Science.gov

Sample records for galaxies sdss galaxies

  1. Galaxy-galaxy and galaxy-CMB Lensing with SDSS-III BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel

    2017-01-01

    Weak lensing has emerged as an important cosmological probe for our understanding of dark matter and dark energy. The low redshift spectroscopic sample of SDSS-III BOSS survey, with a well-understood galaxy population is ideal to probe cosmology using galaxy-galaxy lensing and galaxy-CMB lensing. I will present results from two methods that combine information from lensing and galaxy clustering. The first involves combining lensing and galaxy clustering to directly measure galaxy bias and thus recover the matter correlation function, which is directly predicted from theory. Using scales where linear perturbation theory is valid, we carry out a joint analysis of galaxy-galaxy clustering, galaxy-galaxy lensing, and CMB-galaxy lensing, and constrain linear galaxy bias b=1.80+/-0.06, Omega_m=0.284+/-0.024, and relative calibration bias between CMB and galaxy lensing, b_l=0.82+/-0.15. The second method involves including information about redshift-space distortions to measure the E_G statistic to test gravitational physics at cosmological scales. This statistic is independent of galaxy bias and the amplitude of the matter power spectrum. Different theories of gravity predict a different E_G value, making it a clean and stringent test of GR at cosmological scales. Using the BOSS low redshift sample, we have measured E_G at z=0.27 with ~10% (15%) accuracy using galaxy (CMB) lensing, with results consistent with LCDM predictions.

  2. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  3. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  4. Properties of Isolated Galaxies in the SDSS DR2

    NASA Astrophysics Data System (ADS)

    Tucker, D. L.; Allam, S. S.; SDSS Collaboration

    2004-05-01

    We analyze the properties of a sample of ˜4,500 isolated galaxies selected from the SDSS DR2 photometric data following well defined criteria (Tucker & Allam 2003). The results are briefly discussed.

  5. Spatial environment of polar-ring galaxies from the SDSS

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Reshetnikov, V. P.

    2017-03-01

    Based on SDSS data, we have considered the spatial environment of galaxies with extended polar rings. We used two approaches: estimating the projected distance to the nearest companion and counting the number of companions as a function of the distance to the galaxy. Both approaches have shown that the spatial environment of polar-ring galaxies on scales of hundreds of kiloparsecs is, on average, less dense than that of galaxies without polar structures. Apparently, one of the main causes of this effect is that the polar structures in a denser environment are destroyed more often during encounters and mergers with other galaxies.

  6. Photometric Asymmetry Between Clockwise and Counterclockwise Spiral Galaxies in SDSS

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    While galaxies with clockwise and counterclockwise handedness are visually different, they are expected to be symmetric in all of their other characteristics. Previous experiments using both manual analysis and machine vision have shown that the handedness of Sloan Digital Sky Survey galaxies can be predicted with accuracy significantly higher than mere chance using its photometric data alone. However, some of these previous experiments were based on manually classified galaxies, and the results may therefore be subjected to bias originated from the human perception. This paper describes an experiment based on a set of 162,514 galaxies classified automatically to clockwise and counterclockwise spiral galaxies, showing that the source of the asymmetry in Sloan Digital Sky Survey (SDSS) database is not the human perception bias. The results are compared to two smaller datasets, and confirm the observation that the handedness of SDSS galaxies can be predicted by their photometry. The experiment also shows statistically significant differences in the measured magnitude of SDSS galaxies, according which galaxies with clockwise patterns are brighter than galaxies with counterclockwise patterns. The magnitude of that difference changes across RA ranges, and exhibits a strong correlation with the cosine of the right ascension.

  7. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  8. SDSS superclusters: morphology and galaxy content

    NASA Astrophysics Data System (ADS)

    Einasto, M.; Lietzen, H.; Tempel, E.; Gramann, M.; Liivamägi, L. J.; Einasto, J.

    2014-02-01

    Context. Understanding the formation, evolution and present-day properties of the cosmic web and objects forming it is an important task in cosmology. Aims: We compare the galaxy populations in superclusters of different morphology in the nearby Universe (180 h-1 Mpc ≤ d ≤ 270 h-1 Mpc) to see whether the inner structure and overall morphology of superclusters are important in shaping galaxy properties in superclusters. Methods: We find supercluster morphology with Minkowski functionals and analyse the probability density distributions of colours, morphological types, stellar masses, star formation rate (SFR) of galaxies, and the peculiar velocities of the main galaxies in groups in superclusters of filament and spider types, and in the field. We test the statistical significance of the results with the KS test. Results: The fraction of red, early-type, low SFR galaxies in filament-type superclusters is higher than in spider-type superclusters; in low-density global environments their fraction is lower than in superclusters. In all environments the fraction of red, high stellar mass, and low SFR galaxies in rich groups is higher than in poor groups. In superclusters of spider morphology red, high SFR galaxies have higher stellar masses than in filament-type superclusters. Groups of equal richness host galaxies with larger stellar masses, a larger fraction of early-type and red galaxies, and a higher fraction of low SFR galaxies, if they are located in superclusters of filament morphology. The peculiar velocities of the main galaxies in groups from superclusters of filament morphology are higher than in those of spider morphology. Groups with higher peculiar velocities of their main galaxies in filament-type superclusters are located in higher density environment than those with low peculiar velocities. There are significant differences between galaxy populations of the individual richest superclusters. Conclusions: Both local (group) and global (supercluster

  9. Galaxies and Mass: Lensing and Dynamical Measurements from the SDSS

    NASA Astrophysics Data System (ADS)

    McKay, T. A.

    2003-06-01

    Probing the relationship between galaxies and mass is a major goal of the Sloan Digital Sky Survey. In this contribution we describe measurements of galaxy-mass correlations using both lensing and dynamical probes. The observables we discuss include the projected mass density contrast measured in SDSS imaging data and luminous particle motions measured as part of the SDSS galaxy redshift survey. Both probes of mass are sensitive measures, varying significantly with galaxy luminosity for example. Interpreting these results is complex. As a first step, we obtain best fit model parameters for various toy models. This exercise reveals the importance of making the comparison between theory and observation at the observable level. We argue for the use of full simulations, including both large scale structure and galaxy formation prescriptions, in the interpretation of these measurements. We conclude with a first generation example of such a comparison.

  10. The Frequency of Anomalously Red Galaxies in SDSS Clusters

    NASA Astrophysics Data System (ADS)

    Shearman, O.; Pimbblet, K. A.

    2014-09-01

    We present a systematic photometric search for spectroscopically confirmed anomalously red galaxies members of 748 low redshift clusters between 0.03 z 0.17 from the SDSS-C4 cluster catalogue (Miller et al. 2005). For each cluster we spectroscopically determine cluster membership, construct a colour-magnitude diagram and fit the red sequence using a robust bi-weight fit. We define an "anomalously red galaxy" as having a (g - r) colour of greater than 3σ redward of the fitted cluster colour-magnitude relation. We find that of 7485 galaxies at r ≤ 17.77 in (g - r), 7 galaxies are anomalously red - 0.0935 per cent of all galaxies in our sample. We show that two of the red outliers are caused by red contamination from nearby sources and are therefore not intrinsically anomalous red. However, 5 have no underlying cause to be so red and we speculate that they may have a high internal dust content. These intrinsically red galaxies are rare - comprising no more than 0.0668 per cent of all cluster galaxies. Most are morphologically early type galaxies, with a few probable late type galaxies that are viewed edge-on and one low surface brightness late type. One of our anomalously red galaxies appears to be a dust-shrouded starburst and we speculate that this may be a unique galaxy amoungst this galaxy set.

  11. LasDamas Mock Galaxy Catalogs for SDSS

    NASA Astrophysics Data System (ADS)

    McBride, Cameron; Berlind, A.; Scoccimarro, R.; Wechsler, R.; Busha, M.; Gardner, J.; van den Bosch, F.

    2009-01-01

    The statistical strength of galaxy redshift surveys, such as the Sloan Digital Sky Survey (SDSS), have ushered us into the era of precision measurements of galaxy clustering. We are now fitting physical models to measured clustering statistics. Galaxy clustering is thus in a position to directly constrain cosmological and galaxy formation theories. This paradigm shift from qualitative to quantitative demands that we understand the statistical and systematic errors in our measurements. Moreover, we must quantify the theoretical uncertainties in our models, which are no longer clearly sub-dominant to observational errors. We address this emerging need with the LasDamas project (LArge Suite of DArk MAtter Simulations) by producing an unprecedented number of independent and realistic mock galaxy catalogs. To date, we have run over 100 independent N-body realizations using a fixed cosmology and initialized using 2nd order Lagrangian perturbation theory. We populate overdensities of dark matter using the halo occupation distribution framework, designed to match both small and large scale clustering of the observed SDSS data. A series of mock galaxy catalogs matching the geometry of the final SDSS release (DR7) are created over a wide luminosity range to correspond to Main and LRG volume-limited samples. We include important observational effects, such as redshift distortions and fiber collisions. These galaxy mocks are publicly available.

  12. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  13. The SDSS View of Galaxy Mergers and Their Environments

    NASA Astrophysics Data System (ADS)

    McIntosh, Daniel H.; Guo, Y.; Mo, H. J.; van den Bosch, F.; Yang, X.

    2009-01-01

    Major mergers between galaxies of comparable mass are dramatic examples of hierarchical galaxy formation. These interactions play a key role in leading theories invoking blue-to-red galaxy transformation to explain galaxy bimodality and the strong growth of the red spheroid population. Despite recent progress in our understanding of local mergers from powerful surveys like the SDSS, we lack a complete picture of this important evolutionary process. Especially unclear is the role that environment plays in merging. As part of a larger comprehensive study to improve our understanding of galaxy-galaxy interactions, we have identified unprecedented samples of gas-rich (disk-disk), dry (spheroid-spheroid) and `hybrid' (disk-spheroid) major mergers among galaxies of stellar mass >3e10 M(sun) in the local volume (0.02SDSS DR4 Group Catalog, we investigate the relative importance of different mergers types as a function of (1) galaxy stellar mass, (2) global environment defined by the dark matter halo mass of the host group, and (3) local environment defined by central versus non-central (satellite) position within the host halo.

  14. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    SciTech Connect

    Reis, Ribamar R.R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao, Jiangang; Johnston, David; Kubo, Jeffrey; Lin, Huan; Seo, Hee-Jong; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  15. A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies

    NASA Astrophysics Data System (ADS)

    Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor

    2017-02-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the Galaxy catalog. We identify a total of 10,643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1,228 voids with effective radii spanning the range 20–100 {h}-1 {Mpc} and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies.

  16. The Investigation of SBS Galaxies from SDSS DR 7

    NASA Astrophysics Data System (ADS)

    Gyulzadyan, M. V.; Mickaelian, A. M.; Abrahamyan, H. V.; Paronyan, G. M.

    2016-09-01

    The Second Byurakan Survey (SBS) is a well-known combined survey, which uses the presence of UV-excess radiation in the continuum, or the presence of emission lines in the spectra for the identification of active and star-forming galaxies. This work reports on a comparative study of galaxies identified with UV-excess (UVX), and galaxies identified via emission-line techniques (ELG) in the fields of the SBS. The spectroscopic parameters used for the comparison are the [OII]λ3727Å/Hβ and [OIII]λ5007Å/Hβ emission-line ratios, the equivalent widths of [OII]λ3727Å, [OIII]λ5007Å, and Hβ emission lines. Spectroscopic parameters were determined from the spectra obtained from SDSS DR7. Based on emission line ratios, we have built also diagnostic diagrams to distinguish AGN (Seyferts and LINERs) and SB galaxies.

  17. Galaxy Zoo: finding offset discs and bars in SDSS galaxies★

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Simmons, Brooke D.; Bamford, Steven P.; Cardamone, Carolin N.; Fortson, Lucy; Hart, Ross E.; Häußler, Boris; Masters, Karen L.; Nichol, Robert C.; Schawinski, Kevin; Smethurst, Rebecca J.

