST PROGENITOR BY Lyalpha EMISSION OF HOST GALAXIES

    SciTech Connect

    Niino, Yuu; Totani, Tomonori; Kobayashi, Masakazu A. R.

    2009-12-20

    Long gamma-ray bursts (GRBs) have been suggested to occur preferentially in low-metallicity environment. We discuss the possibility and theoretical aspects of using Lyalpha emission properties of long GRB host galaxies as a metallicity indicator of high-redshift GRB environments, where direct metallicity measurements are not easy. We propose to use the fraction of Lyalpha emitters (LAEs) in long GRB host galaxies as a function of UV luminosity, which can be compared with star formation rate weighted LAE fraction of Lyman break galaxies as the standard in the case of no metallicity dependence. There are two important effects of metallicity dependence of long GRB rate to change the LAE fraction of host galaxies. One is the enhancement of intrinsic Lyalpha equivalent width (EW) by stronger ionizing UV luminosity of low-metallicity stellar population, and the other is extinction by interstellar dust to change the observable EW. Based on a latest theoretical model of LAEs that reproduce observations, we argue that the latter is likely to work in the opposite direction to the former, i.e., to decrease LAE fraction if GRBs preferentially occur in low-metallicity environments, because of the clumpy interstellar medium effect. The high LAE fraction of GRB host galaxies indicated by observations is quantitatively explained by the LAE model if GRBs occur when Z approx< 0.1 Z{sub sun}, although this result is still indicative because of the limited statistics and theoretical uncertainties. This result demonstrates that the LAE statistics of GRB hosts may give us useful information in the future.

  15. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Michałowski, M. J.; Bourne, N.; Baes, M.; Fritz, J.; Cooray, A.; De Looze, I.; De Zotti, G.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S. J.; Scott, D.; Smith, D. J. B.; Smith, M. W. L.; Symeonidis, M.; Valiante, E.

    2015-04-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ˜3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of <114 M⊙ yr-1. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with SFR > 500 M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.

  16. Investigating the AGN-Galaxy Interaction Relationship by Examining the Color and Morphology Measurements of Real and Simulated AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Pierce, Christina M.

    2009-01-01

    UV-optical colors provide a clear distinction between quiescent galaxies and those undergoing star formation. Galaxy morphology measurements, such as the Gini coefficient, M20, concentration, asymmetry, and the Sersic index, allow identification of interacting galaxies and separation of non-interacting galaxies into bulge or disk-dominated systems. Thus, one can use the colors and morphologies of AGN host galaxies to probe the predicted relationship between galaxy interactions and significant black hole growth (an AGN stage). However, due to the UV excess observed in many AGNs (particularly quasars and Seyfert 1 galaxies) and the potentially significant optical contribution from AGNs that are not heavily obscured, one must exercise caution when interpreting the results from color and morphology measurements of AGN host galaxies. With this in mind, we created a set of simulated AGNs to test the reliability of color and morphology measurements of AGN host galaxies. The results were compared to observations of AGN host galaxies at z 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). Our observed results reveal a population of X-ray luminous AGN hosts that appear to have green UV-optical colors, indicative of recent star-formation, and a largely disk-dominated profile, suggesting a bulge that is not yet fully developed. Comparison with results from our simulated AGNs suggest that at least some of the observational results are not likely to be due to color or morphological contamination from the presence of an AGN. Therefore, the observed AGN hosts seem to represent a real population that may be going through a transition phase, during which significant star-formation has recently ceased, but for which the black hole remains quite luminous.

  17. The dark nature of GRB 130528A and its host galaxy

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  18. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  19. The Dependence of Cluster Galaxy Properties on the Central Entropy of their Host Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Ko, Jongwan; Hwang, Ho Seong; Edge, Alastair C.; Lee, Joon Hyeop; Lee, Jong Chul; Jeong, Hyunjin

    2017-02-01

    We present a study of the connection between brightest cluster galaxies (BCGs) and their host galaxy clusters. Using galaxy clusters at 0.1< z< 0.3 from the Hectospec Cluster Survey (HeCS) with X-ray information from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), we confirm that BCGs in low central entropy clusters are well aligned with the X-ray center. Additionally, the magnitude difference between BCG and the second brightest galaxy also correlates with the central entropy of the intracluster medium. From the red-sequence (RS) galaxies, we cannot find significant dependence of RS color scatter and stellar population on the central entropy of the intracluster medium of their host cluster. However, BCGs in low-entropy clusters are systematically less massive than those in high-entropy clusters, although this is dependent on the method used to derive the stellar mass of BCGs. In contrast, the stellar velocity dispersion of BCGs shows no dependence on BCG activity and cluster central entropy. This implies that the potential of the BCG is established earlier and the activity leading to optical emission lines is dictated by the properties of the intracluster medium in the cluster core.

  20. Supernova Candidate in MACSJ1149 Galaxy Cluster Field With No Detected Host Galaxy

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Diego, Jose Maria; Nonino, Mario; Zitrin, Adi; Jauzac, Mathilde; Filippenko, Alexei V.

    2017-01-01

    We report discovery of a supernova (SN) candidate in the MACSJ1149 (z=0.54) galaxy-cluster field. In Hubble Space Telescope (HST) data taken on January 23, 2017 UT, we found a bright source (dubbed 'Amos') in WFC3 UVIS F606W ( 23.3 mag AB) and WFC3 IR F110W ( 23.7 mag) exposures.

  1. The host galaxies of fast-ejecta core-collapse supernovae

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-07-01

    Spectra of broad-lined Type Ic supernovae (SNe Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities (∼0.1c). We study the host galaxies of a sample of 245 low-redshift (z < 0.2) core-collapse SNe, including 17 SNe Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z < 1.2 LGRBs. We show that, in comparison with Sloan Digital Sky Survey galaxies having similar stellar masses, the hosts of low-redshift SNe Ic-BL and z < 1.2 LGRBs have high stellar mass and star formation rate densities. Core-collapse SNe having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SNe Ic-BL, unlike those of SNe Ib/Ic and SNe II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitor systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for an SN Ic-BL or LGRB. Finally, we show that the preference of SNe Ic-BL and LGRBs for galaxies with high stellar mass and star formation rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  2. The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-01-01

    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  3. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-07-01

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV - r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  4. Can Supermassive Black Holes Influence the Evolution of their Host Galaxies?

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Veilleux, Sylvain; Reeves, James; Reynolds, Christopher S.

    2016-04-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar-mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in the ultraluminous infrared galaxy IRAS F11119+3257 hosting a luminous quasar at the center. Energetics arguments indicate a connection with a massive, large-scale molecular outflow observed in infrared with Herschel. This seems to be in agreement with theoretical models in which AGN winds drive hot bubbles in the host galaxy medium, thereby providing a link between the SMBH and the gas out of which stars form. This work was the “cover story” of the March 26th 2015 issue of Nature. Revolutionary improvements in this field are expected from ASTRO-H and Athena.

  5. WHICH GALAXIES HOST BARS AND DISKS? A STUDY OF THE COMA CLUSTER

    SciTech Connect

    Mendez-Abreu, J.; Aguerri, J. A. L. E-mail: jalfonso@iac.es

    2010-03-10

    We present a study of the bar fraction in the Coma Cluster galaxies based on a sample of {approx}190 galaxies selected from the Sloan Digital Sky Survey Data Release 6 and observed with the Hubble Space Telescope (HST) Advanced Camera for Survey (ACS). The unprecedented resolution of the HST-ACS images allows us to explore the presence of bars, detected by visual classification, throughout a luminosity range of 9 mag (-23 {approx}< M{sub r} {approx}< -14), permitting us to study the poor known region of dwarf galaxies. We find that bars are hosted by galaxies in a tight range of both luminosities (-22 {approx}< M{sub r} {approx}< -17) and masses (10{sup 9}{approx}galaxies. In addition, we find that the bar fraction does not vary significantly when going from the center to the cluster outskirts, implying that cluster environment plays a second-order role in bar formation/evolution. The shape of the bar fraction distribution with respect to both luminosity and mass is well matched by the luminosity distribution of disk galaxies in Coma, indicating that bars are good tracers of cold stellar disks. We discuss the implications of our results for the formation and evolution scenarios of bars and disks.

  6. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  7. The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Pérez-Ramírez, D.; Sollerman, J.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Castro-Tirado, A. J.; Jakobsson, P.; Christensen, L.; Hjorth, J.; Jóhannesson, G.; Guziy, S.; Castro Cerón, J. M.; Björnsson, G.; Sokolov, V. V.; Fatkhullin, T. A.; Nilsson, K.

    2005-12-01

    We present broad band photometry and spectroscopic observations of the host galaxy of GRB 030329. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy (Z˜0.004). The spectral energy distribution (SED) constructed with the photometric points has been fitted using synthetic and observational templates. The best SED fit is obtained with a starburst template with an age of 150 Myr and an extinction Av ˜ 0.6. We find that the GRB 030329 host galaxy is a subluminous galaxy (L ˜ 0.016 Lstar) with a stellar mass of ≳ 108 M⊙. Three independent diagnostics, based on the restframe UV continuum, the [O II], and the Balmer emission lines, provide a consistent unextinguished star formation rate of ˜ 0.6 M⊙ yr-1, implying a high unextinguished specific star formation rate ( 34 M⊙ yr-1 (L/Lstar)-1). We estimate that the unextinguished specific star formation rate of the GRB 030329 host is higher than 93.5% of the galaxies at a similar redshift. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on data taken at the 2.2-m and 3.5-m telescopes of the Centro Astronómico Hispano Alemán de Calar Alto, operated by the Max Planck institute of Heidelberg and Centro Superior de Investigaciones Científicas. The spectral observations were obtained at the European Southern Observatory, Cerro Paranal (Chile), under the Director's Discretionary Time programme 271.D-5006(A).

  8. Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Karapetyan, A. G.; Barkhudaryan, L. V.; Mamon, G. A.; Kunth, D.; Petrosian, A. R.; Adibekyan, V.; Aramyan, L. S.; Turatto, M.

    2016-03-01

    We present an analysis of the impact of bars and bulges on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We use a well-defined sample of 500 nearby (≤100 Mpc) SNe and their low-inclined (i ≤ 60°) and morphologically non-disturbed S0-Sm host galaxies from the Sloan Digital Sky Survey. We find that in Sa-Sm galaxies, all core-collapse (CC) and vast majority of SNe Ia belong to the disc, rather than the bulge component. The radial distribution of SNe Ia in S0-S0/a galaxies is inconsistent with their distribution in Sa-Sm hosts, which is probably due to the contribution of the outer bulge SNe Ia in S0-S0/a galaxies. In Sa-Sbc galaxies, the radial distribution of CC SNe in barred hosts is inconsistent with that in unbarred ones, while the distributions of SNe Ia are not significantly different. At the same time, the radial distributions of both types of SNe in Sc-Sm galaxies are not affected by bars. We propose that the additional mechanism shaping the distributions of Type Ia and CC SNe can be explained within the framework of substantial suppression of massive star formation in the radial range swept by strong bars, particularly in early-type spirals. The radial distribution of CC SNe in unbarred Sa-Sbc galaxies is more centrally peaked and inconsistent with that in unbarred Sc-Sm hosts, while the distribution of SNe Ia in unbarred galaxies is not affected by host morphology. These results can be explained by the distinct distributions of massive stars in the discs of early- and late-type spirals.

