Sample records for galaxies integral field

  1. Near-infrared integral field spectroscopy of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Dale, D. A.; Roussel, H.; Contursi, A.; Helou, G.; Dinerstein, H. L.; Hunter, D. A.; Hollenbach, D. J.; Egami, E.; Matthews, K.; Murphy, T. W. Jr; hide

    2004-01-01

    The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.

  2. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  3. Spatial distribution of dust in galaxies from the Integral field unit data

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  4. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.

    2016-05-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

  5. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  6. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    NASA Astrophysics Data System (ADS)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  7. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  8. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  9. PPAK Wide-field Integral Field Spectroscopy of NGC 628 - I. The largest spectroscopic mosaic on a single galaxy

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Kennicutt, R. C.; Johnson, B. D.; Diaz, A. I.; Pasquali, A.; Hao, C. N.

    2011-01-01

    We present a wide-field Integral Field Spectroscopy (IFS) survey on the nearby face-on Sbc galaxy NGC 628, comprising 11094 individual spectra, covering a nearly circular field-of-view of ˜6 arcmin in diameter, with a sampling of ˜2.7 arcsec per spectrum in the optical wavelength range (3700-7000 Å). This galaxy is part of the PPAK IFS Nearby Galaxies Survey (PINGS). To our knowledge, this is the widest spectroscopic survey ever made in a single nearby galaxy. A detailed flux calibration was applied, granting a spectrophotometric accuracy of ˜0.2 mag. The spectroscopic data were analysed both as a single integrated spectrum that characterizes the global properties of the galaxy and using each individual spectrum to determine the spatial variation of the stellar and ionized gas components. The spatial distribution of the luminosity-weighted ages and metallicities of the stellar populations was analysed. Using typical strong emission-line ratios we derived the integrated and 2D spatial distribution of the ionized gas, the dust content, star formation rate (SFR) and oxygen abundance. The age of the stellar populations shows a negative gradient from the inner (older) to the outer (younger) regions. We found an inversion of this gradient in the central ˜1 kpc region, where a somewhat younger stellar population is present within a ring at this radius. This structure is associated with a circumnuclear star-forming region at ˜500 pc, also found in similar spiral galaxies. From the study of the integrated and spatially resolved ionized gas, we found a moderate SFR of ˜2.4 M⊙ yr-1. The oxygen abundance shows a clear gradient of higher metallicity values from the inner part to the outer part of the galaxy, with a mean value of 12 + log(O/H) ˜ 8.7. At some specific regions of the galaxy, the spatially resolved distribution of the physical properties shows some level of structure, suggesting real point-to-point variations within an individual H II region. Our results

  10. Integral field spectroscopy of a sample of nearby galaxies. I. Sample, observations, and data reduction

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.; Sánchez, S. F.; Marino, R. A.; Mast, D.; Viironen, K.; Gil de Paz, A.; Iglesias-Páramo, J.; Rosales-Ortega, F. F.; Vilchez, J. M.

    2011-10-01

    Aims: Integral field spectroscopy (IFS) is a powerful approach to studying nearby galaxies since it enables a detailed analysis of their resolved physical properties. Here we present our study of a sample of nearby galaxies selected to exploit the two-dimensional information provided by the IFS. Methods: We observed a sample of 48 galaxies from the local universe with the PPaK integral field spectroscopy unit (IFU), of the PMAS spectrograph, mounted at the 3.5 m telescope at Calar Alto Observatory (Almeria, Spain). Two different setups were used during these studies (low - V300 - and medium - V600 - resolution mode) covering a spectral range of around 3700-7000 ÅÅ. We developed a full automatic pipeline for the data reduction, which includes an analysis of the quality of the final data products. We applied a decoupling method to obtain the ionised gas and stellar content of these galaxies, and derive the main physical properties of the galaxies. To assess the accuracy in the measurements of the different parameters, we performed a set of simulations to derive the expected relative errors obtained with these data. In addition, we extracted spectra for two types of aperture, one central and another integrated over the entire galaxy, from the datacubes. The main properties of the stellar populations and ionised gas of these galaxies and an estimate of their relative errors are derived from those spectra, as well as from the whole datacubes. Results: We compare the central spectrum extracted from our datacubes and the SDSS spectrum for each of the galaxies for which this is possible, and find close agreement between the derived values for both samples. We find differences on the properties of galaxies when comparing a central and an integrated spectra, showing the effects of the extracted aperture on the interpretation of the data. Finally, we present two-dimensional maps of some of the main properties derived with the decoupling procedure. Based on observations

  11. Mapping the properties of blue compact dwarf galaxies: integral field spectroscopy with PMAS

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Zurita, C.; Kehrig, C.; Roth, M.; Weilbacher, P.

    2010-09-01

    Context. Blue compact dwarf (BCD) galaxies are low-luminosity, low-metal content dwarf systems undergoing violent bursts of star formation. They present a unique opportunity to probe galaxy formation and evolution and to investigate the process of star formation in a relatively simple scenario. Spectrophotometric studies of BCDs are essential to disentangle and characterize their stellar populations. Aims: We perform integral field spectroscopy of a sample of BCDs with the aim of analyzing their morphology, the spatial distribution of some of their physical properties (excitation, extinction, and electron density) and their relationship with the distribution and evolutionary state of the stellar populations. Methods: Integral field spectroscopy observations of the sample galaxies were carried out with the Potsdam Multi-Aperture Spectrophotometer (PMAS) at the 3.5 m telescope at Calar Alto Observatory. An area 16 arcsec × 16 arcsec in size was mapped with a spatial sampling of 1 arcsec × 1 arcsec. We obtained data in the 3590-6996 Å spectral range, with a linear dispersion of 3.2 Å per pixel. From these data we built two-dimensional maps of the flux of the most prominent emission lines, of two continuum bands, of the most relevant line ratios, and of the gas velocity field. Integrated spectra of the most prominent star-forming regions and of whole objects within the FOV were used to derive their physical parameters and the gas metal abundances. Results: Six galaxies display the same morphology both in emission line and in continuum maps; only in two objects, Mrk 32 and Tololo 1434+032, the distributions of the ionized gas and of the stars differ considerably. In general the different excitation maps for a same object display the same pattern and trace the star-forming regions, as expected for objects ionized by hot stars; only the outer regions of Mrk 32, I Zw 123 and I Zw 159 display higher [S II]/Hα values, suggestive of shocks. Six galaxies display an

  12. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  13. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  14. Cosmic Web of Galaxies in the COMOS Field

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Martin, Christopher D.; Mobasher, Bahram; Scoville, Nicholas; Sobral, David; COSMOS science Team

    2017-01-01

    We use a mass complete sample of galaxies with accurate photometric redshifts in the COSMOS field to estimate the density field and to extract the components of the cosmic web. The comic web extraction algorithm relies on the signs and the ratio of eigenvalues of the Hessian matrix and is enable to integrate the density field into clusters, filaments and the field. We show that at z < 0.8, the median star-formation rate in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellite galaxies (~1 dex vs. ~0.4 dex for centrals). However, at z > 0.8, the trend flattens out. For star-forming galaxies only, the median star-formation rate declines by ~ 0.3-0.4 dex from the field to clusters for both satellites and centrals, only at z < 0.5. We argue that for satellite galaxies, the main role of the cosmic web environment is to control their star-forming/quiescent fraction, whereas for centrals, it is mainly to control their overall star-formation rate. Given these, we suggest that most satellite galaxies experience a rapid quenching mechanism as they fall from the field into clusters through the channel of filaments, whereas for central galaxies, it is mostly due to a slow quenching process. Our preliminary results highlight the importance of the large-scale cosmic web on the evolution of galaxies.

  15. VIMOS integral field spectroscopy of blue compact galaxies. I. Morphological properties, diagnostic emission-line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P. M.

    2015-05-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-luminosity, low-metallicity systems that undergo a violent burst of star formation. These galaxies offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopic study of a sample of BCGs, with the aim of probing the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium. Methods: Eight BCGs were observed with the VIMOS integral field unit at the Very Large Telescope using blue and orange grisms in high-resolution mode. At a spatial sampling of 0''&dotbelow;67 per spaxel, we covered about 30″ × 30″ on the sky, with a wavelength range of 4150...7400 Å. Emission lines were fitted with a single Gaussian profile to measure their wavelength, flux, and width. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines, as well as diagnostic line ratios, extinction, and kinematic maps. Results: An atlas has been produced with the following: emission-line fluxes and continuum emission; ionization, interstellar extinction, and electron density maps from line ratios; velocity and velocity dispersion fields. From integrated spectroscopy, it includes tables of the extinction corrected line fluxes and equivalent widths, diagnostic-line ratios, physical parameters, and the abundances for the brightest star-forming knots and for the whole galaxy. Based on observations made with ESO Telescopes at the Paranal Observatory under program ID 079.B-0445.The reduced datacubes and their error maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  16. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  17. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  18. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  19. A faint field-galaxy redshift survey in quasar fields

    NASA Technical Reports Server (NTRS)

    Yee, Howard K. C.; Ellingson, Erica

    1993-01-01

    Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.

  20. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 < z < 0.06) unobscured AGN to study the link between AGN and their host galaxies. The primary CARS observations come from the MUSE integral field unit on the VLT, and complementary multi-wavelength observations have been approved from SOFIA, Chandra, VLA, HST, and others. We compare the stellar kinematics of active galaxies from CARS to similar inactive galaxies. We then use kinemetry to estimate the degree of dynamical disturbance, to determine whether active nuclei are preferentially hosted in dynamically disturbed or merging systems. Finally, we highlight the discovery of an AGN that has changed spectral type not once, but twice. So called ‘changing look’ AGN are an uncommon phenomenon, but twice changed AGN are much rarer. This AGN first transitioned from a narrow line AGN (type 2) to a broad line AGN (type 1) in the 1980s. It was recently observed as part of CARS. Examination of the MUSE data for this particular source showed that it no longer had the spectral features typical of a type 1 AGN. The continuum emission from the accretion disk was no longer visible and the broad lines were dramatically diminished. In this talk we describe the possible reasons for this change, supported by analysis of multi-epoch optical photometry and

  1. Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas

    NASA Astrophysics Data System (ADS)

    Lofthouse, E. K.; Houghton, R. C. W.; Kaviraj, S.

    2017-10-01

    We use integral field spectroscopy, from the SWIFT and PALM3K instruments, to perform a spatially resolved spectroscopic analysis of four nearby highly star-forming 'green pea' (GP) galaxies, that are likely analogues of high-redshift star-forming systems. By studying emission-line maps in H α, [N II] λλ6548,6584 and [S II] λλ6716,6731, we explore the kinematic morphology of these systems and constrain properties such as gas-phase metallicities, electron densities and gas-ionization mechanisms. Two of our GPs are rotationally supported while the others are dispersion-dominated systems. The rotationally supported galaxies both show evidence for recent or ongoing mergers. However, given that these systems have intact discs, these interactions are likely to have low-mass ratios (I.e. minor mergers), suggesting that the minor-merger process may be partly responsible for the high star formation rates seen in these GPs. Nevertheless, the fact that the other two GPs appear morphologically undisturbed suggests that mergers (including minor mergers) are not necessary for driving the high star formation rates in such galaxies. We show that the GPs are metal-poor systems (25-40 per cent of solar) and that the gas ionization is not driven by active galactic nuclei (AGN) in any of our systems, indicating that the AGN activity is not coeval with star formation in these starbursting galaxies.

  2. NCBI BLAST+ integrated into Galaxy.

    PubMed

    Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola

    2015-01-01

    The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.

  3. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  4. The merging dwarf galaxy UM 448: chemodynamics of the ionized gas from VLT integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Walsh, J. R.; Westmoquette, M. S.

    2013-01-01

    Using Very Large Telescope/Fibre Large Array Multi Element Spectrograph optical integral field unit observations, we present a detailed study of UM 448, a nearby blue compact galaxy (BCG) previously reported to have an anomalously high N/O abundance ratio. New Technology Telescope/Superb-Seeing Imager images reveal a morphology suggestive of a merger of two systems of contrasting colour, whilst our Hα emission maps resolve UM 448 into three separate regions that do not coincide with the stellar continuum peaks. UM 448 exhibits complex emission line profiles, with most lines consisting of a narrow [full width at half-maximum (FWHM) ≲ 100 km s-1], central component, an underlying broad component (FWHM ˜ 150-300 km s-1) and a third, narrow blueshifted component. Radial velocity maps of all three components show signs of solid body rotation across UM 448, with a projected rotation axis that correlates with the continuum morphology of the galaxy. A spatially resolved, chemodynamical analysis, based on the [O iii] λλ4363, 4959, [N ii] λ6584, [S ii] λλ6716, 6731 and [Ne iii] λ3868 line maps, is presented. Whilst the eastern tail of UM 448 has electron temperatures (Te) that are typical of BCGs, we find a region within the main body of the galaxy where the narrow and broad [O iii] λ4363 line components trace temperatures differing by 5000 K and oxygen abundances differing by 0.4 dex. We measure spatially resolved and integrated ionic and elemental abundances for O, N, S and Ne throughout UM 448, and find that they do not agree, possibly due the flux weighting of Te from the integrated spectrum. This has significant implications for abundances derived from long-slit and integrated spectra of star-forming galaxies in the nearby and distant universe. A region of enhanced N/O ratio is indeed found, extended over a ˜0.6 kpc2 region within the main body of the galaxy. Contrary to previous studies, however, we do not find evidence for a large Wolf-Rayet (WR

  5. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  6. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  7. Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H ii regions

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Marino, R. A.; Iglesias-Páramo, J.; Vílchez, J. M.; Kennicutt, R. C.; Díaz, A. I.; Mast, D.; Monreal-Ibero, A.; García-Benito, R.; Bland-Hawthorn, J.; Pérez, E.; González Delgado, R.; Husemann, B.; López-Sánchez, Á. R.; Cid Fernandes, R.; Kehrig, C.; Walcher, C. J.; Gil de Paz, A.; Ellis, S.

    2012-10-01

    We analyse the spectroscopic properties of thousands of H ii regions identified in 38 face-on spiral galaxies. All galaxies were observed out to 2.4 effective radii using integral field spectroscopy (IFS) over the wavelength range ~3700 to ~6900 Å. The near uniform sample has been assembled from the PPAK IFS Nearby Galaxy (PINGS) survey and a sample described in Paper I. We develop a new automatic procedure to detect H ii regions, based on the contrast of the Hα intensity maps extracted from the datacubes. Once detected, the algorithm provides us with the integrated spectra of each individual segmented region. In total, we derive good quality spectroscopic information for ~2600 independent H ii regions/complexes. This is by far the largest H ii region survey of its kind. Our selection criteria and the use of 3D spectroscopy guarantee that we cover the regions in an unbiased way. A well-tested automatic decoupling procedure has been applied to remove the underlying stellar population, deriving the main properties (intensity, dispersion and velocity) of the strongest emission lines in the considered wavelength range (covering from [O ii] λ3727 to [S ii] λ6731). A final catalogue of the spectroscopic properties of H ii regions has been created for each galaxy, which includes information on morphology, spiral structure, gaskinematics, and surface brightness of the underlying stellar population. In the current study, we focus on the understanding of the average properties of the H ii regions and their radial distributions. We find a significant change in the ionisation characteristics of H ii regions within r < 0.25 re due to contamination from sources with different ionising characteristics, as we discuss. We find that the gas-phase oxygen abundance and the Hα equivalent width present a negative and positive gradient, respectively. The distribution of slopes is statistically compatible with a random Gaussian distribution around the mean value, if the radial

  8. The Properties of Faint Field Galaxies

    NASA Astrophysics Data System (ADS)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  9. A Stellar Mass Threshold for Quenching of Field Galaxies

    NASA Astrophysics Data System (ADS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-09-01

    We demonstrate that dwarf galaxies (107 < M stellar < 109 M ⊙, -12 > Mr > -18) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a reanalysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star-forming dwarf galaxies, defining quenched galaxies as having no Hα emission (EWHα < 2 Å) and a strong 4000 Å break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host, leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M stellar < 1.0 × 109 M ⊙ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 109 M ⊙, ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  10. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  11. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, I.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  12. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, M.; Blanton, M. R.; Yan, R.

    2012-09-20

    We demonstrate that dwarf galaxies (10{sup 7} < M{sub stellar} < 10{sup 9} M{sub Sun }, -12 > M{sub r} > -18) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a reanalysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star-forming dwarf galaxies, defining quenched galaxies as having no H{alpha} emission (EW{sub H{alpha}} < 2 A) and a strong 4000 A break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host,more » leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M{sub stellar} < 1.0 Multiplication-Sign 10{sup 9} M{sub Sun} below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1{sigma} upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 Multiplication-Sign 10{sup 9} M{sub Sun }, ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.« less

  13. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  14. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  15. GREEN GALAXIES IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, basedmore » on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.« less

  16. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mean resolution of λ/Δλ = 7700 (σinst = 17 km s-1). These data are a fundamental product of our survey and will be used in companion papers to, e.g., derive the detailed (baryonic+dark) mass budget of each galaxy in our sample. Our presentation provides a comprehensive description of the observing strategy and data reduction, including a robust measurement and removal of shift, scale, and rotation effects in the data due to instrumental flexure. Using an in-plane coordinate system determined by fitting circular-speed curves to our velocity fields, we derive azimuthally averaged rotation curves and line-of-sight velocity dispersion (σLOS) and luminosity profiles for both the stars and [Oiii]-emitting gas. Along with a clear presentation of the data, we demonstrate: (1) The [Oiii] and stellar rotation curves exhibit a clear signature of asymmetric drift with a rotation difference that is 11% of the maximum rotation speed of the galaxy disk, comparable to measurements in the solar neighborhood in the Milky Way. (2) The e-folding length of the stellar velocity dispersion (hσ) is 2hR on average, as expected for a disk with a constant scale height and mass-to-light ratio, with a scatter that is notably smaller for massive, high-surface-brightness disks in the most luminous galaxies. (3) At radii larger than 1.5hR, σLOS tends to decline slower than the best-fitting exponential function, which may be due to an increase in the disk mass-to-light ratio, disk flaring, or disk heating by the dark-matter halo. (4) A strong correlation exists between the central vertical stellar velocity dispersion of the disks (σz,0) and their circular rotational speed at 2.2hR (V2.2h

  17. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  18. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  19. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  20. Integrated HI emission in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Ai, Mei; Zhu, Ming; Fu, Jian

    2017-09-01

    The integrated HI emission from hierarchical structures such as groups and clusters of galaxies can be detected by FAST at intermediate redshifts. Here we propose to use FAST to study the evolution of the global HI content of clusters and groups over cosmic time by measuring their integrated HI emissions. We use the Virgo Cluster as an example to estimate the detection limit of FAST, and have estimated the integration time to detect a Virgo type cluster at different redshifts (from z = 0.1 to z = 1.5).We have also employed a semi-analytic model (SAM) to simulate the evolution of HI contents in galaxy clusters. Our simulations suggest that the HI mass of a Virgo-like cluster could be 2-3 times higher and the physical size could be more than 50% smaller when redshift increases from z = 0.3 to z = 1. Thus the integration time could be reduced significantly and gas rich clusters at intermediate redshifts can be detected by FAST in less than 2 hours of integration time. For the local Universe, we have also used SAM simulations to create mock catalogs of clusters to predict the outcomes from FAST all sky surveys. Comparing with the optically selected catalogs derived by cross matching the galaxy catalogs from the SDSS survey and the ALFALFA survey, we find that the HI mass distribution of the mock catalog with 20 s of integration time agrees well with that of observations. However, the mock catalog with 120 s of integration time predicts many more groups and clusters that contain a population of low mass HI galaxies not detected by the ALFALFA survey. A future deep HI blind sky survey with FAST would be able to test such prediction and set constraints on the numerical simulation models. The observational strategy and sample selections for future FAST observations of galaxy clusters at high redshifts are also discussed.

  1. Census of the Local Universe (CLU) Hα Galaxy Survey: Characterization of Galaxy Catalogs from Preliminary Fields

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Kasliwal, Mansi; Van Sistine, Anglea; Kaplan, David; iPTF

    2018-01-01

    In this talk I introduce the Census of the Local Universe (CLU) galaxy survey. The survey uses 4 wavelength-adjacent, narrowband filters to search for emission-line (Hα) sources across ~3π (26,470 deg2) of the sky and out to distance of 200 Mpc. I will present an analysis of galaxy candidates in 14 preliminary fields (out of 3626) to assess the limits of the survey and the potential for finding new galaxies in the local Universe. We anticipate finding tens-of-thousands of new galaxies in the full ~3π survey. In addition, I present some interesting galaxies found in these fields, which include: newly discovered blue compact dwarfs (e.g., blueberries), 1 new green pea, 1 new QSO, and a known planetary nebula. The majority of the CLU galaxies show properties similar to normal star-forming galaxies; however, the newly discovered blueberries tend to have high star formation rates for their given stellar mass.

  2. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  3. A study of the luminosity function for field galaxies. [non-rich-cluster galaxies

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1977-01-01

    Nine determinations of the luminosity function (LF) for field galaxies are analyzed and compared. Corrections for differences in Hubble constants, magnitude systems, galactic absorption functions, and definitions of the LF are necessary prior to comparison. Errors in previous comparisons are pointed out. After these corrections, eight of the nine determinations are in fairly good agreement. The discrepancy in the ninth appears to be mainly an incompleteness effect. The LF data suggest that there is little if any distinction between field galaxies and those in small groups.

  4. The SAMI Galaxy Survey: Early Data Release

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Croom, S. M.; Konstantopoulos, I. S.; Bryant, J. J.; Sharp, R.; Cecil, G. N.; Fogarty, L. M. R.; Foster, C.; Green, A. W.; Ho, I.-T.; Owers, M. S.; Schaefer, A. L.; Scott, N.; Bauer, A. E.; Baldry, I.; Barnes, L. A.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Colless, M.; Cortese, L.; Couch, W. J.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Gunawardhana, M. L. P.; Hampton, E. J.; Hopkins, A. M.; Kewley, L. J.; Lawrence, J. S.; Leon-Saval, S. G.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mould, J.; Norberg, P.; Parker, Q. A.; Power, C.; Pracy, M. B.; Richards, S. N.; Robotham, A. S. G.; Sweet, S. M.; Taylor, E. N.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-01-01

    We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ˜3400 low-redshift (z < 0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated data cubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All data cubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated data cubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0.09 arcsec, less than a fifth of a spaxel.

  5. Integral Field Spectroscopy of the Merger Remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio

    2018-01-01

    The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.

  6. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  7. Visiting two objects in the field of the ring galaxy HRG 2302

    NASA Astrophysics Data System (ADS)

    Faúndez-Abans, M.; Reshetnikov, V. P.; de Oliveira-Abans, M.; Krabbe, A. C.; da Rocha-Poppe, P. C.; Fernandes-Martin, V. A.; Amôres, E. B.; Freitas-Lemes, P.

    2015-02-01

    Aims: We investigate the nature of two galaxies that are located in the field of the ring galaxy HRG 2302. Methods: This study is based on direct BVRI imaging and long-slit spectrophotometric data in the range of 4000-9500 Å obtained with the 1.6 m telescope of the Observatório do Pico dos Dias, Brazil. The spectra were used to determine the radial velocity. Results: The primary objective of the retrieval of the photometric data was to identify the fine structures of objects H and I. In addition, we performed image processing and made a photometric analysis to obtain the integrated standard BVRI magnitudes. The contour maps show evidence of material connecting both galaxies, suggesting that they might be interacting close companions. We estimated redshifts of z = 0.0689 and z = 0.0692. The spectra of the two galaxies resemble those of an early-type galaxy. The fact that the objects have a small radial-velocity difference and the structures around object I suggest an ongoing tidal interaction between the two galaxies. Conclusions: The H-I system seems to be composed of two early-type spiral galaxies (S0/Sa). Galaxy I shows evidence of tidal perturbation: an off-centered bulge, some material extending along the NE direction, and structures that have been enhanced by image filtering procedures. There are some dwarf objects around it. Neither object shows evidence of nuclear activity. Based on observations carried out at the Observatório do Pico dos Dias (OPD), which is operated by LNA/MCTI, and public data from the LNA database.

  8. 3D view on Virgo and field dwarf elliptical galaxies: late-type origin and environmental transformations

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2015-03-01

    In our contribution we show the effects of environmental evolution on cluster and field dwarf elliptical galaxies (dEs), presenting the first large-scale integral-field spectroscopic data for this galaxy class. Our sample con sists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradient s in line-strength maps: from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfills these requirements, still, the exact impact of the two is not yet understood. We further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population parameters. The combined knowledge of the dynamical properties and star-formation histories, together with model predictions for different formation mechanisms, will be used to quant itatively determine the actual transformation paths for these galaxies.

  9. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  10. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; von Ferber, C.; Holovatch, Yu; Novosyadlyj, B.

    2018-07-01

    The galaxy data provided by COSMOS survey for 1°×1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94, and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments, we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differs from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realizes somewhat different behaviour.

  11. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; Ferber, C. von; Holovatch, Yu; Novosyadlyj, B.

    2018-03-01

    The galaxy data provided by COSMOS survey for 1° × 1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94 and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differ from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realises somewhat different behaviour.

  12. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies ofmore » these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.« less

  13. Magnetic field strengths in high-redshift galaxies - Can the galactic dynamo be tested?

    NASA Technical Reports Server (NTRS)

    Perry, Judith J.; Watson, Alan M.; Kronberg, Philipp P.

    1993-01-01

    The hypothesis that the population of strong H I absorption systems is responsible for a significant excess Faraday rotation measure in quasars is discussed, and it is concluded that the case is unproved, in contrast to a recent analysis by Wolf et al. (1991). The limitations and pitfalls inherent in attempts to derive firm magnetic field strengths from the existing integrated rotation measures of quasars are discussed, and it is shown that although it is premature to use integrated quasar rotation measures to either confirm or rule out particular mechanisms of magnetic field amplification in galaxy disks, the present observations may call for reexamination of current theories of large-scale magnetic field generation. The sources of rotation measure in the double quasar 0957+561 are also discussed.

  14. CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, David; Martel, Hugo; Romeo, Alessandro B., E-mail: david-john.williamson.1@ulaval.ca

    The mass–metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing amore » truncated gas disk with a large metallicity. This suggests that the effect of tides on the mass–metallicity relation is to move dwarf galaxies to higher metallicities.« less

  15. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  16. RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak

    Green Peas are a new class of young, emission line galaxies that were discovered by citizen volunteers in the Galaxy Zoo project. Their low stellar mass, low metallicity, and very high star formation rates make Green Peas the nearby (z {approx} 0.2) analogs of the Lyman break galaxies which account for the bulk of the star formation in the early universe (z {approx} 2-5). They thus provide accessible laboratories in the nearby universe for understanding star formation, supernova feedback, particle acceleration, and magnetic field amplification in early galaxies. We report the first direct radio detection of Green Peas with lowmore » frequency Giant Metrewave Radio Telescope observations and our stacking detection with archival Very Large Array FIRST data. We show that the radio emission implies that these extremely young galaxies already have magnetic fields ({approx}> 30 {mu}G) even larger than that of the Milky Way. This is at odds with the present understanding of magnetic field growth based on amplification of seed fields by dynamo action over a galaxy's lifetime. Our observations strongly favor models with pregalactic magnetic fields at {mu}G levels.« less

  17. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  18. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less

  19. A three-phase amplification of the cosmic magnetic field in galaxies

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2018-06-01

    Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.