    2017-08-01

    We use multiwavelength Sloan Digital Sky Survey (SDSS) images and Galaxy Zoo morphologies to identify a sample of ∼270 late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of 109.6 M⊙, and 91 per cent of them having M⋆ < 3 × 1010 M⊙, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low-mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.

  18. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-10-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million `clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 `anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed `anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80 per cent when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.

  19. A comparison of multifractal behavior in galaxy samples from SDSS

    NASA Astrophysics Data System (ADS)

    García-Farieta, J. E.; Casas-Miranda, R. A.

    2017-07-01

    We studied the spatial distribution of galaxies with samples from the Sloan Digital Sky Survey (SDSS) including observational holes in the masks. From a multifractal formalism and using the sliding window technique for each sample, we have determined the fractal dimension and the lacunarity spectrum. Aditionally, the scale of homogeneity was determined for each struture parameter. Our results show that the galaxy clustering exhibits a behavior that depends on the radial distance, revealing that the hierarchical distribution is not a fractal at large-scales, with a transition to homogeneity on large scales below 130 Mpc/h.

  20. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    SciTech Connect

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  1. On the fairness of the main galaxy sample of SDSS

    NASA Astrophysics Data System (ADS)

    Meng, Ke-Lai; Ma, Bin; Pan, Jun; Feng, Long-Long

    2011-06-01

    Flux-limited and volume-limited galaxy samples are constructed from the Sloan Digital Sky Survey (SDSS) data releases DR4, DR6 and DR7 for statistical analysis. The two-point correlation functions ξ(s), monopole of three-point correlation functions ζ0, projected two-point correlation function wp and pairwise velocity dispersion σ12 are measured to test if galaxy samples are fair for these statistics. We find that with the increment of sky coverage of subsequent data releases in SDSS, ξ(s) of the flux-limited sample is extremely robust and insensitive to local structures at low redshift. However, for volume-limited samples fainter than L* at large scales s ≳ 10 h-1 Mpc, the deviation of ξ(s) from different SDSS data releases (DR7, DR6 and DR4) increases with the increment of absolute magnitude. The case of ζ0(s) is similar to that of ξ(s). In the weakly nonlinear regime, there is no agreement between ζ0 of different data releases in all luminosity bins. Furthermore, wp of volume-limited samples of DR7 in luminosity bins fainter than -Mr,0.1 = [18.5, 19.5] are significantly larger and σ12 of the two faintest volume-limited samples of DR7 display a very different scale dependence than results from DR4 and DR6. Our findings call for caution in understanding clustering analysis results of SDSS faint galaxy samples and higher order statistics of SDSS volume-limited samples in the weakly nonlinear regime. The first zero-crossing points of ξ(s) from volume-limited samples are also investigated and discussed.

  2. The Halo Boundary of Galaxy Clusters in the SDSS

    NASA Astrophysics Data System (ADS)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.

    2017-05-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  3. New resources to explore the old galaxy: Mining the SDSS

    SciTech Connect

    C. Allende Prieto et al.

    2003-07-01

    The Sloan Digital Sky Survey (SDSS) is collecting photometry and intermediate resolution spectra for {approx} 10{sup 5} stars in the thick-disk and stellar halo of the Milky Way. This massive dataset can be used to infer the properties of the stars that make up these structures, and considerably deepen our vision of the old components of the Galaxy. We devise tools for automatic analysis of the SDSS photometric and spectroscopic data based on plane-parallel line-blanketed LTE model atmospheres and fast optimization algorithms. A preliminary study of about 5000 stars in the Early Data Release gives a hint of the vast amount of information that the SDSS stellar sample contains.

  4. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - i and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  5. Mapping stellar content to dark matter haloes using galaxy clustering and galaxy-galaxy lensing in the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2015-12-01

    The mapping between the distributions of the observed galaxy stellar mass and the underlying dark matter haloes provides the crucial link from theories of large-scale structure formation to interpreting the complex phenomena of galaxy formation and evolution. We develop a novel statistical method, based on the halo occupation distribution (HOD) model, to solve for this mapping by jointly fitting the galaxy clustering and the galaxy-galaxy lensing from the Sloan Digital Sky Survey (SDSS). The method, called the iHOD model, extracts maximum information from the survey by including ˜80 per cent more galaxies than the traditional HOD methods, accounting for the incompleteness of the stellar mass samples self-consistently. The derived stellar-to-halo mass relation (SHMR) explains the clustering and lensing of SDSS galaxies over four decades in stellar mass, while successfully predicting the observed stellar mass functions (SMFs). By modelling significantly more galaxies, the iHOD breaks the degeneracy between the logarithmic scatter in the stellar mass at fixed halo mass and the slope of the mean SHMR at high masses, without assuming a strong prior on the scatter and/or using the SMF as an input. We detect a decline of the scatter with halo mass, from 0.22_{-0.01}^{+0.02} dex below 1012 h-1 M⊙ to 0.18 ± 0.01 dex at 1014 h-1 M⊙. The model predicts a departure of satellite SMFs from the Schechter form in massive haloes and a linear scaling of satellite number with halo mass. The iHOD model can be easily applied to other spectroscopic data sets, greatly improving statistical constraints on the SHMR compared to traditional HOD methods within the same survey.

  6. The halo boundary of galaxy clusters in the SDSS

    DOE PAGES

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...

    2017-05-18

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  7. Galaxy Zoo 2: A Detailed Morphological Catalog of 295,000 Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Willett, Kyle; Lintott, C. J.; Bamford, S. P.; Masters, K. L.; Simmons, B.; Fortson, L.; Schawinski, K.; Simpson, R.

    2013-01-01

    The Galaxy Zoo 2 (GZ2) citizen science project was designed to obtain detailed morphological classifications of roughly a quarter million bright galaxies in the SDSS North Galactic Cap. This was enabled by more than 16 million classifications of images by 80,000 volunteer citizen scientists. Galaxy Zoo 2 greatly extends the original classifications of the Galaxy Zoo project (which primarily identified spiral and elliptical galaxies) by adding quantification of details such as oblateness, bars, bulge strength and shape, spiral arm multiplicity and tightness, and the existence of rarer features such as mergers, lenses, and dust lanes. We present preliminary results on our debiasing methods, addressing both biases from individual citizen scientist classifiers and intrinsic biases as a function of redshift, size, and absolute magnitude. We compare the GZ2 data to catalogs produced by professional astronomers and by machine-learning algorithms. Citizen science results can be directly compared to these techniques by examining the galaxies that appear in both samples. The weighted vote fractions in GZ2 show good agreement with expert classifications for fine structure morphology, particularly in identifying galactic bars and prominent bulges. The bulge classification in particular is shown to be a reasonable proxy from which T-Types can be derived using GZ2 data. A notable strength of the final catalog will be its size, with more than an order of magnitude more galaxies than extant morphological catalogs. GZ2 will be a unique resource to establish the full panoply of galaxy morphologies, as well as a baseline for studying how galaxies evolve over cosmic timescales.

  8. Dark matter voids in the SDSS galaxy survey

    NASA Astrophysics Data System (ADS)

    Leclercq, Florent; Jasche, Jens; Sutter, P. M.; Hamaus, Nico; Wandelt, Benjamin

    2015-03-01

    What do we know about voids in the dark matter distribution given the Sloan Digital Sky Survey (SDSS) and assuming the ΛCDM model? Recent application of the Bayesian inference algorithm BORG to the SDSS Data Release 7 main galaxy sample has generated detailed Eulerian and Lagrangian representations of the large-scale structure as well as the possibility to accurately quantify corresponding uncertainties. Building upon these results, we present constrained catalogs of voids in the Sloan volume, aiming at a physical representation of dark matter underdensities and at the alleviation of the problems due to sparsity and biasing on galaxy void catalogs. To do so, we generate data-constrained reconstructions of the presently observed large-scale structure using a fully non-linear gravitational model. We then find and analyze void candidates using the VIDE toolkit. Our methodology therefore predicts the properties of voids based on fusing prior information from simulations and data constraints. For usual void statistics (number function, ellipticity distribution and radial density profile), all the results obtained are in agreement with dark matter simulations. Our dark matter void candidates probe a deeper void hierarchy than voids directly based on the observed galaxies alone. The use of our catalogs therefore opens the way to high-precision void cosmology at the level of the dark matter field. We will make the void catalogs used in this work available at http://www.cosmicvoids.net.

  9. Infrared properties of the SDSS-maxBCG galaxy clusters

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Pointecouteau, E.; Giard, M.; Montier, L.; Pello, R.

    2010-03-01

    Context. The physics of galaxy clusters has proven to be influenced by several processes connected with their galactic component which pollutes the intracluster medium (ICM) with metals, stars and dust. However, it is not clear whether the presence of diffuse dust can play a role in clusters physics since a characterisation of the infrared (IR) properties of galaxy clusters is very challenging and yet to be completely achieved. Aims: In our study we focus on the recent work of Giard et al. (2008, A&A, 490, 547) who performed a stacking analysis of the IRAS data in the direction of several thousands of galaxy clusters, providing a statistical characterisation of their IR luminosity and redshift evolution. We model the IR properties of the galactic population of the SDSS-maxBCG clusters (0.1galaxies of the SDSS-maxBCG clusters, we estimate their emission in the 60 and 100 μm IRAS bands making use of modeled spectral energy distributions of different spectral types (E/S0, Sa, Sb, Sc and starburst). We also consider the evolution of the galactic population/luminosity with redshift. Results: The total galactic emission, which is dominated by the contribution of star-forming late-type galaxies, is consistent with the observed signal. In fact, our galactic emission model slightly overestimates the observed fluxes, with the excess being concentrated in low-redshift clusters (z ⪉ 0.17). Conclusions: Our results indicate that, if present, the IR emission from intracluster dust must be very small compared to the one associated to the galaxy members. This translates into an upper limit on the dust-to-gas mass ratio in the ICM of Zd ⪉ 5 × 10-5. The excess in luminosity obtained at low redshift constitutes an indication that the cluster environment is driving a process

  10. Spectral Investigation and Physical Properties of Markarian Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Gyulzadyan, M. V.; Mickaelian, A. M.; Abrahamyan, H. V.; Paronyan, G. M.

    2016-06-01

    Beginning in the mid-1960s and continuing through 1978, the first large-area objective-prism survey for galaxies with blue and ultraviolet excess in their continuum radiation was conducted by Markarian, Lipovetskii and Stepanian (published in Lists I-XV). Observations were carried out using primarily a 1.5° objective prism with the 40″/52″ (1.0/1.3 m) Schmidt telescope at Byurakan Astrophysical Observatory. Their setup produced an inverse dispersion of 2500 Å/mm at Hβ (Markarian 1967). The publication of the List XV (Markarian et al. 1981) completed the Markarian Survey (also known as FBS, First Byurakan Survey). We present some average characteristics for 1493 Markarian galaxies derived from SDSS images and spectra and compare them to those of the two groups of the Second Byurakan Survey galaxies, defined using two indicators of activity as observed on objective-prism spectra: the presence of UV excess (860 UVX) in the continuum and the presence of emission lines (813 ELs). The parameters used for the comparison were morphology, redshift, apparent magnitude, absolute magnitude, the ratio of the small and the large semi-axes R (J), and close environment. For UVG the average apparent magnitude is 16.95m, for Mrk it is 15.2m, and for ELG it is 16.7m; the average absolute magnitude is 20.1m for Mrk, 20.73m for UVG, and 20.67m for ELG; the redshift is 0.024 for Mrk, 0.046 for UVG and 0.035 for ELG; the ratio of the small and the large semi-axes R (J) is 0.74 for Mrk and UVG, and 0.67 for ELG. On average, there are more spiral and compact galaxies among Mrk, UVG, and ELG objects. Some 31% of Mrk galaxies, 38% of UVG and 25% of ELG have neighboring galaxies in a circle with a radius of 50 kpc. In the course of the Markarian survey, more than 200 Seyfert galaxies, and hundreds of starburst, blue compact, and HII galaxies were discovered.