  9. Detailed afterglow modelling and host galaxy properties of the dark GRB 111215A

    NASA Astrophysics Data System (ADS)

    van der Horst, A. J.; Levan, A. J.; Pooley, G. G.; Wiersema, K.; Krühler, T.; Perley, D. A.; Starling, R. L. C.; Curran, P. A.; Tanvir, N. R.; Wijers, R. A. M. J.; Strom, R. G.; Kouveliotou, C.; Hartoog, O. E.; Xu, D.; Fynbo, J. P. U.; Jakobsson, P.

    2015-02-01

    Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimetre observations from the literature to perform broad-band modelling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broad-band modelling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modelling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope, and Hubble Space Telescope (HST), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high-resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.

  10. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    SciTech Connect

    Levesque, Emily M.; Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  11. LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION

    SciTech Connect

    Wang, F. Y.; Dai, Z. G. E-mail: dzg@nju.edu.cn

    2014-07-01

    We investigate the mass distribution of long gamma-ray burst (GRB) host galaxies and the redshift distribution of long GRBs by considering that long GRBs occur in low-metallicity environments. We calculate the upper limit on the stellar mass of a galaxy which can produce long GRBs by utilizing the mass-metallicity (M-Z) relation of galaxies. After comparing with the observed GRB host galaxies masses, we find that the observed GRB host galaxy masses can fit the predicted masses well if GRBs occur in low-metallicity 12 + log (O/H){sub KK04} < 8.7. GRB host galaxies have low metallicity, low mass, and high star formation rate compared with galaxies of seventh data release of the Sloan Digital Sky Survey. We also study the cumulative redshift distribution of the latest Swift long GRBs by adding dark GRBs and 10 new GRBs redshifts from the TOUGH survey. The observed discrepancy between the GRB rate and the star formation history can be reconciled by considering that GRBs tend to occur in low-metallicity galaxies with 12 + log (O/H){sub KK04} < 8.7. We conclude that the metallicity cutoff that can produce long GRBs is about 12 + log (O/H){sub KK04} < 8.7 from the host mass distribution and redshift distribution.

  12. The Distribution of Supernovae Relative to Spiral Arms of Host Disc Galaxies

    NASA Astrophysics Data System (ADS)

    Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; de Lapparent, V.; Bertin, E.; Mamon, G. A.; Kunth, D.; Nazaryan, T. A.; Adibekyan, V.; Turatto, M.

    2017-07-01

    Using a sample of 215 supernovae (SNe), we analyse their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. Our results suggest that shocks in spiral arms of GD galaxies trigger star formation in the leading edges of arms affecting the distributions of core-collapse (CC) SNe (known to have short-lived progenitors). The closer locations of SNe Ibc vs. SNe II relative to the leading edges of the arms supports the belief that SNe Ibc have more massive progenitors. SNe Ia having less massive and older progenitors, show symmetric distribution with respect to the peaks of spiral arms.

  13. The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Zamorani, G.; Comastri, A.; Hasinger, G.; Cappelluti, N.; Civano, F.; Finoguenov, A.; Mainieri, V.; Salvato, M.; Vignali, C.; Elvis, M.; Fiore, F.; Gilli, R.; Impey, C. D.; Lilly, S. J.; Mignoli, M.; Silverman, J.; Trump, J.; Urry, C. M.; Bender, R.; Capak, P.; Huchra, J. P.; Kneib, J. P.; Koekemoer, A.; Leauthaud, A.; Lehmann, I.; Massey, R.; Matute, I.; McCarthy, P. J.; McCracken, H. J.; Rhodes, J.; Scoville, N. Z.; Taniguchi, Y.; Thompson, D.

    2007-09-01

    apparent mismatch between the morphological and spectroscopic classifications. All the ``extended'' BL AGNs lie at redshift <1.5, while the redshift distribution of the full BL AGN population peaks at z~1.5. The most likely explanation is that in these objects the nuclear emission is not dominant with respect to the host galaxy emission in the observed ACS band. Our analysis also suggests that the type 2/type 1 ratio decreases toward high luminosities, in qualitative agreement with the results from X-ray spectral analysis and the most recent modeling of the X-ray luminosity function evolution. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; also based on data collected at the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS 5-26555 the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the European Southern Observatory, Chile, under Large Program 175.A-0839 Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.

  14. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    SciTech Connect

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura; Shankar, Francesco

    2014-01-01

    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  15. A Herschel Study of 24 μμm-Selected AGNs and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Pereira, M. J.; Haines, C. P.; Smith, G. P.

    2015-08-01

    We present a sample of 290 24 μm-selected active galactic nuclei (AGNs) mostly at z ˜ 0.3-2.5, within 5.2 {{deg}}2 distributed as 25\\prime × 25\\prime fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is nearly complete to 1 mJy at 24 μm, and has a rich multiwavelength set of ancillary data; 162 are detected by Herschel. We use spectral templates for AGNs, stellar populations, and infrared (IR) emission by star-forming galaxies to decompose the spectral energy distributions (SEDs) of these AGNs and their host galaxies, and estimate their star formation rates, AGN luminosities, and host galaxy stellar masses. The set of templates is relatively simple: a standard Type-1 quasar template; another for the photospheric output of the stellar population; and a far-infrared star-forming template. For the Type-2 AGN SEDs, we substitute templates including internal obscuration, and some Type-1 objects require a warm component (T≳ 50 K). The individually Herschel-detected Type-1 AGNs and a subset of 17 Type-2 AGNs typically have luminosities \\gt {10}45 {ergs} {{{s}}}-1, and supermassive black holes of ˜ 3× {10}8 {M}⊙ emitting at ˜10% of the Eddington rate. We find them in about twice the numbers of AGNs identified in SDSS data in the same fields, i.e., they represent typical high-luminosity AGNs, not an IR-selected minority. These AGNs and their host galaxies are studied further in an accompanying paper.

  16. Active galactic nuclei vs. host galaxy properties in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Delvecchio, I.; Berta, S.; Brusa, M.; Comastri, A.; Gilli, R.; Gruppioni, C.; Marchesi, S.; Perna, M.; Pozzi, F.; Salvato, M.; Symeonidis, M.; Vignali, C.; Vito, F.; Volonteri, M.; Zamorani, G.

    2017-06-01

    Context. The coeval active galactic nuclei (AGN) and galaxy evolution, and the observed local relations between super massive black holes (SMBHs) and galaxy properties suggest some sort of connection or feedback between SMBH growth (i.e., AGN activity) and galaxy build-up (i.e., star formation history). Aims: We looked for correlations between average properties of X-ray detected AGN and their far-IR (FIR) detected, star forming host galaxies in order to find quantitative evidence for this connection, which has been highly debated in recent years. Methods: We exploited the rich multiwavelength data set (from X-ray to FIR) available in the COSMOS field for a large sample (692 sources) of AGN and their hosts in the redshift range 0.1 host galaxy properties, such as stellar mass (M∗) and star formation rate (SFR). Results: We find that the AGN 2-10 keV luminosity (LX) and the host 8-1000 μm star formation luminosity (LIRSF) are significantly correlated, even after removing the dependency of both quantities with redshift. However, the average host LIRSF has a flat distribution in bins of AGN LX, while the average AGN LX increases in bins of host LIRSF with logarithmic slope of 0.7 in the redshift range 0.4 host properties is found. On the other hand, we find that the average column density (NH) shows a clear positive correlation with the host M∗ at all redshifts, but not with the SFR (or LIRSF). This translates into a negative correlation with specific SFR at all redshifts. The same is true if the obscured fraction is computed. Conclusions: Our results are in agreement with the

  17. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  18. The impact of compact radio sources on their host galaxies: observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.

    2016-02-01

    I review the observational evidence that CSS/GPS radio sources have a significant impact on the evolution of their host galaxies, particularly on the kpc-scales of the galaxy bulges. Starting with an overview of the observational evidence for jet-cloud interactions and warm ionised outflows in CSS/GPS sources, I then consider the challenges involved in quantifying the feedback effect of the warm outflows in terms of their mass outflow rates and kinetic powers. For the best-observed cases it is shown that the warm outflows may have a major negative feedback effect in the very central regions, but probably lack the power to heat and eject the full cool ISM contents of the host galaxies. In contrast, the recently-discovered neutral and molecular outflows are more massive and powerful and therefore carry more destructive potential. However, the feedback effect of such outflows is not necessarily negative: there is now clear observational evidence that the molecular outflows are formed as the hot, compressed gas cools behind fast shocks driven into the ISM by the relativistic jets. The natural endpoint of this process is the formation of stars. Therefore, jet-induced star formation may be a significant process in CSS/GPS radio galaxies. Finally, I discuss whether CSS/GPS sources are ``imposters'' in flux-limited radio samples, due the flux boosting of the radio sources by strong jet-cloud interactions in the early stages of radio source evolution.

  19. Systematic Effects in Type-1a Supernovae Surveys from Host Galaxy Spectra

    SciTech Connect

    Strauss, Michael A.

    2013-08-23

    The physical relation between the properties of Type Ia supernovae and their host galaxies is investigated. Such supernovae are used to constrain the properties of dark energy, making it crucial to understand their physical properties and to check for systematic effects relating to the stellar populations of the progenitor stars from which these supernovae arose. This grant found strong evidence for two distinct populations of supernovae, and correlations between the progenitor stellar populations and the nature of the supernova light curves.

  20. Neutrinos from Gamma-Ray Bursts: Propagation of Cosmic Rays in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Yi; Wang, Xiang-Yu; Wang, Jun-Feng

    2015-04-01

    Gamma-ray bursts (GRBs) are proposed as candidate sources of ultra-high-energy cosmic rays (UHECRs). We study the possibility that the PeV neutrinos recently observed by IceCube are produced by GRB cosmic rays interacting with the interstellar gas in the host galaxies. By studying the relation between the X-ray absorption column density NH and the surface star formation rate (SFR) of GRB host galaxies, we find that NH is a good indicator of the surface gas density of the host galaxies. Then we are able to calculate the neutrino production efficiency of CRs for GRBs with known NH. We collect a sample of GRBs that have both measurements of NH and accurate gamma-ray fluence and attempt to calculate the accumulated neutrino flux based on the current knowledge about GRBs and their host galaxies. When the CR intensity produced by GRBs is normalized with the observed UHECR flux above ∼ {{10}19} eV, the accumulated neutrino flux at PeV energies is estimated to be about (0.3+/- 0.2)× {{10}-8} GeV c{{m}-2} {{s}-1} s{{r}-1} (per flavor) under the assumption that the GRB energy production rate follows the cosmic SFR and the favorable assumption about the CR diffusion coefficient. This flux is insufficient to account for the IceCube observations, but the estimate suffers from some assumptions in the calculation and thus we cannot rule out this scenario at present.

  1. VizieR Online Data Catalog: Host galaxies of Superluminous Supernovae (Angus+, 2016)

    NASA Astrophysics Data System (ADS)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-11-01

    Here we use nIR and rest-frame UV observations of a sample of 21 SLSN host galaxies, within a redshift range of 0.019 SCP 06F6). This HST sample (programme GO-13025; PI: Levan) comprised 21 targets, based on the sample of Neill et al. (2011ApJ...727...15N), supplemented with luminous SNe from the literature (up to 2012 Jan). (6 data files).