  20. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r<0.5re) and a flattennig in the outer regions. For lower masses (>109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  1. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  2. Impact of magnetic fields on ram pressure stripping in disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, M.; Brüggen, M.; Lee, D.

    Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in themore » tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the

  3. The SAMI Galaxy Survey: cubism and covariance, putting round pegs into square holes

    NASA Astrophysics Data System (ADS)

    Sharp, R.; Allen, J. T.; Fogarty, L. M. R.; Croom, S. M.; Cortese, L.; Green, A. W.; Nielsen, J.; Richards, S. N.; Scott, N.; Taylor, E. N.; Barnes, L. A.; Bauer, A. E.; Birchall, M.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Bryant, J. J.; Cecil, G. N.; Colless, M.; Couch, W. J.; Drinkwater, M. J.; Driver, S.; Foster, C.; Goodwin, M.; Gunawardhana, M. L. P.; Ho, I.-T.; Hampton, E. J.; Hopkins, A. M.; Jones, H.; Konstantopoulos, I. S.; Lawrence, J. S.; Leslie, S. K.; Lewis, G. F.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mahajan, S.; Mould, J.; Parker, Q.; Pracy, M. B.; Obreschkow, D.; Owers, M. S.; Schaefer, A. L.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-01-01

    We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney-AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ˜3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume.

  4. Confusion-limited galaxy fields. I - Simulated optical and near-infrared images

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1988-01-01

    Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.

  5. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  6. Shocks and metallicity gradients in normal star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting

    Gas flow is one of the most fundamental processes driving galaxy evolution. This thesis explores gas flows in local galaxies by studying metallicity gradients and galactic-scale outflows in normal star-forming galaxies. This is made possible by new integral field spectroscopy data that provide simultaneously spatial and spectral information of galaxies. First, I measure metallicity gradients in isolated disk galaxies and show that their metallicity gradients are remarkably simple and universal. When the metallicity gradients are normalized to galaxy sizes, all the 49 galaxies studied have virtually the same metallicity gradient. I model the common metallicity gradient using a simple chemical evolution model to understand its origin. The common metallicity gradient is a direct result of the coevolution of gas and stellar disk while galactic disks build up their masses from inside-out. Tight constraints on the mass outflow rates and inflow rates can be placed by the chemical evolution model. Second, I investigate galactic winds in normal star-forming galaxies using data from an integral field spectroscopy survey. I demonstrate how to search for galactic winds by probing emission line ratios, shocks, and gas kinematics. Galactic winds are found to be common even in normal star-forming galaxies that were not expected to host winds. By comparing galaxies with and without hosting winds, I show that galaxies with high star formation rate surface densities and bursty star formation histories are more likely to drive large-scale galactic winds. Finally, lzifu, a toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy data, is developed in this thesis. I describe in detail the structure of the toolkit and demonstrate the capabilities of lzifu.

  7. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  8. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  9. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at

  10. INTEGRAL Spectroscopy of IRAS 17208-0014: Implications for the Evolutionary Scenarios of Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Arribas, Santiago; Colina, Luis

    2003-07-01

    New integral field optical fiber spectroscopy obtained with the INTEGRAL system, together with archival HST WFPC2 and NICMOS images, has been used to investigate the ultraluminous infrared galaxy (ULIRG) IRAS 17208-0014, one of the coldest and most luminous objects in the IRAS 1 Jy sample. We have found that the optical nucleus is not coincident with the true (near-IR and dynamical) nucleus, but that it is displaced by 1.3 kpc (1.5") from it. As a consequence, the previous optical spectral classifications for the nucleus of this galaxy have to be changed from H II to LINER. The ionized gas emission is concentrated around the optical nucleus, where a young (5-6 Myr), massive [(3+/-1)×108 Msolar], and luminous [(6+/-2)×1010 Lsolar] starburst is detected. Contrary to what is found in dynamically young ULIRGs, no strong line emission tracing star-forming regions, or tidal dwarf galaxies, is detected in the inner parts of the tidal tails. The two-dimensional gas velocity field identifies the optically faint K-band nucleus as the dynamical nucleus of the galaxy and shows that the 3 kpc, tilted (i~35deg) disk is rotating at Δvsini=250 km s-1. Radial motions of gas are found along the minor kinematic axis, which, according to the geometry of the system, are well interpreted as inflows perpendicular to the inner disk. The existence of such inflows supports the idea that, as a consequence of the merging process, gas is channeling from the external regions, several kiloparsecs away, into the nuclear regions where the massive starburst reported above is taking place. The kinematical, morphological, and photometric evidence presented here supports the idea that in IRAS 17208-0014 we are witnessing a luminous, cool ULIRG that is at the final coalescence phase of a system composed of two spiral galaxies with m<=m* and a mass ratio of ~2:1, each consisting of a disk+bulge internal structure, that have been involved in a prograde encounter. This system will most likely evolve

  11. SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

    2014-07-01

    The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

  12. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  13. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  14. The distribution of mass for spiral galaxies in clusters and in the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, D.A.; Whitmore, B.C.

    1989-04-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense thatmore » mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs.« less

  15. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  16. Integrated Properties of Nearby Seyfert Galaxies Measured by 2-D Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Junjie; Malkan, Matthew Arnold

    2017-01-01

    We present our measurements of mosaicing long-slit spectra of 12 nearby Seyfert galaxies. We obtained these data cubes at ~6‧‧ spatial resolution using the Kast double spectrograph on the 3-m Shane telescope of Lick Observatory. We have measured the integrated emission lines of [O III], Hβ, Hα, [N II], and [S II]. We compare the relative strength of these lines from the galaxy nucleus with the total emission from the entire galaxy. In classification line ratio diagrams (BPT), the individual galaxy moves from the Seyfert region to the composite/star-forming locus as the effective absorbing aperture grows. This trend means that Seyfert galaxies observed at higher redshifts will become increasingly misclassified. We use our sample to quantify this systematic trend. We also estimate the rates of star formation in the host galaxies based on the emission lines.

  17. Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Dong Dong; Zheng, Xian Zhong; Zhao, Hai Bin; Pan, Zhi Zheng; Li, Bin; Zou, Hu; Zhou, Xu; Guo, KeXin; An, Fang Xia; Li, Yu Bin

    2017-09-01

    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2 field centered on the Hickson Compact Group 95 (HCG 95) using deep g- and r-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at z = 0.199) and two poor clusters (Pegasus I at z = 0.013 and Pegasus II at z = 0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50-60 true UDGs with a half-light radius {r}{{e}}> 1.5 {kpc} and a central surface brightness μ (g,0)> 24.0 mag arcsec-2. Deep z\\prime -band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in g - r color, and ˜26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1× {10}9 M ⊙ detected by the Very Large Array, and has a stellar mass of {M}\\star ˜ 1.8× {10}8 M ⊙. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.

  18. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  19. Field spheroid-dominated galaxies in a Λ-CDM Universe

    NASA Astrophysics Data System (ADS)

    Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.; Avila-Reese, V.; Lacerna, I.; Bignone, L. A.; Ibarra-Medel, H. J.; Varela, S.

    2018-06-01

    Context. Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly in low-density environments. Aims: Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a Λ-cold dark matter (Λ-CDM) scenario to assess to what extent they are consistent with observations. Methods: We selected spheroid-dominated systems from a Λ-CDM simulation that includes star formation (SF), chemical evolution, and supernova feedback. The sample is made up of 18 field systems with MStar ≲ 6 × 1010M⊙ that are dominated by the spheroid component. For this sample we estimated the fundamental relations of ellipticals and compared them with current observations. Results: The simulated spheroid galaxies have sizes that are in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, fundamental plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates (SFRs) than the observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. Conclusions: The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since our simulation has not been calibrated to match them. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. The need for more efficient

  20. Imprint of thawing scalar fields on the large scale galaxy overdensity

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  1. Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Aff004

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.

  2. Comparison between two scalar field models using rotation curves of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  3. The Flow-field From Galaxy Groups In 2MASS

    NASA Astrophysics Data System (ADS)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2011-01-01

    We present the first model of a flow-field in the nearby Universe (cz < 12,000 km/s) constructed from groups of galaxies identified in an all-sky flux-limited survey. The Two Micron All-Sky Redshift Survey (2MRS), upon which the model is based, represents the most complete survey of its class and, with near-IR fluxes, provides the optimal method for tracing baryonic matter in the nearby Universe. Peculiar velocities are reconstructed self-consistently with a density-field based upon groups identified in the 2MRS Ks<11.75 catalog. The model predicts infall toward Virgo, Perseus-Pisces, Hydra-Centaurus, Norma, Coma, Shapley and Hercules, and most notably predicts backside-infall into the Norma Cluster. We discuss the application of the model as a predictor of galaxy distances using only angular position and redshift measurements. By calibrating the model using measured distances to galaxies inside 3000 km/s, we show that, for a randomly-sampled 2MRS galaxy, improvement in the estimated distance over the application of Hubble's law is expected to be 30%, and considerably better in the proximity of clusters. We test the model using distance estimates from the SFI++ sample, and find evidence for improvement over the application of Hubble's law to galaxies inside 4000 km/s, although the performance varies depending on the location of the target. This work has been supported by NSF grant AST 0406906 and the Massachusetts Institute of Technology Bruno Rossi and Whiteman Fellowships.

  4. Wide-field Imaging of the Environments of LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Melton, Casey; Leshin, Stephen; Wong, Alson; Clark, Maurice; Kamienski, Jerald; Moriya, Netzer; Packwood, Burley; Birket, Bob; Edwards, William; Millward, Mervyn; Wheelband, Ian

    2018-01-01

    We have obtained wide-field images of 36 of the 41 LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) nearby (<10.3 Mpc) dwarf irregular and blue compact dwarf galaxies. Although the LITTLE THINGS galaxies were chosen to be non-interacting and no companions were found in H I imaging, the purpose of this imaging was to search for optical companion galaxies that had been missed in imaging with smaller fields of view and that might indicate an external factor in ongoing star formation. The limiting magnitudes of the images range from 19.7 to 28.3 mag arcsec‑2, with a median value of 25.9 mag arcsec‑2. We did not find any unknown companions. Two of the LITTLE THINGS galaxies, NGC 4163 and NGC 4214, and the fainter dwarf, UGCA 276, lie potentially within 100 kpc of each other, but our imaging does not reveal any stellar bridge between the galaxies. This project was part of the Lowell Amateur Research Initiative.

  5. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory

    2017-08-01

    Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  6. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  7. Galaxies in the Diffuse Baryon Field Approaching Reionization: A Joint Study with JWST, HST, and Large Telescopes

    NASA Astrophysics Data System (ADS)

    Simcoe, Robert

    2017-08-01

    Our team is conducting a dedicated survey for emission-line galaxies at 5 < z < 7 in six fields containing the best and brightest z > 6 quasars, using JWST/NIRCAM's slitless grism in a 110 hour GTO allocation. We have acquired deep near-IR spectra of the QSOs, revealing multiple heavy-element absorption systems and probing the HI optical depth within each object's survey volume. These data will provide the first systematic view of the circumgalactic medium at z > 4, allowing us to study early metal enrichment, correlations of the intergalactic HI optical depth with galaxy density, and the environment of the quasar hosts. These fields generally do not have deep multicolor photometry that would facilitate selection of broadband dropout galaxies for future observation with JWST/NIRSPEC. However during long spectroscopic integrations with NIRCAM's long channel we will obtain deep JWST photometry in F115W and F200W, together with F356W for wavelength calibration. Here we request 30 orbits with HST/ACS to acquire deep optical photometry that (together with the JWST IR bands) will constrain SED models and enable dropout selection of fainter objects. For lower redshift objects the rest-UV ACS data will improve estimates of star formation rate and stellar mass. Within a Small-GO program scope we will obtain sensitivity similar to CANDELS-Deep in all six fields, and approximately double the size of our galaxy sample appropriate for JWST/NIRSPEC followup at redshifts approaching the reionization epoch.

  8. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  9. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo

  10. Reconstructing Star Formation Histories of Galaxies

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, U.; Lilly, T.

    2007-12-01

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  11. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  12. The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica

    2018-06-01

    We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.

  13. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  14. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  15. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  16. GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.

    2015-08-01

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.

  17. Environmental quenching of low-mass field galaxies

    NASA Astrophysics Data System (ADS)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-07-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5-8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  18. Environmental Quenching of Low-Mass Field Galaxies

    NASA Astrophysics Data System (ADS)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  19. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  20. Starburst in the Interacting HII Galaxy II Zw 40 and in Non-Interacting HII Galaxies

    NASA Astrophysics Data System (ADS)

    Telles, E.

    2010-06-01

    In this poster, I summarize the results of our integral field spectroscopic observations of the nearby prototype of HII galaxies, II Zw 40. Observations with GMOS-IFU on GEMINI-North in the optical allowed us to make a detailed kinematic picture of the central starburst, while SINFONI with adaptive optics on the ESO-VLT gave us a near-IR view of the interplay between the ISM phases. Here, I also address the question that not all starbursts require an external trigger such as a galaxy-galaxy encounter, as it seems to be the case for a fraction of low luminosity HII galaxies. We speculate that these may form stars spontaneously like "popcorn in a pan".

  1. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the

  2. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less

  3. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  4. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  5. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  6. Galaxies clustering around QSOs with z = 0.9-1.5 and the origin of blue field galaxies

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Romanishin, W.; Valdes, Francisco

    1991-01-01

    Deep CCD images were obtained in Mould-Cousins R and I passbands of 16 radio quasars with z values between 0.9 and 1.5 and absolute values of b above 35 deg, chosen from the Veron-Cetty and Veron (1984) catalog. Results indicate that, in this population of radio quasars, there is a statistically significant excess of galaxies within 15 arcsec of the quasars and brighter than R = 23 and I = 22. However, contrary to the report of Tyson (1986), no excess was found of galaxies with R less than 21 lying within 30 arcsec of quasars in this redshift range. Data were also obtained for very blue galaxies seen among objects in the general field, all of which are bluer in R-I than Magellanic irregulars at any redshift less than 3. It is suggested that this population might be comprised of low-redshift low-luminosity (H II region) galaxies of the type studied by French (1980) and/or higher redshift galaxies with strong cooling flows and forbidden O II lines.

  7. A new method to measure galaxy bias by combining the density and weak lensing fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as / ormore » /. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.« less

  8. ULTIMATE: a deployable multiple integral field unit for Subaru

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Zhelem, Ross; Brown, David; Staszak, Nicholas F.; Lidman, Chris; Nataf, David M.; Casey, Andrew R.; Xavier, Pascal; Sheinis, Andrew; Gillingham, Peter; Tims, Julia; Lawrence, Jon; Bryant, Julia; Sharp, Rob

    2016-08-01

    ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.

  9. A Slow Merger History of Field Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Kodama, Tadayuki; Conselice, Christopher J.

    2004-02-01

    Using deep infrared observations conducted with the CISCO imager on the Subaru Telescope, we investigate the field-corrected pair fraction and the implied merger rate of galaxies in redshift survey fields with Hubble Space Telescope (HST) imaging. In the redshift interval, 0.5galaxies. At z~1, we estimate this to be 2×109+/-0.2 Msolar galaxy-1 Gyr-1. Although uncertainties remain, our results suggest that the growth of galaxies via the accretion of preexisting fragments remains as significant a phenomenon in the redshift range studied as that estimated from ongoing star formation in independent surveys. Based on data acquired at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. GASP. I. Gas Stripping Phenomena in Galaxies with MUSE

    NASA Astrophysics Data System (ADS)

    Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Fritz, Jacopo; Jaffé, Yara; Bettoni, Daniela; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Vulcani, Benedetta; Biviano, Andrea; Omizzolo, Alessandro; Paccagnella, Angela; D’Onofrio, Mauro; Cava, Antonio; Sheen, Y.-K.; Couch, Warrick; Owers, Matt

    2017-07-01

    GAs Stripping Phenomena in galaxies with MUSE (GASP) is a new integral-field spectroscopic survey with MUSE at the VLT aimed at studying gas removal processes in galaxies. We present an overview of the survey and show a first example of a galaxy undergoing strong gas stripping. GASP is obtaining deep MUSE data for 114 galaxies at z = 0.04–0.07 with stellar masses in the range {10}9.2{--}{10}11.5 {M}ȯ in different environments (galaxy clusters and groups over more than four orders of magnitude in halo mass). GASP targets galaxies with optical signatures of unilateral debris or tails reminiscent of gas-stripping processes (“jellyfish galaxies”), as well as a control sample of disk galaxies with no morphological anomalies. GASP is the only existing integral field unit (IFU) survey covering both the main galaxy body and the outskirts and surroundings, where the IFU data can reveal the presence and origin of the outer gas. To demonstrate GASP’s ability to probe the physics of gas and stars, we show the complete analysis of a textbook case of a jellyfish galaxy, JO206. This is a massive galaxy (9× {10}10 {M}ȯ ) in a low-mass cluster (σ ∼ 500 {km} {{{s}}}-1) at a small projected clustercentric radius and a high relative velocity, with ≥90 kpc long tentacles of ionized gas stripped away by ram pressure. We present the spatially resolved kinematics and physical properties of the gas and stars and depict the evolutionary history of this galaxy.

  11. The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?

    NASA Astrophysics Data System (ADS)

    Richards, S. N.; Bryant, J. J.; Croom, S. M.; Hopkins, A. M.; Schaefer, A. L.; Bland-Hawthorn, J.; Allen, J. T.; Brough, S.; Cecil, G.; Cortese, L.; Fogarty, L. M. R.; Gunawardhana, M. L. P.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kewley, L. J.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.

    2016-01-01

    In the low-redshift Universe (z < 0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broad-band imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.

  12. Wide-Field Structure of Local Group Dwarf Irregular Galaxy IC1613

    NASA Astrophysics Data System (ADS)

    Pucha, Ragadeepika; Carlin, Jeffrey; Willman, Beth; Sand, David J.; Bechtol, Keith

    2018-01-01

    IC1613 is a typical dwarf irregular galaxy in the Local Group. Being an isolated dwarf, as opposed to the dwarfs around the Milky Way, it is likely to be subjected to fewer strong environmental effects. As a result, it serves as a good prototype for the study of the structure and evolution of dwarf galaxies. We present g- and i- band photometry from deep imaging of four fields around IC1613, that resolved stars up to ~ 4 magnitudes fainter than the tip of the RGB. This photometry was obtained using Hyper-Suprime Cam (HSC) on the Subaru Telescope. The large (1.5o) field-of-view of HSC provides us with a unique opportunity to study the wide-field structure of this dwarf galaxy. This project explores the structure of IC1613 to radii of about ~ 25 kpc using different types of stellar tracers. The aim is to search for evidence of a stellar halo or stellar over-densities around IC1613. The relative contributions of the different stellar populations as a function of position in IC1613 are also shown.

  13. CALIFA, the Calar Alto Legacy Integral Field Area survey. IV. Third public data release

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; García-Benito, R.; Zibetti, S.; Walcher, C. J.; Husemann, B.; Mendoza, M. A.; Galbany, L.; Falcón-Barroso, J.; Mast, D.; Aceituno, J.; Aguerri, J. A. L.; Alves, J.; Amorim, A. L.; Ascasibar, Y.; Barrado-Navascues, D.; Barrera-Ballesteros, J.; Bekeraitè, S.; Bland-Hawthorn, J.; Cano Díaz, M.; Cid Fernandes, R.; Cavichia, O.; Cortijo, C.; Dannerbauer, H.; Demleitner, M.; Díaz, A.; Dettmar, R. J.; de Lorenzo-Cáceres, A.; del Olmo, A.; Galazzi, A.; García-Lorenzo, B.; Gil de Paz, A.; González Delgado, R.; Holmes, L.; Iglésias-Páramo, J.; Kehrig, C.; Kelz, A.; Kennicutt, R. C.; Kleemann, B.; Lacerda, E. A. D.; López Fernández, R.; López Sánchez, A. R.; Lyubenova, M.; Marino, R.; Márquez, I.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Ortega Minakata, R.; Torres-Papaqui, J. P.; Pérez, E.; Rosales-Ortega, F. F.; Roth, M. M.; Sánchez-Blázquez, P.; Schilling, U.; Spekkens, K.; Vale Asari, N.; van den Bosch, R. C. E.; van de Ven, G.; Vilchez, J. M.; Wild, V.; Wisotzki, L.; Yıldırım, A.; Ziegler, B.

    2016-10-01

    This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto Observatory. Three different spectral setups are available: I) a low-resolution V500 setup covering the wavelength range 3745-7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, II) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and III) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The spectra are available at http://califa.caha.es/DR3

  14. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  15. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0field elliptical galaxies were assembled at low redshift through mergers of gas-poor, bulge-dominated systems. These ``dry'' mergers are consistent with the high central densities of ellipticals, their old stellar populations, and the strong correlations of their properties. It will be

  16. Integral field spectroscopy of local LCBGs: NGC 7673, a case study. Physical properties of star-forming regions

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Gallego, J.; Pérez-Gallego, J.; Guzmán, R.; Muñoz-Mateos, J. C.; Zamorano, J.; Sánchez, S. F.

    2011-03-01

    Physical properties of the star-forming regions in the local Luminous Compact Blue Galaxy (LCBG) NGC 7673 are studied in detail using 3D spectroscopic data taken with the PMAS fibre pack (PPAK) integral field unit at the 3.5-m telescope in the Centro Astronómico Hispano Alemán (CAHA). We derive integrated and spatially resolved properties such as extinction, star formation rate (SFR) and metallicity for this galaxy. Our data show an extinction map with maximum values located at the position of the main clumps of star formation showing small spatial variations [E(B-V)t= 0.12-0.21 mag]. We derive an Hα-based SFR for this galaxy of 6.2 ± 0.8 M⊙ yr-1 in agreement with the SFR derived from infrared and radio continuum fluxes. The star formation is located mainly in clumps A, B, C and F. Different properties measured in clump B make this region peculiar. We find the highest Hα luminosity with an SFR surface density of 0.5 M⊙ yr-1 kpc-2 in this clump. In our previous work, the kinematic analysis for this galaxy shows an asymmetrical ionized gas velocity field with a kinematic decoupled component located at the position of clump B. This region shows the absence of strong absorption features and the presence of a Wolf-Rayet stellar population indicating that this is a young burst of massive stars. Furthermore, we estimate a gas metallicity of 12 + log(O/H) = 8.20 ± 0.15 (0.32 solar) for the integrated galaxy using the R23 index. The values derived for the different clumps with this method show small metallicity variations in this galaxy, with values in the range 8.12 (for clump A) to 8.23 (for clump B) for 12 + log(O/H). The analysis of the emission-line ratios discards the presence of any active galactic nuclei (AGN) activity or shocks as the ionization source in this galaxy. Between the possible mechanisms to explain the starburst activity in this galaxy, our 3D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B

  17. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  18. Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Ze-sen, Lin; Xu, Kong

    2018-01-01

    Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).

  19. TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy, E-mail: bge@watson.ibm.co, E-mail: elmegreen@vassar.ed

    2010-10-20

    Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages.more » The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.« less

  20. PPAK wide-field Integral Field Spectroscopy of NGC 628 - II. Emission line abundance analysis

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Díaz, A. I.; Kennicutt, R. C.; Sánchez, S. F.

    2011-08-01

    In this second paper of the series, we present the two-dimensional (2D) emission line abundance analysis of NGC 628, the largest object within the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey, PINGS. We introduce the methodology applied to the 2D IFS data in order to extract and deal with large spectral samples, from which a 2D abundance analysis can be later performed. We obtain the most complete and reliable abundance gradient of the galaxy up to date, by using the largest number of spectroscopic points sampled in the galaxy, and by comparing the statistical significance of different strong-line metallicity indicators. We find features not previously reported for this galaxy that imply a multimodality of the abundance gradient consistent with a nearly flat distribution in the innermost regions of the galaxy, a steep negative gradient along the disc and a shallow gradient or nearly constant metallicity beyond the optical edge of the galaxy. The N/O ratio seems to follow the same radial behaviour. We demonstrate that the observed dispersion in metallicity shows no systematic dependence with the spatial position, signal-to-noise ratio or ionization conditions, implying that the scatter in abundance for a given radius is reflecting a true spatial physical variation of the oxygen content. Furthermore, by exploiting the 2D IFS data, we were able to construct the 2D metallicity structure of the galaxy, detecting regions of metal enhancement and showing that they vary depending on the choice of the metallicity estimator. The analysis of axisymmetric variations in the disc of NGC 628 suggest that the physical conditions and the star formation history of different symmetric regions of the galaxy have evolved in a different manner. Based on observations made at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  1. Untangling Galaxy Components - The Angular Momentum Parameter

    NASA Astrophysics Data System (ADS)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  2. Magnetic field evolution in dwarf and Magellanic-type galaxies

    NASA Astrophysics Data System (ADS)

    Siejkowski, H.; Soida, M.; Chyży, K. T.

    2018-03-01

    Aims: Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods: We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results: The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s-1) and fast (100 km s-1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.

  3. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  4. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  5. Auto-consistent test of Galaxy star formation histories derived from resolved stellar population and integral spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.

    We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/

  6. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    PubMed Central

    2012-01-01

    Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system

  7. Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.

    PubMed

    Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa

    2012-05-04

    Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a

  8. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  9. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  10. Magnetic field formation in the Milky Way like disc galaxies of the Auriga project

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Gómez, Facundo A.; Grand, Robert J. J.; Marinacci, Federico; Simpson, Christine M.; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Guillet, Thomas; Pfrommer, Christoph; White, Simon D. M.

    2017-08-01

    The magnetic fields observed in the Milky Way and nearby galaxies appear to be in equipartition with the turbulent, thermal and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky Way like galaxies, carried out with a moving-mesh magnetohydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs around z = 2-3, when the magnetic energy density reaches about 10 per cent of the turbulent energy density with a typical strength of 10-50 {μ G}. In the galactic centres, the ratio between magnetic and turbulent energies remains nearly constant until z = 0. At larger radii, differential rotation in the discs leads to linear amplification that typically saturates around z = 0.5-0. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.

  11. Integrating human and machine intelligence in galaxy morphology classification tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl

    2018-06-01

    Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  12. Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.

  13. The most complete photometric analysis of 548 CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Gilhuly, Colleen

    We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.

  14. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  15. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  16. Dwarfs in the Deepest Fields at Noon: Studying Size and Shape of Low-mass Galaxies out to z 3 in Five HST Legacy Fields

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng

    2017-08-01

    Galaxies with stellar mass 100x-1000x times smaller than our Milky Way (hereafter dwarf galaxies or DGs) are important for understanding galaxy formation and evolution by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the different physical mechanisms that regulate star formation and shape galaxies. Currently, however, observations of distant DGs have been hampered by small samples and poor quality due to their faintness. We propose an archival study of the size, morphology, and structures of DGs out to z 3.0 by combining the archived data from five of the deepest regions that HST has ever observed: eXtreme Deep Field (XDF, updated from HUDF) and the Hubble Legacy Fields (HLFs). Our program would be the first to advance the morphology studies of DGs to the Cosmic Noon (z 2), and hence place unprecedented constraints on models of galaxy structure formation. Equally important is the data product of our program: multi-wavelength photometry and morphology catalogs for all detected galaxies in these fields. These catalogs would be a timely treasure for the public to prepare for the coming JWST era by providing detailed information of small, faint, but important objects in some deepest HST fields for JWST observations.