  11. The Alignment effect of brightest cluster galaxies in the SDSS

    SciTech Connect

    Kim, R. S. J.; Annis, J.; Strauss, M. A.; Lupton, R. H.; Bahcall, N. A.; Gunn, J. E.; Kepner, J. V.; Postman, M.

    2001-10-01

    One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members: we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0SDSS cluster catalogs, which will provide us with better statistics for systematic investigations of the alignment with redshift, richness and morphology of both the cluster and the BCG.

  12. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the

  13. VizieR Online Data Catalog: Parameters of Spiral galaxies from SDSS 7 (Hall+, 2012)

    NASA Astrophysics Data System (ADS)

    Hall, M.; Courteau, S.; Dutton, A. A.; McDonald, M.; Zhu, Y.

    2013-08-01

    We have compiled a sample of 3041 spiral galaxies with multiband gri imaging from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7; Abazajian et al., 2009ApJS..182..543A) and available galaxy rotational velocities, V, derived from HI linewidths. We compare the data products provided through the SDSS imaging pipeline with our own photometry of the SDSS images, and use the velocities, V, as an independent metric to determine ideal galaxy sizes (R) and luminosities (L). Our radial and luminosity parameters improve upon the SDSS DR7 Petrosian radii and luminosities through the use of isophotal fits to the galaxy images. This improvement is gauged via VL (Vmag-Luminosity) and RV relations whose respective scatters are reduced by ~8 and ~30% with our parameters compared to similar relations built with SDSS parameters. (1 data file).

  14. Alignment of galaxies relative to their local environment in SDSS-DR8

    NASA Astrophysics Data System (ADS)

    Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.

    2017-03-01

    Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.

  15. How Isolated are Low Surface Brightness Galaxies? News from SDSS

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Galaz, G.; Lambas, D. G.; Padilla, N.

    2010-10-01

    Using SDSS-DR4 we studied the spatial distribution and the influence over star formation activity due to interactions in low and high surface brightness galaxies in the redshift range 0.01< z <0.1. With cylinder counts and projected distance to the fifth-nearest neighbor as environment tracers, we found that LSBs tend to have a lack of companions compared to HSBs in small scales (< 2 Mpc). Regarding the interactions, we found that the fraction of LSBs with strong star formation activity increases when the neighbor is closer than rp / r90 ˜ 4. The intensity of the reaction, measured by the average value of b, seems to be stronger for HSBs compared to LSBs. Our results suggest that, rather than be a condition for their survival and evolution, isolation of LSBs is connected with their formation scenario.

  16. Alignments of galaxies within cosmic filaments from SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  17. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    SciTech Connect

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  18. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  19. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  20. The weirdest SDSS galaxies: results from an outlier detection algorithm

    NASA Astrophysics Data System (ADS)

    Baron, Dalya; Poznanski, Dovi

    2017-03-01

    How can we discover objects we did not know existed within the large data sets that now abound in astronomy? We present an outlier detection algorithm that we developed, based on an unsupervised Random Forest. We test the algorithm on more than two million galaxy spectra from the Sloan Digital Sky Survey and examine the 400 galaxies with the highest outlier score. We find objects which have extreme emission line ratios and abnormally strong absorption lines, objects with unusual continua, including extremely reddened galaxies. We find galaxy-galaxy gravitational lenses, double-peaked emission line galaxies and close galaxy pairs. We find galaxies with high ionization lines, galaxies that host supernovae and galaxies with unusual gas kinematics. Only a fraction of the outliers we find were reported by previous studies that used specific and tailored algorithms to find a single class of unusual objects. Our algorithm is general and detects all of these classes, and many more, regardless of what makes them peculiar. It can be executed on imaging, time series and other spectroscopic data, operates well with thousands of features, is not sensitive to missing values and is easily parallelizable.

  1. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  2. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  3. VizieR Online Data Catalog: SDSS nearby galaxies morphologies (Yoshino+, 2015)

    NASA Astrophysics Data System (ADS)

    Yoshino, A.; Yamauchi, C.

    2015-01-01

    These catalogues are intended to study statistically Box/Peanut or Bar structures in edge-on or face-on nearby galaxies, containing values of surface brightness parameters of model galaxy, coordinate, redshift, morphology and matched PGC number for edge-on or face-on nearby galaxies in g, r and i-band selected from SDSS DR7. table1[gri].dat are the catalogues for edge-on galaxies in g, r and i-band, respectively. table2[gri].dat are those for face-on galaxies. table3[gri].dat contain only Box/Peanut galaxies extracted from table1[gri].dat. table4[gri].dat contain only Barred galaxies extracted from table2[gri].dat. (12 data files).

  4. IRTF Observations of Lensed Star-Forming Galaxies Identified in the SDSS Imaging Data

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Allam, S. S.; Tucker, D. L.; Lin, H.; SDSS Bright Arcs Search Team

    2009-12-01

    The SDSS Bright Arcs Search Team (see poster by H. Lin et al. #478.02) has been carrying out an ongoing systematic search for bright, strongly-lensed, high-redshift galaxies in samples of SDSS luminous red galaxies, clusters, and interacting/merging galaxy pairs. So far we have spectroscopically confirmed a dozen lensing systems, with source galaxy redshifts z = 0.4 - 2.7, with 6 of these among the brightest known z > 2 lensed galaxies, including the 8 O'Clock Arc (Allam et al. 2007) and the Clone (Lin et al. 2008). Here, we report on our JHK imaging of several of these confirmed lensed systems based upon observations taken with the SpeX and NSFCAM2 on the NASA Infrared Telescope Facility. Further, we discuss our future plans for NIR imaging of this sample.

  5. Very thin disc galaxies in the SDSS catalogue of edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Bizyaev, D. V.; Kautsch, S. J.; Sotnikova, N. Ya.; Reshetnikov, V. P.; Mosenkov, A. V.

    2017-03-01

    We study the properties of galaxies with very thin discs (VTDs) using a sample of 85 objects whose stellar disc radial-to-vertical scale ratio determined from photometric decomposition, exceeds 9. We present evidences of similarities between the VTD galaxies and low surface brightness (LSB) disc galaxies, and conclude that both small and giant LSB galaxies may reveal themselves as VTD, edge-on galaxies. Our VTD galaxies are mostly bulgeless, and those with large radial scalelength tend to have redder colours. We performed spectral observations of 22 VTD galaxies with the Dual Imaging Spectrograph on the 3.5 m telescope at the Apache Point Observatory. The spectra with good resolution (R ∼ 5000) allow us to determine the distance and the ionized gas rotation curve maximum for the galaxies. Our VTD galaxies have low dust content, in contrast to regular disc galaxies. Apparently, VTD galaxies reside in specific cosmological low-density environments and tend to have less connection with filaments. Comparing a toy model that assumes marginally low star formation in galactic discs with obtained gas kinematics data, we conclude that there is a threshold central surface density of about 88 M⊙ pc-2, which we observe in the case of very thin, rotationally supported galactic discs.

  6. Investigating Galaxy Quenching With The Sdss: Stellar Metallicities As A Tracer Of Quenching Mechanisms

    NASA Astrophysics Data System (ADS)

    Trussler, James; Maiolino, Roberto; Goddard, Daniel; Maraston, Claudia; Thomas, Daniel; Peng, Yingjie

    2017-06-01

    Peng et al. (2015, Nature, 521, 192) analysed stellar metallicities of 26,000 SDSS galaxies and found that galaxies with stellar masses below 1011 solar masses are primarily quenched due to the halting of the supply of cold gas (strangulation). We take this analysis further by making use of the much larger spectroscopic sample of galaxies in SDSS DR7, analysing the stellar metallicities of 70,000 local galaxies. We compare the observed stellar metallicity difference between star-forming and passive galaxies with the predictions of simple models for galaxy evolution to put constraints on the possible quenching mechanisms and timescales. We find that the observed stellar metallicity differences are well reproduced by closed-box models, indicating that local galaxies quench primarily through strangulation over a mass-independent timescale of 2 Gyr. We also investigate the dependence of galaxy quenching on environment, in terms of both the central/satellite dichotomy and the local overdensity. We find that there is no strong dependence of the stellar metallicity difference on the overdensity, even over an overdensity range of 2 dex. This result further suggests that the environment cannot be solely responsible for galaxy strangulation.

  7. Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna

    2016-10-01

    We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.

  8. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo

    2016-06-01

    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and i magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g < 11 mag. After correcting the g and i magnitudes for Galactic and internal extinction, the blue and red sequences in the color magnitude diagram are well separated, with similar slopes. In addition, we study (i) the color-magnitude diagrams in different galaxy regions, the inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (ii), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A38

  9. A Computer-generated Visual Morphology Catalog of ~3,000,000 SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Kuminski, Evan; Shamir, Lior

    2016-04-01

    We have applied computer analysis to classify the broad morphological types of ∼3 · 106 Sloan Digital Sky Survey (SDSS) galaxies. For each galaxy, the catalog provides the DR8 object ID, the R.A., the decl., and the certainty for the automatic classification as either spiral or elliptical. The certainty of the classification allows us to control the accuracy of a subset of galaxies by sacrificing some of the least certain classifications. The accuracy of the catalog was tested using galaxies that were classified by the manually annotated Galaxy Zoo catalog. The results show that the catalog contains ∼900,000 spiral galaxies and ∼600,000 elliptical galaxies with classification certainty that has a statistical agreement rate of ∼98% with the Galaxy Zoo debiased “superclean” data set. The catalog also shows that objects assigned by the SDSS pipeline with a relatively high redshift (z > 0.4) can have clear visual spiral morphology. The catalog can be downloaded at http://vfacstaff.ltu.edu/lshamir/data/morph_catalog. The image analysis software that was used to create the catalog is also publicly available.

  10. The AMIGA sample of isolated galaxies. XII. Revision of the isolation degree for AMIGA galaxies using the SDSS

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Leon, S.; Espada, D.; Verdes-Montenegro, L.; Santander-Vela, J. D.; Ruiz, J. E.; Sánchez-Expósito, S.

    2013-12-01

    Context. To understand the evolution of galaxies, it is necessary to have a reference sample where the effect of the environment is minimized and quantified. In the framework of the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies), we present a revision of the environment for galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973, Astrof. Issledovaniia Byu. Spec. Ast. Obs., 8, 3) using the ninth data release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: The aims of this study are to refine the photometric-based AMIGA sample of isolated galaxies and to provide an improvement of the quantification of the isolation degree with respect to previous works, using both photometry and spectroscopy. Methods: We developed an automatic method to search for neighbours within a projected area of 1 Mpc radius centred on each primary galaxy to revise the CIG isolation criteria introduced by Karachentseva (1973). The local number density at the fifth nearest neighbour and the tidal strength affecting the CIG galaxy were estimated to quantify the isolation degree. Results: Of the 636 CIG galaxies considered in the photometric study, 426 galaxies fulfil the CIG isolation criteria within 1 Mpc, taking into account projected neighbours. Of the 411 CIG galaxies considered in the spectroscopic study, 347 galaxies fulfil the CIG isolation criteria when a criterion about redshift difference is added. The available redshifts allow us to reject background neighbours and thus improve the photometric assessment. On average, galaxies in the AMIGA sample show lower values in the local number density and the tidal strength parameters than galaxies in denser environments such as pairs, triplets, compact groups, and clusters. Conclusions: For the first time, the environment and the isolation degree of AMIGA galaxies are quantified using digital data. The use of the SDSS database permits one to identify fainter and smaller-size satellites than in previous

  11. VizieR Online Data Catalog: Compact early-type galaxies in SDSS (Saulder+, 2015)

    NASA Astrophysics Data System (ADS)

    Saulder, C.; van den Bosch, R. C. E.; Mieske, S.