  2. Understanding the Relations between QSOs and Their Host Galaxies from Combined HST Imaging and VLT Spectroscopy

    NASA Astrophysics Data System (ADS)

    Letawe, Y.; Magain, P.; Letawe, G.; Courbin, F.; Hutsemékers, D.

    2008-06-01

    The host galaxies of six nearby QSOs are studied on the basis of high-resolution HST optical images and spatially resolved VLT slit spectra. The gas ionization and velocity are mapped as a function of the distance to the central QSO. In the majority of the cases, the QSO significantly contributes to the gas ionization in its whole host galaxy, and sometimes even outside. Reflection or scattering of the QSO Hα line from remote regions of the galaxy is detected in several instances. The line shifts show that, in all cases, the matter responsible for the light reflection moves away from the QSO, likely accelerated by its radiation pressure. The two faintest QSOs reside in spirals, with some signs of a past gravitational perturbation. One of the intermediate-luminosity QSOs resides in a massive elliptical containing gas ionized (and probably pushed away) by the QSO radiation. The other medium-power object is found in a spiral galaxy displaying complex velocity structure, with the central QSO moving with respect to the bulge, probably as a result of a galactic collision. The two most powerful objects are involved in violent gravitational interactions, and one of them has no detected host. These results suggest that (1) large-scale phenomena, such as galactic collisions, are closely related to the triggering and the feeding of the QSO and (2) once ignited, the QSO has significant influence on its large-scale neighborhood (often the whole host and sometimes further away). Based on observations made with the Nasa/ESA Hubble Space Telescope (Cycle 13 proposal 10238), and with ANTU/UT1 at ESO-Paranal observatory in Chile [programs 65.P-0361(A) and 66.B-0139(A)].

  3. Origin of the Correlations Between Supermassive Black Holes and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Li, Y.; Zhu, Q.

    2013-01-01

    It has been well established from observations that suppermassive black holes in nearby elliptical galaxies correlate tightly with the stellar velocity dispersion (the M - σ relation) and mass (the MBH - Mhost relation) of their host spheroids. However, the origin of these correlations remains ambiguous. Here, we compile a sample of observed galaxies with different properties (e.g., mass, type, kinematics, growth history, etc.) and examine the dependence of the above correlations on these parameters. We find that galaxies that satisfy the M - σ correlation appear to have reached virial equilibrium, as indicated by the ratio between kinetic energy and gravitational potential, 2K/U ~ 1. Furthermore, the ratio of black hole accretion rate to star formation rate remains nearly constant, AR /SFR ~ 10-3, over a wide range of galaxy mass from redshift z=0 - 2. These results confirm our previous theoretical model that the observed correlations have different origins: the M - σ relation may be the result of virial equilibrium, while MBH - Mhost relation may be the result of self-regulated star formation and black hole growth in galaxies.

  4. DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Fong, W.; Berger, E.; Chornock, R.; Margutti, R.; Czekala, I.; Zauderer, B. A.; Laskar, T.; Servillat, M.; Levan, A. J.; Tunnicliffe, R. L.; Tanvir, N. R.; Fox, D. B.; Perley, D. A.; Cenko, S. B.; Persson, S. E.; Monson, A. J.; Kelson, D. D.; Birk, C.; Murphy, D.; Anglada, G.

    2013-05-20

    We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A, and 110112A. We find that GRB 100625A occurred in a z = 0.452 early-type galaxy with a stellar mass of Almost-Equal-To 4.6 Multiplication-Sign 10{sup 9} M{sub Sun} and a stellar population age of Almost-Equal-To 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z = 0.718 with a stellar mass of Almost-Equal-To 1.4 Multiplication-Sign 10{sup 9} M{sub Sun }, a star formation rate of Almost-Equal-To 16 M{sub Sun} yr{sup -1}, and a stellar population age of Almost-Equal-To 50 Myr. We also report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i {approx}> 26 mag, and we cannot conclusively identify any field galaxy as a possible host. From afterglow modeling, the bursts have inferred circumburst densities of Almost-Equal-To 10{sup -4}-1 cm{sup -3} and isotropic-equivalent gamma-ray and kinetic energies of Almost-Equal-To 10{sup 50}-10{sup 51} erg. These three events highlight the diversity of galactic environments that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment ({approx}1/2 of 68 short bursts detected by Swift to 2012 May) and classify bursts originating from four types of environments: late-type ( Almost-Equal-To 50%), early-type ( Almost-Equal-To 15%), inconclusive ( Almost-Equal-To 20%), and ''host-less'' (lacking a coincident host galaxy to limits of {approx}> 26 mag; Almost-Equal-To 15%). To find likely ranges for the true late- and early-type fractions, we assign each of the host-less bursts to either the late- or early-type category using probabilistic arguments and consider the scenario that all hosts in the inconclusive category are early-type galaxies to set an upper bound on the early-type fraction. We calculate most likely ranges for the late- and early-type fractions of Almost-Equal-To 60

  5. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    SciTech Connect

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  6. CO (2-1) LINE EMISSION IN REDSHIFT 6 QUASAR HOST GALAXIES

    SciTech Connect

    Wang Ran; Wagg, Jeff; Carilli, Chris L.; Walter, Fabian; Riechers, Dominick A.; Willott, Chris; Bertoldi, Frank; Omont, Alain; Bergeron, Jacqueline; Beelen, Alexandre; Cox, Pierre; Strauss, Michael A.; Forveille, Thierry; Menten, Karl M.; Fan, Xiaohui

    2011-09-20

    We report new observations of CO (2-1) line emission toward five z {approx} 6 quasars using the Ka-band receiver system on the Expanded Very Large Array (EVLA). Strong detections were obtained in two of them, SDSS J092721.82+200123.7 and CFHQS J142952.17+544717.6, and a marginal detection was obtained in another source, SDSS J084035.09+562419.9. Upper limits of the CO (2-1) line emission have been obtained for the other two objects. The CO (2-1) line detection in J0927+2001 together with previous measurements of the CO (6-5) and (5-4) lines reveal important constraints on the CO excitation in the central {approx}10 kpc region of the quasar host galaxy. The CO (2-1) line emission from J1429+5447 is resolved into two distinct peaks separated by 1.''2 ({approx}6.9 kpc), indicating a possible gas-rich, major merging system, and the optical quasar position is consistent with the west peak. This result is in good agreement with the picture in which intense host galaxy star formation is coeval with rapid supermassive black hole (SMBH) accretion in the most distant universe. The two EVLA detections are ideal targets for further high-resolution imaging (e.g., with ALMA or EVLA observations) to study the gas distribution, dynamics, and SMBH-bulge-mass relation in these earliest quasar host galaxy systems.

  7. A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB 080517

    SciTech Connect

    Stanway, E. R.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Van der Laan, T. P. R.

    2015-01-01

    We have observed the host galaxy of the low-redshift, low-luminosity Swift GRB 080517 at 105.8 GHz using the IRAM Plateau de Bure interferometer. We detect an emission line with integrated flux SΔν = 0.39 ± 0.05 Jy km s{sup –1}—consistent both spatially and in velocity with identification as the J = 1-0 rotational transition of carbon monoxide (CO) at the host galaxy redshift. This represents only the third long gamma-ray burst (GRB) host galaxy with molecular gas detected in emission. The inferred molecular gas mass, M{sub H{sub 2}}∼6.3×10{sup 8} M {sub ☉}, implies a gas consumption timescale of ∼40 Myr if star formation continues at its current rate. Similar short timescales appear characteristic of the long GRB population with CO observations to date, suggesting that the GRB in these sources occurs toward the end of their star formation episode.

  8. The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander

    2013-04-01

    New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.

  9. CORRELATIONS BETWEEN SDSS TYPE Ia SUPERNOVA RATES AND HOST GALAXY PROPERTIES

    SciTech Connect

    Gao Yan; Pritchet, Chris

    2013-03-15

    Studying the correlation of Type Ia supernova rates (SNRs) with host galaxy properties is an important step in understanding the exact nature of Type Ia supernovae (SNe Ia). We use SNe Ia from the SDSS-II sample, spectroscopically determined masses and star formation rates, and a new maximum likelihood method, to fit the Scannapieco and Bildsten rate model SNR = A Multiplication-Sign M + B Multiplication-Sign SFR, where M is galaxy mass and SFR is star formation rate. We find A = 3.5{sup +0.9}{sub -0.7} Multiplication-Sign 10{sup -14} (SNe/yr)(M{sub Sun }){sup -1} and B = 1.3{sup +0.4}{sub -0.3} Multiplication-Sign 10{sup -3} (SNe/yr)(M{sub Sun} yr{sup -1}){sup -1}, assuming overall efficiency of 0.5. This is in reasonable agreement with other determinations. However we find strong evidence that this model is a poor fit to other projections of the data: it fails to correctly predict the distribution of supernovae with host mass or SFR. An additional model parameter is required; most likely this parameter is related to host galaxy mass. Some implications of this result are discussed.

  10. THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA AT z = 1.55 FROM CANDELS

    SciTech Connect

    Frederiksen, Teddy F.; Hjorth, Jens; Maund, Justyn R.; Rodney, Steven A.; Riess, Adam G.; Dahlen, Tomas; Mobasher, Bahram

    2012-12-01

    We present VLT/X-shooter observations of a high-redshift, Type Ia supernova (SN Ia) host galaxy, discovered with HST/WFC3 as part of the CANDELS Supernova project. The galaxy exhibits strong emission lines of Ly{alpha}, [O II], H{beta}, [O III], and H{alpha} at z = 1.54992{sup +0.00008} {sub -0.00004}. From the emission-line fluxes and spectral energy distribution fitting of broadband photometry we rule out activity from an active galactic nucleus and characterize the host galaxy as a young, low-mass, metal-poor, starburst galaxy with low intrinsic extinction and high Ly{alpha} escape fraction. The host galaxy stands out in terms of the star formation, stellar mass, and metallicity compared to its lower redshift counterparts, mainly because of its high specific star formation rate. If valid for a larger sample of high-redshift SN Ia host galaxies, such changes in the host galaxy properties with redshift are of interest because of the potential impact on the use of SN Ia as standard candles in cosmology.

  11. The Sloan Digital Sky Survey Reverberation Mapping Project: Post-Starburst Signatures in Quasar Host Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshiki; Strauss, Michael A.; Shen, Yue; Brandt, William N.; Greene, Jenny E.; Ho, Luis C.; Schneider, Donald P.; Sun, Mouyuan; Trump, Jonathan R.