  17. LRS2: A New Integral Field Spectrograph for the HET

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  18. The SAMI Galaxy Survey: spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2017-01-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  19. Evolution of Clustering of Starburst Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Tribiano, S. M.; Paglione, T. A. D.; Shopbell, P. L.; Capek, P.; Liu, C.; Tyson, N. D.; COSMOS Team

    2005-12-01

    We measure the angular and spatial correlation function, ω (θ ) on scales of θ = 3" - 300" and ξ (r) on scales of 1-25 h-1 Mpc of 18,801 starburst galaxies (SBGs) with 20 < i+AB < 25 in the COSMOS Field and compare to the correlation functions of the full galaxy sample (180,451 objects) over 0 < z ≤ 2.4. We find in all redshift slices of thickness dz = 0.4, except 0.8 < z ≤ 1.2 for ω (θ ) only, that the amplitude of the clustering of SBGs is greater than that of the full galaxy sample. We report results of fits to a power law profile, measured correlation lengths, and discuss implications for starburst environments. This work is supported by the CUNY Community College Collaborative Research Incentive Grant and the American Museum of Natural History.

  20. The Cosmic Dance of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2006-03-01

    detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its

  1. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    NASA Astrophysics Data System (ADS)

    Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian

    2017-09-01

    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.

  2. Rotation and anisotropy of galaxies revisited

    NASA Astrophysics Data System (ADS)

    Binney, James

    2005-11-01

    The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.

  3. Infrared polarimetry and the magnetic field in external galaxies

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay

    1990-01-01

    Here researchers report for the first time infrared polarimetry of the normal edge on spiral NGC 4565 and the interacting pair NGC 3690/IC 694 (Arp 299). These observations, as well as previous observations, were made with the Minnesota Infrared Polarimeter on the Space Infrared Telescope Facility during the past year. The goal is to explore the magnetic field geometry in these galaxies and to determine the extent to which the field is ordered and uniform.

  4. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  5. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  6. Bridging the gap: New ALMA observations of lensed dusty galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Kearney, Zoe; Pope, Alexandra; Aretxaga, Itziar; Hughes, David; Marchesini, Danilo; Montana, Alfredo; Murphy, Eric Joseph; Wilson, Grant; Yun, Min

    2018-01-01

    During much of cosmic time, most star formation activity in galaxies is obscured by dust. In order to complete the census of star formation, we must bridge the gap between optical and infrared galaxy populations. With AzTEC on the Large Millimeter Telescope (LMT), we surveyed two of the HST Frontier Fields in order to exploit the gravitational lensing from foreground clusters to study dust-obscured in galaxies below the nominal confusion limit. We detect millimeter galaxies with magnifications ranging from 1.1-8, allowing us to detect dust-obscured star formation rates in galaxies as low as ~10 Msun/year. We present new observations with ALMA in order to localize the millimeter emission of the AzTEC/LMT sources and make unambiguous associations with the optical galaxies in the deep HST images. We investigate the issue of multiplicity within our sample. We discuss the multi-wavelength counterparts of our faint millimeter sources and how they relate to brighter dusty galaxies from previous surveys.

  7. Comparisons of the Standard Galaxy Model with observations in two fields

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Ratnatunga, K. U.

    1985-01-01

    The Bahcall-Soneira (1984) model for the distribution of stars in the Galaxy is compared with the observations reported by Gilmore, Reid, and Hewett (1984) in two directions in the sky, the pole and the Morton-Tritton (1982) region. It is shown that the Galaxy model is in good agreement with the observations everywhere it has been tested with modern data, including the magnitude range, V = 17-18, and provided that the globular cluster feature is included in the luminosity function of the field Population II stars.

  8. Transformations in our Understanding of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Bershady, M. A.

    2016-10-01

    A new generation of instruments has launched large surveys now mapping galaxy evolution with single- and multi-object integral-field spectrographs (IFS). These surveys form counterpoints to the mapping of the Milky Way with multi-object stellar spectroscopy and the Gaia satellite. Combined, they allow us to better place the Milky Way in context of the galaxy population at z˜0; to understand if the Milky Way is indeed a normal spiral; and to leverage its unique archaeological record against observations of distant galaxies. These studies illustrate opportunities awaiting next-generation instruments and surveys that push to higher spectral resolution, lower surface-brightness, and into the near and even mid-infrared. Here we focus on the advantages of higher spectral resolution IFS, as enabled by WEAVE. Ground-breaking science opportunities include characterizing and kinematically resolving the ionized gas and stars in dynamically cold galaxies. Such studies will benefit from increased sensitivity both in S/N and line-diagnostics, pushing extragalactic observations in integrated light much closer to where our understanding of Milky Way chemo-dynamics is today.

  9. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (< 0\\buildrel{\\prime\\prime}\\over{.} 57 (1.9 kpc) at full width at half maximum (FWHM)) than the extended stellar continuum emission region determined by the Gemini/GMOS z\\prime -band image (≃ 1\\buildrel{\\prime\\prime}\\over{.} 4 (4.6 kpc) at FWHM with ellipticity b/a=0.45). The spatial offset between the centroid of the Hα emission region and the position of the radio bursts is 0\\buildrel{\\prime\\prime}\\over{.} 08+/- 0\\buildrel{\\prime\\prime}\\over{.} 02 (0.26 ± 0.07 kpc), indicating that FRB 121102 is located within the star-forming region. This close spatial association of FRB 121102 with the star-forming region is consistent with expectations from young pulsar/magnetar models for FRB 121102, and it also suggests that the observed Hα emission region can make a major dispersion measure (DM) contribution to the host galaxy DM component of FRB 121102. Nevertheless, the largest possible value of the DM contribution from the Hα emission region inferred from our observations still requires a significant amount of ionized baryons in intergalactic medium (IGM; the so-called “missing” baryons) as the DM source of FRB 121102, and we obtain a 90% confidence level lower limit on the cosmic baryon density in the IGM in the low-redshift universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. CALIFA, the Calar Alto Legacy Integral Field Area survey. I. Survey presentation

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Kennicutt, R. C.; Gil de Paz, A.; van de Ven, G.; Vílchez, J. M.; Wisotzki, L.; Walcher, C. J.; Mast, D.; Aguerri, J. A. L.; Albiol-Pérez, S.; Alonso-Herrero, A.; Alves, J.; Bakos, J.; Bartáková, T.; Bland-Hawthorn, J.; Boselli, A.; Bomans, D. J.; Castillo-Morales, A.; Cortijo-Ferrero, C.; de Lorenzo-Cáceres, A.; Del Olmo, A.; Dettmar, R.-J.; Díaz, A.; Ellis, S.; Falcón-Barroso, J.; Flores, H.; Gallazzi, A.; García-Lorenzo, B.; González Delgado, R.; Gruel, N.; Haines, T.; Hao, C.; Husemann, B.; Iglésias-Páramo, J.; Jahnke, K.; Johnson, B.; Jungwiert, B.; Kalinova, V.; Kehrig, C.; Kupko, D.; López-Sánchez, Á. R.; Lyubenova, M.; Marino, R. A.; Mármol-Queraltó, E.; Márquez, I.; Masegosa, J.; Meidt, S.; Mendez-Abreu, J.; Monreal-Ibero, A.; Montijo, C.; Mourão, A. M.; Palacios-Navarro, G.; Papaderos, P.; Pasquali, A.; Peletier, R.; Pérez, E.; Pérez, I.; Quirrenbach, A.; Relaño, M.; Rosales-Ortega, F. F.; Roth, M. M.; Ruiz-Lara, T.; Sánchez-Blázquez, P.; Sengupta, C.; Singh, R.; Stanishev, V.; Trager, S. C.; Vazdekis, A.; Viironen, K.; Wild, V.; Zibetti, S.; Ziegler, B.

    2012-02-01

    The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of ~600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of ~1.3⎕', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 Å, using two overlapping setups (V500 and V1200), with different resolutions: R ~ 850 and R ~ 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfillthe expectations of

  11. Spectroscopic decomposition of the galaxy and halo of the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Merrifield, Michael; Aragón-Salamanca, Alfonso

    2018-05-01

    Information on the star-formation histories of cD galaxies and their extended stellar haloes lie in their spectra. Therefore, to determine whether these structures evolved together or through a two-phase formation, we need to spectroscopically separate the light from each component. We present a pilot study to use BUDDI to fit and extract the spectra of the cD galaxy NGC 3311 and its halo in an Integral Field Spectroscopy datacube, and carry out a simple stellar populations analysis to study their star-formation histories. Using MUSE data, we were able to isolate the light of the galaxy and its halo throughout the datacube, giving spectra representing purely the light from each of these structures. The stellar populations analysis of the two components indicates that, in this case, the bulk of the stars in both the halo and the central galaxy are very old, but the halo is more metal poor and less α-enriched than the galaxy. This result is consistent with the halo forming through the accretion of much smaller satellite galaxies with more extended star formation. It is noteworthy that the apparent gradients in age and metallicity indicators across the galaxy are entirely consistent with the radially-varying contributions of galaxy and halo components, which individually display no gradients. The success of this study is promising for its application to a larger sample of cD galaxies that are currently being observed by IFU surveys.

  12. The WFIRST Galaxy Survey Exposure Time Calculator

    NASA Technical Reports Server (NTRS)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  13. Optical Design of the WFIRST Phase-A Integral Field Channel

    NASA Technical Reports Server (NTRS)

    Gao, Guangjun; Pasquale, Bert A.; Marx, Catherine T.; Chambers, Victor

    2017-01-01

    WFIRST is one of NASA's Decadal Survey Missions and is currently in Phase-A development. The optical design of the WFIRST Integral Field Channel (IFC), one of three main optical channels of WFIRST, is presented, and the evolution of the IFC channel since Mission Concept Review (MCR, end of Pre-Phase A) is discussed. The IFC has two sub-channels: Supernova (IFC-S) and Galaxy (IFC-G) channels, with Fields of View of 3"x4.5" and 4.2"x9" respectively, and approximately R 75 spectral analysis over waveband 0.42 approximately 2.0 micrometers. The Phase-A IFC optical design meets image quality requirements over the FOV areas while balancing cost and volume constraints.

  14. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA

    NASA Astrophysics Data System (ADS)

    Bonilla, Alaina

    2017-01-01

    MaNGA (Mapping of Nearby Galaxies at Apache Point Observatory) is a 6-year Sloan Digital Sky Survey fourth generation (SDSS-IV) project that will obtain integral field spectroscopy of a catalogue of 10,000 nearby galaxies. In this study, we explore the properties of the passive dwarf galaxy sample presented in Penny et al. 2016, making use of MaNGA IFU (Integral Field Unit) data to plot gas emission, stellar velocity, and flux maps. In addition, HI-MaNGA, a legacy radio-survey of MaNGA, collects single dish HI data retrieved from the GBT (Green Bank Telescope), which we use to study the the 21cm emission lines present in HI detections. Studying the HI content of passive dwarves will help us reveal the processes that are preventing star formation, such as possible AGN feedback. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from the Sloan Foundation to the Astrophysical Research Consortium.

  15. Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.

  16. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  17. Circumnuclear gaseous kinematics and excitation of four local radio galaxies

    NASA Astrophysics Data System (ADS)

    Couto, G. S.; Storchi-Bergmann, T.; Axon, D. J.; Robinson, A.; Riffel, R. A.; Kharb, P.; Lena, D.; Schnorr-Müller, A.

    2017-07-01

    We present our results using optical integral field spectroscopy of four nearby (z<0.07) radio galaxies obtained with GMOS in Gemini North and South telescopes. The field-of-view probes a circumnuclear region of ≍3.5"×5", with average spatial resolution of ≍0.6". In this presentation, we will resume our results for two galaxies of our sample, Arp 102B and Pictor A, which are already published (Couto et al. 2013, 2016), as well as discuss the preliminary results for the other two, 3C 33 and 4C +29.30. While these galaxies present different characteristics, like radio jet morphology, they display in common signatures of interactions or merger events.

  18. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  19. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    NASA Astrophysics Data System (ADS)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.

    2017-06-01

    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  20. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  1. Plausible Boosting of Millimeter-Galaxies in the COSMOS Field by Intervening Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.; Wilson, G. W.; Aguilar, E.; Alberts, S.; Scott, K. S.; Scoville, N.; Yun, M. S.; Austermann, J.; Downes, T. D.; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Kawabe, R.; Kohno, K.; Oshima, T.; Perera, T. A.; Tamura, Y.; Zeballos, M.

    2011-10-01

    The 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field, carried out to a 1σ≍1.26 mJy beam-1 depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE), shows number counts with a significant excess of sources when compared to the number counts derived from the ˜0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S1.1mm ˜> 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts ˜< 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 ˜< z ˜< 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S1.mm ˜>5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities.

  2. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David; Spekkens, Kristine; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2018-01-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): the resolved stellar halos of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) are investigated out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey pushes the limits of near-field cosmology beyond the Local Group, by characterizing the stellar content (ages, metallicities, gradients) of extended halos and their substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. PISCeS has to date led to the discovery of 11 confirmed satellites as faint as M_V=-8 (including Ultra Diffuse Galaxies), streams and tidal substructures with surface brigthness limits as low as ~32 mag/arcsec^2, and hundreds of globular cluster/ultra-compact dwarf candidates. The unique strength of PISCeS is the exquisite synergy between the wide-field, ground-based survey and its extensive imaging and spectroscopic follow-up (HST, Keck, VLT, Magellan, AAT), which constitute the first accurate characterization of the past and ongoing accretion processes shaping the halos of these nearby galaxies. Our observational campaign will not only provide crucial constraints to quantitatively inform theoretical models of galaxy formation and evolution, but it also represents a necessary testbed in preparation for future very large datasets stemming from the next generation of ground-based (LSST, TMT, GMT) as well as space-borne (JWST, WFIRST) telescopes.

  3. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  4. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch withmore » isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.« less

  5. Integrating diverse databases into an unified analysis framework: a Galaxy approach

    PubMed Central

    Blankenberg, Daniel; Coraor, Nathan; Von Kuster, Gregory; Taylor, James; Nekrutenko, Anton

    2011-01-01

    Recent technological advances have lead to the ability to generate large amounts of data for model and non-model organisms. Whereas, in the past, there have been a relatively small number of central repositories that serve genomic data, an increasing number of distinct specialized data repositories and resources have been established. Here, we describe a generic approach that provides for the integration of a diverse spectrum of data resources into a unified analysis framework, Galaxy (http://usegalaxy.org). This approach allows the simplified coupling of external data resources with the data analysis tools available to Galaxy users, while leveraging the native data mining facilities of the external data resources. Database URL: http://usegalaxy.org PMID:21531983

  6. Extremely red objects in the fields of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith

    1993-01-01

    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.

  7. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  8. Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Brough, S.; Croom, S.; Sharp, R.; Hopkins, A. M.; Taylor, E. N.; Baldry, I. K.; Gunawardhana, M. L. P.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Foster, C.; Kelvin, L. S.; Lara-Lopez, M. A.; López-Sánchez, Á. R.; Loveday, J.; Owers, M.; Pimbblet, K. A.; Prescott, M.

    2013-11-01

    We present observations of 18 galaxies from the Galaxy And Mass Assembly (GAMA) survey made with the SPIRAL optical integral field unit (IFU) on the Anglo-Australian Telescope. The galaxies are selected to have a narrow range in stellar mass (6 × 109 < M* < 2 × 1010 M⊙) in order to focus on the effects of environment. Local galaxy environments are measured quantitatively using fifth nearest neighbour surface densities. We find that the total star formation rates (SFR) measured from the IFU data are consistent with total SFRs measured from aperture correcting either GAMA or Sloan Digital Sky Survey single-fibre observations. The mean differences are SFRGAMA/SFRIFU = 1.26 ± 0.23, σ = 0.90 and for the Sloan Digital Sky Survey we similarly find SFRBrinchmann/SFRIFU = 1.34 ± 0.17, σ = 0.67. Examining the relationships with environment, we find that off-centre and clumpy Hα emission is not significantly dependent on environment, being present in 2/7 (29^{+20}_{-11} per cent) galaxies in high-density environments (>0.77 Mpc-2), and 5/11 (45^{+15}_{-13} per cent) galaxies in low-density environments (<0.77 Mpc-2). We find a weak but not significant relationship of the total SFRs of star-forming galaxies with environment. Due to the size of our sample and the scatter observed we do not draw a definitive conclusion about a possible SFR dependence on environment. Examining the spatial distribution of the Hα emission, we find no evidence for a change in shape or amplitude of the radial profile of star-forming galaxies with environment. If these observations are borne out in larger samples, this would infer that any environment-driven star formation suppression must either act very rapidly (the `infall-and-quench' model) or that galaxies must evolve in a density-dependent manner (an `in situ evolution' model).

  9. IRX– β RELATION OF STAR-FORMING REGIONS IN NGC 628 BASED ON INTEGRAL FIELD SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chengyun; Lian, Jianhui; Hu, Ning

    2016-08-01

    It has been found that the infrared-to-ultraviolet luminosity ratio (IRX) and ultraviolet spectral slope ( β ) have a tight correlation in starburst galaxies, while in normal galaxies the relation is deviated and has a much larger scatter. Star formation regions are much simpler in both morphology and physical properties than galaxies, so their photometric and spectroscopic properties are more easily and accurately determined. We have used the integral field spectroscopy and multiband photometric images to study the IRX– β relation of H ii regions in a nearby galaxy, NGC 628. There are obvious correlations between the D{sub n} (4000),more » stellar population age, star formation rate, especially H α equivalent width EW(H α), and deviation distance d {sub p} from the starburst IRX– β relation. However, there is little correlation between the Balmer decrement, metallicity, and d {sub p}. It is much more complicated than expected, so that we cannot introduce a single second parameter to describe the scatter and deviation of the H ii region IRX– β relation.« less

  10. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties ofmore » our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing

  11. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki

    2016-07-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift

  12. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  13. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  14. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  15. The AzTEC millimeter-wave camera: Design, integration, performance, and the characterization of the (sub-)millimeter galaxy population

    NASA Astrophysics Data System (ADS)

    Austermann, Jason Edward

    One of the primary drivers in the development of large format millimeter detector arrays is the study of sub-millimeter galaxies (SMGs) - a population of very luminous high-redshift dust-obscured starbursts that are widely believed to be the dominant contributor to the Far-Infrared Background (FIB). The characterization of such a population requires the ability to map large patches of the (sub-)millimeter sky to high sensitivity within a feasible amount of time. I present this dissertation on the design, integration, and characterization of the 144-pixel AzTEC millimeter-wave camera and its application to the study of the sub-millimeter galaxy population. In particular, I present an unprecedented characterization of the "blank-field" (fields with no known mass bias) SMG number counts by mapping over 0.5 deg^2 to 1.1mm depths of ~1mJy - a previously unattained depth on these scales. This survey provides the tightest SMG number counts available, particularly for the brightest and rarest SMGs that require large survey areas for a significant number of detections. These counts are compared to the predictions of various models of the evolving mm/sub-mm source population, providing important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation. I also present the results of an AzTEC 0.15 deg^2 survey of the COSMOS field, which uncovers a significant over-density of bright SMGs that are spatially correlated to foreground mass structures, presumably as a result of gravitational lensing. Finally, I compare the results of the available SMG surveys completed to date and explore the effects of cosmic variance on the interpretation of individual surveys.

  16. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  17. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  18. Aperture-free star formation rate of SDSS star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.

    2017-03-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors

  19. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  20. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  1. Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.

    2017-09-01

    Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 < z < 1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns as [OII] and Hα emitters. Our spectroscopy was complemented with HST/ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity. Results: Vmax was robustly determined for six cluster galaxies and three field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band TFR and the local velocity-size relation (VSR), finding that cluster galaxies are on average 1.6 mag brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (I.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The averaged deviation from the local TFR is ⟨ ΔMB ⟩ = -0.7 for the high

  2. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Heesen, Volker

    2008-02-01

    The transport of cosmic rays (CR's) in large-scale magnetic fields can be bes t investigated in edge-on galaxies with radio continuum observations including p olarization. I observed the nearby starburst galaxy NGC 253 which hosts one of t he brightest known radio halos with the Effelsberg 100-m telescope and the VLA i nterferometer. The vertical emission profiles follow closely a two-component exp onential distribution where the scaleheight is a linear function of the synchrot ron lifetime of the CR electrons. This requires a convection dominated CR transp ort from the disk into the halo while the CR's lose their energy due to synchrot ron radiation the so-called CR aging. The interaction of the "disk-wind" with th e magnetic field explains the "X"-shaped magnetic field structure centered on th e nucleus where the ordered magnetic field is amplified by compression in the bo undaries of the expanding superbubbles of hot gas.

  3. The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Houdashelt, Mark Lee

    1995-01-01

    Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge

  4. Velocity field and physical conditions in the active lenticular galaxy NGC 3998

    NASA Technical Reports Server (NTRS)

    Blackman, C. P.; Wilson, A. S.; Ward, M. J.

    1983-01-01

    A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.

  5. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  6. A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta

    2012-06-20

    Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify themore » situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.« less

  7. A strong-lensing elliptical galaxy in the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  8. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.

    2009-04-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that

  9. The optical and near-infrared colors of galaxies, 1: The photometric data

    NASA Technical Reports Server (NTRS)

    Bershady, Matthew A.; Hereld, Mark; Kron, Richard G.; Koo, David C.; Munn, Jeffrey A.; Majewski, Steven R.

    1994-01-01

    We present optical and near-infrared photometry and spectroscopic redshifts of a well defined sample of 171 field galaxies selected from three high galactic latitude fields. This data set forms the basis for subsequent studies to characterize the trends, dispersion, and evolution of rest-frame colors and image structure. A subset of 143 galaxies constitutes a magnitude-limited sample to B approx. 19.9-20.75 (depending on field), with a median redshift of 0.14, and a maximum redshift of 0.54. This subset is statistically representative in its sampling of the apparent color distribution of galaxies. Thirty six galaxies were selected to have the reddest red-optical colors in two redshift intervals between 0.2 less than z less than 0.3. Photometric passbands are similar to U, B, V, I, and K, and sample galaxy spectral energy distributions between 0.37 and 2.2 micrometers in the observed frame, or down to 0.26 micrometers in the rest frame for the most distant galaxies. B and K images of the entire sample are assembled to form the first optical and near-infrared atlas of a statistically-representative sample of field galaxies. We discuss techniques for faint field-galaxy photometry, including a working definition of a total magnitude, and a method for matching magnitudes in different passbands and different seeing conditions to ensure reliable, integrated colors. Photographic saturation, which substantially affects the brightest 12% of our sample in the optical bands, is corrected with a model employing measured plate-density distributions for each galaxy, calibrated via similar measurements for stars as a function of known saturation level. Both the relative and absolute calibration of our photometry are demonstrated.

  10. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives

  11. Constraining galaxy cluster velocity field with the thermal Sunyaev-Zel'dovich and kinematic Sunyaev-Zel'dovich cross-bispectrum

    NASA Astrophysics Data System (ADS)

    Hurier, G.

    2017-08-01

    The Sunyaev-Zel'dovich (SZ) effects are produced by the interaction of cosmic microwave background (CMB) photons with the ionized and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. The two main effects are the thermal SZ (tSZ) produced by thermal pressure inside galaxy clusters and the kinematic SZ (kSZ) produced by peculiar motion of galaxy clusters compared to CMB rest-frame. The kSZ effect is particularly challenging to measure as it follows the same spectral behavior as the CMB, and consequently cannot be separated from the CMB using spectral considerations. In this paper, we explore the feasibility of detecting the kSZ through the computation of the tSZ-CMB-CMB cross-correlation bispectrum for current and future CMB experiments. We conclude that the next generation of CMB experiments will offer the possibility to detect the tSZ-kSZ-kSZ bispectrum at high signal-to-noise ration (S/N). This measurement will constraints the intra-cluster dynamics and the velocity field of galaxy cluster that is extremely sensitive to the growth rate of structures and thus to dark energy properties. Additionally, we also demonstrate that the tSZ-kSZ-kSZ bispectrum can be used to break the degeneracies between the mass-observable relation and the cosmological parameters to set tight constraints, up to 4%, on the Y - M relation calibration.

  12. SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.

    2016-04-20

    The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less

  13. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  14. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    PubMed

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  15. Magnetic Fields in the Galaxy

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth A.

    2009-01-01

    Interstellar magnetic fields are believed to play a crucial role in the star-formation process, therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  16. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, David R.; Bershady, Matthew A., E-mail: david.andersen@nrc-cnrc.gc.ca, E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometricmore » and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.« less

  17. Cosmic Web of Galaxies in the COSMOS Field: Public Catalog and Different Quenching for Centrals and Satellites

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Mobasher, Bahram; Martin, D. Christopher; Sobral, David; Scoville, Nick; Stroe, Andra; Hemmati, Shoubaneh; Kartaltepe, Jeyhan

    2017-03-01

    We use a mass complete (log(M/{M}⊙ ) ≥slant 9.6) sample of galaxies with accurate photometric redshifts in the COSMOS field to construct the density field and the cosmic web to z = 1.2. The comic web extraction relies on the density field Hessian matrix and breaks the density field into clusters, filaments, and the field. We provide the density field and cosmic web measures to the community. We show that at z ≲ 0.8, the median star formation rate (SFR) in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellites (˜1 dex versus ˜0.5 dex for centrals). However, at z ≳ 0.8, the trend flattens out for the overall galaxy population and satellites. For star-forming (SF) galaxies only, the median SFR is constant at z ≳ 0.5 but declines by ˜0.3-0.4 dex from the field to clusters for satellites and centrals at z ≲ 0.5. We argue that for satellites, the main role of the cosmic web environment is to control their SF fraction, whereas for centrals, it is mainly to control their overall SFR at z ≲ 0.5 and to set their fraction at z ≳ 0.5. We suggest that most satellites experience a rapid quenching mechanism as they fall from the field into clusters through filaments, whereas centrals mostly undergo a slow environmental quenching at z ≲ 0.5 and a fast mechanism at higher redshifts. Our preliminary results highlight the importance of the large-scale cosmic web on galaxy evolution.

  18. Galaxy evolution in protoclusters

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Hatch, Nina A.; Cooke, Elizabeth A.

    2018-01-01

    We investigate galaxy evolution in protoclusters using a semi-analytic model applied to the Millennium Simulation, scaled to a Planck cosmology. We show that the model reproduces the observed behaviour of the star formation history (SFH) both in protoclusters and the field. The rate of star formation peaks ∼0.7 Gyr earlier in protoclusters than in the field and declines more rapidly afterwards. This results in protocluster galaxies forming significantly earlier: 80 per cent of their stellar mass is already formed by z = 1.4, but only 45 per cent of the field stellar mass has formed by this time. The model predicts that field and protocluster galaxies have similar average specific star-formation rates (sSFR) at z > 3, and we find evidence of an enhancement of star formation in the dense protoclusters at early times. At z < 3, protoclusters have lower sSFRs, resulting in the disparity between the SFHs. We show that the stellar mass functions of protoclusters are top-heavy compared with the field due to the early formation of massive galaxies, and the disruption and merging of low-mass satellite galaxies in the main haloes. The fundamental cause of the different SFHs and mass functions is that dark matter haloes are biased tracers of the dark matter density field: the high density of haloes and the top-heavy halo mass function in protoclusters result in the early formation then rapid merging and quenching of galaxies. We compare our results with observations from the literature and highlight which observables provide the most informative tests of galaxy formation.