    2015-11-01

    As the baseline sample of our search for b19 analogues, we made broad use of the Sloan Digital Sky Surveys (SDSS) and especially of its tenth (Ahn et al., 2014ApJS..211...17A) and seventh (Abazajian et al., 2009ApJS..182..543A) data releases (DR10 and DR7). Furthermore, we used GalaxyZoo (Lintott et al., 2008MNRAS.389.1179L, 2011, Cat. J/MNRAS/410/166) for our galaxy classifications, the refits of SDSS DR7 using Sersic profiles done by Simard et al. (2011, Cat. J/ApJS/196/11), and the stellar masses from Mendel et al. (2014, Cat. J/ApJS/210/3), which is itself based on the previous work of Simard et al. (2011, Cat. J/ApJS/196/11). For comparison, we also used the list of 63 compact massive galaxies from Taylor et al. (2010, Cat. J/ApJ/720/723), which is based on SDSS DR7 as well as a list of 29 compact massive galaxies from Trujillo et al. (2009ApJ...692L.118T), which is based on the NYU Value-Added Galaxy Catalog (Blanton et al., 2005AJ....129.2562B) and covers a sub-sample of SDSS. (9 data files).

  12. Further constraining galaxy evolution models through the size function of SDSS early-type galaxies

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Marulli, Federico; Bernardi, Mariangela; Boylan-Kolchin, Michael; Dai, Xinyu; Khochfar, Sadegh

    2010-06-01

    We discuss how the effective radius Re function (ERF) recently worked out by Bernardi et al. represents a new testbed to improve the current understanding of semi-analytic models of galaxy formation. In particular, we show here that a detailed hierarchical model of structure formation can broadly reproduce the correct peak in the size distribution of local early-type galaxies, although it significantly overpredicts the number of very compact and very large galaxies. This in turn is reflected in the predicted size-mass relation, much flatter than the observed one, due to too large (>~3kpc) low-mass galaxies (<1011Msolar), and to a non-negligible fraction of compact (<~0.5-1kpc) and massive galaxies (>~1011Msolar). We also find that the latter discrepancy is smaller than previously claimed, and limited to only ultra-compact (Re <~ 0.5kpc) galaxies when considering elliptical-dominated samples. We explore several causes behind these effects. We conclude that the former problem might be linked to the initial conditions, given that large and low-mass galaxies are present at all epochs in the model. The survival of compact and massive galaxies might instead be linked to their very old ages and peculiar merger histories. Overall, knowledge of the galactic stellar mass and size distributions allows a better understanding of where and how to improve models.

  13. Using SDSS and WISE to Catch Quenching Galaxies

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine A.; Cales, Sabrina; Spogs Team

    2015-01-01

    The onset of large surveys, such as the Sloan Digital Sky Survey, or the WISE All-sky Survey have opened an unprecedented view of the nature of galaxy transitions from the blue cloud to the red sequence, allowing for synergies between these instruments and surveys to emerge. I will present the discovery of the WISE Infrared Transition Zone, a prominent bifurcation in WISE [4.6]-[12] micron colors between early-type and late-type galaxies. This Infrared Transition Zone (IRTZ) is far more prominent than the optical green valley, and seems to represent a different phase in evolution, corresponding to the time when the optical colors have mostly made the transition. I will discuss possible causes for this bifurcation, including the complete exhaustion of the interstellar medium and the presence of active galactic nuclei. This new population of transitioning galaxies, identified by WISE might shed light on later stages in galaxy transition, after the optical colors no longer provide a beacon for these transitioning galaxies, either at late stages of a merger, or through the complete strangulation of the available interstellar medium.

  14. The 2XMMi/SDSS Galaxy Cluster Survey. III. Clusters associated with spectroscopically targeted luminous red galaxies in SDSS-DR10

    NASA Astrophysics Data System (ADS)

    Takey, A.; Schwope, A.; Lamer, G.

    2014-04-01

    We present a sample of 383 X-ray selected galaxy groups and clusters with spectroscopic redshift measurements (up to z ~ 0.79) from the 2XMMi/SDSS Galaxy Cluster Survey. The X-ray cluster candidates were selected as serendipitously detected sources from the 2XMMi-DR3 catalogue that were located in the footprint of the Sloan Digital Sky Survey (SDSS-DR7). The cluster galaxies with available spectroscopic redshifts were selected from the SDSS-DR10. We developed an algorithm for identifying the cluster candidates that are associated with spectroscopically targeted luminous red galaxies and for constraining the cluster spectroscopic redshift. A cross-correlation of the constructed cluster sample with published optically selected cluster catalogues yielded 264 systems with available redshifts. The present redshift measurements are consistent with the published values. The current cluster sample extends the optically confirmed cluster sample from our cluster survey by 67 objects. Moreover, it provides spectroscopic confirmation for 78 clusters among our published cluster sample, which previously had only photometric redshifts. Of the new cluster sample that comprises 67 systems, 55 objects are newly X-ray discovered clusters and 52 systems are sources newly discovered as galaxy clusters in optical and X-ray wavelengths. Based on the measured redshifts and the fluxes given in the 2XMMi-DR3 catalogue, we estimated the X-ray luminosities and masses of the cluster sample. The cluster catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A54

  15. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  16. The Galaxy Content of SDSS Clusters And Groups

    SciTech Connect

    Hansen, Sarah M.; Sheldon, Erin S.; Wechsler, Risa H.; Koester, Benjamin P.; /Chicago U., Astron. Astrophys. Ctr.

    2007-11-09

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of Brightest Cluster Galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {le} z {le} 0.3. The size of the dataset allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r200 of clusters with mass above 3x10{sup 13}h{sup -1}M{sub {circle_dot}}, the luminosity function of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite luminosity function does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25}M{sub i} - 5log{sub 10}h = -19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L{sub BCG} {approx} M{sup 0.3}{sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub log}L {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  17. THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS

    SciTech Connect

    Hansen, Sarah M.; Wechsler, Risa H.; Koester, Benjamin P.

    2009-07-10

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {<=} z {<=} 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r {sub 200} of clusters with mass above 3 x 10{sup 13} h {sup -1} M {sub sun}, the luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25} M{sub i} - 5log{sub 10} h =-19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L {sub BCG} {approx} M {sup 0.3} {sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub logL} {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  18. Aperture-free star formation rate of SDSS star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.

    2017-03-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors

  19. Searching for metal-deficient emission-line galaxy candidates: the final sample of the SDSS DR12 galaxies

    NASA Astrophysics Data System (ADS)

    Guseva, N. G.; Izotov, Y. I.; Fricke, K. J.; Henkel, C.

    2017-03-01

    We present a spectroscopic study of metal-deficient dwarf galaxy candidates, selected from the SDSS DR12. The oxygen abundances were derived using the direct method in galaxies with the electron temperature-sensitive emission line [O iii]λ4363 Å measured with an accuracy better than 30%. The oxygen abundances for the remaining galaxies with larger uncertainties of the [O iii]λ4363 Å line fluxes were calculated using a strong-line semi-empirical method by Izotov and Thuan. The resulting sample consists of 287 low-metallicity candidates with oxygen abundances below 12 + log O/H = 7.65 including 23 extremely metal-deficient (XMD) candidates with 12 + log O/H ≤ 7.35. Ten out of sixteen XMDs known so far (or 60%) have been discovered by our team using the direct method. Three XMDs were found in the present study. We study relations between global parameters of low-metallicity galaxies, including absolute optical magnitudes, Hβ luminosities (or equivalently star formation rates), stellar masses, mid-infrared colours, and oxygen abundances. Low-metallicity and XMD galaxies strongly deviate to lower metallicities in L-Z, L(Hβ)-Z and M∗-Z diagrams than in relations obtained for large samples of low-redshift, star-forming galaxies with non-restricted metallicities. These less chemically evolved galaxies with stellar masses ≈106-108M⊙, Hβ luminosities ≈1038-1041 erg s-1, SFR ≈ 0.01-1.0 M⊙ yr-1, and sSFR 50 Gyr-1 have physical conditions which may be characteristic of high-redshift low-mass star-forming galaxies which are still awaiting discovery.

  20. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  1. VizieR Online Data Catalog: 2XMMi/SDSS Galaxy Cluster Survey. III. (Takey+, 2014)

    NASA Astrophysics Data System (ADS)

    Takey, A.; Schwope, A.; Lamer, G.

    2014-03-01

    We present a sample of 383 X-ray selected galaxy groups and clusters with spectroscopic redshift measurements (up to z~0.79) from the 2XMMi/SDSS Galaxy Cluster Survey. The X-ray cluster candidates were selected as serendipitously detected sources from the 2XMMi-DR3 catalogue that were located in the footprint of the Sloan Digital Sky Survey (SDSS-DR7). The cluster galaxies with available spectroscopic redshifts were selected from the SDSS-DR10. We developed an algorithm for identifying the cluster candidates that are associated with spectroscopically targeted luminous red galaxies and for constraining the cluster spectroscopic redshift. A cross-correlation of the constructed cluster sample with published optically selected cluster catalogues yielded 264 systems with available redshifts. The present redshift measurements are consistent with the published values. The current cluster sample extends the optically confirmed cluster sample from our cluster survey by 67 objects. Moreover, it provides spectroscopic confirmation for 78 clusters among our published cluster sample, which previously had only photometric redshifts. Of the new cluster sample that comprises 67 systems, 55 objects are newly X-ray discovered clusters and 52 systems are sources newly discovered as galaxy clusters in optical and X-ray wavelengths. Based on the measured redshifts and the fluxes given in the 2XMMi-DR3 catalogue, we estimated the X-ray luminosities and masses of the cluster sample. (2 data files).

  2. VizieR Online Data Catalog: Compact groups of galaxies in SDSS DR7 (Mendel+, 2011)

    NASA Astrophysics Data System (ADS)

    Mendel, J. T.; Ellison, S. L.; Simard, L.; Patton, D. R.; McConnachie, A. W.

    2012-07-01

    In Paper III (Cat. J/MNRAS/395/255) we describe the photometric selection of CGs from the SDSS Data Release 6 (Adelman-McCarthy et al., 2008, Cat. II/282/), which included imaging of the entire SDSS-II Legacy Survey area. Since that paper, SDSS Data Release 7 (DR7; Abazajian et al., 2009ApJS..182..543A) has provided an additional ~1200deg2 of spectroscopic data, completing spectroscopic observations of the SDSS-II Legacy Survey footprint. In what follows we use galaxy catalogues drawn from SDSS DR7 and, where available, supplement the CG samples in Paper III with updated spectroscopic information. (2 data files).

  3. Comparing the clustering of galaxies and galaxy group by using the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Brunner, R. J.

    2014-01-01

    By using the angular two-point correlation function, we measure the clustering strength of a clean sample of galaxies (explored in Wang, Brunner, & Dolence 2013) for the Sloan Digital Sky Survey Data Release Seven. By using these same data, we first find isolated pairs, triplets, quads, and larger groups of galaxies, and subsequently measure the clustering of these subsamples. We find the clustering strength increases with groups size, which supports the halo model of galaxy clustering and demonstrates the efficacy of our isolated group catalog for general studies such as the galaxy merger rate. Finally, we explore the effects of galaxy spectral type and photometric redshift on the clustering behavior of these galaxy group samples. References: Blake, C., Collister, A., Lahav, O. 2008, MNRAS, 385, 1257 Hickson, P. 1982, ApJ, 255, 382 Ross, A. J., Brunner, R. J. 2009, MNRAS, 399, 878 Wang Y., Brunner R. J., Dolence J. C. 2013, MNRAS, 432, 1961 Zehavi, I., et al. 2004, ApJ, 608, 16

  4. VizieR Online Data Catalog: 2XMMi/SDSS Galaxy Cluster Survey. II. (Takey+, 2013)

    NASA Astrophysics Data System (ADS)

    Takey, A.; Schwope, A.; Lamer, G.