    2015-10-01

    Quasar host galaxies are key for understanding the relation between galaxies and the supermassive black holes (SMBHs) at their centers. We present a study of 191 broad-line quasars and their host galaxies at z\\lt 1, using high signal-to-noise ratio (S/N) spectra produced by the Sloan Digital Sky Survey Reverberation Mapping project. Clear detection of stellar absorption lines allows a reliable decomposition of the observed spectra into nuclear and host components, using spectral models of quasar and stellar radiations as well as emission lines from the interstellar medium. We estimate age, mass {M}*, and velocity dispersion {σ }* of the host stars, the star formation rate (SFR), quasar luminosity, and SMBH mass {M}\\bullet , for each object. The quasars are preferentially hosted by massive galaxies with {M}*˜ {10}11 {M}⊙ characterized by stellar ages around 1 billion yr, which coincides with the transition phase of normal galaxies from the blue cloud to the red sequence. The host galaxies have relatively low SFRs and fall below the main sequence of star-forming galaxies at similar redshifts. These facts suggest that the hosts have experienced an episode of major star formation sometime in the past 1 billion yr, which was subsequently quenched or suppressed. The derived {M}\\bullet -{σ }* and {M}\\bullet -{M}* relations agree with our past measurements and are consistent with no evolution from the local universe. The present analysis demonstrates that reliable measurements of stellar properties of quasar host galaxies are possible with high-S/N fiber spectra, which will be acquired in large numbers with future powerful instruments such as the Subaru Prime Focus Spectrograph.

  12. An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Sansom, Anne E.

    2015-11-01

    SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 μm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy.

  13. The Connection between the Host Halo and the Satellite Galaxies of the Milky Way

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Benson, Andrew; Mao, Yao-Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Wetzel, Andrew R.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2016-10-01

    Many properties of the Milky Way’s (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed final {M}{vir}˜ {10}12.1 {M}⊙ , we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass-metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.

  14. The connection between the host halo and the satellite galaxies of the Milky Way

    DOE PAGES

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; ...

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less

  15. The connection between the host halo and the satellite galaxies of the Milky Way

    SciTech Connect

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Wetzel, Andrew R.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed final ${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.

  16. Tidally Induced Bars in Dwarf Galaxies on Different Orbits around a Milky Way-like Host

    NASA Astrophysics Data System (ADS)

    Gajda, Grzegorz; Łokas, Ewa L.; Athanassoula, E.

    2017-06-01

    Bars in galaxies may develop through a global instability or as a result of an interaction with another system. We study bar formation in disky dwarf galaxies orbiting a Milky Way-like galaxy. We employ N-body simulations to study the impact of the initial orbital parameters: the size of the dwarf galaxy orbit, and the inclination of its disk with respect to the orbital plane. In all cases, a bar develops in the center of the dwarf during the first pericenter on its orbit around the host. Between subsequent pericenter passages, the bars are stable, but at the pericenters, they are usually weakened and shortened. The initial properties and details of the further evolution of the bars depend heavily on the orbital configuration. We find that for the exactly prograde orientation, the strongest bar is formed for the intermediate-sized orbit. On the tighter orbit, the disk is too disturbed and stripped to form a strong bar. On the wider orbit, the tidal interaction is too weak. The dependence on the disk inclination is such that weaker bars form in more inclined disks. The bars experience either a very weak buckling or none at all. We do not observe any secular evolution, possibly because the dwarfs are perturbed at each pericenter passage. The rotation speed of the bars can be classified as slow (R CR/l bar ˜ 2-3). We attribute this to the loss of a significant fraction of the disk rotation during the encounter with the host galaxy.

  17. The connection between the host halo and the satellite galaxies of the Milky Way

    SciTech Connect

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Wetzel, Andrew R.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed final ${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.

  18. GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Japelj, J.; Vergani, S. D.; Savaglio, S.; Palazzi, E.; Covino, S.; Flores, H.; Goldoni, P.; Cupani, G.; Krühler, T.; Mannucci, F.; Onori, F.; Rossi, A.; D'Elia, V.; Pian, E.; D'Avanzo, P.; Gomboc, A.; Hammer, F.; Randich, S.; Fiore, F.; Stella, L.; Tagliaferri, G.

    2015-10-01

    Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognized that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained Very Large Telescope (VLT)/X-Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well-constrained information on their characteristics such as metallicity, dust extinction and star formation rate (SFR). We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, SFRs, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. SFRs and metallicities are measured for all the hosts analysed in this paper and metallicities are well determined for four hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star-forming galaxies.

  19. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Arcavi, Iair; Zabludoff, Ann

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 109.4–1010.3 M⊙, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 105.5–107.5 M⊙. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  20. Adaptive optics imaging of QSO host galaxies with Hokupa'a on the Gemini North telescope

    NASA Astrophysics Data System (ADS)

    Guyon, O.; Sanders, D. B.; Stockton, A.; Baudoz, P.; Potter, D.

    2001-05-01

    We report the initial results of a new near-infrared imaging survey of quasar hosts using the University of Hawaii Hokupa'a Adaptive Optics system on the 8.2m Gemini-North telescope. J,H,K' images of a complete subsample ( 25) of nearby (z <0.3), "bona-fide" optically selected (MB < -23; Ho = 50, qo=0; Schmidt & Green 1983) QSOs are being taken in order to obtain accurate host galaxy magnitudes and colors and to determine two-dimensional structure. In the initial phase of our observations we found that PSF subtraction residuals were severely limiting our ability to characterize the host galaxy. However we were able to obtain a significant increase in stability of the PSF by turning off the Cassegrain rotator during observations (see Roth et al. contribution at this meeting). Our sample of Palomar-Green Bright QSOs includes both radio quiet and radio loud objects plus objects spanning the full range of observed "infrared excess" continuum emission. One of the most surprising results has been the detection of modest scale (3-5" 5 kpc diameter) "bars" and/or circumnuclear "disks" that were not evident in previous one-dimensional profile analyses. These structures may be related to the reservoir of fuel needed to power the QSO and may provide important clues concerning the origin and evolution of QSO hosts.

  1. Erratum: ``CO Line Width Differences in Early Universe Molecular Emission-Line Galaxies: Submillimeter Galaxies versus QSO Hosts'' (AJ, 131, 2763 [2006])

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Wang, Ran

    2006-11-01

    It has been pointed out to us that in three dimensions the mean angle of randomly oriented disks with respect to the sky plane is <θ>=30deg, and not the 45° assumed in the original paper. This lower angle for the (assumed) random distribution of submillimeter galaxies, coupled with the factor of 2.3 lower mean CO line width for high-z, far-IR-luminous QSO host galaxies relative to the submillimeter galaxies, implies a mean angle with respect to the sky plane for the QSO host galaxies of <θ>QSO=13deg, as opposed to the 18° quoted in the original paper. We thank Pat Hall for bringing this to our attention.

  2. Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph

    2016-01-01

    Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced

  3. Exploring Damped Ly Alpha System Host Galaxies Using Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.

    2016-01-01

    We present a sample of 45 Damped Ly-Alpha system [DLA; H I-N is greater than or equal to 2 x 10(exp. 20) cm(exp. -2)] counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z is approx. 2 - 6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H I column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z is approximately 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.

  4. Exploring Damped Lyα System Host Galaxies Using Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.

    2016-12-01

    We present a sample of 45 Damped Lyα system (DLA; {N}{{H}{{I}}} ≥slant 2× {10}20 {{cm}}-2) counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z˜ 2{--}6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H i column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z˜ 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.

  5. On the Dependence of Type Ia SNe Luminosities on the Metallicity of Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Carnero Rosell, Aurelio; Domínguez, Inmaculada

    2016-02-01

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence MB-Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances.

  6. ON THE DEPENDENCE OF TYPE Ia SNe LUMINOSITIES ON THE METALLICITY OF THEIR HOST GALAXIES

    SciTech Connect

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Rosell, Aurelio Carnero; Domínguez, Inmaculada

    2016-02-10

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence M{sub B}–Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances.

  7. Tomography of a Gamma-ray Burst Progenitor and its Host Galaxy

    NASA Technical Reports Server (NTRS)

    Castro-Tirado, Alberto J.; Moller, Palle; Garcia-Segura, Guillermo; Gorosabel, Javier; Perez, Enrique; deUgartePostigo, Antonio; Solano, Enrique; BarradoyNavascues, David; CastroCeron, Jose Marie; Kouveliotou, Chryssa

    2005-01-01

    We have obtained near-infrared and high-resolution optical spectroscopy of the bright afterglow of the very intense gamma-ray burst recorded on 2002, October 4 (GRB 021004). Besides of line emission in the near-IR allowing an independent measurement of the systemic redshift (z = 2.3304 plus or minus 0.0005), we find several absorption line groups spanning a range of about 3,000 kilometers per second in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 kilometers per second and narrow lines with velocity widths of only approximately 20 kilometers per second. By analogy with QSO absorption line studies, the relative velocities, widths, and degrees of ionization of the lines ("line-locking", "ionization-velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf-Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of approximately 10 solar mass yr(sup -l).

  8. Tomography of a Gamma-ray Burst Progenitor and its Host Galaxy

    NASA Technical Reports Server (NTRS)

    Castro-Tirado, Alberto J.; Moller, Palle; Garcia-Segura, Guillermo; Gorosabel, Javier; Perez, Enrique; deUgartePostigo, Antonio; Solano, Enrique; BarradoyNavascues, David; CastroCeron, Jose Marie; Kouveliotou, Chryssa

    2005-01-01

    We have obtained near-infrared and high-resolution optical spectroscopy of the bright afterglow of the very intense gamma-ray burst recorded on 2002, October 4 (GRB 021004). Besides of line emission in the near-IR allowing an independent measurement of the systemic redshift (z = 2.3304 plus or minus 0.0005), we find several absorption line groups spanning a range of about 3,000 kilometers per second in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 kilometers per second and narrow lines with velocity widths of only approximately 20 kilometers per second. By analogy with QSO absorption line studies, the relative velocities, widths, and degrees of ionization of the lines ("line-locking", "ionization-velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf-Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of approximately 10 solar mass yr(sup -l).

  9. A CCD Color Comparison of Seyfert 1 and 2 Host Galaxies

    NASA Astrophysics Data System (ADS)

    Virani, S. N.; De Robertis, M. M.

    2001-05-01

    Wide-field, R-band CCD data of 15 Seyfert 1 and 15 Seyfert 2 galaxies taken from the CfA survey were analysed in order to compare the properties of their host galaxies. Also, B-band images for a subset of 12 Seyfert 1s and 7 Seyfert 2s were acquired and analysed in the same way. The nuclear contribution of the Seyfert host galaxies was modeled and removed empirically by using a robust technique for decomposing the nucleus, bulge and disk components (see Virani et al. 2000, De Robertis and Virani, 2001). Profile fits to the remaining bulge+disk light were then performed. Of the many B-R color comparisons that were performed (i.e., component colors, color gradient, etc.) between Seyfert 1s and 2s, only two distributions differed at greater than the 95% confidence level for the K-S test: the magnitude of the nuclear component, and the radial color gradient outside the nucleus. The former is expected. The latter could be consistent with some proposed evolutionary models. There is some suggestion that other parameters may differ, but at a lower confidence level. Color contour maps and results from all tests performed (K-S test and Wilcoxon-Rank Sum Test) are presented.

  10. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  11. VizieR Online Data Catalog: BH masses & host galaxy dispersion vel. (van den Bosch, 2016)

    NASA Astrophysics Data System (ADS)

    van den Bosch, R. C. E.