  19. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  20. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    NASA Astrophysics Data System (ADS)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ <~ 27 mag. We discuss effects from the cosmological surface brightness (SB) dimming and from the redshifted UV morphology on the classifications, and we correct for the latter. We present classifications in UBVI from (a) four independent human classifiers; (b) ANNs trained on V606 and I814 images; and (c) an ANN trained on images in the rest-frame UBV according to the expected redshift distribution as a function of BJ. For each of the three methods, we find that the fraction of galaxy types does not depend significantly on wavelength, and that they produce consistent counts as a function of type. The median scale length at BJ ~= 27 mag is rhl ~= 0."25--0."3 (1--2 kpc at z ~ 1--2). Early- and late-type galaxies are fairly well separated in BVI color-magnitude diagrams for B <~ 27 mag, with E/S0 galaxies being the reddest and Sd/Irr+M galaxies generally blue. We present the B-band galaxy counts for five WFPC2 fields as a function of morphological type for BJ <~ 27 mag. E/S0 galaxies are only marginally above the no-evolution predictions, and Sabc galaxies are at most 0.5 dex above the nonevolving models for BJ >~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  1. Listening to Shells: Galaxy Masses from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS

  2. Near-field limits on the role of faint galaxies in cosmic reionization

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea

    2014-09-01

    Reionizing the Universe with galaxies appears to require significant star formation in low-mass haloes at early times, while local dwarf galaxy counts tell us that star formation has been minimal in small haloes around us today. Using simple models and the ELVIS simulation suite, we show that reionization scenarios requiring appreciable star formation in haloes with Mvir ≈ 108 M⊙ at z = 8 are in serious tension with galaxy counts in the Local Group. This tension originates from the seemingly inescapable conclusion that 30-60 haloes with Mvir > 108 M⊙ at z = 8 will survive to be distinct bound satellites of the Milky Way at z = 0. Reionization models requiring star formation in such haloes will produce dozens of bound galaxies in the Milky Way's virial volume today (and 100-200 throughout the Local Group), each with ≳105 M⊙ of old stars (≳13 Gyr). This exceeds the stellar mass function of classical Milky Way satellites today, even without allowing for the (significant) post-reionization star formation observed in these galaxies. One possible implication of these findings is that star formation became sharply inefficient in haloes smaller than ˜109 M⊙ at early times, implying that the high-z luminosity function must break at magnitudes brighter than is often assumed (at MUV ≃ -14). Our results suggest that the James Webb Space Telescope (and possibly even the Hubble Space Telescope with the Frontier Fields) may realistically detect the faintest galaxies that drive reionization. It remains to be seen how these results can be reconciled with the most sophisticated simulations of early galaxy formation at present, which predict substantial star formation in Mvir ˜ 108 M⊙ haloes during the epoch of reionization.

  3. Resolving the extended stellar haloes of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David J.; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian A.; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2015-08-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): we investigate the resolved stellar haloes of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey led to the discovery of ~20 faint satellites and stunning streams/substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. These discoveries clearly testify the past and ongoing accretion processes shaping the haloes of these nearby galaxies, and provide the first complete census of their satellite systems down to an unprecedented M_V<-8. This effectively enables the first direct comparison of external galaxies' resolved haloes to the PAndAS survey. The detailed characterization of the stellar content, shape and gradients in the extended haloes of NGC253, Centaurus A and in their satellites represent crucial constraints to theoretical models of galaxy formation and evolution.

  4. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  5. Galaxy Strategy for Ligo-Virgo Gravitational Wave Counterpart Searches

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.; Kanner, Jonah; Kasliwal, Mansi M.; Nissanke, Samaya; Singer, Leo P.

    2016-01-01

    In this work we continue a line of inquiry begun in Kanner et al. which detailed a strategy for utilizing telescopes with narrow fields of view, such as the Swift X-Ray Telescope (XRT), to localize gravity wave (GW) triggers from LIGO (Laser Interferometer Gravitational-Wave Observatory) / Virgo. If one considers the brightest galaxies that produce 50 percent of the light, then the number of galaxies inside typical GW error boxes will be several tens. We have found that this result applies both in the early years of Advanced LIGO when the range is small and the error boxes large, and in the later years when the error boxes will be small and the range large. This strategy has the beneficial property of reducing the number of telescope pointings by a factor 10 to 100 compared with tiling the entire error box. Additional galaxy count reduction will come from a GW rapid distance estimate which will restrict the radial slice in search volume. Combining the bright galaxy strategy with a convolution based on anticipated GW localizations, we find that the searches can be restricted to about 18 plus or minus 5 galaxies for 2015, about 23 plus or minus 4 for 2017, and about 11 plus or minus for 2020. This assumes a distance localization at the putative neutron star-neutron star (NS-NS) merger range mu for each target year, and these totals are integrated out to the range. Integrating out to the horizon would roughly double the totals. For localizations with r (rotation) greatly less than mu the totals would decrease. The galaxy strategy we present in this work will enable numerous sensitive optical and X-ray telescopes with small fields of view to participate meaningfully in searches wherein the prospects for rapidly fading afterglow place a premium on a fast response time.

  6. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  7. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  8. Estimatining biases in the stellar dynamical black hole mass measurements in barred galaxies and prospects for measuring SMBH masses with JWST

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Vasiliev, Eugene; Bentz, Misty; Shen, Juntai

    2018-04-01

    Although 60% of disk galaxies are barred, stellar dynamical measurements of the masses of supermassive black holes (SMBH) in barred galaxies have always been obtained under the assumption that the bulges are axisymmetric. We use N-body simulations with self-consistently grown SMBHs in barred and unbarred galaxies to create a suite of mock Integral Field Spectrographic (IFS) datasets for galaxies with various observed orientations. We then apply an axisymmetric orbit superposition code to these mock IFS datasets to assess the reliability with which SMBH masses can be recovered. We also assess which disk and bar orientations give rise to biases. We use these simulations to assess whether or not existing SMBH measurements in barred galaxies are likely to be biased. We also present a brief preview of our JWST Early Release Science proposal to study the nuclear dynamics of nearby Seyfert I galaxy NGC 4151 with the NIRSpec Integral Field Spectrograph and describe how simulations of disk galaxies will used to create mock NIRSpec data to prepare for the real data.

  9. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  10. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  11. THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, A.; Schinnerer, E.; Sargent, M. T.

    2011-04-01

    We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 {mu}m selected sample of >10{sup 5} galaxies in the 2 deg{sup 2} COSMOS field. The average star formation rate (SFR) for subsets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 < z < 3 both populations show a strong and mass-independent decrease inmore » their SSFR toward the present epoch. It is best described by a power law (1 + z) {sup n}, where n {approx} 4.3 for all galaxies and n {approx} 3.5 for star-forming (SF) sources. The decrease appears to have started at z>2, at least for high-mass (M{sub *} {approx}> 4 x 10{sup 10} M{sub sun}) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR {proportional_to} M{sub *} {sup {beta},} between SSFR and stellar mass at all epochs. The relation tends to flatten below M{sub *} {approx} 10{sup 10} M{sub sun} if quiescent galaxies are included; if they are excluded from the analysis a shallow index {beta}{sub SFG} {approx} -0.4 fits the correlation. On average, higher mass objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper threshold in SSFR that an average galaxy cannot exceed, possibly due to gravitationally limited molecular gas accretion. It is suggested by a flattening of the SSFR-M{sub *} relation (also for SF sources), but affects massive (>10{sup 10} M{sub sun}) galaxies only at the highest redshifts. Since z = 1.5 there thus is no direct evidence that galaxies of higher mass experience a more rapid waning of their SSFR than lower mass SF systems. In this sense, the data rule out any strong 'downsizing' in the SSFR. We

  12. Using an artificial neural network to classify multicomponent emission lines with integral field spectroscopy from SAMI and S7

    NASA Astrophysics Data System (ADS)

    Hampton, E. J.; Medling, A. M.; Groves, B.; Kewley, L.; Dopita, M.; Davies, R.; Ho, I.-T.; Kaasinen, M.; Leslie, S.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Allen, J.; Bland-Hawthorn, J.; Brough, S.; Bryant, J. J.; Croom, S.; Goodwin, M.; Green, A.; Konstantantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Owers, M. S.; Richards, S. N.; Shastri, P.

    2017-09-01

    Integral field spectroscopy (IFS) surveys are changing how we study galaxies and are creating vastly more spectroscopic data available than before. The large number of resulting spectra makes visual inspection of emission line fits an infeasible option. Here, we present a demonstration of an artificial neural network (ANN) that determines the number of Gaussian components needed to describe the complex emission line velocity structures observed in galaxies after being fit with lzifu. We apply our ANN to IFS data for the S7 survey, conducted using the Wide Field Spectrograph on the ANU 2.3 m Telescope, and the SAMI Galaxy Survey, conducted using the SAMI instrument on the 4 m Anglo-Australian Telescope. We use the spectral fitting code lzifu (Ho et al. 2016a) to fit the emission line spectra of individual spaxels from S7 and SAMI data cubes with 1-, 2- and 3-Gaussian components. We demonstrate that using an ANN is comparable to astronomers performing the same visual inspection task of determining the best number of Gaussian components to describe the physical processes in galaxies. The advantage of our ANN is that it is capable of processing the spectra for thousands of galaxies in minutes, as compared to the years this task would take individual astronomers to complete by visual inspection.

  13. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O III] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  14. X-ray sources in dwarf galaxies in the Virgo cluster and the nearby field

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Marina; Phillipps, S.; Young, A. J.

    2016-08-01

    The extent to which dwarf galaxies represent essentially scaled down versions of giant galaxies is an important question with regards the formation and evolution of the galaxy population as a whole. Here, we address the specific question of whether dwarf galaxies behave like smaller versions of giants in terms of their X-ray properties. We discuss two samples of around 100 objects each, dwarfs in the Virgo cluster and dwarfs in a large Northern hemisphere area. We find nine dwarfs in each sample with Chandra detections. For the Virgo sample, these are in dwarf elliptical (or dwarf lenticular) galaxies and we assume that these are (mostly) low-mass X-ray binaries (LMXB) [some may be nuclear sources]. We find a detection rate entirely consistent with scaling down from massive ellipticals, viz. about one bright (I.e. LX > 1038 erg s-1) LMXB per 5 × 109 M⊙ of stars. For the field sample, we find one (known) Seyfert nucleus, in a galaxy which appears to be the lowest mass dwarf with a confirmed X-ray emitting nucleus. The other detections are in star-forming dwarf irregular or blue compact dwarf galaxies and are presumably high-mass X-ray binaries (HMXB). This time, we find a very similar detection rate to that in large late-type galaxies if we scale down by star formation rate, roughly one HMXB for a rate of 0.3 M⊙ per year. Nevertheless, there does seem to be one clear difference, in that the dwarf late-type galaxies with X-ray sources appear strongly biased to very low metallicity systems.

  15. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  16. The Structure of Massive Quiescent Galaxies at Z ~ 3 in the CANDELS-COSMOS Field

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Fang, Guanwen; Chen, Yang; Pan, Zhizheng; Lv, Xuanyi; Li, Jinrong; Lin, Lin; Kong, Xu

    2013-07-01

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 <= z <= 4.0 in the CANDELS-COSMOS field. We construct an H F160W-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z ~ 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z ~ 3 galaxies can be modeled by assuming their formation at z form ~ 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by re vprop(1 + z)-1.0. Low Sérsic index and axis ratio, with median values n ~1.5 and b/a ~ 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  17. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    NASA Astrophysics Data System (ADS)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  18. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  19. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    NASA Astrophysics Data System (ADS)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  20. The Sizes of z ˜ 6-8 Lensed Galaxies from the Hubble Frontier Fields Abell 2744 Data

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Oguri, Masamune; Ouchi, Masami

    2015-05-01

    We investigate the sizes of z ˜ 6-8 dropout galaxies using the complete data of the Abell 2744 cluster and parallel fields in the Hubble Frontier Fields program. By directly fitting light profiles of observed galaxies with lensing-distorted Sérsic profiles on the image plane with the glafic software, we accurately measure intrinsic sizes of 31 z ˜ 6-7 and 8 z˜ 8 galaxies, including those as faint as {{M}UV}≃ -16.6. We find that half-light radii re positively correlates with UV luminosity at each redshift, although the correlation is not very tight. The largest ({{r}e}\\gt 0.8 kpc) galaxies are mostly red in UV color while the smallest ({{r}e}\\lt 0.08 kpc) ones tend to be blue. We also find that galaxies with multiple cores tend to be brighter. Combined with previous results at 2.5≲ z≲ 12, our result confirms that the average {{r}e} of bright ((0.3-1)Lz=3*) galaxies scales as {{r}e}\\propto {{≤ft( 1+z \\right)}-m} with m=1.24+/- 0.1. We find that the ratio of re to virial radius is virtually constant at 3.3 ± 0.1% over a wide redshift range, where the virial radii of hosting dark matter halos are derived based on the abundance matching. This constant ratio is consistent with the disk formation model by Mo et al. with {{j}d}˜ {{m}d}, where jd and md are the fractions of the angular momentum and mass within halos confined in the disks. A comparison with various types of local galaxies indicates that our galaxies are most similar to circumnuclear star-forming regions of barred galaxies in the sense that a sizable amount of stars are forming in a very small area.

  1. SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; Greene, Jenny E.; Riffel, Rogemar A.; Drory, Niv; Andrews, Brett H.; Merloni, Andrea; Thomas, Daniel

    2018-02-01

    In this paper, we investigate 2727 galaxies observed by MaNGA as of 2016 June to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGNs). We identify 303 AGN candidates. The additional spatial dimension imposes challenges in identifying AGNs due to contamination from diffuse ionized gas, extraplanar gas and photoionization by hot stars. We show that the combination of spatially resolved line diagnostic diagrams and additional cuts on H α surface brightness and H α equivalent width can distinguish between AGN-like signatures and high-metallicity galaxies with low-ionization nuclear emission-line regions-like spectra. Low-mass galaxies with high specific star formation rates are particularly difficult to diagnose and routinely show diagnostic line ratios outside of the standard star formation locus. We develop a new diagnostic - the distance from the standard diagnostic line in the line-ratio space - to evaluate the significance of the deviation from the star formation locus. We find 173 galaxies that would not have been selected as AGN candidates based on single-fibre spectral measurements but exhibit photoionization signatures suggestive of AGN activity in the Mapping Nearby Galaxies at APO resolved observations, underscoring the power of large integral field unit surveys. A complete census of these new AGN candidates is necessary to understand their nature and probe the complex co-evolution of supermassive black holes and their hosts.

  2. SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike

    2018-04-01

    We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.

  3. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  4. The Enigmatic Local Hubble Flow: Probing the Nearby Peculiar Velocity Field with Consistent Distances to Neighboring Galaxies.

    NASA Astrophysics Data System (ADS)

    Mendez, B.; Davis, M.; Newman, J.; Madore, B. F.; Freedman, W. L.; Moustakas, J.

    2002-12-01

    The properties of the velocity field in the local volume (cz < 550 km s-1) have been difficult to constrain due to a lack of a consistent set of galaxy distances. The sparse observations available to date suggest a remarkably quiet flow, with little deviation from a pure Hubble law. However, velocity field models based on the distribution of galaxies in the 1.2 Jy IRAS redshift survey, predict a quadrupolar flow pattern locally with strong infall at the poles of the local Supergalactic plane. In an attempt to resolve this discrepency, we probe the local velocity field and begin to establish a consistent set of galactic distances. We have obtained images of nearby galaxies in I, V, and B bands from the W.M. Keck Observatory and in F814W and F555W filters from the Hubble Space Telescope. Where these galaxies are well resolved into stars we can use the Tip of the Red Giant Branch (TRGB) as a distance indicator. Using a maximum likelihood analysis to quantitatively measure the I magnitude of the TRGB we determine precise distances to several nearby galaxies. We supplement that dataset with published distances to local galaxies measured using Cepheids, Surface Brightness Fluctuations, and the TRGB. With these data we find that the amplitude of the local flow is roughly half that expected in linear theory and N-body simulations; thus the enigma of cold local flows persists. This work was supported in part by NASA through a grant from the Space Telescope Science Institute and a Predoctoral Fellowship for Minorities from the Ford Foundation.

  5. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less

  6. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  7. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  8. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  9. ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z ∼ 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcorn, Leo Y.; Tran, Kim-Vy H.; Quadri, Ryan

    2016-07-01

    We perform a kinematic analysis of galaxies at z ∼ 2 in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE survey with stellar masses ranging from log( M {sub ⋆}/ M {sub ⊙}) = 9.0–11.0, 28 of which are members of a known overdensity at z = 2.095. We measure H α emission-line integrated velocity dispersions ( σ {sub int}) from 50 to 230 km s{sup −1}, consistent with other emission-line studies of z ∼ 2 field galaxies. From thesemore » data we estimate virial, stellar, and gas masses and derive correlations between these properties for cluster and field galaxies at z ∼ 2. We find evidence that baryons dominate within the central effective radius. However, we find no statistically significant differences between the cluster and the field, and conclude that the kinematics of star-forming galaxies at z ∼ 2 are not significantly different between the cluster and field environments.« less

  10. wft4galaxy: a workflow testing tool for galaxy.

    PubMed

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  11. CALIFA, the Calar Alto Legacy Integral Field Area survey. II. First public data release

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Jahnke, K.; Sánchez, S. F.; Barrado, D.; Bekeraitė, S.; Bomans, D. J.; Castillo-Morales, A.; Catalán-Torrecilla, C.; Cid Fernandes, R.; Falcón-Barroso, J.; García-Benito, R.; González Delgado, R. M.; Iglesias-Páramo, J.; Johnson, B. D.; Kupko, D.; López-Fernandez, R.; Lyubenova, M.; Marino, R. A.; Mast, D.; Miskolczi, A.; Monreal-Ibero, A.; Gil de Paz, A.; Pérez, E.; Pérez, I.; Rosales-Ortega, F. F.; Ruiz-Lara, T.; Schilling, U.; van de Ven, G.; Walcher, J.; Alves, J.; de Amorim, A. L.; Backsmann, N.; Barrera-Ballesteros, J. K.; Bland-Hawthorn, J.; Cortijo, C.; Dettmar, R.-J.; Demleitner, M.; Díaz, A. I.; Enke, H.; Florido, E.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Lorenzo, B.; Gomes, J. M.; Gruel, N.; Haines, T.; Holmes, L.; Jungwiert, B.; Kalinova, V.; Kehrig, C.; Kennicutt, R. C.; Klar, J.; Lehnert, M. D.; López-Sánchez, Á. R.; de Lorenzo-Cáceres, A.; Mármol-Queraltó, E.; Márquez, I.; Mendez-Abreu, J.; Mollá, M.; del Olmo, A.; Meidt, S. E.; Papaderos, P.; Puschnig, J.; Quirrenbach, A.; Roth, M. M.; Sánchez-Blázquez, P.; Spekkens, K.; Singh, R.; Stanishev, V.; Trager, S. C.; Vilchez, J. M.; Wild, V.; Wisotzki, L.; Zibetti, S.; Ziegler, B.

    2013-01-01

    We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. The galaxies in DR1 already cover a wide range of properties in color-magnitude space, morphological type, stellar mass, and gas ionization conditions. This offers the potential to tackle a variety of open questions in galaxy evolution using spatially resolved spectroscopy. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the nominal wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM), and (ii) a medium-resolution V1200 setup covering the nominal wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). We present the characteristics and data structure of the CALIFA datasets that should be taken into account for scientific exploitation of the data, in particular the effects of vignetting, bad pixels and spatially correlated noise. The data quality test for all 100 galaxies showed that we reach a median limiting continuum sensitivity of 1.0 × 10-18 erg s-1 cm-2 Å-1 arcsec-2 at 5635 Å and 2.2 × 10-18 erg s-1 cm-2 Å-1 arcsec-2 at 4500 Å for the V500 and V1200 setup respectively, which corresponds to limiting r and g band surface brightnesses of 23.6 mag arcsec-2 and 23.4 mag arcsec-2, or an unresolved emission-line flux detection limit of roughly 1 × 10-17 erg s-1 cm-2 arcsec-2 and 0.6 × 10-17 erg s-1 cm-2 arcsec-2, respectively. The median spatial resolution is 3farcs7, and the absolute spectrophotometric calibration is better than 15% (1σ). We also describe the available interfaces and tools that allow easy access to this first publicCALIFA data at http://califa.caha.es/DR1 Based on observations collected at the Centro Astron

  12. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  13. Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence.

    NASA Astrophysics Data System (ADS)

    Aquino-Ortíz, E.; Valenzuela, O.; Sánchez, S. F.; Hernández-Toledo, H.; Ávila-Reese, V.; van de Ven, G.; Rodríguez-Puebla, A.; Zhu, L.; Mancillas, B.; Cano-Díaz, M.; García-Benito, R.

    2018-06-01

    We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) 3rd Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ, and also a combination of Vrot and σ through the SK parameter defined as SK^2 = KV_{rot}^2 + σ ^2 with constant K. Late-type and early-type galaxies reproduce the TF and FJ relations. Some early-type galaxies also follow the TF relation and some late-type galaxies the FJ relation, but always with larger scatter. On the contrary, when we use the SK parameter, all galaxies, regardless of the morphological type, lie on the same scaling relation, showing a tight correlation with the total stellar mass, M⋆. Indeed, we find that the scatter in this relation is smaller or equal to that of the TF and FJ relations. We explore different values of the K parameter without significant differences (slope and scatter) in our final results with respect the case K = 0.5 besides than a small change in the zero point. We calibrate the kinematic SK^2 dynamical mass proxy in order to make it consistent with sophisticated published dynamical models within 0.15 dex. We show that the SK proxy is able to reproduce the relation between the dynamical mass and the stellar mass in the inner regions of galaxies. Our result may be useful in order to produce fast estimations of the central dynamical mass in galaxies and to study correlations in large galaxy surveys.

  14. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  15. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  16. WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey

    NASA Astrophysics Data System (ADS)

    Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.

    2009-03-01

    Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707

  17. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  18. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  19. VIRUS-P Integral Field Spectroscopy of NGC 3310

    NASA Astrophysics Data System (ADS)

    Powell, Kathryn E.; Dufour, R. J.; Kwitter, K. B.; Robertson, P.

    2012-05-01

    We present the results of spectrophotometric mapping of the SAB(r)bc galaxy NGC 3310 using the VIRUS-P integral field spectrograph on the 2.7m Harlan Smith Telescope at McDonald Observatory (Hill et al. 2008 Proc. SPIE, 7014, 701470). VIRUS-P has an IFU consisting of 246 fibers arranged in an array covering a 2.82 arcmin square FOV with each fiber covering a 4.16 arcsec diameter region. The fibers have a 1/3 filling factor so the observations were dithered with alternating object-sky integrations. The FOV essentially covered the entire visible disk of NGC 3310, enabling a spatial study of the H II regions and stellar properties. Two grating tilts were used, resulting in spectra covering 3400-5600 A and 4600-6800 A with 5 A resolution. The spectra were combined, sky subtracted, and calibrated using the photometric standard star HZ44. We produced an integrated spectrum of the galaxy, which we compare with that from a study of NGC 628 with a similar instrument by Sanchez et al. (2011 MNRAS, 410, 313). We also present an analysis of radial variations in diagnostic emission line ratios of the H II regions such as [O III]5007/Hbeta (excitation), [N II]6583/Halpha, [S II]6717/6730 (electron density), and Halpha/Hbeta (reddening) among others. Since VIRUS-P obtained spectra of the stellar population adjacent to the H II regions, we can partially subtract the underlying stellar continua Balmer line absorption to improve the true Halpha/Hbeta ratio in the nebulae that is useful for mapping the radial variation in reddening and dust content. We also analyzed the radial variation in various emission lines in the H II regions to assess abundance gradients. This research is supported in part by a Rice University undergraduate research grant to K. Powell. We also express gratitude to McDonald Observatory, University of Texas at Austin, for a generous allotment of observing time.

  20. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P.

    2014-12-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetization of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magnetohydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re ˜ 200-300. The maximal amplification for large filaments is of the order of ˜100 for the magnetic energy, corresponding to a typical field of a few ˜nG starting from a primordial weak field of 10-10 G (comoving). In order to start a small-scale dynamo, we found that a minimum of ˜102 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.

  1. CIFOG: Cosmological Ionization Fields frOm Galaxies

    NASA Astrophysics Data System (ADS)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  2. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  3. Bulgeless galaxies in the COSMOS field: environment and star formation evolution at z < 1

    NASA Astrophysics Data System (ADS)

    Grossi, Marco; Fernandes, Cristina A. C.; Sobral, David; Afonso, José; Telles, Eduardo; Bizzocchi, Luca; Paulino-Afonso, Ana; Matute, Israel

    2018-03-01

    Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H α emitters at redshifts z = 0.4 and z = 0.84 of the HiZELS survey, we selected ˜ 220 star-forming bulgeless systems (Sérsic index n ≤ 1.5) at both epochs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at z < 1. For comparison, we also analyse H α emitters with more structurally evolved morphologies that we split into two classes according to their Sérsic index n: intermediate (1.5 < n ≤ 3) and bulge-dominated (n > 3). At both redshifts, the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60 per cent of the cosmic SFRD at z < 1. The decrease of the SFRD with redshift is common to the three morphological types, but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities (Σ ˜ 1-4 Mpc-2) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR > 10-9 yr-1) and these are mainly low-mass systems. Above M* ˜ 1010 M⊙ bulgeless are evolving at a `normal' rate (10-9 yr-1 < sSFR < 10-10 yr-1) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.

  4. Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Lowenthal, James D.; Koo, David C.; Guzmán, Rafael; Gallego, Jesús; Phillips, Andrew C.; Faber, S. M.; Vogt, Nicole P.; Illingworth, Garth D.; Gronwall, Caryl

    1997-05-01

    We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 <~ z <~ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n >= 2.4 × 10-4 h350 Mpc-3 for q0 = 0.05, or n >= 1.1 × 10-3 h350 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h-150 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h-250 Msolar yr-1 for q

  5. Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Lavery, Russell J.; Remijan, Anthony J.

    We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.

  6. The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.

    2017-01-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.

  7. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Lulu; Chen Yang; Pan Zhizheng

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of thesemore » z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.« less

  8. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  9. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  10. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  11. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  12. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide rawmore » material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.« less

  13. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  14. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  15. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    PubMed Central

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033

  16. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.

    PubMed

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-10-19

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

  17. Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)

    NASA Astrophysics Data System (ADS)

    Wright, Shelley; IRIS Science Team

    2014-07-01

    The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.

  18. Galaxies Grow from Inside Out

    NASA Image and Video Library

    2013-10-31

    Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.

  19. The Hubble Space Telescope Medium Deep Survey with the Wide Field and Planetary Camera. 1: Methodology and results on the field near 3C 273

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Casertano, S.; Im, M.; Wyckoff, E. W.; Ellis, R. S.; Gilmore, G. F.; Elson, R. A. W.; Glazebrook, K.