    2013-08-01

    We compile a sample of X-ray-selected galaxy groups and clusters from the XMM-Newton serendipitous source catalogue (2XMMi-DR3) with optical confirmation and redshift measurement from the Sloan Digital Sky Survey (SDSS). The X-ray cluster candidates were selected from the 2XMMi-DR3 catalogue in the footprint of the SDSS-DR7. We developed a finding algorithm to search for overdensities of galaxies at the positions of the X-ray cluster candidates in the photometric redshift space and to measure the redshifts of the clusters from the SDSS data. The detection algorithm provides the photometric redshift of 530 galaxy clusters. Of these, 310 clusters have a spectroscopic redshift for at least one member galaxy. About 75 percent of the optically confirmed cluster sample are newly discovered X-ray clusters. Moreover, 301 systems are known as optically selected clusters in the literature while the remainder are new discoveries in X-ray and optical bands. The optically confirmed cluster sample spans a wide redshift range 0.03-0.70 (median z=0.32). In this paper, we present the catalogue of X-ray-selected galaxy groups and clusters from the 2XMMi/SDSS galaxy cluster survey. The catalogue has two subsamples: (i) a cluster sample comprising 345 objects with their X-ray spectroscopic temperature and flux from the spectral fitting, and (ii) a cluster sample consisting of 185 systems with their X-ray flux from the 2XMMi-DR3 catalogue, because their X-ray data are insufficient for spectral fitting. The updated LX-T relation of the current sample with X-ray spectroscopic parameters is presented. We see no evidence for evolution in the slope and intrinsic scatter of the LX-T relation with redshift when excluding the low-luminosity groups (5 data files).

  5. Stellar Masses and Star Formation Rates for 1M Galaxies from SDSS+WISE

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter

    2015-07-01

    We combine Sloan Digitital Sky Survey (SDSS) and WISE photometry for the full SDSS spectroscopic galaxy sample, creating spectral energy distributions (SEDs) that cover λ = 0.4-22 μm for an unprecedentedly large and comprehensive sample of 858,365 present-epoch galaxies. Using MAGPHYS, we then simultaneously and consistently model both the attenuated stellar SED and the dust emission at 12 and 22 μm, producing robust new calibrations for monochromatic mid-IR star formation rate (SFR) proxies. These modeling results provide the first mid-IR-based view of the bimodality in star formation activity among galaxies, exhibiting the sequence of star-forming galaxies (“main sequence”) with a slope of d {log} {SFR}/d{log}{M}* = 0.80 and a scatter of 0.39 dex. We find that these new SFRs along the SF main sequence are systematically lower by a factor of 1.4 than those derived from optical spectroscopy. We show that for most present-day galaxies, the 0.4-22 μm SED fits can exquisitely predict the fluxes measured by Herschel at much longer wavelengths. Our analysis also illustrates that the majority of stars in the present-day universe are formed in luminous galaxies (˜ {L}*) in and around the “green valley” of the color-luminosity plane. We make publicly available the matched photometry catalog and SED modeling results.

  6. A GMBCG GALAXY CLUSTER CATALOG OF 55,424 RICH CLUSTERS FROM SDSS DR7

    SciTech Connect

    Hao Jiangang; Annis, James; Johnston, David E.; McKay, Timothy A.; Evrard, August; Siegel, Seth R.; Gerdes, David; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Wechsler, Risa H.; Busha, Michael; Becker, Matthew; Sheldon, Erin

    2010-12-15

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red-sequence plus brightest cluster galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red-sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 deg{sup 2} of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  7. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    NASA Astrophysics Data System (ADS)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun; Tweed, Dylan; Fu, Liping; Mo, H. J.; van den Bosch, Frank C.; Shu, Chenggang; Li, Ran; Li, Nan; Liu, Xiangkun; Pan, Chuzhong; Wang, Yiran; Radovich, Mario

    2017-02-01

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between ‑9.1% and 20.8% at 2σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ 2 between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ 2 from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  8. VizieR Online Data Catalog: Morphologies of z<0.01 SDSS-DR7 galaxies (Ann+, 2015)

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Seo, M.; Ha, D. K.

    2015-05-01

    This paper presents a catalog of the morphological types of galaxies whose redshifts are less than z=0.01. The morphological types are determined by a visual inspection of the color images provided by SDSS DR7 (II/294). The majority of galaxies in the present sample come from the KIAS-VAGC (Choi et al. 2010JKAS...43..191C) which is based on the spectroscopic target galaxies of the SDSS DR7 complemented by the bright galaxies with known redshifts from various catalogs. (1 data file).

  9. Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution

    NASA Astrophysics Data System (ADS)

    Einasto, M.; Vennik, J.; Nurmi, P.; Tempel, E.; Ahvensalmi, A.; Tago, E.; Liivamägi, L. J.; Saar, E.; Heinämäki, P.; Einasto, J.; Martínez, V. J.

    2012-04-01

    Context. The study of the signatures of multimodality in groups and clusters of galaxies, an environment for most of the galaxies in the Universe, gives us information about the dynamical state of clusters and about merging processes, which affect the formation and evolution of galaxies, groups and clusters, and larger structures - superclusters of galaxies and the whole cosmic web. Aims: We search for the presence of substructure, a non-Gaussian, asymmetrical velocity distribution of galaxies, and large peculiar velocities of the main galaxies in clusters with at least 50 member galaxies, drawn from the SDSS DR8. Methods: We employ a number of 3D, 2D, and 1D tests to analyse the distribution of galaxies in clusters: 3D normal mixture modelling, the Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests, as well as the Anscombe-Glynn and the D'Agostino tests. We find the peculiar velocities of the main galaxies, and use principal component analysis to characterise our results. Results: More than 80% of the clusters in our sample have substructure according to 3D normal mixture modelling, and the Dressler-Shectman (DS) test shows substructure in about 70% of the clusters. The median value of the peculiar velocities of the main galaxies in clusters is 206 km s-1 (41% of the rms velocity). The velocities of galaxies in more than 20% of the clusters show significant non-Gaussianity. While multidimensional normal mixture modelling is more sensitive than the DS test in resolving substructure in the sky distribution of cluster galaxies, the DS test determines better substructure expressed as tails in the velocity distribution of galaxies (possible line-of-sight mergers). Richer, larger, and more luminous clusters have larger amount of substructure and larger (compared to the rms velocity) peculiar velocities of the main galaxies. Principal component analysis of both the substructure indicators and the physical parametres of clusters shows that galaxy clusters

  10. ULTRALUMINOUS INFRARED GALAXIES IN THE WISE AND SDSS SURVEYS

    SciTech Connect

    Su, Shanshan; Kong, Xu; Li, Jinrong; Fang, Guanwen E-mail: xkong@ustc.edu.cn

    2013-11-20

    In this paper, we present a large catalog of 419 Ultraluminous infrared galaxies (ULIRGs), carefully selected from the Wide-field Infrared Survey Explorer mid-infrared data and the Sloan Digital Sky Survey eighth data release, and classify them into three subsamples, based on their emission line properties: H II-like ULIRGs, Seyfert 2 ULIRGs, and composite ULIRGs. We apply our new efficient spectral synthesis technique, which is based on mean field approach to Bayesian independent component analysis (MF-ICA) method, to the galaxy integrated spectra. We also analyze the stellar population properties, including percentage contribution, stellar age, and stellar mass, for these three types of ULIRGs, and explore the evolution among them. We find no significant difference between the properties of stellar populations in ULIRGs with or without active galactic nucleus components. Our results suggest that there is no evolutionary link among these three type ULIRGs.

  11. Measurements and implications of the SDSS DR7 galaxy angular power spectrum

    NASA Astrophysics Data System (ADS)

    Hayes, Brett P.

    We calculate the angular power spectrum of galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) by using a quadratic estimation method with KLcompression. The primary data sample includes over 18 million galaxies covering more than 5,700 square degrees after masking areas with bright objects, reddening greater than 0.2 magnitudes, and seeing of more than 1.5 arcseconds. We also construct a volume-limited sample of 3.2 million galaxies in the same area, consisting of galaxies with absolute r-band magnitudes Mr < --21.2 and photometric redshifts z < 0.4. We test for systematic effects by calculating the angular power spectrum on simulated data and by SDSS stripe, and we find that these measurements are minimally affected by seeing and reddening. We calculate the angular power spectrum for ℓ ≤ 200 multipoles by using 40 bands for the full area data, ℓ ≤ 1000 multipoles using 50 bands for individual stripes, and ℓ ≤ 1600 multipoles using 64 bands for a selected area near the North Galactic Pole at high resolution. We also calculate the angular power spectra for the main galaxy sample separated into 3 magnitude bins, as well as the volume-limited sample separated into 2 redshift shells and early- and late-type galaxies to examine the evolution of the angular power spectrum. We determine the theoretical linear angular power spectrum by projecting the 3D power spectrum to two dimensions for a basic comparison to our observational results for the SDSS DR7 main galaxy sample and subsamples separated by magnitude. For our high resolution and volume-limited samples, we generate nonlinear angular power spectra using CAMB nonlinear 3D matter power spectra for our projections. By minimizing the chi2 fit between these data and the theoretical angular power spectra, we measure a fit of Om = +0.18-0.11 with a linear bias of b = 0.94 +/- 0.04 for the entire SDSS DR7 main galaxy sample, Om = 0.267 +/- 0.038, Ob = 0.045 +/- 0.012, and b = 1

  12. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    SciTech Connect

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.; Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V.; Hillyer, R. W.

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  13. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Ross, Ashley J.; Myers, Adam D.; Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Bautista, Julian E.; Comparat, Johan; Tinker, Jeremy L.; Schlegel, David J.; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M.; McBride, Cameron K.; Ben Zhu, Guangtun; Brownstein, Joel R.; Bailey, Stephen; Bolton, Adam S.; Delubac, Timothée; Mariappan, Vivek; Blanton, Michael R.; Reid, Beth; Schneider, Donald P.; Seo, Hee-Jong; Carnero Rosell, Aurelio; Prada, Francisco

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ˜89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  14. The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection

    DOE PAGES

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; ...

    2016-06-08

    Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71).more » We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  15. The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection

    SciTech Connect

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Ross, Ashley J.; Myers, Adam D.; Dawson, Kyle S.; Kneib, Jean-Paul; Bautista, Julian E.; Comparat, Johan; Tinker, Jeremy L.; Schlegel, David J.; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M.; McBride, Cameron K.; Zhu, Guangtun Ben; Brownstein, Joel R.; Bailey, Stephen; Bolton, Adam S.; Delubac, Timothée; Mariappan, Vivek; Blanton, Michael R.; Reid, Beth; Schneider, Donald P.; Seo, Hee-Jong; Rosell, Aurelio Carnero; Prada, Francisco

    2016-06-08

    Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  16. Recovering 3D structural properties of galaxies from SDSS-like photometry

    NASA Astrophysics Data System (ADS)

    Tempel, Elmo; Tamm, Antti; Kipper, Rain; Tenjes, Teeter

    2015-10-01

    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over approximations of the surface density distribution. We present a method for deriving the spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if they had been observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude of 18, errors in the restored integral luminosities and colour indices remain within 0.05 mag and errors in the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc luminosity ratio (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is ≤ 0.3, then the inclination angles can be estimated with errors < 5° for most of the galaxies with B/D < 2 and with errors < 15° up to B/D = 6. Errors in the recovered sizes of the galactic components are below 10% in most cases. The axial ratios and the shape parameter N of Einasto's distribution (similar to the Sérsic index) are relatively inaccurate, but can provide statistical estimates for large samples. In general, models of disc components are more accurate than

  17. VizieR Online Data Catalog: Predicted LIR for SDSS galaxies (Ellison+, 2016)

    NASA Astrophysics Data System (ADS)

    Ellison, S. L.; Teimoorinia, H.; Rosario, D. J.; Trevor Mendel, J.