    2017-02-01

    According to the virial theorem, all gravitational systems in equilibrium sit on a plane in the three-dimensional parameter space defined by their mass, size, and second moment of the velocity tensor. While these quantities cannot be directly observed, there are suitable proxies: the luminosity Lk, half-light radius Re, and dispersion σe. These proxies indeed lie on a very tight fundamental plane (FP). How do the black holes (BHs) in the centers of galaxies relate to the FP? Their masses are known to exhibit no strong correlation with total galaxy mass, but they do correlate weakly with bulge mass (when present), and extremely well with the velocity dispersion through the M{bullet}∝σe5.4 relation. These facts together imply that a tight plane must also exist defined by BH mass, total galaxy mass, and size. Here, I show that this is indeed the case using a heterogeneous set of 230 BHs. The sample includes BHs from zero to 10 billion solar masses and host galaxies ranging from low surface brightness dwarfs, through bulgeless disks, to brightest cluster galaxies. The resulting BH-size-luminosity relation M{bullet}∝(Lk/Re)3.8 has the same amount of scatter as the M*-σ relation and is aligned with the galaxy FP, such that it is just a reprojection of σe. The inferred BH-size-mass relation is M{bullet}∝(M*/Re)2.9. These relationships are universal and extend to galaxies without bulges. This implies that the BH is primarily correlated with its global velocity dispersion and not with the properties of the bulge. I show that the classical bulge-mass relation is a projection of the M*-σ relation. When the velocity dispersion cannot be measured (at high z or low dispersions), the BH-size-mass relation should be used as a proxy for BH mass in favor of just galaxy or bulge mass. (4 data files).

  12. HUBBLE SPACE TELESCOPE Observations of the Host Galaxy of GRB 970508

    NASA Astrophysics Data System (ADS)

    Fruchter, A. S.; Pian, E.; Gibbons, R.; Thorsett, S. E.; Ferguson, H.; Petro, L.; Sahu, K. C.; Livio, M.; Caraveo, P.; Frontera, F.; Kouveliotou, C.; Macchetto, D.; Palazzi, E.; Pedersen, H.; Tavani, M.; van Paradijs, J.

    2000-12-01

    We report on observations of the field of GRB 970508 made in 1998 early August, 454 days after outburst, with the STIS CCD camera on board the Hubble Space Telescope (HST). The images, taken in open filter (50CCD) mode, clearly reveal the presence of a galaxy that was overwhelmed in earlier (1997 June) HST images by emission from the optical transient (OT). The galaxy is regular in shape: after correcting for the HST/STIS PSF, it is well fitted by an exponential disk with a scale length of 0.046"+/-0.006" and an ellipticity of 0.70+/-0.07. All observations are marginally consistent with a continuous decline in OT emission as t-1.3 beginning 2 days after outburst; however, we find no direct evidence in the late-time HST image for emission from the OT, and the surface brightness profile of the galaxy is most regular if we assume that the OT emission is negligible, suggesting that the OT may have faded more rapidly at late times than is predicted by the power-law decay. Due to the wide bandwidth of the STIS clear mode, the estimated magnitude of the galaxy is dependent on the galaxy spectrum that is assumed. Using colors obtained from late-time ground-based observations to constrain the spectrum, we find V=25.4+/-0.15, a few tenths of a magnitude brighter than earlier ground-based estimates that were obtained by observing the total light of the galaxy and the OT and then subtracting the estimated OT brightness, assuming that it fades as a single power law. This again suggests that the OT may have faded faster at late time than the power law predicts. The position of the OT agrees with that of the isophotal center of the galaxy to 0.01", which, at the galaxy redshift z=0.83, corresponds to an offset from the center of the host of <~70 pc. This remarkable agreement raises the possibility that the gamma-ray burst may have been associated with either an active galactic nucleus or a nuclear starburst.

  13. Uncovering hidden black holes: Obscured AGN and their relationship to the host galaxy

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.

    that accurately trace AGN flux, we have shown that these processes are significantly correlated. This link suggests that supermassive black holes and their host galaxies grow simultaneously in the local universe.

  14. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil; Coppi, Paolo; Cardamone, Carolin N.; Bamford, Steven P.; Treister, Ezequiel; Lintott, Chris J.; Kaviraj, Sugata; Sarzi, Marc; Keel, William C.; Masters, Karen L.; Nichol, Robert C.; Thomas, Daniel; Ross, Nicholas P.; Andreescu, Dan; Murray, Phil; Raddick, M. Jordan; Szalay, Alex S.; Slosar, Anze

    2010-03-01

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram and their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.

  15. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems.

    PubMed

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J Xavier; Rafelski, Marc; Carilli, Chris L; Wolfe, Arthur M

    2017-03-24

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C ii] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies. Copyright © 2017, American Association for the Advancement of Science.

  16. [C II] 158-μm emission from the host galaxies of damped Lyman-alpha systems

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J. Xavier; Rafelski, Marc; Carilli, Chris L.; Wolfe, Arthur M.

    2017-03-01

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C II] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies.

  17. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s‑1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s‑1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  18. A QSO host galaxy and its Lyα emission at z = 6.43

    NASA Astrophysics Data System (ADS)

    Goto, Tomotsugu; Utsumi, Yousuke; Furusawa, Hisanori; Miyazaki, Satoshi; Komiyama, Yutaka

    2009-12-01

    Host galaxies of highest redshift quasi-stellar objects (QSOs) are of interest; they provide us with a valuable opportunity to investigate physics relevant to the starburst-active galactic nuclei (AGN) connection at the earliest epoch of the Universe, with the most luminous black holes. Here, we report an optical detection of an extended structure around a QSO at z = 6.43 in deep z'- and zr-band images of the Subaru/Suprime-Cam. Our target is CFHQS J2329-0301 (z = 6.43), the highest redshift QSO currently known. We have carefully subtracted a point spread function (PSF) constructed using nearby stars from the images. After the PSF (QSO) subtraction, a structure in the z' band extends more than 4arcsec on the sky (Re = 11 kpc), and, thus, is well resolved (16σ detection). The PSF-subtracted zr-band structure is in a similar shape to that in the z' band, but less significant with a 3σ detection. In the z' band, a radial profile of the QSO+host shows a clear excess over that of the averaged PSF in 0.8-3 arcsec radius. Since the z' band includes a Lyα emission at z = 6.43, we suggest the z' flux is a mixture of the host (continuum light) and its Lyα emission, whereas the zr-band flux is from the host. Through a SED modelling, we estimate 40 per cent of the PSF-subtracted z'-band light is from the host (continuum) and 60 per cent is from Lyα emission. The absolute magnitude of the host is M1450 = -23.9 (cf. M1450 = -26.4 for the QSO). A lower limit of the SFR(Lyα) is 1.6Msolar yr-1 with stellar mass ranging from 6.2 × 108 to 1.1 × 1010Msolar when 100 Myr of age is assumed. The detection shows that a luminous QSO is already harboured by a large, star-forming galaxy in the early Universe only after ~840 Myr after the big bang. The host may be a forming giant galaxy, co-evolving with a super-massive black hole. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. E-mail: tomo@ifa.hawaii.edu ‡ JSPS SPD

  19. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon; Trichas, Markos; Goto, Tomo; Malkan, Matt; Ruiz, Angel; Lee, Hyung Mok; Kim, Seong Jin; Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke; Shim, Hyunjin; Hanami, Hitoshi; Serjeant, Stephen; White, Glenn J.; and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  20. LATE-TIME OBSERVATIONS OF GRB 080319B: JET BREAK, HOST GALAXY, AND ACCOMPANYING SUPERNOVA

    SciTech Connect

    Tanvir, N. R.; O'Brien, P. T.; Wiersema, K.; Starling, R. L. C.; Rol, E.; Levan, A. J.; Svensson, K.; Fruchter, A. S.; Granot, J.; Jakobsson, P.; Fynbo, J.; Hjorth, J.; Curran, P. A.; Burrows, D. N.; Genet, F.

    2010-12-10

    The Swift-discovered GRB 080319B was by far the most distant source ever observed at naked-eye brightness, reaching a peak apparent magnitude of 5.3 at a redshift of z = 0.937. We present our late-time optical (Hubble Space Telescope, Gemini, and Very Large Telescope) and X-ray (Chandra) observations, which confirm that an achromatic break occurred in the power-law afterglow light curve at {approx}11 days post-burst. This most likely indicates that the gamma-ray burst (GRB) outflow was collimated, which for a uniform jet would imply a total energy in the jet E{sub jet} {approx}> 10{sup 52} erg. Our observations also show a late-time excess of red light, which is well explained if the GRB was accompanied by a supernova (SN), similar to those seen in some other long-duration GRBs. The latest observations are dominated by light from the host and show that the GRB took place in a faint dwarf galaxy (r(AB) {approx} 27.0, rest frame M{sub B} {approx} -17.2). This galaxy is small even by the standards of other GRB hosts, which is suggestive of a low-metallicity environment. Intriguingly, the properties of this extreme event-a small host and bright SN-are entirely typical of the very low luminosity bursts such as GRB 980425 and GRB 060218.

  1. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared galaxies in the short GRB

  2. Study of a homogeneous QSO sample: relations between the QSO and its host galaxy

    NASA Astrophysics Data System (ADS)

    Letawe, Y.; Letawe, G.; Magain, P.

    2010-04-01

    We analyse a sample of 69 quasi-stellar objects (QSOs) which have been randomly selected in a complete sample of 104 QSOs (R <= 18,0.142 < z < 0.198,δ < 10°). 60 have been observed with the NTT/SUSI2 at La Silla, through two filters in the optical band (WB 655 and V 812), and the remaining nine are taken from archive data bases. The filter V 812 contains the redshifted Hβ and forbidden [OIII] emission lines, while WB 655 covers a spectral region devoid of emission lines, thus measuring the QSO and stellar continua. The contributions of the QSO and the host are separated thanks to the MCS deconvolution algorithm, allowing a morphological classification of the host, and the computation of several parameters such as the host and nucleus absolute V magnitude, distance between the luminosity centre of the host and the QSO and colour of the host and nucleus. We define a new asymmetry coefficient, independent of any galaxy models and well suited for QSO host studies. The main results from this study are (i) 25 per cent of the total number of QSO hosts are spirals, 51 per cent are ellipticals and 60 per cent show signs of interaction, (ii) highly asymmetric systems tend to have a higher gas ionization level and (iii) elliptical hosts contain a substantial amount of ionized gas and some show off-nuclear activity. These results agree with hierarchical models merger driven evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme IDs 77.B-0229 and 78.B-0081. E-mail: gletawe@ulg.ac.be

  3. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 < z < 0.6 selected from the Sloan Digital Sky Survey. For the first time, we combine host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to <30 per cent of elliptical galaxies that are highly star forming at z ˜ 0.5. Ionized gas signatures are uncorrelated with faint stellar discs (if present), confirming that the ionized gas is not concentrated in a disc. Scattering cones and [O III] ionized gas velocity field are aligned with the forward scattering cones being co-spatial with the blue-shifted side of the velocity field, suggesting the high-velocity gas is indeed photo-ionized by the quasar. Based on the host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  4. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  5. Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    NASA Astrophysics Data System (ADS)

    Frederiksen, Teddy F.; Graur, Or; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2014-03-01

    Context. The Subaru Deep Field (SDF) Supernova Survey discovered ten Type Ia supernovae (SNe Ia) in the redshift range 1.5 < z < 2.0, determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate. Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 ± 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 ± 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 089.A-0739.

  6. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    SciTech Connect

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-04-20

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  7. Can supermassive black holes influence the evolution of their host galaxies?

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J.; Braito, V.; Veilleux, S.; Reynolds, C.; Lobban, A.