    1994-01-01

    We present results from the Medium Deep Survey (MDS), a Key Project using the Hubble Space Telescope (HST). Wide Field Camera (WFC) images of random fields have been taken in 'parallel mode' with an effective resolution of 0.2 sec full width at half maximum (FWHM) in the V(F555W) and I(F785LP) filters. The exposures presented here were targeted on a field away from 3C 273, and resulted in approximately 5 hr integration time in each filter. Detailed morphological structure is seen in galaxy images with total integrated magnitudes down to V approximately = 22.5 and I approximately = 21.5. Parameters are estimated that best fit the observed galaxy images, and 143 objects are identified (including 23 stars) in the field to a fainter limiting magnitude of I approximately = 23.5. We outline the extragalactic goals of the HST Medium Deep Survey, summarize our basic data reduction procedures, and present number (magnitude) counts, a color-magnitude diagram for the field, surface brightness profiles for the brighter galaxies, and best-fit half-light radii for the fainter galaxies as a function of apparent magnitude. A median galaxy half-light radius of 0.4 sec is measured, and the distribution of galaxy sizes versus magnitude is presented. We observe an apparent deficit of galaxies with half-light radii between approximately 0.6 sec and 1.5 sec, with respect to standard no-evolution or mild evolution cosmological models. An apparent excess of compact objects (half-light radii approximately 0.1 sec) is also observed with respect to those models. Finally, we find a small excess in the number of faint galaxy pairs and groups with respect to a random low-redshift field sample.

  20. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics.

    PubMed

    Harwood, Jeremy J; Croston, Judith H; Intema, Huib T; Stewart, Adam J; Ineson, Judith; Hardcastle, Martin J; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  1. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; hide

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  2. Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; MUSE-GTO Collaboration

    2017-06-01

    Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.

  3. M 101: The Pinwheel Galaxy

    NASA Image and Video Library

    2011-07-21

    A large spiral galaxy dominates this view from NASA Wide-field Infrared Survey Explorer. The galaxy, often called the Pinwheel galaxy, was designated object 101 in astronomer Charles Messier catalog of fuzzy things in the sky that are not comets.

  4. An extensive photometric catalogue of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Gilhuly, Colleen; Courteau, Stéphane

    2018-06-01

    We present an extensive compendium of photometrically determined structural properties for all Calar Alto Legacy Integral Field spectroscopy Area (CALIFA) galaxies in the third data release (DR3). We exploit Sloan Digital Sky Survey (SDSS) images in order to extract one-dimensional (1D) gri surface brightness profiles for all CALIFA DR3 galaxies. We also derive a variety of non-parametric quantities and parametric models fitted to 1D i-band profiles. The galaxy images are decomposed using the 2D bulge-disc decomposition programs IMFIT and GALFIT. The relative performance and merit of our 1D and 2D modelling approaches are assessed. Where possible, we compare and augment our photometry with existing measurements from the literature. Close agreement is generally found with the studies of Walcher et al. and Méndez-Abreu et al., though some significant differences exist. Various structural metrics are also highlighted on account of their tight dispersion against an independent variable, such as the circular velocity.

  5. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  6. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045

  7. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102

  8. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for amore » range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.« less

  9. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    NASA Astrophysics Data System (ADS)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z < 0.2. Using the SDSS image at z < 0.1 and the HST image at z > 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  10. Stellar Initial Mass Function: Trends With Galaxy Mass And Radius

    NASA Astrophysics Data System (ADS)

    Parikh, Taniya

    2017-06-01

    There is currently no consensus about the exact shape and, in particular, the universality of the stellar initial mass function (IMF). For massive galaxies, it has been found that near-infrared (NIR) absorption features, which are sensitive to the ratio of dwarf to giant stars, deviate from a Milky Way-like IMF; their modelling seems to require a larger fraction of low mass stars. There are now increasing results looking at whether the IMF varies not only with galaxy mass, but also radially within galaxies. The SDSS-IV/MaNGA integral-field survey will provide spatially resolved spectroscopy for 10,000 galaxies at R 2000 from 360-1000nm. Spectra of early-type galaxies were stacked to achieve high S/N which is particularly important for features in the NIR. Trends with galaxy radius and mass were compared to stellar population models for a range of absorption features in order to separate degeneracies due to changes in stellar population parameters, such as age, metallicity and element abundances, with potential changes in the IMF. Results for 611 galaxies show that we do not require an IMF steeper than Kroupa as a function of galaxy mass or radius based on the NaI index. The Wing-Ford band hints towards a steeper IMF at large radii however we do not have reliable measurements for the most massive galaxies.

  11. Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.

    2017-10-01

    We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.

  12. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  13. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  14. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  15. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  16. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  17. Reconstructing the galaxy density field with photometric redshifts - II. Environment-dependent galaxy evolution since z ≃ 3

    NASA Astrophysics Data System (ADS)

    Malavasi, Nicola; Pozzetti, Lucia; Cucciati, Olga; Bardelli, Sandro; Ilbert, Olivier; Cimatti, Andrea

    2017-09-01

    Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the galaxy stellar mass function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z ˜ 3, on physical scales from 0.3 to 2 Mpc, down to masses of M ˜ 1010 M⊙. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z ˜ 2 with the high-mass end (M ≳ 1011 M⊙) being enhanced in high-density environments. On the contrary, for star-forming galaxies, a difference between the GSMF in high- and low-density environments is present for masses M ≲ 1011 M⊙. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z < 1.5. Differences in the shape of the GSMF are not visible anymore at z > 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes that are preferentially in high-density environments.

  18. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  19. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    .5 arcmin 2 area of the "AXAF Deep Field" , as observed with the ISAAC multi-mode instrument at VLT ANTU in the near-IR K band (at wavelength 2.x µm). The total integration time is 8.5 hours and the limiting magnitude is K = 23.5 per arcsec 2 (at S/N-ratio = 3). The pixel size is 0.15 arcsec. North is up and east is left. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The reproduction is "negative", with dark objects on a light sky, in order to better show the faintest objects. See also the technical note below. ESO PR Photo 06b/00 ESO PR Photo 06b/00 [Preview - JPEG: 400 x 451 pix - 103k] [Normal - JPEG: 800 x 902 pix - 270k] [Full-Res - JPEG: 924 x 1042 pix - 704k] Caption : ESO PR Photo 06b/00 is a composite colour image of the field shown in PR Photo 06a/00 . It is a combination of the K-band image from ANTU/ISAAC shown in PR Photo 06a/00 with two images obtained in the B and R bands with the SUSI-2 optical imager at the New Technology Telescope (NTT) on La Silla in the framework of the ESO-EIS survey. Note the relatively high density of red galaxies, visible in the upper right part of this image. The colours of most of these galaxies are consistent with those of "evolved" galaxies, already present when the Universe was only 4 billions years old. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The group of European astronomers recently obtained a first "ultra-deep" 4.5 arcmin 2 image in the near-infrared J (wavelength 1.2 µm) and K (2.2 µm) bands, centered in the so-called "AXAF Deep Field", cf. PR Photos 06a-b/00 . This area of the sky is remarkably devoid of bright stars and provides a clear view towards the remote Universe, as there is little obscuring dust in our own Galaxy, the Milky Way, in this direction. It is therefore uniquely suited to probe the depth of the Universe. It is exactly for this reason that it was

  20. An AzTEC 1.1-mm survey for ULIRGs in the field of the Galaxy Cluster MS0451.6-0305

    NASA Astrophysics Data System (ADS)

    Wardlow, J. L.; Smail, Ian; Wilson, G. W.; Yun, M. S.; Coppin, K. E. K.; Cybulski, R.; Geach, J. E.; Ivison, R. J.; Aretxaga, I.; Austermann, J. E.; Edge, A. C.; Fazio, G. G.; Huang, J.; Hughes, D. H.; Kodama, T.; Kang, Y.; Kim, S.; Mauskopf, P. D.; Perera, T. A.; Scott, K. S.

    2010-02-01

    We have undertaken a deep (σ ~ 1.1 mJy) 1.1-mm survey of the z = 0.54 cluster MS0451.6-0305 using the AzTEC camera on the James Clerk Maxwell Telescope. We detect 36 sources with signal-to-noise ratio (S/N) >= 3.5 in the central 0.10 deg2 and present the AzTEC map, catalogue and number counts. We identify counterparts to 18 sources (50 per cent) using radio, mid-infrared, Spitzer InfraRed Array Camera (IRAC) and Submillimetre Array data. Optical, near- and mid-infrared spectral energy distributions are compiled for the 14 of these galaxies with detectable counterparts, which are expected to contain all likely cluster members. We then use photometric redshifts and colour selection to separate background galaxies from potential cluster members and test the reliability of this technique using archival observations of submillimetre galaxies. We find two potential MS0451-03 members, which, if they are both cluster galaxies, have a total star formation rate (SFR) of ~100Msolaryr-1 - a significant fraction of the combined SFR of all the other galaxies in MS0451-03. We also examine the stacked rest-frame mid-infrared, millimetre and radio emission of cluster members below our AzTEC detection limit, and find that the SFRs of mid-IR-selected galaxies in the cluster and redshift-matched field populations are comparable. In contrast, the average SFR of the morphologically classified late-type cluster population is nearly three times less than the corresponding redshift-matched field galaxies. This suggests that these galaxies may be in the process of being transformed on the red sequence by the cluster environment. Our survey demonstrates that although the environment of MS0451-03 appears to suppress star formation in late-type galaxies, it can support active, dust-obscured mid-IR galaxies and potentially millimetre-detected LIRGs.

  1. PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Brinchmann, J.; Crowther, P. A.; Durret, F.; Kunth, D.

    Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.

  2. A 3D analysis of the metal distribution in the compact group of galaxies HCG 31

    NASA Astrophysics Data System (ADS)

    Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe

    2015-02-01

    We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.

  3. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Chad; Mandel, Ilya; Vousden, Will, E-mail: chad.hanna@ligo.org, E-mail: imandel@star.sr.bham.ac.uk, E-mail: will@star.sr.bham.ac.uk

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging ismore » important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow

  4. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  5. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  6. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  7. CALIFA, the Calar Alto Legacy Integral Field Area survey. III. Second public data release

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; Zibetti, S.; Sánchez, S. F.; Husemann, B.; de Amorim, A. L.; Castillo-Morales, A.; Cid Fernandes, R.; Ellis, S. C.; Falcón-Barroso, J.; Galbany, L.; Gil de Paz, A.; González Delgado, R. M.; Lacerda, E. A. D.; López-Fernandez, R.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Mast, D.; Mendoza, M. A.; Pérez, E.; Vale Asari, N.; Aguerri, J. A. L.; Ascasibar, Y.; Bekeraitė, S.; Bland-Hawthorn, J.; Barrera-Ballesteros, J. K.; Bomans, D. J.; Cano-Díaz, M.; Catalán-Torrecilla, C.; Cortijo, C.; Delgado-Inglada, G.; Demleitner, M.; Dettmar, R.-J.; Díaz, A. I.; Florido, E.; Gallazzi, A.; García-Lorenzo, B.; Gomes, J. M.; Holmes, L.; Iglesias-Páramo, J.; Jahnke, K.; Kalinova, V.; Kehrig, C.; Kennicutt, R. C.; López-Sánchez, Á. R.; Márquez, I.; Masegosa, J.; Meidt, S. E.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Morisset, C.; del Olmo, A.; Papaderos, P.; Pérez, I.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Ruiz-Lara, T.; Sánchez-Blázquez, P.; Sánchez-Menguiano, L.; Singh, R.; Spekkens, K.; Stanishev, V.; Torres-Papaqui, J. P.; van de Ven, G.; Vilchez, J. M.; Walcher, C. J.; Wild, V.; Wisotzki, L.; Ziegler, B.; Alves, J.; Barrado, D.; Quintana, J. M.; Aceituno, J.

    2015-04-01

    This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improvedspectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2.̋4. In total, the second data release contains over 1.5 million spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The second data release is available at http://califa.caha.es/DR2

  8. WINGS: WFIRST Infrared Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by

  9. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  10. Do Lyman-alpha photons escape from star-forming galaxies through dust holes?

    NASA Astrophysics Data System (ADS)

    France, Kevin; Wofford, A.; Leitherer, C.; Fleming, B.; McCandliss, S. R.; Nell, N.

    2014-01-01

    H I Lyman-alpha (LyA) is commonly used as a signpost for the entire galaxy at redshifts z>2, and yet spatially and kinematically resolved views of the local conditions within galaxies that determine the integrated properties of this line are scarce. We obtained Hubble Space Telescope (HST) images in continuum-subtracted LyA, H-alpha, H-beta, and far-UV continuum of three low-inclination spiral star-forming galaxies located at redshifts z=0.02, 0.03, and 0.05. This was accomplished using the UVIS and SBC channels of the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), respectively. Previous HST spectroscopy obtained by our team with the Cosmic Origins Spectrograph (COS) showed that the galaxies display different integrated LyA profiles within their central few kiloparsecs, i.e., pure absorption, single emission, and double emission, which are representative of what is observed between redshifts 0-3. This data is useful for establishing the relative importance of starburst phase, dust content, and gas kinematics in determining the LyA escape. We present preliminary results that combine our spectroscopic and imaging observations.

  11. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  12. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  13. Star-Forming Galaxies in the Hercules Cluster: Hα Imaging of A2151

    NASA Astrophysics Data System (ADS)

    Cedrés, Bernabé; Iglesias-Páramo, Jorge; Vílchez, José Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernández-Fernández, Jonathan

    2009-09-01

    This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 <= MB <= -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus MB relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their MB , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of

  14. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  15. A comparison of the near-infrared spectral features of early-type galaxies in the Coma Cluster, the Virgo cluster and the field

    NASA Technical Reports Server (NTRS)

    Houdashelt, Mark L.; Frogel, Jay A.

    1993-01-01

    Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.

  16. The spatial extent of star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2015-08-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter’s impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.Co-authors: Paul Torrey, Sara Ellison, David Patton, Asa Bluck, Gunjan Bansal & Lars Hernquist

  17. iReport: a generalised Galaxy solution for integrated experimental reporting.

    PubMed

    Hiltemann, Saskia; Hoogstrate, Youri; der Spek, Peter van; Jenster, Guido; Stubbs, Andrew

    2014-01-01

    Galaxy offers a number of visualisation options with components, such as Trackster, Circster and Galaxy Charts, but currently lacks the ability to easily combine outputs from different tools into a single view or report. A number of tools produce HTML reports as output in order to combine the various output files from a single tool; however, this requires programming and knowledge of HTML, and the reports must be custom-made for each new tool. We have developed a generic and flexible reporting tool for Galaxy, iReport, that allows users to create interactive HTML reports directly from the Galaxy UI, with the ability to combine an arbitrary number of outputs from any number of different tools. Content can be organised into different tabs, and interactivity can be added to components. To demonstrate the capability of iReport we provide two publically available examples, the first is an iReport explaining about iReports, created for, and using content from the recent Galaxy Community Conference 2014. The second is a genetic report based on a trio analysis to determine candidate pathogenic variants which uses our previously developed Galaxy toolset for whole-genome NGS analysis, CGtag. These reports may be adapted for outputs from any sequencing platform and any results, such as omics data, non-high throughput results and clinical variables. iReport provides a secure, collaborative, and flexible web-based reporting system that is compatible with Galaxy (and non-Galaxy) generated content. We demonstrate its value with a real-life example of reporting genetic trio-analysis.

  18. Discovery of the Kinematic Alignment of Early-type Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Suk; Jeong, Hyunjin; Lee, Jaehyun; Lee, Youngdae; Joo, Seok-Joo; Kim, Hak-Sub; Rey, Soo-Chang

    2018-06-01

    Using the kinematic position angles (PAkin), an accurate indicator for the spin axis of a galaxy, obtained from the ATLAS3D integral-field-unit (IFU) spectroscopic data, we discovered that 57 Virgo early-type galaxies tend to prefer the specific PAkin values of 20° and 100°, suggesting that they are kinematically aligned with each other. These kinematic alignment angles are further associated with the directions of the two distinct axes of the Virgo cluster extending east–west and north–south, strongly suggesting that the two distinct axes are the filamentary structures within the cluster as a trace of infall patterns of galaxies. Given that the spin axis of a massive early-type galaxy does not change easily even in clusters from the hydrodynamic simulations, Virgo early-type galaxies are likely to fall into the cluster along the filamentary structures while maintaining their angular momentum. This implies that many early-type galaxies in clusters are formed in filaments via major mergers before subsequently falling into the cluster. Investigating the kinematic alignment in other clusters will allow us to understand the formation of galaxy clusters and early-type galaxies.

  19. Integral Observations of the Reflection Component of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Fabian, Andrew

    2005-01-01

    The data were analyzed by Dr. Fabian's student Adrian Turner and included in his thesis (completed Sept 2004). We did not detect MCG-6 using the then current software and the spectrum of the Circinus galaxy turned out to be even worse then the published BeppoSAX spectrum. We decided not to do any more work on it. We were contacted about the data in March by Thierry Courvoisier (the data were thea public) as he had a student, Simona Soidi, working on a compilation of spectra. Dr. Fabian sent them the chapter from Adrian's thesis and we provided some general comments on what they were doing on 6 objects. This has since been accepted for publication with Fabian as a co-author. A paper on the Integral AGN catalogue appeared on astro-ph a few days ago which contains an detection of MCG-6 with a very poor spectrum. We didn't detect it because the software back then required a source to be detected within something like 30 min exposure in order to work. Integral is NOT very sensitive.

  20. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  1. The Galaxy Menagerie from WISE

    NASA Image and Video Library

    2011-05-25

    A colorful collection of galaxy specimens from NASA Wide-field Infrared Survey Explorer mission showcases galaxies of several types, from elegant grand design spirals to more patchy flocculent spirals.

  2. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ˜ 1-2

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}˜ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}⊙ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f˜ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  3. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less

  4. Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.

    2015-04-01

    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.

  5. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  6. The SAGES Legacy Unifying Globulars and Galaxies survey (SLUGGS): sample definition, methods, and initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Jean P.; Romanowsky, Aaron J.; Jennings, Zachary G.

    2014-11-20

    We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin{sup 2} field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼8 R {sub e}, and to ∼15 R {sub e} in some cases. New techniquesmore » to extract integrated stellar kinematics and metallicities to large radii (∼2-3 R {sub e}) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.« less

  7. Inferring physical properties of galaxies from their emission-line spectra

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  8. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  9. Using the morphology and magnetic fields of tailed radio galaxies as environmental probes

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, M.; Dehghan, S.; Pratley, L.

    2015-03-01

    Bent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called `corkscrew' galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.

  10. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  11. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  12. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  13. High Resolution Studies Of Lensed z ∼ 2 Galaxies: Kinematics And Metal Gradients

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha

    2016-09-01

    We use the OSIRIS integral field unit (IFU) spectograph to secure spatially-resolved strong emission lines of 15 gravitationally-lensed star-forming galaxies at redshift z ∼ 2. With the aid of gravitational lensing and Keck laser-assisted adaptive optics, the spatial resolution of these sub-luminous galaxies is at a few hundred parsecs. First, we demonstrate that high spatial resolution is crucial in diagnosing the kinematic properties and dynamical maturity of z ∼ 2 galaxies. We observe a significantly lower fraction of rotationally-supported systems than what has been claimed in lower spatial resolution surveys. Second, we find a much larger fraction of z ∼ 2 galaxies with weak metallicity gradients, contrary to the simple picture suggested by earlier studies that well-ordered rotation develops concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydronamical simulations, strong feedback is likely to play a key role in flattening metal gradients in early star-forming galaxies.

  14. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2012-03-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  15. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  16. THE SAMI GALAXY SURVEY: TOWARD A UNIFIED DYNAMICAL SCALING RELATION FOR GALAXIES OF ALL TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, L.; Glazebrook, K.; Mould, J.

    2014-11-10

    We take advantage of the first data from the Sydney-AAO Multi-object Integral field Galaxy Survey to investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies. We find that all 235 objects in our sample, regardless of their morphology, lie on a tight relation linking stellar mass (M {sub *}) to internal velocity quantified by the S {sub 0.5} parameter, which combines the contribution of both dispersion (σ) and rotational velocity (V {sub rot}) to the dynamical support of a galaxy (S{sub 0.5}=√(0.5 V{sub rot}{sup 2}+σ{sup 2})). Our results aremore » independent of the baryonic component from which σ and V {sub rot} are estimated, as the S {sub 0.5} of stars and gas agree remarkably well. This represents a significant improvement compared to the canonical M {sub *} versus V {sub rot} and M {sub *} versus σ relations. Not only is no sample pruning necessary, but also stellar and gas kinematics can be used simultaneously, as the effect of asymmetric drift is taken into account once V {sub rot} and σ are combined. Our findings illustrate how the combination of dispersion and rotational velocities for both gas and stars can provide us with a single dynamical scaling relation valid for galaxies of all morphologies across at least the stellar mass range 8.5 « less

  17. Galaxy formation

    PubMed Central

    Peebles, P. J. E.

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326

  18. Spatial Distribution of Star Formation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cunnyngham, Ian; Takamiya, M.; Willmer, C.; Chun, M.; Young, M.

    2011-01-01

    Integral field unit spectroscopy taken of galaxies with redshifts between 0.6 and 0.8 utilizing Gemini Observatory’s GMOS instrument were used to investigate the spatial distribution of star-forming regions by measuring the Hβ and [OII]λ3727 emission line fluxes. These galaxies were selected based on the strength of Hβ and [OII]λ3727 as measured from slit LRIS/Keck spectra. The process of calibrating and reducing data into cubes -- possessing two spatial dimensions, and one for wavelength -- was automated via a custom batch script using the Gemini IRAF routines. Among these galaxies only the bluest sources clearly show [OII] in the IFU regardless of total galaxy luminosity. The brightest galaxies lack [OII] emission and it is posited that two different modes of star formation exist among this seemingly homogeneous group of z=0.7 star-forming galaxies. In order to increase the galaxy sample to include redshifts from 0.3 to 0.9, public Gemini IFU data are being sought. Python scripts were written to mine the Gemini Science Archive for candidate observations, cross-reference the target of these observations with information from the NASA Extragalactic Database, and then present the resultant database in sortable, searchable, cross-linked web-interface using Django to facilitate navigation. By increasing the sample, we expect to characterize these two different modes of star formation which could be high-redshift counterparts of the U/LIRGs and dwarf starburst galaxies like NGC 1569/NGC 4449. The authors acknowledge funds provided by the National Science Foundation (AST 0909240).

  19. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  20. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data.

    PubMed

    Davidson, Robert L; Weber, Ralf J M; Liu, Haoyu; Sharma-Oates, Archana; Viant, Mark R

    2016-01-01

    Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.

  1. Through the Looking GLASS: HST Spectroscopy of Faint Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745

    NASA Astrophysics Data System (ADS)

    Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Wang, X.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.; Vulcani, B.

    2014-02-01

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z >~ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z >~ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ~5 × 10-18 erg s-1 cm-2. Taking lensing magnification into account, our flux sensitivity reaches ~0.2-5 × 10-18 erg s-1cm-2. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  2. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    NASA Astrophysics Data System (ADS)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  3. The MUSE view of the host galaxy of GRB 100316D

    NASA Astrophysics Data System (ADS)

    Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.

    2017-12-01

    The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.

  4. The Role of Galaxies and AGN in Reionising the IGM - slowromancapi@: Keck Spectroscopy of 5 < z < 7 Galaxies in the QSO Field J1148+5251

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Ellis, Richard S.; Laporte, Nicolas; Zitrin, Adi; Eilers, Anna-Christina; Ryan-Weber, Emma; Meyer, Romain A.; Robertson, Brant; Stark, Daniel P.; Bosman, Sarah E. I.

    2018-05-01

    We introduce a new method for determining the influence of galaxies and active galactic nuclei (AGN) on the intergalactic medium (IGM) at high redshift and illustrate its potential via a first application to the field of the z = 6.42 QSO J1148+5251. Correlating spatial positions Lyman break galaxies (LBGs) with the Lyman alpha forest seen in the spectrum of a background QSO, we provide a statistical measure of the typical escape fraction of Lyman continuum photons. Using Keck DEIMOS spectroscopy to locate 7 colour-selected LBGs in the range 5.3 ≲ z ≲ 6.4 we examine the spatial correlation between this sample and Lyα/Lyβ transmission fluctuations in a Keck ESI spectrum of the QSO. Interpreting the statistical H I proximity effect as arising from faint galaxies clustered around the LBGs, we translate the observed mean Lyα transmitted flux into a constraint on the mean escape fraction ⟨fesc⟩ ≥ 0.08 at z ≃ 6. We also report individual transverse H I proximity effect for a z = 6.177 luminous LBG via a Lyβ transmission spike and two broad Lyα transmission spikes around the z = 5.701 AGN. We discuss the origin of such associations which suggest that while faint galaxies are primarily driving reionisation, luminous galaxies and AGN may provide important contributions to the UV background or thermal fluctuations of the IGM at z ≃ 6. Although a limited sample, our results demonstrate the potential of making progress using this method in resolving one of the most challenging aspects of the contribution of galaxies and AGN to cosmic reionisation.

  5. CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Koo, David C.; CANDELS

    2017-06-01

    For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.

  6. Baryonic distributions in galaxy dark matter haloes - II. Final results

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  7. The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani

    2017-08-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.

  8. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    NASA Astrophysics Data System (ADS)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  9. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    NASA Astrophysics Data System (ADS)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  10. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGES

    Gruen, D.; Friedrich, O.; Amara, A.; ...

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  11. Star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  12. Enhancing knowledge discovery from cancer genomics data with Galaxy

    PubMed Central

    Albuquerque, Marco A.; Grande, Bruno M.; Ritch, Elie J.; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K.; Shah, Sohrab P.; Boutros, Paul C.

    2017-01-01

    Abstract The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. PMID:28327945

  13. Enhancing knowledge discovery from cancer genomics data with Galaxy.

    PubMed

    Albuquerque, Marco A; Grande, Bruno M; Ritch, Elie J; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K; Shah, Sohrab P; Boutros, Paul C; Morin, Ryan D

    2017-05-01

    The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. © The Author 2017. Published by Oxford University Press.

  14. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  15. Constraints on the magnetic fields in galaxies implied by the infrared-to-radio correlation

    NASA Technical Reports Server (NTRS)

    Helou, George; Bicay, M. D.

    1990-01-01

    A physical model is proposed for understanding the tight correlation between far-IR and nonthermal radio luminosities in star-forming galaxies. The approach suggests that the only constraint implied by the correlation is a universal relation whereby magnetic field strength scales with gas density to a power beta between 1/3 and 2/3, inclusive.

  16. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)

  17. The Influence Of Environment On The Star Formation Properties Of Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez Del Pino, Bruno

    2015-10-01

    This thesis explores the properties of galaxies that reside in regions of high density and the influence of the environment in their evolution. n particular, it aims to shed more light on the understanding of how galaxies stop forming stars, becoming passive objects, and the role played by environment in this process. The work presented here includes the study of the properties of galaxies in clusters at two different stages of their evolution: we first look at cluster galaxies that have recently stopped forming stars, and then we investigate the influence of environment on galaxies while they are still forming stars. The first study is based on Integral Field Spectroscopic (IFS) observations of a sample of disk `k+a' galaxies in a cluster at z 0.3. The `k+a' spectral feature imply a recent suppression of star formation in the galaxies, and therefore the study of their properties is crucial to understanding how the suppression happened. We study the kinematics and spatial distributions of the different stellar populations inhabiting these galaxies. We found that the last stars that were formed (i.e., younger stars) are rotationally-supported and behave similar to the older stars. Moreover, the spatial distribution of the young stars also resembles that of the older stellar populations, although the young stars tend to be more concentrated towards the central regions of the galaxies. These findings indicate that the process responsible for the suppression of the star formation in the cluster disk galaxies had to be gentle, withouth perturbing significantly the old stellar disks. However, a significant number of galaxies with centrally-concentrated young populations were found to have close companions, therefore implying that galaxy-galaxy interactions might also contribute to the cessation of the star formation. These results provide very valuable information on the putative transformation of star-forming galaxies into passive S0s. We then move to the study of the

  18. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  19. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  20. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  1. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  2. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  3. Mining MaNGA for Merging Galaxies: A New Imaging and Kinematic Technique from Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Nevin, Becky; Comerford, Julia M.; Blecha, Laura

    2018-06-01

    Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. Mergers are typically identified using imaging alone, which has its limitations and biases. With the growing popularity of integral field spectroscopy (IFS), it is now possible to use kinematic signatures to improve galaxy merger identifications. I use GADGET-3 hydrodynamical simulations of merging galaxies with the radiative transfer code SUNRISE, the later of which enables me to apply the same analysis to simulations and observations. From the simulated galaxies, I have developed the first merging galaxy classification scheme that is based on kinematics and imaging. Utilizing a Linear Discriminant Analysis tool, I have determined which kinematic and imaging predictors are most useful for identifying mergers of various merger parameters (such as orientation, mass ratio, gas fraction, and merger stage). I will discuss the strengths and limitations of the classification technique and then my initial results for applying the classification to the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at Apache Point) IFS survey. Through accurate identification of merging galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole growth in galaxy mergers and other open questions related to galaxy evolution.