    2016-07-01

    In this work we will make use of data from three separate spacecraft that collected data in the FIR: the Infrared Astronomical Satellite (IRAS; Neugebauer et al., 1984ApJ...278L...1N), AKARI (Murakami et al., 2007PASJ...59S.369M) and Herschel (Pilbratt et al., 2010A&A...518L...1P). Based on a sample of 1136 galaxies identified in a cross-match between the SDSS and Herschel Stripe 82 Survey, we have trained an ANN to predict IR luminosities based on 23 input parameters measured from SDSS imaging and spectroscopy. (1 data file).

  18. VizieR Online Data Catalog: Red galaxies with pseudo-bulges in the SDSS (Ribeiro+, 2016)

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Lobo, C.; Anton, S.; Gomes, J. M.; Papaderos, P.

    2016-10-01

    This study is largely motivated by and builds upon our previous work in Coelho et al. (2013MNRAS.436.2426C) that focused on a sample of massive red galaxies selected from the same NYU-VAGC catalogue of Blanton et al. (2005AJ....129.2562B) to ascertain the frequency of active galactic nuclei (AGN) hosted by quiescent galaxies with a negligible or absent bulge. Since the Coelho et al. (2013MNRAS.436.2426C) sample was restricted to low Sersic indices ({eta}<1.5), we have extended it to include as well galaxies where the bulge has a significant contribution to the total light of the galaxy. We thus select SDSS DR7 galaxies from the same NYU-VAGC catalogue of Blanton et al. (2005AJ....129.2562B) that gathers photometric and structural parameters for all SDSS galaxies having spectroscopic data. (4 data files).

  19. Age and Metallicity of Merging Galaxies and Merger Remnants in the SDSS

    NASA Astrophysics Data System (ADS)

    Nielsen, Jennifer L.; McIntosh, D. H.; Cooper, A. L.; Haines, T.; McConnell, A.; Gallazzi, A.; Pasquali, A.; van den Bosch, F. C.; Mo, H. J.; Yang, X.

    2011-01-01

    We study the stellar ages and metallicities of major mergers and post-merger remnants among massive galaxies in the local universe. The ages and metallicities are excellent records of the star formation and chemical enrichment histories of galaxies, and major merging between comparable mass systems is postulated to be a central mechanism in explaining the assembly and growth of spheroids over cosmic time. Starting with a volume-limited (z LE 0.08) and stellar mass-limited (M GE 1e10 Msun) sample of 36,000 galaxies with SDSS spectra having median S/N > 20 we identified over 600 galaxies in pairs (mergers), and 100 individual systems (remnants), with tidal signatures associated with major merging activity. Using previously derived median-likelihood estimates of stellar metallicity, light-weighted age and stellar mass, we compare mergers and remnants to each other and to the underlying galaxy population. We confirm that the lower metallicity (Zstar < -0.1 Zsun) population has a higher fraction of isolated disturbed galaxies (remnants) compared to the majority of galaxies with typical stellar metal abundances (> -0.1 Zsun). Comparing mergers and remnants, we find that the remnant population has a higher percentage of low metallicity members than does the merger population. We further explore the stellar metallicity distributions of galaxies involved in spiral-spiral, spiral-elliptical and elliptical-elliptical mergers. Last, we find that remnants have younger light-weighted ages on average than either galaxies involved in ongoing major interactions or non-merging systems. This result connects evidence of recent star formation with visible tidal signatures as expected in the aftermath of a gas-rich major merger.

  20. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  1. Galaxies in Filaments have More Satellites: The Influence of the Cosmic Web on the Satellite Luminosity Function in the SDSS

    NASA Astrophysics Data System (ADS)

    Guo, Quan; Tempel, E.; Libeskind, N. I.

    2015-02-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ~2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  2. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    SciTech Connect

    Guo, Quan; Libeskind, N. I.; Tempel, E.

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  3. The effect of bar-driven gas inflow on the AGN triggering in SDSS disc galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Minbae; Choi, Youn-Young; Kim, Sungsoo S.

    2017-06-01

    We explore the role of bars in AGN activities using a volume-limited face-on disc galaxy sample with M_r<-19.5 and 0.02SDSS DR7. In this study, we investigate how the fraction of galaxies having strong bar is related to the amount of cold gas at galactic center (~1kpc scale) required for triggering AGN activity. To understand how directly the bar presence is related to triggering AGN activity, we measure a relative probability defined as the ratio of the probability of AGN triggering in barred galaxies to the probability of the AGN triggering in a comparison, non-barred galaxies, for fixed central SFR (central gas fuel) and velocity dispersion of galaxies (black hole mass). We find that bars are one of the mechanisms that trigger AGN, and the effect is pronounced in less massive and lasts even in galaxies with little central gas. We also suggest a concentrated bulge as a morphology that contributes to the AGN triggering although the effect is not as great as bars.

  4. Properties of Pseudo-bulges and Classical Bulges Identified Among SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Luo, Yifei; Rodriguez, Aldo; Koo, David C.; Primack, Joel R.; Faber, Sandra M.; Guo, Yicheng; Chen, Zhu; Fang, Jerome J.; Huertas-Company, Marc

    2017-01-01

    We have used publicly-available SDSS photometry and structural parameters to classify nearby galaxies(z<0.05) into four bulge-related groups, i.e., those galaxies with : 1) no bulges; 2) pseudo-bulges; 3) classical bulges; and 4) nearly pure bulges, i. e., elliptical-like. We adopt the stellar-mass surface-density within the inner 1 kpc (Σ1) radius as a key parameter. A sample of 1000 galaxies with previously-classified bulge-types by Gadotti (2009) is used to identify the regions within the Σ1 vs integrated, stellar-mass plane of galaxies to which each bulge group belongs. In this plane, galaxies with classical bulges appear to overlap the region of elliptical galaxies, while those with pseudo-bulges or no bulges lie at lower Σ1 at a given stellar mass. In contrast to some previous results, our main finding is that the properties of pseudo-bulge and classical-bulge groups have distributions that appear mostly blended or overlapping, i.e., continuous, rather being distinct, i.e., bimodal.

  5. A catalogue of photometric redshifts for the SDSS-DR9 galaxies

    NASA Astrophysics Data System (ADS)

    Brescia, M.; Cavuoti, S.; Longo, G.; De Stefano, V.

    2014-08-01

    Context. Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various methods. Aims: We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced. Methods: The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE), is an interpolative method derived from machine learning models. Results: The obtained redshifts have an overall uncertainty of σ = 0.023 with a very small average bias of ~3 × 10-5, and a fraction of catastrophic outliers (|Δz| > 2σ) of ~5%. This result is slightly better than what was already available in the literature in terms of the smaller fraction of catastrophic outliers as well. The produced catalogue, composed by 58 tables is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A126

  6. Exploring the SDSS photometric galaxies with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  7. VizieR Online Data Catalog: Spectral galaxy pairs from SDSS DR9 (Yang+, 2014)

    NASA Astrophysics Data System (ADS)

    Yang, H.; Luo, A.; Chen, X.; Zhang, J.; Hou, W.; Cai, J.; Wei, P.; Ren, J.; Liu, X.; Zhao, Y.

    2015-04-01

    Spectral galaxy pairs (hereafter as SGPs) are composite galaxy spectra that contain two independent redshift systems. These spectra are useful for studying the dust properties of the foreground galaxies. In this article, a total of 165 spectra of SGPs are mined from the Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) using the concept of 'membership degree' from fuzzy set theory, especially defined to be suitable for fuzzy identification of emission lines. The spectra and images of this sample are classified according to their membership degree and image features, respectively. Many of the second redshift systems are too small or too dim to select from SDSS images alone, making the sample a potentially unique source of information on dust effects in low-luminosity or low surface brightness galaxies, which are underrepresented in morphological pair samples. The dust extinction of those objects with high membership degree is also estimated by Balmer decrement. Additionally, analyses for a series of spectroscopic observations of one SGP from 165 systems indicate that a newly star-forming region of our Milky Way might exist. (1 data file).

  8. Emission-Line Taxonomy and the Nature of AGN-Looking Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Cid Fernandes, Roberto; Stasińska, Grażyna; Vale Asari, Natalia; Mateus, Abílio; Schlickmann, Marielli S.; Schoenell, William; Schoenell

    2010-05-01

    Massive spectroscopic surveys like the SDSS have revolutionized the way we study AGN and their relations to the galaxies they live in. A first step in any such study is to define samples of different types of AGN on the basis of emission-line ratios. This deceivingly simple step involves decisions on which classification scheme to use and data quality censorship. Galaxies with weak emission lines are often left aside or dealt with separetely because one cannot fully classify them onto the standard star-forming, Seyfert, or LINER categories. This contribution summarizes alternative classification schemes which include this very numerous population. We then study how star-formation histories and physical properties of the hosts vary from class to class, and present compelling evidence that the emission lines in the majority of LINER-like systems in the SDSS are not powered by black-hole accretion. The data are fully consistent with them being galaxies whose old stars provide all the ionizing power needed to explain their line ratios and luminosities. Such retired galaxies deserve a place in the emission-line taxonomy.

  9. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  10. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  11. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  12. Automated bar detection in local disk galaxies from the SDSS. The colors of bars

    NASA Astrophysics Data System (ADS)

    Consolandi, G.

    2016-10-01

    This paper describes an automatic isophotal fitting procedure that succeeds, without the support of any visual inspection of either the images or the ellipticity/position-angle radial profiles, to extract a fairly pure sample of barred late-type galaxies (LTGs) among thousands of optical images from the Sloan Digital Sky Survey (SDSS). The procedure relies on previous methods to robustly extract the photometrical properties of a large sample of local SDSS galaxies and is tailored to extract bars on the basis of their well-known peculiarities in their position angle and ellipticity profiles. This procedure was run on a sample of 5853 galaxies in the Coma and Local superclusters. The procedure extracted a color, an ellipticity and a position angle radial profile of the ellipses fitted to the isophotes for each galaxy. Examining the profiles of 922 face-on LTGs (B/A > 0.7) automatically, the procedure found that 36% are barred. The local bar fraction strongly increases with stellar mass. The sample of barred galaxies is used to construct a set of template radial color profiles to test the impact of the barred galaxy population on the average color profiles as previously shown in the literature and to test the bar-quenching scenario. The radial color profile of barred galaxy shows that bars are on average redder than their surrounding disk producing an outside-in gradient toward red in correspondence with their corotation radius. The distribution of the extension of the deprojected length of the bar suggests that bars have strong impact on the gradients of averaged color profiles. The dependence of the profiles on the mass is consistent with the bar-quenching scenario, i.e. more massive barred galaxies have redder colors (hence older stellar population and suppressed star formation) inside their corotation radius with respect to their lower mass counterparts. Tables of the barred and non-barred galaxies are only available at the CDS via anonymous ftp to http

  13. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    SciTech Connect

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you

  14. Comparing gravitational redshifts of SDSS galaxy clusters with the magnified redshift enhancement of background BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Jimeno, Pablo; Broadhurst, Tom; Coupon, Jean; Umetsu, Keiichi; Lazkoz, Ruth

    2015-04-01

    A clean measurement of the evolution of the galaxy cluster mass function can significantly improve our understanding of cosmology from the rapid growth of cluster masses below z < 0.5. Here, we examine the consistency of cluster catalogues selected from the Sloan Digital Sky Survey by applying two independent gravity-based methods using all available spectroscopic redshifts from the DR10 release. First, we detect a gravitational redshift related signal for 20,119 and 13,128 clusters with spectroscopic redshifts contained in the Gaussian Mixture Brightest Cluster Galaxy (GMBCG) and red-sequence Matched-filter Probabilistic Percolation (redMaPPer) catalogues, respectively, at a level of ˜-10 km s-1. This we show is consistent with the magnitude expected using the richness-mass relations provided by the literature and after applying recently clarified relativistic and flux bias corrections. This signal is also consistent with the richest clusters in the larger catalogue of Wen et al., corresponding to M200m ≳ 2 × 1014 M⊙ h-1; however, we find no significant detection of a gravitational redshift signal for lower richness clusters, which may be related to bulk motions from substructure and spurious cluster detections. Secondly, we find all three catalogues generate mass-dependent levels of lensing magnification bias, which enhances the mean redshift of flux-selected background galaxies from the Baryon Oscillation Spectroscopic Survey survey. The magnitude of this lensing effect is generally consistent with the corresponding richness-mass relations advocated for the surveys. We conclude that all catalogues comprise a high proportion of reliable clusters, and that the GMBCG and redMaPPer cluster finder algorithms favour more relaxed clusters with a meaningful gravitational redshift signal, as anticipated by the red-sequence colour selection of the GMBCG and redMaPPer samples.