    2016-06-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in an ultraluminous infrared galaxy and its connection with a large-scale molecular outflow observed in the IR with Herschel, suggesting a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, suggest that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes, to investigate the possible acceleration mechanisms and dynamics of these winds. XMM-Newton provided a fundamental contribution to these studies and it will still provide the highest effective area in the critical Fe K band of the spectrum until the launch of Athena. Very important improvements are expected from the high energy resolution of the Hitomi X-ray Observatory.

  8. Probing the Interplay between AGN Outflows and their Host Galaxies: - Optical Integral Field Unit and Radio Imaging

    NASA Astrophysics Data System (ADS)

    Shastri, Prajval; Dopita, Michael; Kewley, Lisa; Davies, Rebecca; Scharwaechter, Julia; Sutherland, Ralph; Kharb, Preeti; Maithil, Jaya; Sundar, M. N.; Pavana, M.; Radhakrishnan, Vikram; Hampton, Elise; James, Bethan; Ho, I-Ting; Gupta, Maitrayee; Bhatt, Harish; Srivastava, Shweta; Banfield, Julie; Jin, Chichuan

    2015-08-01

    It is well-known that accreting supermassive black holes impact star-formation processes in their host galaxies in a significant way, perhaps contributing to the well-known but poorly understood scaling relationships of supermassive black holes. In this context we have undertaken a spectroscopic imaging survey and follow-up radio observations of a large sample of nearby active galaxies in order to investigate connections between their nuclear properties and the extended emission-line regions, star-formation regions and radio structures. We will present some results from the optical (WiFeS IFU on the Siding Spring 2.3m) and radio imaging from this investigation. The results place important constraints on models of the interplay between AGN outflows and their host galaxies, especially during the earlier phases of cosmic galaxy evolution, when stellar mass assembly and black hole growth both peak.

  9. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 < z < 0.06) unobscured AGN to study the link between AGN and their host galaxies. The primary CARS observations come from the MUSE integral field unit on the VLT, and complementary multi-wavelength observations have been approved from SOFIA, Chandra, VLA, HST, and others. We compare the stellar kinematics of active galaxies from CARS to similar inactive galaxies. We then use kinemetry to estimate the degree of dynamical disturbance, to determine whether active nuclei are preferentially hosted in dynamically disturbed or merging systems. Finally, we highlight the discovery of an AGN that has changed spectral type not once, but twice. So called ‘changing look’ AGN are an uncommon phenomenon, but twice changed AGN are much rarer. This AGN first transitioned from a narrow line AGN (type 2) to a broad line AGN (type 1) in the 1980s. It was recently observed as part of CARS. Examination of the MUSE data for this particular source showed that it no longer had the spectral features typical of a type 1 AGN. The continuum emission from the accretion disk was no longer visible and the broad lines were dramatically diminished. In this talk we describe the possible reasons for this change, supported by analysis of multi-epoch optical photometry and

  10. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  11. Extracting Host Galaxy Dispersion Measure and Constraining Cosmological Parameters using Fast Radio Burst Data

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing

    2016-10-01

    The excessive dispersion measures (DMs) and high Galactic latitudes of fast radio bursts (FRBs) hint toward a cosmological origin of these mysterious transients. Methods of using measured DM and redshift z to study cosmology have been proposed, but one needs to assume a certain amount of DM contribution from the host galaxy ({{DM}}{HG}) in order to apply those methods. We introduce a slope parameter β (z)\\equiv d{ln}< {{DM}}{{E}}> /d{ln}z (where {{DM}}{{E}} is the observed DM subtracting the Galactic contribution), which can be directly measured when a sample of FRBs have z measured. We show that < {{DM}}{HG}> can be roughly inferred from β and the mean values, \\overline{< {{DM}}{{E}}> } and \\bar{z}, of the sample. Through Monte Carlo simulations, we show that the mean value of local host galaxy DM, < {{DM}}{HG,{loc}}> , along with other cosmological parameters (mass density {{{Ω }}}m in the ΛCDM model, and the IGM portion of the baryon energy density {{{Ω }}}b{f}{IGM}), can be independently measured through Markov Chain Monte Carlo fitting to the data.

  12. The impact of dust in host galaxies on quasar luminosity functions

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Okamoto, Takashi; Enoki, Motohiro; Nagashima, Masahiro; Kobayashi, Masakazu A. R.; Ishiyama, Tomoaki; Makiya, Ryu

    2015-06-01

    We have investigated effects of dust attenuation on quasar luminosity functions at z ˜ 2 using a semi-analytic galaxy formation model combined with a large cosmological N-body simulation. We estimate the dust attenuation of quasars self-consistently with that of galaxies by considering the dust in their host bulges. We find that the luminosity of the bright quasars is strongly dimmed by the dust attenuation, ˜2 mag in the B-band. Assuming the empirical bolometric corrections for active galactic nuclei (AGNs) by Marconi et al., we find that this dust attenuation is too strong to explain the B-band and X-ray quasar luminosity functions simultaneously. We consider two possible mechanisms that weaken the dust attenuation. As such a mechanism, we introduce a time delay for AGN activity, that is, gas fuelling to a central black hole starts sometime after the beginning of the starburst induced by a major merger. The other is the anisotropy in the dust distribution. We find that in order to make the dust attenuation of the quasars negligible, either the gas accretion into the black holes has to be delayed at least three times the dynamical time-scale of their host bulges or the dust covering factor is as small as ˜0.1.

  13. COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. V. THE RELATION BETWEEN BLACK HOLE MASS AND HOST GALAXY LUMINOSITY FOR A SAMPLE OF 79 ACTIVE GALAXIES

    SciTech Connect

    Park, Daeseong; Woo, Jong-Hak; Bennert, Vardha N.; Treu, Tommaso; Auger, Matthew W.; Malkan, Matthew A. E-mail: woo@astro.snu.ac.kr E-mail: vbennert@calpoly.edu E-mail: malkan@astro.ucla.edu

    2015-02-01

    We investigate the cosmic evolution of the black hole (BH) mass-bulge luminosity relation using a sample of 52 active galaxies at z ∼ 0.36 and z ∼ 0.57 in the BH mass range of 10{sup 7.4}-10{sup 9.1} M {sub ☉}. By consistently applying multicomponent spectral and structural decomposition to high-quality Keck spectra and high-resolution Hubble Space Telescope images, BH masses (M {sub BH}) are estimated using the Hβ broad emission line combined with the 5100 Å nuclear luminosity, and bulge luminosities (L {sub bul}) are derived from surface photometry. Comparing the resulting M {sub BH} – L {sub bul} relation to local active galaxies and taking into account selection effects, we find evolution of the form M {sub BH}/L {sub bul}∝(1 + z){sup γ} with γ = 1.8 ± 0.7, consistent with BH growth preceding that of the host galaxies. Including an additional sample of 27 active galaxies with 0.5 < z < 1.9 taken from the literature and measured in a consistent way, we obtain γ = 0.9 ± 0.7 for the M {sub BH} – L {sub bul} relation and γ = 0.4 ± 0.5 for the M {sub BH}-total host galaxy luminosity (L {sub host}) relation. The results strengthen the findings from our previous studies and provide additional evidence for host galaxy bulge growth being dominated by disk-to-bulge transformation via minor mergers and/or disk instabilities.

  14. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    SciTech Connect

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.

  15. Comparison of an X-ray-selected sample of massive lensing clusters with the MareNostrum Universe ΛCDM simulation

    NASA Astrophysics Data System (ADS)

    Meneghetti, M.; Fedeli, C.; Zitrin, A.; Bartelmann, M.; Broadhurst, T.; Gottlöber, S.; Moscardini, L.; Yepes, G.

    2011-06-01

    Context. A long-standing problem of strong-lensing by galaxy clusters is the observed high rate of giant gravitational arcs that are not predicted in the framework of the "standard" cosmological model. This is known as the "arc statistics problem". Recently, several other inconsistencies between the theoretical expectations and observations have been claimed regarding the large size of the Einstein rings and the high concentrations of few clusters with strong-lensing features. All these problems consistently indicate that observed galaxy clusters may be stronger gravitational lenses than expected. Aims: We aim at better understanding these problems by comparing the lensing properties of well defined cluster samples with those of a large set of numerically simulated objects. Methods: We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for a sample of 12 MACS clusters at z > 0.5 from the literature. Results: We find that three clusters in the MACS sample have lensing cross sections and Einstein ring sizes larger than any simulated cluster in the MareNostrum Universe. We use the lensing cross sections of simulated and real clusters to estimate the number of giant arcs that should arise from lensed sources at z = 2. We find that simulated clusters produce ~50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by ~25% between simulations and observations. We estimate that the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of ~2 larger than expected from the ΛCDM model because of cluster triaxiality and orientation biases that affect the lenses with the largest cross sections. In particular, we predict that for ~20% of the clusters in the MACS sample

  16. Hubble Space Telescope observations of the host galaxies and environments of calcium-rich supernovae

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Levan, A. J.; James, P. A.; Angus, C. R.; Church, R. P.; Davies, M. B.; Tanvir, N. R.

    2016-05-01

    Calcium-rich supernovae (SNe) represent a significant challenge for our understanding of the fates of stellar systems. They are less luminous than other SN types and they evolve more rapidly to reveal nebular spectra dominated by strong calcium lines with weak or absent signatures of other intermediate- and iron-group elements, which are seen in other SNe. Strikingly, their explosion sites also mark them out as distinct from other SN types. Their galactocentric offset distribution is strongly skewed to very large offsets (˜1/3 are offset >20 kpc), meaning they do not trace the stellar light of their hosts. Many of the suggestions to explain this extreme offset distribution have invoked the necessity for unusual formation sites such as globular clusters or dwarf satellite galaxies, which are therefore difficult to detect. Building on previous work attempting to detect host systems of nearby Ca-rich SNe, we here present Hubble Space Telescope imaging of five members of the class - three exhibiting large offsets and two coincident with the disc of their hosts. We find no underlying sources at the explosion sites of any of our sample. Combining with previous work, the lack of a host system now appears to be a ubiquitous feature amongst Ca-rich SNe. In this case the offset distribution is most readily explained as a signature of high-velocity progenitor systems that have travelled significant distances before exploding.

  17. The influence of host galaxy morphology on the properties of Type Ia supernovae from the JLA compilation

    NASA Astrophysics Data System (ADS)

    Henne, V.; Pruzhinskaya, M. V.; Rosnet, P.; Léget, P.-F.; Ishida, E. E. O.; Ciulli, A.; Gris, P.; Says, L.-P.; Gangler, E.

    2017-02-01

    The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found.   We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant.   We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.

  18. A Catalog Sample of Low-mass Galaxies Observed in X-Rays with Central Candidate Black Holes

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; Manni, L.; De Paolis, F.; Giordano, M.; Ingrosso, G.

    2017-03-01

    We present a sample of X-ray-selected candidate black holes in 51 low-mass galaxies with z ≤ 0.055 and masses up to 1010 M ⊙ obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalog. We have also searched in the available catalogs for radio counterparts of the black hole candidates and find that 19 of the previously selected sources also have a radio counterpart. Our results show that about 37% of the galaxies of our sample host an X-ray source (associated with a radio counterpart) spatially coincident with the galaxy center, in agreement with other recent works. For these nuclear sources, the X-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes, which are in the range of 104–2 × 108 M ⊙ (with a median value of ≃3 × 107 M ⊙ and eight candidates having masses below 107 M ⊙). This result, while suggesting that X-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes it even more urgent to explain how such massive objects formed in galaxies. Of course, dedicated follow-up observations both in the X-ray and radio bands, as well as in the optical, are necessary in order to confirm our results.