  4. The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja

    We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less

  5. The Galaxy-Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Toshikawa, Jun; Tanaka, Masayuki; Hamana, Takashi; Niino, Yuu; Ichikawa, Kohei; Uchiyama, Hisakazu

    2017-05-01

    We present the results of clustering analyses of Lyman break galaxies (LBGs) at z˜ 3, 4, and 5 using the final data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). Deep- and wide-field images of the CFHTLS Deep Survey enable us to obtain sufficiently accurate two-point angular correlation functions to apply a halo occupation distribution analysis. The mean halo masses, calculated as < {M}h> ={10}11.7{--}{10}12.8 {h}-1 {M}⊙ , increase with the stellar-mass limit of LBGs. The threshold halo mass to have a central galaxy, {M}\\min , follows the same increasing trend as the low-z results, whereas the threshold halo mass to have a satellite galaxy, M 1, shows higher values at z=3{--}5 than z=0.5{--}1.5, over the entire stellar mass range. Satellite fractions of dropout galaxies, even at less massive halos, are found to drop sharply, from z = 2 down to less than 0.04, at z=3{--}5. These results suggest that satellite galaxies form inefficiently within dark halos at z=3{--}5, even for less massive satellites with {M}\\star < {10}10 {M}⊙ . We compute stellar-to-halo mass ratios (SHMRs) assuming a main sequence of galaxies, which is found to provide SHMRs consistent with those derived from a spectral energy distribution fitting method. The observed SHMRs are in good agreement with model predictions based on the abundance-matching method, within 1σ confidence intervals. We derive observationally, for the first time, {M}{{h}}{pivot}, which is the halo mass at a peak in the star-formation efficiency, at 3< z< 5, and it shows a small increasing trend with cosmic time at z> 3. In addition, {M}{{h}}{pivot} and its normalization are found to be almost unchanged during 0< z< 5. Our study provides observational evidence that galaxy formation is ubiquitously most efficient near a halo mass of {M}{{h}}˜ {10}12 {M}⊙ over cosmic time.

  6. Stellar Populations and Radial Migrations in Virgo Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-10-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ("U-shapes") in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (<=36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (~11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (>=50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field

  7. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas

    2014-10-01

    We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  8. Green valley galaxies as a transition population in different environments

    NASA Astrophysics Data System (ADS)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  9. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, K. B.; Treu, T.; Wang, X.

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to covermore » the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.« less

  10. Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.

    2004-12-01

    We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)AB<1.2 and no detection at less than 8500 Å. The five selected sources have total magnitudes H160,AB~27. Four of the five sources are quite blue compared to typical lower redshift dropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements

  11. Probing the nature of the pre-merging system Hickson Compact Group 31 through integral field unit data★

    NASA Astrophysics Data System (ADS)

    Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.

    2015-10-01

    We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.

  12. S0 galaxies are faded spirals: clues from their angular momentum content

    NASA Astrophysics Data System (ADS)

    Rizzo, Francesca; Fraternali, Filippo; Iorio, Giuliano

    2018-05-01

    The distribution of galaxies in the stellar specific angular momentum versus stellar mass plane (j⋆ - M⋆) provides key insights into their formation mechanisms. In this paper, we determine the location in this plane of a sample of 10 field/group unbarred lenticular (S0) galaxies from the Calar Alto Legacy Integral Field Area survey. We performed a bulge-disc decomposition both photometrically and kinematically to study the stellar specific angular momentum of the disc components alone and understand the evolutionary links between S0s and other Hubble types. We found that eight of our S0 discs have a distribution in the j⋆ - M⋆ plane that is fully compatible with that of spiral discs, while only two have values of j⋆ lower than the spirals. These two outliers show signs of recent merging. Our results suggest that merger and interaction processes are not the dominant mechanisms in S0 formation in low-density environments. Instead, S0s appear to be the result of secular processes and the fading of spiral galaxies after the shutdown of star formation.

  13. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; hide

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  14. Pinpointing Counterparts to Submillimeter Galaxies in the Aztec/Cosmos Field

    NASA Astrophysics Data System (ADS)

    Wahl, Matthew; Sheth, K.

    2011-01-01

    In the last decade, the sub-millimeter field has been opened up and advancing. After SCUBA detected the first two sub-millimeter galaxies (SMGs), follow up observation's revealed hundreds more. Although the number of SMGs continues to grow, our knowledge of SMGs is still based upon roughly 50% of the population. Without accurate positional information of these SMGs, that percentage will remain mostly unchanged. By using CARMA, we were able to generate accurate positional information (< .3 arcsec) on 3 SMGs. With this information, it is possible to accurately identify, the radio and optical counterparts to these SMGs, which is critical to figuring out their redshift.

  15. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  16. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  17. Are Ultra-faint Galaxies at z = 6-8 Responsible for Cosmic Reionization? Combined Constraints from the Hubble Frontier Fields Clusters and Parallels

    NASA Astrophysics Data System (ADS)

    Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; Natarajan, Priyamvada; Limousin, Marceau; Schaerer, Daniel; Jullo, Eric; Ebeling, Harald; Egami, Eiichi; Clement, Benjamin

    2015-11-01

    We use deep Hubble Space Telescope imaging of the Frontier Fields to accurately measure the galaxy rest-frame ultraviolet luminosity function (UV LF) in the redshift range z ˜ 6-8. We combine observations in three lensing clusters, A2744, MACS 0416, and MACS 0717, and their associated parallel fields to select high-redshift dropout candidates. We use the latest lensing models to estimate the flux magnification and the effective survey volume in combination with completeness simulations performed in the source plane. We report the detection of 227 galaxy candidates at z = 6-7 and 25 candidates at z ˜ 8. While the total survey area is about 4 arcmin2 in each parallel field, it drops to about 0.6-1 arcmin2 in the cluster core fields because of the strong lensing. We compute the UV LF at z ˜ 7 using the combined galaxy sample and perform Monte Carlo simulations to determine the best-fit Schechter parameters. We are able to reliably constrain the LF down to an absolute magnitude of MUV = -15.25, which corresponds to 0.005 L⋆. More importantly, we find that the faint-end slope remains steep down to this magnitude limit with α =-{2.04}-0.17+0.13. We find a characteristic magnitude of {M}\\star =-{20.89}-0.72+0.60 and log(ϕ⋆) = -{3.54}-0.45+0.48. Our results confirm the most recent results in deep blank fields but extend the LF measurements more than two magnitudes deeper. The UV LF at z ˜ 8 is not very well constrained below MUV = -18 owing to the small number statistics and incompleteness uncertainties. To assess the contribution of galaxies to cosmic reionization, we derive the UV luminosity density at z ˜ 7 by integrating the UV LF down to an observational limit of MUV = -15. We show that our determination of log(ρUV) = 26.2 ± 0.13 (erg s-1 Hz-1 Mpc-3) can be sufficient to maintain reionization with an escape fraction of ionizing radiation of fesc = 10%-15%. Future Hubble Frontier Fields observations will certainly improve the constraints on the UV LF at

  18. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privon, G. C.; Stierwalt, S.; Johnson, K. E.

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The H α emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M {sub ⊙} yr{sup −1}, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) formore » the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.« less

  19. Orbital decomposition of CALIFA spiral galaxies

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van den Bosch, Remco; van de Ven, Glenn; Lyubenova, Mariya; Falcón-Barroso, Jesús; Meidt, Sharon E.; Martig, Marie; Shen, Juntai; Li, Zhao-Yu; Yildirim, Akin; Walcher, C. Jakob; Sanchez, Sebastian F.

    2018-01-01

    Schwarzschild orbit-based dynamical models are widely used to uncover the internal dynamics of early-type galaxies and globular clusters. Here we present for the first time the Schwarzschild models of late-type galaxies: an SBb galaxy NGC 4210 and an S0 galaxy NGC 6278 from the Calar Alto Legacy Integral Field Area (CALIFA) survey. The mass profiles within 2Re are constrained well with 1σ statistical error of ∼ 10 per cent. The luminous and dark mass can be disentangled with uncertainties of ∼20 and ∼ 50 per cent, respectively. From Re to 2Re, the dark matter fraction increases from 14 ± 10 to 18 ± 10 per cent for NGC 4210 and from 15 ± 10 to 30 ± 20 per cent for NGC 6278. The velocity anisotropy profiles of both σr/σt and σz/σR are well constrained. The inferred internal orbital distributions reveal clear substructures. The orbits are naturally separated into three components: a cold component with near circular orbits; a hot component with near radial orbits and a warm component in between. The photometrically identified exponential discs are predominantly made up of cold orbits only beyond ∼1Re, while they are constructed mainly with the warm orbits inside. Our dynamical hot components are concentrated in the inner regions, similar to the photometrically identified bulges. The reliability of the results, especially the orbit distribution, is verified by applying the model to mock data.

  20. Multi-wavelength Probes of Obscuration Towards the Narrow Line Region in Seyfert Galaxies (PREPRINT)

    DTIC Science & Technology

    2010-11-01

    in the Seyfert 1 galaxy NGC 4151 (Kraemer et al. 2000), near IR emission detected in Gemini/Near-Infrared Integrated Field Spectrograph ( NIFS ...any case, it points to the presence of a significant amount of material outside the optical NLR, in agreement with results from NIFS spectra of a

  1. The GALAXIE all-optical FEL project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-highmore » brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.« less

  2. The GALAXIE all-optical FEL project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; Tantawi, S.; Valloni, A.; Yakimenko, V.; Xu, G.

    2012-12-01

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brighness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  3. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    NASA Astrophysics Data System (ADS)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  4. The Co-evolution of QSOs and Galaxies

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-07-01

    Using two large samples of QSOs detected in the mid-infrared (MIR) with WISE, we find that the change of W2-W3 colors with redshift suggests that star formation in their host galaxies increases by a factor of 3 from z = 0 to 2.7, then stays constant up to z = 4, and decreases above z=4. This behavior is slightly different from the best fits for the star formation history of field galaxies as deduced from the Optical-UV and IR, but is consistent with what is observed for sub-mm galaxies at high z. Our results constitute the clearest evidence, so far, that QSO host galaxies form their stars before field galaxies, and are in good agreement with the hierarchical biased structure formation paradigm.

  5. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  6. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - I. Stellar kinematics

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Riffel, Rogerio; Dahmer-Hahn, Luis G.; Diniz, Marlon R.; Schönell, Astor J.; Dametto, Natacha Z.

    2017-09-01

    We use the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the stellar kinematics of the inner few hundred parsecs of a sample of 16 nearby Seyfert galaxies, at a spatial resolution of tens of parsecs and spectral resolution of 40 km s- 1. We find that the line-of-sight (LOS) velocity fields for most galaxies are well reproduced by rotating disc models. The kinematic position angle (PA) derived for the LOS velocity field is consistent with the large-scale photometric PA. The residual velocities are correlated with the hard X-ray luminosity, suggesting that more luminous active galactic nuclei have a larger impact in the surrounding stellar dynamics. The central velocity dispersion values are usually higher than the rotation velocity amplitude, what we attribute to the strong contribution of bulge kinematics in these inner regions. For 50 per cent of the galaxies, we find an inverse correlation between the velocities and the h3 Gauss-Hermitte moment, implying red wings in the blueshifted side and blue wings in the redshifted side of the velocity field, attributed to the movement of the bulge stars lagging the rotation. Two of the 16 galaxies (NGC 5899 and Mrk 1066) show an S-shape zero velocity line, attributed to the gravitational potential of a nuclear bar. Velocity dispersion (σ) maps show rings of low-σ values (˜50-80 km s- 1) for four objects and 'patches' of low σ for six galaxies at 150-250 pc from the nucleus, attributed to young/ intermediate age stellar populations.

  7. Local normal galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1990-01-01

    In the near future, high energy (E greater than 20 MeV) gamma ray astronomy offers the promise of a new means of examining the closest galaxies. Two and possibly three local galaxies, the Small and Large Magellanic Clouds and M31, should be visible to the high energy gamma ray telescope on the Gamma Ray Observatory, and the first should be seen by GAMMA-1. With the assumptions of adequate cosmic ray production and reasonable magnetic field strengths, both of which should likely be satisfied, specific predictions of the gamma ray emission can be made separating the concepts of the galactic and universal nature of cosmic rays. A study of the synchrotron radiation from the Large Magellanic Cloud (LMC) suggests that the cosmic ray density is similar to that in the local region of our galaxy, but not uniform. It is hoped the measurements will be able to verify this independent of assumptions about the magnetic fields in the LMC.

  8. EFFECT OF ENVIRONMENT ON GALAXIES' MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellari, Michele

    2013-11-20

    The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental densities. The samples are both identically and nearly mass-selected (stellar mass M {sub *} ≳ 6 × 10{sup 9} M {sub ☉}) and volume-limited. The first consists of nearby field galaxies from the ATLAS{sup 3D} parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of the densest environments for which good, resolvedmore » spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (1) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (2) the slow-rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two processes appears around the stellar mass M {sub crit} ≈ 2 × 10{sup 11} M {sub ☉}. We interpret this as evidence for bulge growth (outside-in evolution) and bulge-related environmental quenching dominating at low masses, with little influence from merging. In contrast, significant dry mergers (inside-out evolution) and halo-related quenching drives the mass and size growth at the high-mass end. The existence of these two processes naturally explains the diverse size evolution of galaxies of different masses and the separability of mass and environmental quenching.« less

  9. Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis

    2018-06-01

    We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.

  10. Faint blue galaxies revisited

    NASA Astrophysics Data System (ADS)

    Ferguson, Henry C.

    If dwarf-elliptical galaxies formed their stars very rapdily (on timescales of less than 1 Gyr), they may in principle be detectable out to high redshift. Prior to the discovery of cosmic acceleration, it appeared that rapid and late formation dwarf elliptical galaxies might be required to explain the number counts of faint galaxies. A plausible hypothesis emerged: that photoionization by the UV background prevents gas cooling in low-mass halos until z ≲ 1.5. The discovery of cosmic acceleration eased the tension between predicted galaxy number counts and galaxy-evolution models. Nevertheless, there is some evidence for relatively late star formation in nearby dE's, and the photoionization delay mechanism still appears to have some merit. It is thus of interest to look back in time to see if we can find starbursting dwarf galaxies at moderate redshift. We review the connection between faint-blue galaxies and bursting-dwarf galaxies and discuss some attempts to identify progenitors to dE galaxies in the Hubble Ultra Deep Field (HUDF) observations. We find roughly 85 galaxies in the HUDF with redshifts 0.6 that appear to have formed most of their stars at z. Of these, 70% have half-light radii less than 1.5 kpc. These are thus "smoking gun" candidates for dwarf galaxies that are either collapsing for the first time at moderate redshifts or have otherwise been unable to form stars for more than 1/3 of a Hubble time.

  11. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  12. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  13. Star-Formation Histories of MUSCEL Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon

    2018-01-01

    The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.

  14. Hubble Sees a Legion of Galaxies

    NASA Image and Video Library

    2017-12-08

    Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colorful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields program. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the universe looks in different directions. Image credit: NASA, ESA and the HST Frontier Fields team (STScI), NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. A massive core for a cluster of galaxies at a redshift of 4.3

    NASA Astrophysics Data System (ADS)

    Miller, T. B.; Chapman, S. C.; Aravena, M.; Ashby, M. L. N.; Hayward, C. C.; Vieira, J. D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Chen, Chian-Chou; Cunningham, D. J. M.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Harnett, J.; Hezaveh, Y.; Lacaille, K.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, D. P.; Morningstar, W.; Murphy, E. J.; Narayanan, D.; Pass, E.; Perry, R.; Phadke, K. A.; Rennehan, D.; Rotermund, K. M.; Simpson, J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M. L.; Strom, A. L.

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters—termed `protoclusters'—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  16. A massive core for a cluster of galaxies at a redshift of 4.3.

    PubMed

    Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs 1-3 . The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter 4-6 . Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts 8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  17. Galaxy Transformation Under Extreme Conditions: The Evolution of Galaxies in the Largest Structures in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Lemaux, Brian Clark

    This dissertation describes research performed in the field of observational astrophysics as part of the Observations of Redshift Evolution in Large Scale Environment (ORELSE) survey. The general motivation of the research presented in this dissertation is to investigate the processes responsible for the evolution of galaxies in a wide range of physical conditions over cosmic time. Throughout this dissertation, galaxy populations will be considered in the very nearby universe (i.e., within one billion light years from Earth), the middle-aged universe (i.e., eight billion years ago), and in the very early universe (i.e., just one billion years after the beginning of the universe). In each chapter I present unique data from observations taken and analyzed specifically for the ORELSE survey. In the first part of this dissertation I describe the context, aims, and current state of the ORELSE survey. The studies presented in this dissertation span a large range of galaxy samples and investigate a variety of different astrophysical phenomena. As all of these studies fall under the context of galaxy evolution, these initial sections will set the framework for the variety of studies presented in this thesis. In the second part of this dissertation I present four studies undertaken to investigate various aspects of galaxy evolution. The first of these studies is an investigation of a large population of very distant galaxies detected in one of the ORELSE fields. The survey in this field represents the deepest survey of a particular kind of very distant galaxy population known as Lymanalpha Emitter (LAEs). The number of LAEs found in this survey far exceeded expectations for such galaxies and are shown to be in excess of every other survey of similar galaxies at similar distances. This result has important consequences for galaxy evolution studies, as it suggests that faint LAEs may be much more numerous than previously thought. This work also has important consequences for

  18. STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: H{alpha} IMAGING OF A2151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel

    2009-09-15

    This paper presents the first results of an H{alpha} imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in H{alpha}, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the H{alpha} properties of the cluster. The morphologies of the 43 H{alpha} selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalacticmore » H II regions, spanning a range of magnitudes of -21 {<=} M{sub B} {<=} -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(H{alpha}) versus M{sub B} relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total H{alpha} emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(H{alpha}) lower than expected for their M{sub B} , a consequence of the cluster environment. This fact results in differences in the L(H{alpha}) versus EW(H{alpha}) and L(H{alpha}) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster H{alpha} emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most H{alpha} emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging

  19. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  20. The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products

    NASA Astrophysics Data System (ADS)

    Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team

    2017-01-01

    The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.

  1. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  2. Mosfire Spectroscopy Of Galaxies In Cosmic Noon

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya

    2017-07-01

    -EW distribution is much broader (10-500˚A) than can be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. This result is robust against uncertainties in dust correction and observational bias, and no single IMF (i.e. non-Salpeter slope) can explain the distribution. Starburst models cannot explain the Hα-EW distribution because: 1) spectral stacking still shows an excess Hα-EW in composite populations and 2) Monte Carlo burst models show that the timescale for high Hα-EW is too short to explain their abundance in the ZFIRE sample. Other possible physical mechanisms that could produce excess ionising photons for a given star-formation rate, and hence high equivalent widths, including models with variations in stellar rotation, binary star evolution, metallicity, and upper mass cutoff of the IMF are investigated and ruled out. IMF variation is one possible explanation for the high Hα-EWs. However, the highest Hα-EW values would require very shallow slopes (Γ > -1.0) and no single IMF change can explain the large variation in Hα-EWs. Instead the IMF would have to vary stochastically. Therefore, currently there is no simple physical model to explain the large variation in Hα-EWs at z ˜ 2, but the distinct differences of the z ˜ 2 sample with that of local galaxies are found to be intriguing. Further study is required to fully constrain the stellar population parameters of actively star-forming galaxies at the epoch of maximum star-formation. Probing multiple rest-frame UV and optical features of galaxies simultaneously along with galaxy dynamical studies via integral field spectroscopy will be vital to understand stellar and ionized gas properties of these galaxies. Furthermore, low-z analogues of galaxies at z ˜ 2 will provide vital clues to constrain galaxy evolution models aided by the ability to probe galaxies in high resolution to low surface brightness limits.

  3. High chemical abundances in stripped Virgo spiral galaxies

    NASA Technical Reports Server (NTRS)

    Skillman, E. D.; Kennicutt, R. C.; Shields, G. A.

    1993-01-01

    Based on a comparison of the oxygen abundances in H 2 regions in field and Virgo cluster late type spiral galaxies, Shields, Skillman, & Kennicutt (1991) suggested that the highly stripped spiral galaxies in the Virgo cluster have systematically higher abundances than comparable field galaxies. In April 1991 and May 1992 we used the blue channel spectrograph on the MMT to obtain new observations of 30 H 2 regions in Virgo spiral galaxies. These spectra cover the wavelength range from (O II) lambda 3727 to (S II) lambda 6731. We now have observed at least 4 H II regions in 9 spiral galaxies in the Virgo cluster. Combining (O II) and (O III) line strengths, we calculate the H II region oxygen abundances based on the empirical calibration of Edmunds & Pagel (1984). These observations show: (1) The stripped, low luminosity Virgo spirals (N4689, N4571) truly have abundances characteristic of much more luminous field spirals; (2) Virgo spirals which show no evidence of stripping (N4651, N4713) have abundances comparable to field galaxies; and (3) Evidence for transition galaxies (e.g., N4254, N4321), with marginally stripped disks and marginal abundance enhancements. The new observations presented here confirm the validity of the oxygen over-abundances in the stripped Virgo spirals. Shields et al. (1991) discussed two different mechanisms for producing the higher abundances in the disks of stripped galaxies in Virgo. The first is the supression of infall of near-primordial material, the second is the suppression of radial inflow of metal-poor gas. Distinguishing between the two cases will require more observations of the Virgo cluster spirals and a better understanding of which parameters determine the variation of abundance with radius in field spirals (cf., Garnett & Shields 1987).

  4. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  5. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  6. KPC-SCALE STUDY OF SUBSTRUCTURES INSIDE GALAXIES out to z ~ 1.3

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, B.; Miller, S.; Nayyeri, H.

    2014-01-01

    Studying the resolved properties of galaxies in kpc scale has the capability to address major questions in galaxy structure formation and stellar properties evolution. We use a unique sample of 129 morphologically inclusive disk-like galaxies in the redshift range 0.2fields with available dynamics from the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the KECK II telescope, with extended integration times leading to significant improvements in determining rotational velocity for each galaxy. We take advantage of Hubble Space Telescope (HST) ACS and WFC3 mosaics from the CANDELS program, to perform SED modeling per resolution element in each galaxy and produce resolved rest-frame (U-V) color, stellar mass, star formation rate, age and extinction map for each galaxy. We analyze the effect of changing the Metallicity from solar to sub-solar on all our measurements. We identify red and blue regions inside galaxies based on their rest-frame (U-V) color maps with an innovative method. We show that red regions have higher stellar masses and older ages compared to the blue regions in galaxies. We also demonstrate that red regions are on average closer to the center of the galaxy than the blue regions and their spatial distance does not show a significant evolution with redshift and stellar mass of the host galaxy. Investigating the specific star formation rate evolution with redshift and dynamical mass, we notice that the evolutions in the whole galaxies are in perfect agreement with predictions from theory and previous observations. Blue regions show significantly higher sSFR and also higher slopes with redshift and dynamical mass compared to the whole galaxies and red regions are below the well-defined relation for the main sequence of star forming galaxies.

  7. fire in the field: simulating the threshold of galaxy formation

    NASA Astrophysics Data System (ADS)

    Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.

    2017-11-01

    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.

  8. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  9. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  10. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  11. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  12. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  13. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  14. THINGS: THE H I NEARBY GALAXY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Fabian; Bigiel, Frank; Leroy, Adam

    2008-12-15

    We present 'The H I Nearby Galaxy Survey (THINGS)', a high spectral ({<=}5.2 km s{sup -1}) and spatial ({approx}6'') resolution survey of H I emission in 34 nearby galaxies obtained using the NRAO Very Large Array (VLA). The overarching scientific goal of THINGS is to investigate fundamental characteristics of the interstellar medium (ISM) related to galaxy morphology, star formation, and mass distribution across the Hubble sequence. Unique characteristics of the THINGS database are the homogeneous sensitivity as well as spatial and velocity resolution of the H I data, which is at the limit of what can be achieved with themore » VLA for a significant number of galaxies. A sample of 34 objects at distances 2 {approx}< D {approx}< 15 Mpc (resulting in linear resolutions of {approx}100 to 500 pc) are targeted in THINGS, covering a wide range of star formation rates ({approx}10{sup -3} to 6 M{sub sun} yr{sup -1}), total H I masses M{sub HI} (0.01 to 14 x 10{sup 9} M{sub sun}), absolute luminosities M{sub B} (-11.5 to -21.7 mag), and metallicities (7.5 to 9.2 in units of 12+log[O/H]). We describe the setup of the VLA observations, the data reduction procedures, and the creation of the final THINGS data products. We present an atlas of the integrated H I maps, the velocity fields, the second moment (velocity dispersion) maps and individual channel maps of each THINGS galaxy. The THINGS data products are made publicly available through a dedicated webpage. Accompanying THINGS papers (in this issue of the Astronomical Journal) address issues such as the small-scale structure of the ISM, the (dark) matter distribution in THINGS galaxies, and the processes leading to star formation.« less

  15. GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee

    2015-02-20

    We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less

  16. The Galaxy Evolution Probe

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  17. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  18. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  19. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  20. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  1. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  2. The Evolutionary History of Lyman Break Galaxies Between Redshift 4 and 6: Observing Successive Generations of Massive Galaxies in Formation

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Ellis, Richard S.; Bunker, Andrew; Bundy, Kevin; Targett, Tom; Benson, Andrew; Lacy, Mark

    2009-06-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z sime 4 and z sime 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ≈ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z gsim 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z sime 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 lsim z lsim 6. Given this rapid increase of UV luminous massive galaxies, we explore the possibility that a significant fraction of massive (1011 M sun) z sime 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 lsim z lsim 6 down to z sime 2, we find that z gsim 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs

  3. Stellar and Gas Kinematics in the Tully-Fisher Deviant Virgo Cluster Galaxy NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortes, J. R.; Kenney, J. D. P.

    2000-05-01

    NGC 4424 is a peculiar, gas-deficient, Virgo Cluster Sa galaxy which is probably the result of a merger. This galaxy seems to deviate from the Tully-Fisher relationship, as shown by Kenney et al (1996) and Rubin et al (1999). We present stellar and gas kinematics of NGC 4424 measured with Integral Field Spectroscopy using the Densepak fiber array on the WIYN telescope. Using a cross-correlation technique, we derive velocities and velocity dispersions of the stars thoughout the central region of the galaxy. We find that the mean line-of-sight velocities for both gas and stars are approximately a factor of 2 smaller than would be expected for the rotational motions of a galaxy of its luminosity and apparent inclination. Preliminary estimates of the stellar velocity dispersion are also lower than would be expected for the Faber-Jackson relationship. We discuss possible explanations for this behaviour, including the possibility that this disturbed galaxy is rotating in a plane different than the plane of the apparent disk, and is a tumbling object.