  15. DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5

    SciTech Connect

    Lin Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa

    2009-07-10

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG), SDSS J120602.09+514229.5. This system, nicknamed the 'Clone', was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2 m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.''03 or 14.8 {+-} 0.1 h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12} h {sup -1} M{sub sun}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find a (unlensed) star formation rate (SFR) for the source galaxy of 32 h{sup -1} M {sub sun} yr{sup -1}, adopting a fiducial constant SFR model with an age of 100 Myr and E(B - V) = 0.25. With an apparent magnitude of r = 19.8, this system is among the very brightest lensed z {>=} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  16. The GALEX Arecibo SDSS Survey - IV. Baryonic mass-velocity-size relations of massive galaxies

    NASA Astrophysics Data System (ADS)

    Catinella, Barbara; Kauffmann, Guinevere; Schiminovich, David; Lemonias, Jenna; Scannapieco, Cecilia; Wang, Jing; Fabello, Silvia; Hummels, Cameron; Moran, Sean M.; Wu, Ronin; Cooper, Andrew P.; Giovanelli, Riccardo; Haynes, Martha P.; Heckman, Timothy M.; Saintonge, Amélie

    2012-03-01

    We present dynamical scaling relations for a homogeneous and representative sample of ˜500 massive galaxies, selected only by stellar mass (>1010 M⊙) and redshift (0.025 < z < 0.05) as part of the ongoing GALEX Arecibo SDSS Survey. We compare baryonic Tully-Fisher (BTF) and Faber-Jackson (BFJ) relations for this sample, and investigate how galaxies scatter around the best fits obtained for pruned subsets of disc-dominated and bulge-dominated systems. The BFJ relation is significantly less scattered than the BTF when the relations are applied to their maximum samples (for the BTF, only galaxies with H I detections), and is not affected by the inclination problems that plague the BTF. Disc-dominated, gas-rich galaxies systematically deviate from the BFJ relation defined by the spheroids. We demonstrate that by applying a simple correction to the stellar velocity dispersions that depends only on the concentration index of the galaxy, we are able to bring discs and spheroids on to the same dynamical relation - in other words, we obtain a generalized BFJ relation that holds for all the galaxies in our sample, regardless of morphology, inclination or gas content, and has a scatter smaller than 0.1 dex. We compare the velocity-size relation for the three dynamical indicators used in this work, i.e. rotational velocity, observed and concentration-corrected stellar dispersion. We find that discs and spheroids are offset in the stellar dispersion-size relation, and that the offset is removed when corrected dispersions are used instead. The generalized BFJ relation represents a fundamental correlation between the global dark matter and baryonic content of galaxies, which is obeyed by all (massive) systems regardless of morphology.

  17. Using SDSS & GalaxyZoo Databases to Ask Research-able Questions in Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2010-01-01

    Using Galaxy Zoo1 at: http://zoo1.galaxyzoo.org/ accessing SDSS and a multi-phase backwards faded scaffolding approach, we first ask students to classify 30 galaxies and consider proposed conclusion: "most galaxies are elliptical” based on the evidence collected. Here, student attention is isolated from generating a question or even a data collection protocol, but focused on the issue of "does the evidence match the conclusion?” The next phase focuses on generating conclusions from evidence, whereas the previous phase was focused on evaluating conclusions. Students explain their reasoning provide evidence in response to "What conclusions and generalizations can you make from the following data collected by a student in terms of do spiral galaxies generally spin clockwise or anticlockwise given that one observes 36 spirals spinning clockwise, 21 spirals spinning anticlockwise, and 16 appearing to be edge-on or unclear.” Next, students are asked to consider what evidence needs to be collected in order to complete a scientific inquiry related to a given question. Students propose what evidence is needed in order to pursue, "What fraction of galaxies observed appear to be in the process of merging with other galaxies?” Note students are explicitly asked not to actually gather data as it detracts from developing an understanding of how data collection needs to be tightly aligned with the question. And, in practice, students can intellectually engage with a data collection plan that is simply too ominous to actually collect. By this point, students have extended experience with inquiry in this domain. Students are now ready to wrestle with creating a fruitful question. Students are tasked to design an answerable research question, propose a plan to pursue evidence, collect data using the present astronomical data base and create an evidence-based conclusion about the nature and or frequency of galaxies.

  18. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  19. Photometric Redshift Probability Distributions for Galaxies in the SDSS DR8

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin S.; Cunha, Carlos E.; Mandelbaum, Rachel; Brinkmann, J.; Weaver, Benjamin A.

    2012-08-01

    We present redshift probability distributions for galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 8 imaging data. We used the nearest-neighbor weighting algorithm to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8 and u < 29.0. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five-dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training-set redshifts. We derived P(z)'s for individual objects by using training-set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy can reduce the statistical error in measurements that depend on the redshifts of individual galaxies. The spectroscopic training sample is substantially larger than that used for the DR7 release. The newly added PRIMUS catalog is now the most important training set used in this analysis by a wide margin. We expect the primary sources of error in the N(z) reconstruction to be sample variance and spectroscopic failures: The training sets are drawn from relatively small volumes of space, and some samples have large incompleteness. Using simulations we estimated the uncertainty in N(z) due to sample variance at a given redshift to be ~10%-15%. The uncertainty on calculations incorporating N(z) or P(z) depends on how they are used; we discuss the case of weak lensing measurements. The P(z) catalog is publicly available from the SDSS Web site.

  20. PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTIONS FOR GALAXIES IN THE SDSS DR8

    SciTech Connect

    Sheldon, Erin S.; Cunha, Carlos E.; Mandelbaum, Rachel; Brinkmann, J.; Weaver, Benjamin A.

    2012-08-01

    We present redshift probability distributions for galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 8 imaging data. We used the nearest-neighbor weighting algorithm to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8 and u < 29.0. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five-dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training-set redshifts. We derived P(z)'s for individual objects by using training-set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy can reduce the statistical error in measurements that depend on the redshifts of individual galaxies. The spectroscopic training sample is substantially larger than that used for the DR7 release. The newly added PRIMUS catalog is now the most important training set used in this analysis by a wide margin. We expect the primary sources of error in the N(z) reconstruction to be sample variance and spectroscopic failures: The training sets are drawn from relatively small volumes of space, and some samples have large incompleteness. Using simulations we estimated the uncertainty in N(z) due to sample variance at a given redshift to be {approx}10%-15%. The uncertainty on calculations incorporating N(z) or P(z) depends on how they are used; we discuss the case of weak lensing measurements. The P(z) catalog is publicly available from the SDSS Web site.

  1. Publicly Available Database : Improved Spectral Line Measurements In SDSS DR7 Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2012-01-01

    We present a new database of absorption and emission line measurements based on the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and GANDALF codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database provides new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found `hidden’ broad-line-region galaxies and they turned out to be Seyfert I nuclei that were not picked up as AGN by SDSS. The database is publicly available at http://gem.yonsei.ac.kr/ossy

  2. Publicly available database for spectral line measurements of SDSS DR7 galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2012-08-01

    We present a new database of absorption and emission-line measurements based on the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Using the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) codes, our work improve the existing measurements for stellar kinematics, the strength of various absorption line features, and the flux and width of the emissions from different species of ionised gas. Most notable of our work is that, we provide quality of the fit to assess reliability of the measurements. The quality assessment can be highly effective for finding new classes of objects. For example, based on the quality assessment around the Ha and [NII] nebular lines, we found approximately 1% of the SDSS spectra which classified as galaxies by the SDSS pipeline are in fact type I Seyfert AGN. This paper presents a summary of the recent paper, Oh et al.(2011). The database is publicly available at http://gem.yonsei.ac.kr/ossy/.

  3. The Angular Power Spectrum from SDSS Galaxies at 0.2 < z < 0.6

    NASA Astrophysics Data System (ADS)

    Schlegel, D. J.; Padmanabhan, N.; Finkbeiner, D. P.; Blanton, M. R.; Eisenstein, D. J.; Hogg, D. W.; Seljak, U.

    2003-12-01

    We present a preliminary measurement of the luminous red galaxy (LRG) power spectrum between redshifts 0.2 and 0.6 in the Sloan Digital Sky Survey (SDSS). The SDSS has observed these luminous objects out to z=0.6 over 5500 deg2, and a recent recalibration of these data has reduced systematic errors in relative photometry to a level of 1 percent. This precision photometry combined with a prominent 4000A break in the LRG spectrum allows us to estimate photometric redshifts to an accuracy of 0.025 RMS. This allows us to divide the galaxies into distinct redshift slices from which we measure the angular power spectrum as a function of redshift. Baryons affect the shape of the power spectrum roll-off on the largest (>100 Mpc) scales, and imprint ``wiggles" on smaller scales corresponding to acoustic oscillations. These features appear at specific physical scales; tracking their angular size as a function of redshift provides a direct measure of the recent evolution of the Universe. We examine the constraints provided by the LRG power spectrum in the latest SDSS data.

  4. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  5. Systematic Survey of the Correlation between Northern HECR Events and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Takami, H.; Nishimichi, T.; Sato, K.

    2011-12-01

    We investigated the spatial correlation between the arrival directions of the highest energy cosmic rays (HECRs) detected by the Akeno Giant Air Shower Array (AGASA) with energies above 4 × 10^{19} eV and the positions of galaxies observed by the Sloan Digital Sky Survey (SDSS) within z = 0.024. We systematically tested the dependence of the correlation on the redshift ranges and properties of the galaxies, i.e., absolute luminosity, color, and morphology, to understand where HECR sources are and what objects are HECR sources. In the systematic survey, we found potential signals of the positive correlation at small angular scale (< 10°) with the (non-penalized) chance probability less than 5% in intermediate redshift ranges. Then, we estimated penalized probabilities to compensate the trial effects of angular scan, and found that the strongest correlation is produced by early-type galaxies in 0.012 ≤ z < 0.018 at 90% C.L. The possible origin of HECRs which correlating galaxies imply is also discussed.

  6. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  7. The Data Reduction Pipeline for The SDSS-IV Manga IFU Galaxy Survey

    DOE PAGES

    Law, David R.; Cherinka, Brian; Yan, Renbin; ...

    2016-09-12

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ~500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~100 million raw-frame spectra and ~10 million reducedmore » galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ~8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.« less

  8. The Data Reduction Pipeline for The SDSS-IV Manga IFU Galaxy Survey

    SciTech Connect

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D’Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai

    2016-09-12

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ~500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~100 million raw-frame spectra and ~10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ~8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

  9. The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D'Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 Å and an average footprint of ˜500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ˜100 million raw-frame spectra and ˜10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ˜8500 Å and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

  10. VizieR Online Data Catalog: Local SDSS galaxies in Herschel Stripe 82 (Rosario+, 2016)

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Mendel, J. T.; Ellison, S. L.; Lutz, D.; Trump, J. R.