  19. Constraining the properties of AGN host galaxies with spectral energy distribution modelling

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Charmandaris, V.; Georgakakis, A.; Bernhard, E.; Mitchell, P. D.; Buat, V.; Elbaz, D.; LeFloc'h, E.; Lacey, C. G.; Magdis, G. E.; Xilouris, M.

    2015-04-01

    Detailed studies of the spectral energy distribution (SED) of normal galaxies have increasingly been used to understand the physical mechanism dominating their integrated emission, mainly owing to the availability of high quality multi-wavelength data from the UV to the far-infrared (FIR). However, systems hosting dust-enshrouded nuclear starbursts and/or an accreting supermassive black hole (an active galactic nucleus or AGN) are especially challenging to study. This is due to the complex interplay between the heating by massive stars and the AGN, the absorption and emission of radiation from dust, as well as the presence of the underlying old stellar population. We used the latest release of CIGALE, a fast state-of-the-art galaxy SED-fitting model relying on energy balance, to study the influence of an AGN in a self consistent manner in estimating both the star formation rate (SFR) and stellar mass in galaxies, as well as to calculate the contribution of the AGN to the power output of the host. Using the semi-analytical galaxy formation model galform, we created a suite of mock galaxy SEDs using realistic star formation histories (SFH). We also added an AGN of Type-1, Type-2, or intermediate-type whose contribution to the bolometric luminosity can be variable. We performed an SED-fitting of these catalogues with CIGALE, assuming three different SFHs: a single-exponentially-decreasing (1τ-dec), a double-exponentially-decreasing (2τ-dec), and a delayed SFH. Constraining the overall contribution of an AGN to the total infrared luminosity (fracAGN) is very challenging for fracAGN< 20%, with uncertainties of ~5-30% for higher fractions depending on the AGN type, while FIR and sub-mm are essential. The AGN power has an impact on the estimation of M∗ in Type-1 and intermediate-type AGNs but has no effect on galaxies hosting Type-2 AGNs. We find that in the absence of AGN emission, the best estimates of M∗ are obtained using the 2τ-dec model but at the expense of

  20. The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Podsiadlowski, Philipp

    2007-03-01

    We investigate the difference between the host galaxy properties of core-collapse supernovae (CC SNe) and long-duration gamma-ray bursts (LGRBs), and quantify a possible metallicity dependence of the efficiency of producing LGRBs. We use a sample of 16 CC SNe and 16 LGRBs from Fruchter et al. which have similar redshift distributions to eliminate galaxy evolution biases. We make a forward prediction of their host galaxy luminosity distributions from the overall cosmic metallicity distribution of star formation. The latter is based on luminosity functions, star formation rates (SFRs) and luminosity-metallicity (L-Z) relations of galaxies. This approach is supported by the finding that LGRB hosts follow the L-Z relations of star-forming galaxies. We then compare predictions for metallicity-dependent event efficiencies with the observed host data. We find that ultraviolet-based SFR estimates predict the host distribution of CC SNe perfectly well in a metallicity-independent form. In contrast, LGRB hosts are on average fainter by one magnitude, almost as faint as the Large Magellanic Cloud. Assuming this to be a metallicity effect, the present data are insufficient to discriminate between a sharp cut-off and a soft decrease in efficiency towards higher metallicity. For a sharp cut-off, however, we find a best value for the cut-off metallicity, as reflected in the oxygen abundance, 12 + log(O/H)lim ~= 8.7 +/- 0.3 at 95 per cent confidence including systematic uncertainties, in the calibration of Asplund, Grevesse & Sauval. This value is somewhat lower than the traditionally quoted value for the Sun, but is comparable to the revised solar oxygen abundance. LGRB models that require sharp metallicity cut-offs well below approximately one-half the revised solar metallicity appear to be effectively ruled out, as they would require fainter LGRB hosts than those that are observed. We also discuss the likely implications of the still ongoing metallicity `calibration debate'.

  1. The obscured hyper-energetic GRB 120624B hosted by a luminous compact galaxy at z = 2.20

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Campana, S.; Thöne, C. C.; D'Avanzo, P.; Sánchez-Ramírez, R.; Melandri, A.; Gorosabel, J.; Ghirlanda, G.; Veres, P.; Martín, S.; Petitpas, G.; Covino, S.; Fynbo, J. P. U.; Levan, A. J.

    2013-09-01

    Context. Gamma-ray bursts (GRBs) are the most luminous explosions that we can witness in the Universe. Studying the most extreme cases of these phenomena allows us to constrain the limits for the progenitor models. Aims: In this Letter, we study the prompt emission, afterglow, and host galaxy of GRB 120624B, one of the brightest GRBs detected by Fermi, to derive the energetics of the event and characterise the host galaxy in which it was produced. Methods: Following the high-energy detection we conducted a multi-wavelength follow-up campaign, including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray observations from the Chandra X-ray Observatory and at submillimetre/millimetre wavelengths from SMA. Optical/NIR spectroscopy was performed with X-shooter/VLT. Results: We detect the X-ray and NIR afterglow of the burst and determine a redshift of z = 2.1974 ± 0.0002 through identification of emission lines of [O ii], [O iii] and H-α from the host galaxy of the GRB. This implies an energy release of Eiso,γ = (3.0 ± 0.2) × 1054 erg, amongst the most luminous ever detected. The observations of the afterglow indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2 < 1.6 kpc, but luminous, at L ~ 1.5 L∗ and has a star formation rate of 91 ± 6 M⊙/yr as derived from Hα. Conclusions: As for other highly obscured GRBs, GRB 120624B is hosted by a luminous galaxy, which we also prove to be compact, with very intense star formation. It is one of the most luminous host galaxies associated with a GRB, showing that the host galaxies of long GRBs are not always blue dwarf galaxies, as previously thought. Based on observations collected at the European Southern Observatory, Chile, with programmes 089.D-0256 and 090.D-0667, at the Gran Telescopio Canarias with programmes GTC49-12A and GTC58-12B, at the Submillimeter Array with programme 2012A-S001, at CAHA with programme F13-3.5-031, at Liverpool Telescope with programme CL13A03

  2. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Levan, A. J.; Tanvir, N. R.; Fynbo, J. P. U.; McGuire, J. T. W.; Perley, D. A.; Angus, C. R.; Bloom, J. S.; Conselice, C. J.; Fruchter, > A. S.; Hjorth, J.; Jakobsson, P.; Starling, R. L. C.

    2017-01-01

    We present the results of a Hubble Space Telescope WFC3/F160W SNAPSHOT survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z < 3. We have non-detections of hosts at the locations of 4 bursts. Sufficient accuracy to astrometrically align optical afterglow images and determine the location of the LGRB within its host was possible for 31/35 detected hosts. In agreement with other work, we find the luminosity distribution of LGRB hosts is significantly fainter than that of a star formation rate-weighted field galaxy sample over the same redshift range, indicating LGRBs are not unbiasedly tracing the star formation rate. Morphologically, the sample of LGRB hosts are dominated by spiral-like or irregular galaxies. We find evidence for evolution of the population of LGRB hosts towards lower-luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and super-luminous supernova (SLSN) hosts. The galactocentric projected-offset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst.

  3. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Levan, A. J.; Tanvir, N. R.; Fynbo, J. P. U.; McGuire, J. T. W.; Perley, D. A.; Angus, C. R.; Bloom, J. S.; Conselice, C. J.; Fruchter, A. S.; Hjorth, J.; Jakobsson, P.; Starling, R. L. C.

    2017-05-01

    We present the results of a Hubble Space Telescope WFC3/F160W Snapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z < 3. We have non-detections of hosts at the locations of four bursts. Sufficient accuracy to astrometrically align optical afterglow images and determine the location of the LGRB within its host was possible for 31/35 detected hosts. In agreement with other work, we find the luminosity distribution of LGRB hosts is significantly fainter than that of a star formation rate-weighted field galaxy sample over the same redshift range, indicating LGRBs are not unbiasedly tracing the star formation rate. Morphologically, the sample of LGRB hosts is dominated by spiral-like or irregular galaxies. We find evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projected-offset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst.

  4. Galaxy And Mass Assembly: search for a population of high-entropy galaxy groups

    NASA Astrophysics Data System (ADS)

    Pearson, R. J.; Ponman, T. J.; Norberg, P.; Robotham, A. S. G.; Babul, A.; Bower, R. G.; McCarthy, I. G.; Brough, S.; Driver, S. P.; Pimbblet, K.

    2017-08-01

    Observations with the Chandra X-ray Observatory are used to examine the hot gas properties within a sample of 10 galaxy groups selected from the Galaxy And Mass Assembly survey's optical Friends-of-Friends group catalogue. Our groups have been screened to eliminate spurious and unrelaxed systems, and the effectiveness of this procedure is demonstrated by the detection of intergalactic hot gas in 80 per cent of our sample. However, we find that 9 of the 10 are X-ray underluminous by a mean factor of ∼4 compared to typical X-ray-selected samples. Consistent with this, the majority of our groups have gas fractions that are lower and gas entropies somewhat higher than those seen in typical X-ray-selected samples. Two groups, which have high 2σ lower limits on their gas entropy, are candidates for the population of high-entropy groups predicted by some active galactic nucleus feedback models.

  5. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    SciTech Connect

    Nobuta, K.; Akiyama, M.; Ueda, Y.; Hiroi, K.; Ohta, K.; Iwamuro, F.; Yabe, K.; Moritani, Y.; Sumiyoshi, M.; Maihara, T.; Watson, M. G.; Silverman, J.; Tamura, N.; Kimura, M.; Takato, N.; Dalton, G.; Lewis, I.; Bonfield, D.; Lee, H.; Curtis-Lake, E.; and others

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIR spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.

  6. X-shooter reveals powerful outflows in z ˜ 1.5 X-ray selected obscured quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Bongiorno, A.; Cresci, G.; Perna, M.; Marconi, A.; Mainieri, V.; Maiolino, R.; Salvato, M.; Lusso, E.; Santini, P.; Comastri, A.; Fiore, F.; Gilli, R.; La Franca, F.; Lanzuisi, G.; Lutz, D.; Merloni, A.; Mignoli, M.; Onori, F.; Piconcelli, E.; Rosario, D.; Vignali, C.; Zamorani, G.