  4. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  5. Galaxy Evolution Viewed as Functions of Environment and Mass

    NASA Astrophysics Data System (ADS)

    Kodama, Tadayuki; Tanaka, Masayuki; Tanaka, Ichi; Kajisawa, Masaru

    We present two large surveys of distant clusters currently being carried out with Subaru, making use of its great capability of wide-field study both in the optical and in the near-infrared. The optical surveys, called PISCES, have mapped out large scale structures in and around 8 distant clusters at 0.4 < z <1.3, composed of multiple filaments and clumps extended over 15-30 Mpc scale. From the photometric and spectroscopic properties of galaxies over a wide range in environment, we find that the truncation of galaxies is seen in the outskirts of clusters rather than in the cluster cores.We also see a clear environmental dependence of the down-sizing (progressively later quenching of star formation in smaller galaxies). The near-infrared surveys are being conducted with a new wide-field instrument targeting proto-clusters around high-zradio-loud galaxies up to z ~4. Most of these field are known to show a large number of Lyαand/or Hαemitters at the same redshifts of the radio galaxies. We see a clear excess of near-infrared selected galaxies (JHK s -selected galaxies as well as DRG) in these fields, and they are indeed proto-clusters with not only young emitters but also evolved populations. Spatial distribution of such NIR selected galaxies is filamentary and track similar structures traced by the emitters. There is an hint that the bright-end of the red sequence first appeared between z= 3 and 2.

  6. Dynamics of Galaxies in Compact Groups II.

    NASA Astrophysics Data System (ADS)

    Amram, P.; Mendes de Oliveira, C.

    We show partial results of a program based on Fabry-Perot Hα velocity field data of compact groups taken at the ESO and the CFH 3.6m telescopes in order to analyze the kinematics of compact group galaxies. This project has three main goals: 1. determine the evolutionary stages of the groups; 2. search for tidal dwarf galaxies and 3. determine the Tully-Fisher relation for the group galaxies. We classify the compact groups studied so far into the following subclasses : (1) merging groups, (2) strongly interacting, (3) mildly interacting, (4) kinematically undisturbed and (5) false groups/single galaxy (details are given in the companion paper Mendes de Oliveira and Amram, 2000). We present examples of velocity fields of galaxies in compact groups that are in different evolutionary stages as classified from the kinematic disturbances. Spiral-only groups have often been considered chance alignments or groups in the very early stages of dynamical evolution. However, we find that the kinematics of the member galaxies for spiral-only groups in classes (1), (2) and (3) above display peculiarities which suggest that the galaxies know of the presence of their neighbors.

  7. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  8. The connection between the peaks in velocity dispersion and star-forming clumps of turbulent galaxies

    NASA Astrophysics Data System (ADS)

    Oliva-Altamirano, P.; Fisher, D. B.; Glazebrook, K.; Wisnioski, E.; Bekiaris, G.; Bassett, R.; Obreschkow, D.; Abraham, R.

    2018-02-01

    We present Keck/OSIRIS adaptive optics observations with 150-400 pc spatial sampling of 7 turbulent, clumpy disc galaxies from the DYNAMO sample ($0.07galaxies have previously been shown to be well matched in properties to main sequence galaxies at $z\\sim1.5$. Integral field spectroscopy observations using adaptive optics are subject to a number of systematics including a variable PSF and spatial sampling, which we account for in our analysis. We present gas velocity dispersion maps corrected for these effects, and confirm that DYNAMO galaxies do have high gas velocity dispersion ($\\sigma=40-80$\\kms), even at high spatial sampling. We find statistically significant structure in 6 out of 7 galaxies. The most common distance between the peaks in velocity dispersion and emission line peaks is $\\sim0.5$~kpc, we note this is very similar to the average size of a clump measured with HST H$\\alpha$ maps. This could suggest that the peaks in velocity dispersion in clumpy galaxies likely arise due to some interaction between the clump and the surrounding ISM of the galaxy, though our observations cannot distinguish between outflows, inflows or velocity shear. Observations covering a wider area of the galaxies will be needed to confirm this result.

  9. NASA Hubble Sees Sparring Antennae Galaxies

    NASA Image and Video Library

    2013-11-15

    The NASA/ESA Hubble Space Telescope has snapped the best ever image of the Antennae Galaxies. Hubble has released images of these stunning galaxies twice before, once using observations from its Wide Field and Planetary Camera 2 (WFPC2) in 1997, and again in 2006 from the Advanced Camera for Surveys (ACS). Each of Hubble’s images of the Antennae Galaxies has been better than the last, due to upgrades made during the famous servicing missions, the last of which took place in 2009. The galaxies — also known as NGC 4038 and NGC 4039 — are locked in a deadly embrace. Once normal, sedate spiral galaxies like the Milky Way, the pair have spent the past few hundred million years sparring with one another. This clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. In wide-field images of the pair the reason for their name becomes clear — far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae. This new image of the Antennae Galaxies shows obvious signs of chaos. Clouds of gas are seen in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. The rate of star formation is so high that the Antennae Galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever and neither can the separate galaxies; eventually the nuclei will coalesce, and the galaxies will begin their retirement together as one large elliptical galaxy. This image uses visible and near-infrared observations from Hubble’s Wide Field Camera 3 (WFC3), along with some of the previously-released observations from Hubble’s Advanced Camera for Surveys (ACS). Credit: NASA/European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors

  10. STScI-PRC02-11a FARAWAY GALAXIES PROVIDE A STUNNING 'WALLPAPER' BACKDROP FOR A RUNAWAY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    galaxies represent twice the number of those discovered in the legendary Hubble Deep Field, the orbiting observatory's 'deepest' view of the heavens, taken in 1995 by the Wide Field and Planetary Camera 2. The ACS picture, however, was taken in one-twelfth the time it took to observe the original Hubble Deep Field. In blue light, ACS sees even fainter objects than were seen in the 'deep field.' The galaxies in the ACS picture, like those in the deep field, stretch back to nearly the beginning of time. They are a myriad of shapes and represent fossil samples of the universe's 13-billion-year evolution. The ACS image is so sharp that astronomers can identify distant colliding galaxies, the 'building blocks' of galaxies, an exquisite 'Whitman's Sampler' of galaxies, and many extremely faraway galaxies. ACS made this observation on April 1 and 9, 2002. The color image is constructed from three separate images taken in near-infrared, orange, and blue filters. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA The ACS Science Team: (H. Ford, G. Illingworth, M. Clampin, G. Hartig, T. Allen, K. Anderson, F. Bartko, N. Benitez, J. Blakeslee, R. Bouwens, T. Broadhurst, R. Brown, C. Burrows, D. Campbell, E. Cheng, N. Cross, P. Feldman, M. Franx, D. Golimowski, C. Gronwall, R. Kimble, J. Krist, M. Lesser, D. Magee, A. Martel, W. J. McCann, G. Meurer, G. Miley, M. Postman, P. Rosati, M. Sirianni, W. Sparks, P. Sullivan, H. Tran, Z. Tsvetanov, R. White, and R. Woodruff)

  11. The MASSIVE survey - VIII. Stellar velocity dispersion profiles and environmental dependence of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer

    2018-02-01

    We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK < -25.3 mag, or stellar mass M* ≳ 4 × 1011M⊙, within 108 Mpc. Our wide-field 107 arcsec × 107 arcsec IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ(R). While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.

  12. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary inmore » diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.« less

  13. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and I bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of I=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ˜ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  14. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  15. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  16. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  17. Star formation in the local Universe from the CALIFA sample. I. Calibrating the SFR using integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration

    2015-12-01

    Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005 integrated, extinction-corrected Hα fluxes from CALIFA, UV surface and asymptotic photometry from GALEX and integrated WISE 22 μm and IRAS fluxes. Results: We find that the extinction-corrected Hα luminosity agrees with the hybrid updated SFR estimators based on either UV or Hα plus IR luminosity over the full range of SFRs (0.03-20 M⊙ yr-1). The coefficient that weights the amount of energy produced by newly-born stars that is reprocessed by dust on the hybrid tracers, aIR, shows a large dispersion. However, this coefficient does not became increasingly small at high attenuations, as expected if significant highly-obscured Hα emission were missed, i.e., after a Balmer decrement-based attenuation correction is applied. Lenticulars, early-type spirals, and type-2 AGN host galaxies show smaller coefficients because of the

  18. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  19. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  20. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  1. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H I) column density is log(NH I/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  2. The fueling of active galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1991-01-01

    Collisions of galaxies are often invoked to explain violent phenomena in the universe. The dynamics of interacting galaxies is intrinsically three-dimensional and involves both gas and stellar dynamics. In general, a computational approach is needed to model galactic collisions. Galaxy encounters are studied using a hybrid N-body/hydrodynamics code, capable of integrating systems of stars, gas, and dark matter in a fully self-consistent manner. These experiments demonstrate that gravitational coupling between gas and stars in galactic interactions can drive most of the gas throughout a galaxy into the nucleus of a merger remnant. The high densities in these gas concentrations are likely to result in strong bursts of star formation. Hence, this process may explain the nuclear starbursts in some systems of interacting galaxies. Further collapse of these gas concentrations can trigger even more intense activity if some gas is eventually accreted by a supermassive black hole. Such an evolutionary sequence may account for some quasars and active galactic nuclei.

  3. LBT/LUCIFER view of star-forming galaxies in the cluster 7C 1756+6520 at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Sommariva, Veronica; Cresci, Giovanni; Sani, Eleonora; Galametz, Audrey; Mannucci, Filippo; Petropoulou, Vasiliki; Fumana, Marco

    2012-10-01

    Galaxy clusters are key places to study the contribution of nature (i.e. mass and morphology) and nurture (i.e. environment) in the formation and evolution of galaxies. Recently, a number of clusters at z > 1, i.e. corresponding to the first epochs of the cluster formation, have been discovered and confirmed spectroscopically. We present new observations obtained with the LBT Near Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER) spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large-scale structure around the radio galaxy 7C 1756+6520 at z = 1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analysing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called fundamental metallicity relation (FMR), which is known not to evolve with redshift up to z = 2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshifts. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright active galactic nucleus, belonging to the cluster, which shows a significant outflow of gas.

  4. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and

  5. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  6. The Stellar Kinematics of E+A Galaxies in SDSS IV-MaNGA

    NASA Astrophysics Data System (ADS)

    Johnson, Amalya; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Ojanen, Winonah; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    E+A galaxies, hypothesized to be “transition” galaxies between the blue cloud and the red sequence, are valuable sources for studying the evolution of galaxies. Using data from the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, a large scale integral field spectroscopic survey of nearby galaxies from 3600 to 10300 Å, we identifed galaxies that exhibitted E+A characteristics within their optical spectra. We analyzed the 2,812 galaxies thus far observed by MaNGA to identify those that showed evidence of a starburst about 1 billion years ago, followed by cessation of star formation and quenching of the galaxy. Through this process we identifed 39 E+A galaxies by directly looking at the optical spectra and ensuring they exhibited the necessary properties of an E+A spectra, including a strong break at the 4000 Å mark, little to no Hα emission and absorption through the Balmer series, and a blue slope of the continuum past ~5000 Å as the flux decreases. We analyzed the stellar kinematics of these galaxies to determine whether or not they were fast or slow rotators, a proposed indicator of a major merger in their recent past. Using Voronoi binned graphs from the MaNGA Marvin database, we measured their stellar rotation curves in order to more clearly show the range of velocities within the galaxies. Among our 39 E+A candidates, all but two exhibited significant, orderly rotation across the galaxy, and 29 out of 39 of our galaxies show rotation faster than 30 km/s. With the caveat that our selection process was biased toward galaxies with orderly rotation, this prevalence of rotation challenges the belief that all E+A galaxies are created from major mergers. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  7. GASP. V. Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Poggianti, B. M.; Gullieuszik, M.; Mapelli, M.; Jaffé, Y. L.; Fritz, J.; Biviano, A.; Fasano, G.; Bettoni, D.; Vulcani, B.; D'Onofrio, M.

    2018-04-01

    Through an ongoing MUSE program dedicated to study gas removal processes in galaxies (GAs Stripping Phenomena in galaxies with MUSE, GASP), we have obtained deep and wide integral field spectroscopy of the galaxy JO171. This galaxy resembles the Hoag's galaxy, one of the most spectacular examples of ring galaxies, characterized by a completely detached ring of young stars surrounding a central old spheroid. At odds with the isolated Hoag's galaxy, JO171 is part of a dense environment, the cluster Abell 3667, which is causing gas stripping along tentacles. Moreover, its ring counter-rotates with respect to the central spheroid. The joint analysis of the stellar populations and the gas/stellar kinematics shows that the origin of the ring was not due to an internal mechanism, but was related to a gas accretion event that happened in the distant past, prior to accretion on to Abell 3667, most probably within a filament. More recently, since infall in the cluster, the gas in the ring has been stripped by ram pressure, causing the quenching of star formation in the stripped half of the ring. This is the first observed case of ram-pressure stripping in action in a ring galaxy, and MUSE observations are able to reveal both of the events (accretion and stripping) that caused dramatic transformations in this galaxy.

  8. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  9. The Ursa Major cluster of galaxies - III. Optical observations of dwarf galaxies and the luminosity function down to MR=-11

    NASA Astrophysics Data System (ADS)

    Trentham, Neil; Tully, R. Brent; Verheijen, Marc A. W.

    2001-07-01

    Results are presented of a deep optical survey of the Ursa Major cluster, a spiral-rich cluster of galaxies at a distance of 18.6Mpc which contains about 30 per cent of the light but only 5 per cent of the mass of the nearby Virgo cluster. Fields around known cluster members and a pattern of blind fields along the major and minor axes of the cluster were studied with mosaic CCD cameras on the Canada-France-Hawaii Telescope. The dynamical crossing time for the Ursa Major cluster is only slightly less than a Hubble time. Most galaxies in the local Universe exist in similar moderate-density environments. The Ursa Major cluster is therefore a good place to study the statistical properties of dwarf galaxies, since this structure is at an evolutionary stage representative of typical environments, yet has enough galaxies that reasonable counting statistics can be accumulated. The main observational results of our survey are as follows. (i) The galaxy luminosity function is flat, with a logarithmic slope α=-1.1 for -17galaxies. This faint-end slope is quite different from what was seen in the Virgo cluster, where α=-2.26+/-0.14. (ii) Dwarf galaxies are as frequently found to be blue dwarf irregulars as red dwarf spheroidals in the blind cluster fields. The density of red dwarfs is significantly higher in the fields around luminous members than in the blind fields. The most important result is the failure to detect many dwarfs. If the steep luminosity function claimed for the Virgo cluster were valid for Ursa Major, then in our blind fields we should have found ~103 galaxies with -17

  10. Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; van Dokkum, Pieter; Egami, Eiichi; Fazio, Giovanni; Franx, Marijn; Gawiser, Eric; Herrera, David; Huang, Jiasheng; Labbé, Ivo; Lira, Paulina; Marchesini, Danilo; Maza, José; Quadri, Ryan; Rudnick, Gregory; van der Werf, Paul

    2006-01-01

    We present Spitzer 24 μm imaging of 1.5galaxies (DRGs) in the 10'×10' extended Hubble Deep Field-South of the Multiwavelength Survey by Yale-Chile. We detect 65% of the DRGs with KAB<23.2 mag at S24μm>~40 μJy and conclude that the bulk of the DRG population is dusty active galaxies. A mid-infrared (MIR) color analysis with IRAC data suggests that the MIR fluxes are not dominated by buried AGNs, and we interpret the high detection rate as evidence for a high average star formation rate of =130+/-30 Msolar yr-1. From this, we infer that DRGs are important contributors to the cosmic star formation rate density at z~2, at a level of ~0.02 Msolar yr-1 Mpc-3 to our completeness limit of KAB=22.9 mag.

  11. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less

  12. Integration of EGA secure data access into Galaxy.

    PubMed

    Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; J A Fijneman, Remond; Boiten, Jan-Willem; A Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne

    2016-01-01

    High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study.  The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer.

  13. Integration of EGA secure data access into Galaxy

    PubMed Central

    Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; Fijneman, Remond J.A.; Boiten, Jan-Willem; A. Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne

    2016-01-01

    High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study.  The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer. PMID:28232859

  14. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  15. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  16. Large scale structures around radio galaxies at z ~ 1.5

    NASA Astrophysics Data System (ADS)

    Galametz, A.; De Breuck, C.; Vernet, J.; Stern, D.; Rettura, A.; Marmo, C.; Omont, A.; Allen, M.; Seymour, N.

    2009-11-01

    We explore the environments of two radio galaxies at z ~ 1.5, 7C 1751+6809 and 7C 1756+6520, using deep optical and near-infrared imaging. Our data cover 15×15 arcmin2 fields around the radio galaxies. We develop and apply BzK color criteria to select cluster member candidates around the radio galaxies and find no evidence of an overdensity of red galaxies within 2 Mpc of 7C 1751+6809. In contrast, 7C 1756+6520 shows a significant overdensity of red galaxies within 2 Mpc of the radio galaxy, by a factor of 3.1±0.8 relative to the four MUSYC fields. At small separation (r < 6 arcsec), this radio galaxy also has one z > 1.4 evolved galaxy candidate, one z > 1.4 star-forming galaxy candidate, and an AGN candidate (at indeterminate redshift). This is suggestive of several close-by companions. Several concentrations of red galaxies are also noticed in the full 7C 1756+6520 field, forming a possible large-scale structure of evolved galaxies with a NW-SE orientation. We construct the color-magnitude diagram of red galaxies found near 7C 1756+6520 (r < 2 Mpc), and find a clear red sequence that is truncated at Ks ~ 21.5 (AB). We also find an overdensity of mid-infrared selected AGN in the surroundings of 7C 1756+6520. These results are suggestive of a proto-cluster at high redshift. Tables 2-6 are only available in electronic form at http://www.aanda.org

  17. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  18. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions

  19. WISE Beholds a Pair of Dancing Galaxies

    NASA Image and Video Library

    2011-01-13

    This image from NASA Wide-Field Infrared Explorer features two stunning galaxies engaged in an intergalactic dance. The galaxies, Messier 81 and Messier 82, swept by each other a few hundred million years ago.

  20. A Massive Cluster in its Youth: the Fundamental Plane, Kinematics, and Ages for Cluster Galaxies at z = 1.80 in JKCS 041

    NASA Astrophysics Data System (ADS)

    Prichard, Laura Jane; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Smith, Russell; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael

    2018-01-01

    Galaxy clusters are the largest gravitationally bound structures in the Universe, and we know that early type galaxies (ETGs) are more common towards their centers. Clusters of galaxies are increasingly rare at early times, but are essential for understanding the formation of these massive structures and how they alter the fate of their member galaxies. However, long integration times are required to constrain the stellar properties of these distant cluster ETGs. Now with the advent of the multiplexed near-infrared integral field instrument, the K-band Multi-Object Spectrograph (KMOS) on the Very Large Telescope, we can target the ETGs in these valuable high-redshift clusters more efficiently than ever. The KMOS guaranteed observing program, the KMOS Cluster Survey (KCS; P.I.s Bender & Davies), has enabled a study of cluster galaxies in overdensities spanning z=1-2 through absorption-line spectroscopy obtained from 20-hour integrations. We will present spectra for 16 galaxies in the furthest KCS overdensity, JKCS 041, an ETG-rich cluster at z=1.80. We measured seven velocity dispersions from the quiescent galaxy spectra, expanding the sample of like measurements in the literature at or above z=1.80 by more than 40%. Through the analysis of Hubble Space Telescope photometry and deep absorption-line spectroscopy, we were able to construct the highest redshift fundamental plane (FP) within a single system for galaxies in JKCS 041. From the redshift evolution of the FP zero-point, we derived a mean age of the galaxies in this cluster of 1.4 +/- 0.2 Gyrs. We determined relative velocities of the galaxies to study the three-dimensional structure of this overdensity. We noticed from the dynamics of JKCS 041 that a group of galaxies was infalling towards the cluster center. When measuring FP ages for the infalling group, we found these galaxies had significantly younger mean ages (0.3 +/- 0.2 Gyrs) than the other galaxies in the cluster (2.0 +0.3/-0.1 Gyrs). Based on the

  1. Probing satellite galaxies in the Local Group by using FAST

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wang, You-Gang; Kong, Min-Zhi; Wang, Jie; Chen, Xuelei; Guo, Rui

    2018-01-01

    The abundance of neutral hydrogen (HI) in satellite galaxies in the local group is important for studying the formation history of our local group. In this work, we generated mock HI satellite galaxies in the Local Group using the high mass-resolution hydrodynamic APOSTLE simulation. The simulated HI mass function agrees with the ALFALFA survey very well above 106 M ⊙, although there is a discrepancy below this scale because of the observed flux limit. After carefully checking various systematic elements in the observations, including fitting of line width, sky coverage, integration time and frequency drift due to uncertainty in a galaxy’s distance, we predicted the abundance of HI in galaxies in a future survey that will be conducted by FAST. FAST has a larger aperture and higher sensitivity than the Arecibo telescope. We found that the HI mass function could be estimated well around 105 M ⊙ if the integration time is 40 minutes. Our results indicate that there are 61 HI satellites in the Local Group and 36 in the FAST field above 105 M ⊙. This estimation is one order of magnitude better than the current data, and will put a strong constraint on the formation history of the Local Group. Also more high resolution simulated samples are needed to achieve this target.

  2. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  3. Constraining neutrino masses with the integrated-Sachs-Wolfe-galaxy correlation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesgourgues, Julien; Valkenburg, Wessel; Gaztanaga, Enrique

    2008-03-15

    Temperature anisotropies in the cosmic microwave background (CMB) are affected by the late integrated Sachs-Wolfe (lISW) effect caused by any time variation of the gravitational potential on linear scales. Dark energy is not the only source of lISW, since massive neutrinos induce a small decay of the potential on small scales during both matter and dark energy domination. In this work, we study the prospect of using the cross correlation between CMB and galaxy-density maps as a tool for constraining the neutrino mass. On the one hand massive neutrinos reduce the cross-correlation spectrum because free-streaming slows down structure formation; onmore » the other hand, they enhance it through their change in the effective linear growth. We show that in the observable range of scales and redshifts, the first effect dominates, but the second one is not negligible. We carry out an error forecast analysis by fitting some mock data inspired by the Planck satellite, Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST). The inclusion of the cross correlation data from Planck and LSST increases the sensitivity to the neutrino mass m{sub {nu}} by 38% (and to the dark energy equation of state w by 83%) with respect to Planck alone. The correlation between Planck and DES brings a far less significant improvement. This method is not potentially as good for detecting m{sub {nu}} as the measurement of galaxy, cluster, or cosmic shear power spectra, but since it is independent and affected by different systematics, it remains potentially interesting if the total neutrino mass is of the order of 0.2 eV; if instead it is close to the lower bound from atmospheric oscillations, m{sub {nu}}{approx}0.05 eV, we do not expect the ISW-galaxy correlation to be ever sensitive to m{sub {nu}}.« less

  4. Design and manufacture of the integrated field unit for the NIRSpec spectrometer on JWST

    NASA Astrophysics Data System (ADS)

    Lobb, Daniel; Robertson, David; Closs, Martin; Barnes, Andy

    2008-09-01

    The NIRSpec imaging spectrometer, which forms part of the James Webb Space Telescope instrumentation, will include an integrated field unit (IFU). The IFU will be tasked specifically with efficient analysis of extended objects, including galaxies; it will accept a square image area at the spectrometer entrance field, dissect this area into 30 parallel sub-slits, and image the sub-slits end-to-end, forming a single virtual entrance slit. The IFU, uses all-mirror optics to operate over the spectral range 700nm to 5000nm. 95 mirrors and the main support structure are made in a common aluminium alloy, to achieve athermal performance down to an operating temperature of around 30K. Relatively complex mirror surface shapes are produced by diamond machining. The IFU has been designed and constructed by SSTL, with optics produced by CfAI; the unit is currently undergoing performance tests. This paper describes the IFU optical design and performance, and outlines the mirror manufacturing methods and alignment procedures.

  5. The SAMI Galaxy Survey: gas streaming and dynamical M/L in rotationally supported systems

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Fogarty, L. M. R.; Richards, S.; Bland-Hawthorn, J.; Lange, R.; Moffett, A.; Catinella, B.; Cortese, L.; Ho, I.-T.; Taylor, E. N.; Bryant, J. J.; Allen, J. T.; Sweet, S. M.; Croom, S. M.; Driver, S. P.; Goodwin, M.; Kelvin, L.; Green, A. W.; Konstantopoulos, I. S.; Owers, M. S.; Lawrence, J. S.; Lorente, N. P. F.

    2016-02-01

    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric fits out to r ˜ 2re. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial light profile as nested, very flattened mass homeoids viewed as a Sérsic form. Fitting broad-band spectral energy distributions to Sloan Digital Sky Survey images gave median stellar mass/light 1.7 assuming a Kroupa initial mass function (IMF) versus 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed like starlight across the SAMI aperture that came to dominate motions as the starlight CSCs declined rapidly. The rest had mass distributed differently from light. Subtracting fits of Sérsic radial profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar major axis, we assessed m = 2 streaming velocities, and found deviations usually <30 km s-1 from the CSC; three showed no deviation. Thus, asymmetries rarely influenced the CSC despite colocated shock-indicating, emission-line flux ratios in more than 2/3 of our sample.

  6. GALAXIES IN THE YOUNG UNIVERSE [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA

  7. Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Driver, S. P.

    2009-01-01

    Aims: We explore the use of the color-log(n) (where n is the global Sérsic index) plane as a tool for subdividing the galaxy population in a physically-motivated manner out to redshift unity. We thereby aim to quantify surface brightness evolution by color-log(n) type, accounting separately for the specific selection and measurement biases against each. Methods: We construct (u-r) color-log(n) diagrams for distant galaxies in the Hubble Ultra Deep Field (UDF) within a series of volume-limited samples to z=1.5. The color-log(n) distributions of these high redshift galaxies are compared against that measured for nearby galaxies in the Millennium Galaxy Catalogue (MGC), as well as to the results of visual morphological classification. Based on this analysis we divide our sample into three color-structure classes. Namely, “red, compact”, “blue, diffuse” and “blue, compact”. Luminosity-size diagrams are constructed for members of the two largest classes (“red, compact” and “blue, diffuse”), both in the UDF and the MGC. Artificial galaxy simulations (for systems with exponential and de Vaucouleurs profile shapes alternately) are used to identify “bias-free” regions of the luminosity-size plane in which galaxies are detected with high completeness, and their fluxes and sizes recovered with minimal surface brightness-dependent biases. Galaxy evolution is quantified via comparison of the low and high redshift luminosity-size relations within these “bias-free” regions. Results: We confirm the correlation between color-log(n) plane position and visual morphological type observed locally and in other high redshift studies in the color and/or structure domain. The combined effects of observational uncertainties, the morphological K-correction and cosmic variance preclude a robust statistical comparison of the shape of the MGC and UDF color-log(n) distributions. However, in the interval 0.75 < z <1.0 where the UDF i-band samples close to rest-frame B

  8. Photometry of the 'Seyfert Sextet' /VV 115/ and the anonymous galaxy 1558.2 + 2100

    NASA Technical Reports Server (NTRS)

    Martins, D. H.; Chincarini, G.