    2015-01-01

    We present X-shooter at Very Large Telescope observations of a sample of 10 luminous, X-ray obscured quasi-stellar objects (QSOs) at z ˜ 1.5 from the XMM-COSMOS survey, expected to be caught in the transitioning phase from starburst to active galactic nucleus (AGN)-dominated systems. The main selection criterion is X-ray detection at bright fluxes (LX ≳ 1044 erg s-1) coupled to red optical-to-near-infrared-to-mid-infrared colours. Thanks to its large wavelength coverage, X-shooter allowed us to determine accurate redshifts from the presence of multiple emission lines for five out of six targets for which we had only a photometric redshift estimate, with an 80 per cent success rate, significantly larger than what is observed in similar programs of spectroscopic follow-up of red QSOs. We report the detection of broad and shifted components in the [O III] λλ5007, 4959 complexes for six out of eight sources with these lines observable in regions free from strong atmospheric absorptions. The full width at half-maximum (FWHM) associated with the broad components are in the range FWHM ˜ 900-1600 km s-1, larger than the average value observed in Sloan Digital Sky Survey type 2 AGN samples at similar observed [O III] luminosity, but comparable to those observed for QSO/ultraluminous infrared galaxies systems for which the presence of kpc scale outflows has been revealed through integral field unit spectroscopy. Although the total outflow energetics (inferred under reasonable assumptions) may be consistent with winds accelerated by stellar processes, we favour an AGN origin for the outflows given the high outflow velocities observed (v > 1000 km s-1) and the presence of strong winds also in objects undetected in the far-infrared.

  7. THE ACS VIRGO CLUSTER SURVEY. XVII. THE SPATIAL ALIGNMENT OF GLOBULAR CLUSTER SYSTEMS WITH EARLY-TYPE HOST GALAXIES

    SciTech Connect

    Wang Qiushi; Peng, Eric W.; Blakeslee, John P.; Cote, Patrick; Ferrarese, Laura; Jordan, Andres; Mei, Simona; West, Michael J.

    2013-06-01

    We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.

  8. Revisiting the Abundance Gradient in the Maser Host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2011-03-01

    New spectroscopic observations of 36 H II regions in NGC 4258 obtained with the Gemini telescope are combined with existing data from the literature to measure the radial oxygen abundance gradient in this galaxy. The [O III]λ4363 auroral line was detected in four of the outermost targets (17-22 kpc from the galaxy center), allowing a determination of the electron temperature Te of the ionized gas. From the use of different calibrations of the R 23 abundance indicator, an oxygen abundance gradient of approximately -0.012 ± 0.002 dex kpc-1 is derived. Such a shallow gradient, combined with the difference in the distance moduli measured from the Cepheid period-luminosity relation by Macri et al. between two distinct fields in NGC 4258, would yield an unrealistically strong effect of metallicity on the Cepheid distances. This strengthens the suggestion that systematic biases might affect the Cepheid distance of the outer field. Evidence for a similar effect in the differential study of M33 by Scowcroft et al. is presented. A revision of the transformation between strong-line and Te -based abundances in Cepheid-host galaxies is discussed. In the Te abundance scale, the oxygen abundance of the inner field of NGC 4258 is found to be comparable with the LMC value. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  9. INSIGHT INTO ACTIVE GALACTIC NUCLEUS AND HOST GALAXY CO-EVOLUTION FROM HARD X-RAY EMISSION

    SciTech Connect

    Wang, J.; Zhou, X. L.; Wei, J. Y.

    2013-05-10

    We study the issue of active galactic nucleus (AGN) and host co-evolution by focusing on the correlation between the hard X-ray emission from central AGNs and the stellar populations of the host galaxies. Focusing on galaxies with strong H{alpha} line emission (EW(H{alpha}) > 5 A), both X-ray and optical spectral analyses are performed on 67 (partially) obscured AGNs that are selected from the XMM-Newton 2XMMi/SDSS-DR7 catalog originally cross-matched by Pineau et al. The sample allows us to study central AGN activity and host galaxy activity directly and simultaneously in individual objects. Combining the spectral analysis in both bands reveals that the older the stellar population of the host galaxy, the harder the X-ray emission will be, which was missed in our previous study where ROSAT hardness ratios were used. By excluding the contamination from host galaxies and from jet beaming emission, the correlation indicates that Compton cooling in the accretion disk corona decreases with the mean age of the stellar population. We argue that this correlation is related to the correlation of L/L{sub Edd} with the host stellar population. In addition, the [O I]/H{alpha} and [S II]/H{alpha} narrow-line ratios are identified to correlate with the spectral slope in hard X-rays, which can be inferred from the currently proposed evolution of the X-ray emission because of the confirmed tight correlations between the two line ratios and stellar population age.

  10. The spectral energy distributions, host galaxies and environments of variability-selected active galactic nuclei in GOODS-South

    NASA Astrophysics Data System (ADS)

    Villforth, Carolin; Sarajedini, Vicki; Koekemoer, Anton

    2012-10-01

    Variability selection has been proposed as a powerful tool for identifying both low-luminosity active galactic nuclei (AGN) and those with unusual spectral energy distributions. However, a systematic study of sources selected in such a way has been lacking. In this paper, we present the multiwavelength properties of the variability-selected AGN in GOODS-South. We demonstrate that variability selection indeed reliably identifies AGN, predominantly of low luminosity. We find contamination from stars as well as a very small sample of sources that show no sign of AGN activity, their number is consistent with the expected false positive rate. We also study the host galaxies and environments of the AGN in the sample. Disturbed host morphologies are relatively common. The host galaxies span a wide range in the level of ongoing star formation. However, massive starbursts are only present in the hosts of the most luminous AGN in the sample. There is no clear environmental preference for the AGN sample in general but we find that the most luminous AGN on average avoid dense regions while some low-luminosity AGN hosted by late-type galaxies are found near the centres of groups. AGN in our sample have closer nearest neighbours than the general galaxy population. We find no indications that major mergers are a dominant triggering process for the moderate- to low-luminosity AGN in this sample. The environments and host galaxy properties instead suggest secular processes, in particular tidal processes at first passage and minor mergers, as likely triggers for the objects studied. This study demonstrates the strength of variability selection for AGN and gives first hints at possibly triggering mechanisms for high-redshift low-luminosity AGN.

  11. Detection Of HI Absorption In The Host Galaxy Of Quasar, CTA 21

    NASA Astrophysics Data System (ADS)

    Salter, Christopher J.; Chandola, Y.; Ghosh, T.; Minchin, R.; Saikia, D. J.

    2010-01-01

    On June 12, 2009, a largely unexplored region of frequency space was (temporarily) opened up to radio astronomers when US TV stations were mandated to switch from analog transmissions to new frequency allocations for digital transmission. This freed up the spectral region between 700-800 MHz for a limited period (i.e. until new radio services allocated to this band begin operating), and Arecibo Observatory has produced a suitable receiver to allow astronomers to exploit this opportunity. We have begun a search within this band for highly redshifted HI and OH absorption against the continuum emission from 29 Compact-Steep-Spectrum/GHz-Peaked-Spectrum (CSS/GPS) radio sources of appropriate redshift. Such absorption would arise within the host galaxies. The first source observed, the quasar CTA 21 (4C16.09), shows strong HI absorption of optical depth 0.035. The detected line has a deep core absorption, with a strong wing extending to the blue. The recently determined optical redshift for this galaxy (z 0.907; Labiano et al, 2007) is confirmed.

  12. VizieR Online Data Catalog: AGN vs. host galaxy properties in COSMOS field (Lanzuisi+, 2017)

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Delvecchio, I.; Berta, S.; Brusa, M.; Comastri, A.; Gilli, R.; Gruppioni, C.; Marchesi, S.; Perna, M.; Pozzi, F.; Salvato, M.; Symeonidis, M.; Vignali, C.; Vito, F.; Volonteri, M.; Zamorani, G.

    2017-03-01

    Multiwavelength properties of the 692 AGN-host systems detected both in the X-ray and in the FIR (the X-FIR sample). For each galaxy are given ID from Capak et al., 2007, Cat. II/284; right ascension and declination of the optical/IR counterpart; redshift; redshift flag (s for spectroscopic or p photometric); Log(LSFIR) with 1sigma errors; Log(M*) with 1sigma errors; SFR derived from LSF; Log(NH) with 1sigma errors or upper limits; Log(LX) with 1sigma errors; Log(LBol) computed from LX using Marconi et al. (2004MNRAS.351..169M); XMM-COSMOS and Chandra-COSMOS ID. (1 data file).

  13. The Chandra COSMOS Legacy Survey: Clustering of X-Ray-selected AGNs at 2.9 ≤ z ≤ 5.5 Using Photometric Redshift Probability Distribution Functions

    NASA Astrophysics Data System (ADS)

    Allevato, V.; Civano, F.; Finoguenov, A.; Marchesi, S.; Shankar, F.; Zamorani, G.; Hasinger, G.; Salvato, M.; Miyaji, T.; Gilli, R.; Cappelluti, N.; Brusa, M.; Suh, H.; Lanzuisi, G.; Trakhtenbrot, B.; Griffiths, R.; Vignali, C.; Schawinski, K.; Karim, A.

    2016-11-01

    We present the measurement of the projected and redshift-space two-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy active galactic nucleus (AGN) at 2.9 ≤ z ≤ 5.5 (< {L}{bol}> ˜ 1046 erg s-1) using the generalized clustering estimator based on phot-z probability distribution functions in addition to any available spec-z. We model the projected 2pcf, estimated using π max = 200 h-1 Mpc with the two-halo term and we derive a bias at z ˜ 3.4 equal to b = {6.6}-0.55+0.60, which corresponds to a typical mass of the hosting halos of log M h = {12.83}-0.11+0.12 h-1 M ⊙. A similar bias is derived using the redshift-space 2pcf, modeled including the typical phot-z error σ z = 0.052 of our sample at z ≥ 2.9. Once we integrate the projected 2pcf up to π max = 200 h-1 Mpc, the bias of XMM and Chandra COSMOS at z = 2.8 used in Allevato et al. is consistent with our results at higher redshifts. The results suggest only a slight increase of the bias factor of COSMOS AGNs at z ≳ 3 with the typical hosting halo mass of moderate-luminosity AGNs almost constant with redshift and equal to log M h = {12.92}-0.18+0.13 at z = 2.8 and log M h = {12.83}-0.11+0.12 at z ˜ 3.4, respectively. The observed redshift evolution of the bias of COSMOS AGNs implies that moderate-luminosity AGNs still inhabit group-sized halos at z ≳ 3, but slightly less massive than observed in different independent studies using X-ray AGNs at z ≤ 2.

  14. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  15. Herschel-ATLAS: the link between accretion luminosity and star formation in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Bonfield, D. G.; Jarvis, M. J.; Hardcastle, M. J.; Cooray, A.; Hatziminaoglou, E.; Ivison, R. J.; Page, M. J.; Stevens, J. A.; de Zotti, G.; Auld, R.; Baes, M.; Buttiglione, S.; Cava, A.; Dariush, A.; Dunlop, J. S.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Maddox, S. J.; Michałowski, M. J.; Pascale, E.; Pohlen, M.; Rigby, E. E.; Rodighiero, G.; Serjeant, S.; Smith, D. J. B.; Temi, P.; van der Werf, P.

    2011-09-01

    We use the science demonstration field data of the Herschel Astrophysical Terahertz Large Area Survey to study how star formation, traced by the far-infrared Herschel data, is related to both the accretion luminosity and redshift of quasars selected from the Sloan Digital Sky Survey (SDSS) and the 2dF-SDSS luminous red galaxy (LRG) and Quasar Spectroscopic Catalogue survey. By developing a maximum-likelihood estimator to investigate the presence of correlations between the far-infrared and optical luminosities, we find evidence that the star formation in quasar hosts is correlated with both redshift and quasar accretion luminosity. Assuming a relationship of the form LIR∝LθQ