    1976-01-01

    Photometric observations of the Seyfert Sextet (VV 115) are analyzed. Apparent integrated magnitudes are derived relative to the sky brightness, and isophotal maps are given for the field. No evidence for interaction between NGC 6027 and d is found. Luminosity profiles are given for NGC 6027, a, b, and d, with the d profile having been corrected for seeing effects in one dimension. The corrected profile parameters favor the interpretation of d as a highly luminous background galaxy at its cosmological distance. The nearby anonymous galaxy 1558.2 + 2100 is similarly studied, with no clear evidence of photometric peculiarities detected. Its interaction with the Seyfert Sextet appears to be excluded.

  9. Examining Gaseous Behavior of Galaxies and their Environments

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Barger, Kathleen

    2017-01-01

    The development of galaxies hinges upon the behavior of the gas within and around them, as this is paramount to understanding the regulation of star formation. To investigate these processes, we analyzed data from the MaNGA survey for two galaxies with nearby background quasars for which Hubble Space Telescope data exists. We plotted and analyzed spectra for various elemental transitions, especially [N II] , [O III], and H-alpha, to gain information about gas properties such as temperature, ionization fraction, and star formation. We also plotted velocity fields based upon the gas motions as determined through Doppler shift. One of the galaxies displayed signs of heavy star formation and the other displayed signs of Active Galactic Nucleus activity. The stellar and gaseous velocity fields of the AGN galaxy were very disparate which suggests some sort of interaction with another galaxy in the galaxy’s past. The properties of the gas in these galaxies could potentially teach us more about the evolutionary path of the Milky Way, which forms stars itself while interacting heavily with other galaxies. This work base on data from the forth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0034 in SDSS-IV.

  10. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  11. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  12. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettula, K.; Finoguenov, A.; Massey, R.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation anmore » order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.« less

  13. VEGAS: A VST Early-type GAlaxy Survey. I. Presentation, wide-field surface photometry, and substructures in NGC 4472

    NASA Astrophysics Data System (ADS)

    Capaccioli, Massimo; Spavone, Marilena; Grado, Aniello; Iodice, Enrichetta; Limatola, Luca; Napolitano, Nicola R.; Cantiello, Michele; Paolillo, Maurizio; Romanowsky, Aaron J.; Forbes, Duncan A.; Puzia, Thomas H.; Raimondo, Gabriella; Schipani, Pietro

    2015-09-01

    Context. We present the VST Early-type GAlaxy Survey (VEGAS), which is designed to obtain deep multiband photometry in g,r,i, of about one hundred nearby galaxies down to 27.3, 26.8, and 26 mag/arcsec2 respectively, using the ESO facility VST/OmegaCAM. Aims: The goals of the survey are 1) to map the light distribution up to ten effective radii, re; 2) to trace color gradients and surface brightness fluctuation gradients out to a few re for stellar population characterization; and 3) to obtain a full census of the satellite systems (globular clusters and dwarf galaxies) out to 20% of the galaxy virial radius. The external regions of galaxies retain signatures of the formation and evolution mechanisms that shaped them, and the study of nearby objects enables a detailed analysis of their morphology and interaction features. To clarify the complex variety of formation mechanisms of early-type galaxies (ETGs), wide and deep photometry is the primary observational step, which at the moment has been pursued with only a few dedicated programs. The VEGAS survey has been designated to provide these data for a volume-limited sample with exceptional image quality. Methods: In this commissioning photometric paper we illustrate the capabilities of the survey using g- and i-band VST/OmegaCAM images of the nearby galaxy NGC 4472 and of smaller ETGs in the surrounding field. Results: Our surface brightness profiles reach rather faint levels and agree excellently well with previous literature. Genuine new results concern the detection of an intracluster light tail in NGC 4472 and of various substructures at increasing scales. We have also produced extended (g - i) color profiles. Conclusions: The VST/OmegaCAM data that we acquire in the context of the VEGAS survey provide a detailed view of substructures in the optical emission from extended galaxies, which can be as faint as a hundred times below the sky level. Appendices are available in electronic form at http://www.aanda.org

  14. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    NASA Technical Reports Server (NTRS)

    Binney, J. J.; Davies, Roger L.; Illingworth, Garth D.

    1990-01-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure.

  15. Near-Field Cosmology with Low-Mass Galaxies: Constraining the Escape of Radiation from the UV-slopes of Local Galaxies

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Rosenberg, Jessica L.; Salzer, John Joseph; Gronke, Max; Cannon, John M.; Miller, Christopher J.; Dijkstra, Mark

    2018-06-01

    Low-mass galaxies are thought to play a large role in reionizing the Universe at redshifts, z > 6. However, due to limited UV data on low-mass galaxies, the models used to estimate the escape of radiation are poorly constrained. Using theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of a sample of low-mass low-z KISSR galaxies to their escape fraction values in Ly-alpha radiation, fesc (LyA), and in the Ly-continuum, fesc (LyC). These low-mass starforming systems have potentially steep UV slopes, and could provide a much-needed relation between easily measured spectral properties such as UV slope or LyA line properties, and the escape of LyA/LyC radiation. Such a relation could advance studies of primordial star clusters and the underlying physical conditions characterizing early galaxies, one of the target observation goals of the soon to-be-launched James Webb Space Telescope. This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  16. The Peculiarities in O-Type Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, E. A.; Emelyanov, S. I.

    We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.

  17. The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.

    2013-12-01

    Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.

  18. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less

  19. The EDGE-CALIFA Survey: Variations in the Molecular Gas Depletion Time in Local Galaxies

    NASA Astrophysics Data System (ADS)

    Utomo, Dyas; Bolatto, Alberto D.; Wong, Tony; Ostriker, Eve C.; Blitz, Leo; Sanchez, Sebastian F.; Colombo, Dario; Leroy, Adam K.; Cao, Yixian; Dannerbauer, Helmut; Garcia-Benito, Ruben; Husemann, Bernd; Kalinova, Veselina; Levy, Rebecca C.; Mast, Damian; Rosolowsky, Erik; Vogel, Stuart N.

    2017-11-01

    We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas depletion time (τ dep) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within 0.1 {R}25, and the disk, defined as the region between 0.1 and 0.7 {R}25. We find that 14 galaxies show a shorter τ dep (˜1 Gyr) in the center relative to that in the disk (τ dep ˜ 2.4 Gyr), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter τ dep resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in τ dep is correlated with a central increase in the stellar surface density, suggesting that a shorter τ dep is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H2 conversion factor only exaggerates the central drop of τ dep.

  20. Properties of Galaxies and Groups: Nature versus Nurture

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias

    2011-09-01

    Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.

  1. Glimpsing the imprint of local environment on the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu

    2017-12-01

    We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 < z < 1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower mass galaxies and/or (b) growth of higher mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).

  2. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future

  3. Deep CCD Photometry of the Rich Galaxy Cluster Abel 1656 Characteristics of the Dwarf Elliptical Galaxy Population in the Cluster Core

    NASA Astrophysics Data System (ADS)

    Secker, Jeffrey Alan

    1995-01-01

    We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1

  4. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  5. Simulations of deep galaxy fields. 1: Monte Carlo simulations of optical and near-infrared counts

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Lonsdale, Carol J.; Mazzei, Paola; De Zotti, Gianfranco

    1994-01-01

    Monte Carlo simulations of three-dimensional galaxy distributions are performed, following the 1988 prescription of Chokshi & Wright, to study the photometric properties of evolving galaxy populations in the optical and near-infrared bands to high redshifts. In this paper, the first of a series, we present our baseline model in which galaxy numbers are conserved, and in which no explicit 'starburst' population is included. We use the model in an attempt to simultaneously fit published blue and near-infrared photometric and spectroscopic observations of deep fields. We find that our baseline models, with a formation redshift, z(sub f), of 1000, and H(sub 0) = 50, are able to reproduce the blue counts to b(sub j) = 22, independent of the value of Omega(sub 0), and also to provide a satisfactory fit to the observed blue-band redshift distributions, but for no value of Omega(sub 0) do we achieve an acceptable fit to the fainter blue counts. In the K band, we fit the number counts to the limit of the present-day surveys only for an Omega(sub 0) = 0 cosmology. We investigate the effect on the model fits of varying the cosmological parameters H(sub 0), the formation red-shift z(sub f), and the local luminosity function. Changing H(sub 0) does not improve the fits to the observations. However, reducing the epoch of a galaxy formation used in our simulations has a substantial effect. In particular, a model with z(sub f) approximately equal to 5 in a low Omega(sub 0) universe improves the fit to the faintest photometric blue data without any need to invoke a new population of galaxies, substantial merging, or a significant starburst galaxy population. For an Omega(sub 0) = 1 universe, however, reducing z(sub f) is less successful at fitting the blue-band counts and has little effect at all at K. Varying the parameters of the local luminosity function can also have a significant effect. In particular the steep low end slope of the local luminosity function of Franceschini et

  6. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  8. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  9. What drives the kinematic evolution of star-forming galaxies?

    NASA Astrophysics Data System (ADS)

    Hung, Chao-Ling

    2017-12-01

    One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies increases with redshift. Massive, rotationdominated discs are already in place at z ∼ 2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. These simulations reproduce the observed trends between intrinsic velocity dispersion (σ intr), SFR, and z. In both the observed and simulated galaxies, σ intr is positively correlated with SFR. σ intr increases with redshift out to z ∼ 1 and then flattens beyond that. In the FIRE simulations, σ intr can vary significantly on timescales of ≲ 100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate ( Ṁ gas). By cross-correlating pairs of σ intr Ṁ gas, and SFR, we show that the increased gas inflow leads to subsequent enhanced star formation, and enhancements in σ intr tend to temporally coincide with increases in Ṁ gas and SFR.

  10. Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters - implications for cosmography

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan

    2017-09-01

    Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.

  11. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki

    2015-01-20

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functionsmore » with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.« less

  12. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  13. Panchromatic SED modelling of spatially resolved galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  14. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, E.; Watson, M. G.; Elvis, M.

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of thismore » sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.« less

  15. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  16. Hubble Spies a Loopy Galaxy

    NASA Image and Video Library

    2015-02-02

    This NASA Hubble Space Telescope photo of NGC 7714 presents an especially striking view of the galaxy's smoke-ring-like structure. The golden loop is made of sun-like stars that have been pulled deep into space, far from the galaxy's center. The galaxy is located approximately 100 million light-years from Earth in the direction of the constellation Pisces. The universe is full of such galaxies that are gravitationally stretched and pulled and otherwise distorted in gravitational tug-o'-wars with bypassing galaxies. The companion galaxy doing the "taffy pulling" in this case, NGC 7715, lies just out of the field of view in this image. A very faint bridge of stars extends to the unseen companion. The close encounter has compressed interstellar gas to trigger bursts of star formation seen in bright blue arcs extending around NGC 7714's center. The gravitational disruption of NGC 7714 began between 100 million and 200 million years ago, at the epoch when dinosaurs ruled the Earth. The image was taken with the Wide Field Camera 3 and the Advanced Camera for Surveys in October 2011. Credit: NASA and ESA. Acknowledgment: A. Gal-Yam (Weizmann Institute of Science) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Weak-Lensing Determination of the Mass in Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Bernstein, G. M.; Fischer, P.; Jarvis, M.

    2001-04-01

    We detect the weak gravitational lensing distortion of 450,000 background galaxies (20galaxies (R<18) selected from the Las Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by field galaxies of known redshift, and as such permits us to reconstruct the shear profile of the typical field galaxy halo in absolute physical units (modulo H0), and to investigate the dependence of halo mass upon galaxy luminosity. This is also the first galaxy-galaxy lensing study for which the calibration errors due to uncertainty in the background galaxy redshift distribution and the seeing correction are negligible. Within a projected radius of 200 h-1 kpc, the shear profile is consistent with an isothermal profile with circular velocity vc=164+/-20 km s-1 for an L* galaxy, consistent with the typical circular velocity for the disks of spirals at this luminosity. This halo mass normalization, combined with the halo profile derived by Fischer and coworkers from a galaxy-galaxy lensing analysis of the Sloan Digital Sky Survey, places a lower limit of (2.7+/-0.6)×1012 h-1 Msolar on the mass of an L* galaxy halo, in good agreement with the satellite galaxy studies of Zaritsky et al. Given the known luminosity function of LCRS galaxies, and assuming that M~Lβ for galaxies, we determine that the mass within 260 h-1 kpc of normal galaxies contributes Ω=0.16+/-0.03 to the density of the universe (for β=1) or Ω=0.24+/-0.06 for β=0.5. These lensing data suggest that 0.6<β<2.4 (95% confidence level), only marginally in agreement with the usual β~0.5 Faber-Jackson or Tully-Fisher scaling. This is the most complete direct inventory of the matter content of the universe to date.

  18. Hubble Views Two Galaxies Merging

    NASA Image and Video Library

    2017-12-08

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules. It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure. As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  19. Approximations to galaxy star formation rate histories: properties and uses of two examples

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  20. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M* < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionized gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low-mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M* > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  1. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawatari, K.; Inoue, A. K.; Kousai, K.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpartmore » galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.« less

  2. Galaxy Detection in 2MASS: Global Expectations and Results from Several Fields

    NASA Technical Reports Server (NTRS)

    Chester, T.; Jarrett, T.

    1995-01-01

    An alogorithm has been developed and used to find galaxies in the 2MASS data. It uses the central surface brightness and measured size to discriminate galaxies from the much larger stellar population.

  3. An Interacting Galaxy Pair at the Origin of a Light Echo

    NASA Astrophysics Data System (ADS)

    Merluzzi, Paola; Busarello, Giovanni; Dopita, Michael A.; Thomas, Adam D.; Haines, Chris P.; Grado, Aniello; Limatola, Luca; Mercurio, Amata

    2018-01-01

    In a low-density region of the Shapley supercluster we identified an interacting galaxy pair at redshift z = 0.04865 in which the Seyfert 2 nucleus of the main galaxy (ShaSS 073) is exciting an extended emission line region (EELR, ∼170 kpc2) in the disk of the less massive companion (ShaSS 622). New integral-field spectroscopy and the multiband data set, spanning from far-ultraviolet to far-infrared and radio wavelengths, allowed us to obtain a detailed description of the ShaSS 622–073 system. The gas kinematics shows hints of interaction, although the overall velocity field shows a quite regular rotation in both galaxies, thus suggesting that we are observing their first encounter as confirmed by the estimated distance of 21 kpc between the two galaxy centers. The detected ∼ 2{--}3 {kpc} active galactic nucleus (AGN) outflow and the geometry of the EELR in ShaSS 622 support the presence of a hollow bicone structure. The status and sources of the ionization across the whole system have been analyzed through photoionization models and a Bayesian approach that prove a clear connection between the AGN and the EELR. The luminosity of the AGN (2.4× {10}44 erg s‑1) is a factor of 20 lower than the power needed to excite the gas in the EELR (4.6 × 1045 erg s‑1), indicating a dramatic fading of the AGN in the past 3 × 104 yr. ShaSS 073–622 provides all the ingredients listed in the recipe of a light echo where a highly-ionized region maintains memory of a preceding more energetic phase of a now-faded AGN. This is the first case of a light echo observed between two galaxies.

  4. Type Ia supernova host galaxies as seen with IFU spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanishev, V.; Rodrigues, M.; Mourão, A.; Flores, H.

    2012-09-01

    Context. Type Ia supernovae (SNe Ia) have been widely used in cosmology as distance indicators. However, to fully exploit their potential in cosmology, a better control over systematic uncertainties is required. Some of the uncertainties are related to the unknown nature of the SN Ia progenitors. Aims: We aim to test the use of integral field unit (IFU) spectroscopy for correlating the properties of nearby SNe Ia with the properties of their host galaxies at the location of the SNe. The results are to be compared with those obtained from an analysis of the total host spectrum. The goal is to explore this path of constraining the nature of the SN Ia progenitors and further improve the use of SNe Ia in cosmology. Methods: We used the wide-field IFU spectrograph PMAS/PPAK at the 3.5 m telescope of Calar Alto Observatory to observe six nearby spiral galaxies that hosted SNe Ia. Spatially resolved 2D maps of the properties of the ionized gas and the stellar populations were derived. Results: Five of the observed galaxies have an ongoing star formation rate of 1-5 M⊙ yr-1 and mean stellar population ages ~5 Gyr. The sixth galaxy shows no star formation and has an about 12 Gyr old stellar population. All galaxies have stellar masses larger than 2 × 1010 M⊙ and metallicities above solar. Four galaxies show negative radial metallicity gradients of the ionized gas up to -0.058 dex kpc-1 and one has nearly uniform metallicity with a possible shallow positive slope. The stellar components show shallower negative metallicity gradients up to -0.03 dex kpc-1. We find no clear correlation between the properties of the galaxy and those of the supernovae, which may be because of the small ranges spanned by the galaxy parameters. However, we note that the Hubble residuals are on average positive while negative Hubble residuals are expected for SNe Ia in massive hosts such as the galaxies in our sample. Conclusions: The IFU spectroscopy on 4-m telescopes is a viable technique for

  5. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE PAGES

    Prat, J.; Sánchez, C.; Miquel, R.; ...

    2017-09-25

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  6. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; Sánchez, C.; Miquel, R.

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  7. Dynamical evolution of galaxies in dense cluster environment.

    NASA Astrophysics Data System (ADS)

    Gnedin, O. Y.

    1997-12-01

    I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.

  8. VizieR Online Data Catalog: SAMI Galaxy Survey: rotators classification (van de Sande+, 2017)

    NASA Astrophysics Data System (ADS)

    van de Sande, J.; Bland-Hawthorn, J.; Fogarty, L. M. R.; Cortese, L.; D'Eugenio, F.; Croom, S. M.; Scott, N.; Allen, J. T.; Brough, S.; Bryant, J. J.; Cecil, G.; Colless, M.; Couch, W. J.; Davies, R.; Elahi, P. J.; Foster, C.; Goldstein, G.; Goodwin, M.; Groves, B.; Ho, I.-T.; Jeong, H.; Jones, D. H.; Konstantopoulos, I. S.; Lawrence, J. S.; Leslie, S. K.; Lopez-Sanchez, A. R.; McDermid, R. M.; McElroy, R.; Medling, A. M.; Oh, S.; Owers, M. S.; Richards, S. N.; Schaefer, A. L.; Sharp, R.; Sweet, S. M.; Taranu, D.; Tonini, C.; Walcher, C. J.; Yi, S. K.

    2017-08-01

    The SAMI instrument and Galaxy Survey is described in detail in Croom+ (2012MNRAS.421..872C) and Bryant+ (2015MNRAS.447.2857B). SAMI is a multi-object integral field spectrograph on the 3.9m Anglo Australian Telescope (AAT). For the SAMI Galaxy Survey, the 580V grating is used in the blue arm of the spectrograph, which results in a resolution of R~1700 with wavelength coverage of 3700-5700Å. In the red arm, the higher resolution grating 1000R is used, which gives an R~4500 over the range 6300-7400Å. We use 24 unsaturated, unblended CuAr arc lines in the blue arm, and 12 lines in the red arm, from 16 frames between 2013 March 05 and 2015 August 17, for all 819 fibers. The survey has four volume-limited galaxy samples derived from cuts in stellar mass in the Galaxy and Mass Assembly (GAMA) G09, G12, and G15 regions (Driver+ 2011, J/MNRAS/413/971). (2 data files).

  9. Probable Foreground SN at z=0.39 SN in MACS0744.9+392 galaxy cluster field

    NASA Astrophysics Data System (ADS)

    Kelly, P.; Schmidt, K. B.; Rodney, S.; Treu, T.; Strolger, L.; Graur, O.

    2014-09-01

    We report the discovery of a likely supernova in WFC3-IR F105W and F140W images of the MACS0744.9+392 (z=0.698) galaxy cluster field. The HST images were acquired on 20 September 2014 as part of the Grism Lens Amplified Survey from Space (GLASS) to align and calibrate the G102 grism spectra.

  10. Disentangling The Evolution Of S0 Galaxies Using Spectral Data Cubes

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn; Tabor, Martha; Merrifield, Michael; Aragón-Salamanca, Alfonso; Häussler, Boris; Bamford, Steven; Cappellari, Michele

    2016-09-01

    While it is fairly well accepted that S0 galaxies evolve from spiral disk systems, the mechanism by which they do so is not well determined. A number of processes, ranging from simply running out of gas to environmentally-driven gas removal, interactions and mergers, have been proposed, and the reality is probably that there are multiple routes between these two states.One key way to explore how the disk and bulge components in S0 galaxies reached their current states is provided by studies of their spectra: stellar population analysis provides information on the sequence in which these components formed, while the kinematic information in these data holds clues to the degree of violence in the transformation process.With the availability of large integral-field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract this information in a systematic way, to address the questions of which evolutionary channels S0 have galaxies evolved down, and whether these channels depend on other properties of the galaxy such as its mass or environment. Accordingly, we have been developing new tools to extract optimally the information contained within such data, to isolate the spectral properties of these galaxies' disks and bulges.Results to date are already proving interesting, with bulges of S0s in clusters systematically younger than the disks that surround them, implying a last chaotic burst of star formation near their centres in a reasonably violent transition, while those in less dense environments seem to show older bulges, consistent with star formation in a spiral galaxy simply ceasing.

  11. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  12. CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balestra, I.; Sartoris, B.; Girardi, M.

    2016-06-01

    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 ( z  = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin{sup 2}, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r {sub 200} (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster ( M {sub 200} ∼ 0.9 × 10{sup 15} M {sub ⊙} and σ{sub V,r200} ∼ 1000 km s{supmore » −1}) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Δ V {sub rf} ∼ 1100 km s{sup −1} with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z  ∼ 0.390, ∼10′ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of Δ V{sub rf} ∼ −1700 km s{sup −1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this

  13. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  14. Morphology-based Query for Galaxy Image Databases

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Galaxies of rare morphology are of paramount scientific interest, as they carry important information about the past, present, and future Universe. Once a rare galaxy is identified, studying it more effectively requires a set of galaxies of similar morphology, allowing generalization and statistical analysis that cannot be done when N=1. Databases generated by digital sky surveys can contain a very large number of galaxy images, and therefore once a rare galaxy of interest is identified it is possible that more instances of the same morphology are also present in the database. However, when a researcher identifies a certain galaxy of rare morphology in the database, it is virtually impossible to mine the database manually in the search for galaxies of similar morphology. Here we propose a computer method that can automatically search databases of galaxy images and identify galaxies that are morphologically similar to a certain user-defined query galaxy. That is, the researcher provides an image of a galaxy of interest, and the pattern recognition system automatically returns a list of galaxies that are visually similar to the target galaxy. The algorithm uses a comprehensive set of descriptors, allowing it to support different types of galaxies, and it is not limited to a finite set of known morphologies. While the list of returned galaxies is neither clean nor complete, it contains a far higher frequency of galaxies of the morphology of interest, providing a substantial reduction of the data. Such algorithms can be integrated into data management systems of autonomous digital sky surveys such as the Large Synoptic Survey Telescope (LSST), where the number of galaxies in the database is extremely large. The source code of the method is available at http://vfacstaff.ltu.edu/lshamir/downloads/udat.

  15. ON THE COMPACT H II GALAXY UM 408 AS SEEN BY GMOS-IFU: PHYSICAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Patricio; Telles, Eduardo; Munoz-Tunon, Casiana

    2009-06-15

    We present Integral Field Unit GMOS-IFU data of the compact H II galaxy UM 408, obtained at the Gemini South telescope, in order to derive the spatial distribution of emission lines and line ratios, kinematics, plasma parameters, and oxygen abundances as well the integrated properties over an area of 3''x4.''4 equivalent with {approx}750 pc x 1100 pc located in the central part of the galaxy. The starburst in this area is resolved into two giant regions of about 1.''5 and 1'' ({approx}375 and {approx}250 pc) diameter, respectively and separated 1.5-2'' ({approx}500 pc). The extinction distribution concentrate its highest values closemore » but not coincident with the maxima of H{alpha} emission around each one of the detected regions. This indicates that the dust has been displaced from the exciting clusters by the action of their stellar winds. The ages of these two regions, estimated using H{beta} equivalent widths, suggest that they are coeval events of {approx}5 Myr with stellar masses of {approx}10{sup 4} M {sub sun}. We have also used [O III]/H{beta} and [S II]/H{alpha} ratio maps to explore the excitation mechanisms in this galaxy. Comparing the data points with theoretical diagnostic models, we found that all of them are consistent with excitation by photoionization by massive stars. The H{alpha} emission line was used to measure the radial velocity and velocity dispersion. The heliocentric radial velocity shows an apparent systemic motion where the east part of the galaxy is blueshifted, while the west part is redshifted, with a relative motion of {approx}10 km s{sup -1}. The velocity dispersion map shows supersonic values typical for extragalactic H II regions. We derived an integrated oxygen abundance of 12+log(O/H) = 7.87 summing over all spaxels in our field of view. An average value of 12+log(O/H) = 7.77 and a difference of {delta}(O/H) = 0.47 between the minimum and maximum values (7.58 {+-} 0.06-8.05 {+-} 0.04) were found, considering all data

  16. The mass-metallicity relation of AKARI-FMOS infrared galaxies at z ∼ 0.88 in the AKARI North Ecliptic Pole Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Goto, Tomotsugu; Malkan, Matthew; Pearson, Chris; Matsuhara, Hideo

    2017-08-01

    The mass, metallicity, and star formation rate (SFR) of a galaxy are crucial parameters in understanding galaxy formation and evolution. However, the relation between these parameters, (i.e., the fundamental relation) is still a matter of debate for luminous infrared (IR) galaxies, which carry a bulk of the SFR budget of the universe at z ∼ 1. We have investigated the relation among stellar mass, gas-phase oxygen abundance, and SFR of the Japanese infrared satellite AKARI-detected mid-IR galaxies at z ∼ 0.88 in the AKARI north ecliptic pole deep field. We observed ∼350 AKARI sources with Subaru/Fiber Multi Object Spectrograph near-IR spectrograph, and detected confirmed Hα emission lines from 25 galaxies and expected Hα emission lines from 44 galaxies. The SFRHα, IR of our sample is almost constant (〈SFRHα, IR〉 = ∼ 25 M⊙ yr - 1) over the stellar mass range of our sample. Compared with main-sequence (MS) galaxies at a similar redshift range (z ∼ 0.78), the average SFR of our detected sample is comparable for massive galaxies ( ∼ 1010.58 M⊙), while higher by ∼0.6 dex for less massive galaxies ( ∼ 1010.05 M⊙). We measure metallicities from the [N II]/Hα emission line ratio. We find that the mass-metallicity relation of our individually measured sources agrees with that for optically-selected star-forming galaxies at z ∼ 0.1, while metallicities of stacked spectra agree with that of MS galaxies at z ∼ 0.78. Considering the high SFR of individually measured sources, the fundamental metallicity relation (FMR) of the IR galaxies is different from that at z ∼ 0.1. However, on the mass-metallicity plane, they are consistent with the MS galaxies, highlighting the higher SFR of the IR galaxies. This suggests that the evolutionary path of our infrared galaxies is different from that of MS galaxies. A possible physical interpretation includes that the star-formation activities of IR galaxies at z ∼ 0.88 in our sample are enhanced by

  17. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    NASA Astrophysics Data System (ADS)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  18. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arrangedmore » in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.« less

  19. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  20. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The