    2016-11-01

    We draw on the extensive set of measurements (redshifts, stellar masses, line fluxes, etc.) available from the SDSS/MPA-JHU data base to define and classify our sample of galaxies for study, and to understand their range of observed properties. Where possible, we employ Herschel and Wide-field Infrared Survey Explorer (WISE) photometry to constrain the TIR using spectral energy distribution (SED) fits, and GALEX FUV photometry to correct for stellar emission not absorbed by dust. These data are brought to bear on the cross-assessment of infrared (IR), UV and optical SFRs. (1 data file).

  11. CORRELATIONS BETWEEN NEBULAR EMISSION AND THE CONTINUUM SPECTRAL SHAPE IN SDSS GALAXIES

    SciTech Connect

    Gyory, Zsuzsanna; Szalay, Alexander S.; Csabai, Istvan; Budavari, Tamas; Charlot, Stephane

    2011-04-15

    We present a statistical study of the correlations and dimensionality of emission lines carried out on a sample of over 40,000 Sloan Digital Sky Survey (SDSS) galaxies. Using principal component analysis, we found that the equivalent widths of the 11 strongest lines can be well represented using three parameters. We also explore correlations of the emission pattern with the eigenspace representation of the continuum spectrum. The observed relations are used to provide an empirical prescription for expectation values and variances of emission-line strengths as a function of spectral shape. We show that this estimation of emission lines has a sufficient accuracy to make it suitable for photometric applications. The method has already proved useful in SDSS photometric redshift estimation.

  12. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M* < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionized gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low-mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M* > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  13. VizieR Online Data Catalog: Compact groups of galaxies from SDSS-DR12 (MLCG) (Sohn+, 2016)

    NASA Astrophysics Data System (ADS)

    Sohn, J.; Geller, M. J.; Hwang, H. S.; Zahid, H. J.; Lee, M. G.

    2016-10-01

    We derive a sample of compact groups from the spectroscopic sample of SDSS DR12 (Alam et al. 2015ApJS..219...12A) galaxies at r<17.77. The DR12 includes redshifts for more than 2.4 million galaxies. To reduce the incompleteness of the SDSS, we supplement the catalog with redshifts from the literature (see Hwang et al. 2010A&A...522A..33H for details). We also add redshifts from recent FAST observations at Fred Lawrence Whipple Observatory (Sohn et al. 2015JKAS...48..381S). (8 data files).

  14. Spatially Resolved Stellar Populations Of Nearby Post-Starburst Galaxies In SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Liu, Charles; Betances, Ashley; Bonilla, Alaina Marie; Gonzalez, Andrea; Migliore, Christina; Goddard, Daniel; Masters, Karen; SDSS-IV MaNGA Team

    2016-01-01

    We have selected five galaxies in the Mapping Nearby Galaxies at APO (MaNGA) project of the latest generation of the Sloan Digital Sky Survey (SDSS-IV) identified as post-starburst (E+A) systems, in the transition between "blue cloud" and "red sequence" galaxies. We measure the equivalent widths of the Balmer series, D4000 break, and metal lines across each galaxy, and produce maps of the stellar age, stellar mass, and metallicities of each galaxy using FIREFLY, a full spectral analysis code. We have found that the measured properties of the galaxies overall generally matches well with single-aperture SDSS spectra from which the original post-starburst identifications were made. The variation in the spatial distributions of the stellar populations, in particular the A-stars, give us insight into the details of the transitional E+A quenching phase. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement No. SSP483 to the CUNY College of Staten Island.

  15. Cross-correlating Planck CMB lensing with SDSS: lensing-lensing and galaxy-lensing cross-correlations

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Brownstein, Joel R.

    2017-01-01

    We present results from cross-correlating Planck cosmic microwave background (CMB) lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalogue and BOSS (Baryon Oscillation Spectroscopic Survey) galaxy catalogues. For galaxy position versus CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ (z ˜ 0.30) and CMASS (z ˜ 0.57) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias bg = 1.75 ± 0.04 (1.95 ± 0.02) and galaxy-matter cross-correlation coefficient rcc = 1.0 ± 0.2 (0.8 ± 0.1) using 20 < rp < 70 h-1 Mpc, consistent with results from galaxy-galaxy lensing. Using the same scales and including the galaxy-galaxy lensing measurements, we constrain Ωm = 0.284 ± 0.024 and relative calibration bias between the CMB lensing and galaxy lensing to be b_γ =0.82^{+0.15}_{-0.14}. The combination of galaxy lensing and CMB lensing also allows us to measure the cosmological distance ratios (with zl ˜ 0.3, zs ˜ 0.5) R=D_s D_{l,*}/D_{* D_{l,s}}=2.68± 0.29, consistent with predictions from the Planck 2015 cosmology (R=2.35). We detect the galaxy position-CMB convergence cross-correlation at small scales, rp < 1 h-1 Mpc, and find consistency with lensing by NFW haloes of mass Mh ˜ 1013 h-1 M⊙. Finally, we measure the CMB lensing-galaxy shear cross-correlation, finding an amplitude of A = 0.76 ± 0.23 (zeff = 0.35, θ < 2°) with respect to Planck 2015 Λ cold dark matter predictions (1σ level consistency). We do not find evidence for relative systematics between the CMB and SDSS galaxy lensing.

  16. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  17. The infrared luminosities of ˜332 000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossein; Rosario, David J.; Mendel, J. Trevor

    2016-01-01

    The total infrared (IR) luminosity (LIR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infrared Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of LIR measurements for galaxies in the nearby Universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent data sets (IRAS and AKARI) and demonstrated to predict the LIR with a scatter σ ˜ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalogue is presented with our LIR predictions which can be used to determine SFRs for 331 926 galaxies in the Sloan Digital Sky Survey (SDSS), including ˜129 000 SFRs for AGN-dominated galaxies for which SDSS SFRs have large uncertainties.

  18. Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Mendel, J. T.; Ellison, S. L.; Lutz, D.; Trump, J. R.

    2016-04-01

    We study a set of 3319 galaxies in the redshift interval 0.04 < z < 0.15 with far-infrared (FIR) coverage from the Herschel Stripe 82 survey (HerS), and emission-line measurements, redshifts, stellar masses and star formation rates (SFRs) from the Sloan Digital Sky Survey (SDSS) (DR7) MPA/JHU data base. About 40 per cent of the sample are detected in the Herschel/SPIRE 250 μm band. Total infrared (TIR) luminosities derived from HerS and Wide-field Infrared Survey Explorer (WISE) photometry allow us to compare infrared and optical estimates of SFR with unprecedented statistics for diverse classes of galaxies. We find excellent agreement between TIR-derived and emission line-based SFRs for H II galaxies. Other classes, such as active galaxies and evolved galaxies, exhibit systematic discrepancies between optical and TIR SFRs. We demonstrate that these offsets are attributable primarily to survey biases and the large intrinsic uncertainties of the Dn4000- and colour-based optical calibrations used to estimate the SDSS SFRs of these galaxies. Using a classification scheme which expands upon popular emission-line methods, we demonstrate that emission-line galaxies with uncertain classifications include a population of massive, dusty, metal-rich star-forming systems that are frequently neglected in existing studies. We also study the capabilities of infrared selection of star-forming galaxies. FIR selection reveals a substantial population of galaxies dominated by cold dust which are missed by the long-wavelength WISE bands. Our results demonstrate that Herschel large-area surveys offer the means to construct large, relatively complete samples of local star-forming galaxies with accurate estimates of SFR that can be used to study the interplay between nuclear activity and star formation.

  19. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    SciTech Connect

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  20. X-ray survey of galaxy clusters in the SDSS Stripe 82 region

    NASA Astrophysics Data System (ADS)

    Durret, Florence; Takey, Ali

    2016-07-01

    We conducted a survey of galaxy clusters detected from XMM-Newton observations covering an area of 11.25 deg^2 in the Stripe 82 region of the Sloan Digital Sky Survey (SDSS). We found 94 X-ray cluster candidates from the third XMM-Newton serendipitous source catalogue (3XMM-DR5) and correlated this list with recently published X-ray and optically selected cluster catalogues to obtain optical confirmations and redshifts (between 0.05 and 1.19, with a median of 0.36) for 54 galaxy groups/clusters. Of these, 17 are newly X-ray discovered clusters and 45 systems with spectroscopic confirmations. Among the remaining candidates, 25 sources are distant cluster candidates (beyond a redshift of 0.6). We will present preliminary results on the X-ray and optical properties of these clusters: luminosities and temperatures of the X-ray gas, and optical properties of the galaxies (morphology, luminosity functions).

  1. SDSS J1640+1932: a spectacular galaxy-quasar strong lens system

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Shu, Yiping; Li, Ran; Zheng, Zheng; Wen, Zhonglue; Liu, Guilin

    2017-07-01

    We present Canada-France-Hawaii Telescope (CFHT) MegaCam observations of a galaxy-quasar strong gravitational lens system, SDSS J1640+1932. This system, located at z = 0.195 (foreground elliptical galaxy) and z = 0.778 (background quasar), was first visually identified by us in the Sloan Digital Sky Survey data base. Our CFHT imaging with an angular resolution of 0.7 arcsec clearly resolves four lensed images and a nearly complete Einstein ring. Modelling the system with a singular isothermal ellipsoid total mass distribution, we find an Einstein radius of {2.49^' ' }}_{-0.049}^{+0.063} enclosing an inferred mass of 7.25_{-0.29}^{+0.37}× 10^{11} M_{⊙}. The quasar and its host galaxy have been magnified by a factor of 23, and the time delay relative to the leading image is determined to be 23.4-25.2 d. These parameters vary minimally when our model is fitted to the g-, r- or i-band images.

  2. AKARI NEAR-INFRARED SPECTROSCOPY OF SDSS-SELECTED BLUE EARLY-TYPE GALAXIES

    SciTech Connect

    Lee, Joon Hyeop; Hwang, Ho Seong; Matsuhara, Hideo E-mail: hoseong.hwang@cea.f E-mail: jclee@astro.snu.ac.k

    2010-08-20

    A near-infrared (NIR; 2.5-4.5 {mu}m) spectroscopic survey of Sloan Digital Sky Survey (SDSS)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star formation (SF)/Seyfert/LINER-type composition. For high signal-to-noise ratio, we stack the BEG spectra in its entirety and in bins of several properties: color, specific star formation rate, and optically determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 {mu}m polycyclic aromatic hydrocarbon (PAH) emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(simple stellar population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent SF or active galactic nucleus (AGN) activity and the BEGs have a clear feature of PAH emission, evidence of current SF. BEGs show NIR features different from those of ULIRGs from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert, and LINER BEGs form an evolutionary sequence: SF {yields} Seyfert {yields} LINER.

  3. CORRELATIONS BETWEEN SDSS TYPE Ia SUPERNOVA RATES AND HOST GALAXY PROPERTIES

    SciTech Connect

    Gao Yan; Pritchet, Chris

    2013-03-15

    Studying the correlation of Type Ia supernova rates (SNRs) with host galaxy properties is an important step in understanding the exact nature of Type Ia supernovae (SNe Ia). We use SNe Ia from the SDSS-II sample, spectroscopically determined masses and star formation rates, and a new maximum likelihood method, to fit the Scannapieco and Bildsten rate model SNR = A Multiplication-Sign M + B Multiplication-Sign SFR, where M is galaxy mass and SFR is star formation rate. We find A = 3.5{sup +0.9}{sub -0.7} Multiplication-Sign 10{sup -14} (SNe/yr)(M{sub Sun }){sup -1} and B = 1.3{sup +0.4}{sub -0.3} Multiplication-Sign 10{sup -3} (SNe/yr)(M{sub Sun} yr{sup -1}){sup -1}, assuming overall efficiency of 0.5. This is in reasonable agreement with other determinations. However we find strong evidence that this model is a poor fit to other projections of the data: it fails to correctly predict the distribution of supernovae with host mass or SFR. An additional model parameter is required; most likely this parameter is related to host galaxy mass. Some implications of this result are discussed.

  4. Young stellar populations in early-type galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Nolan, Louisa A.; Kabán, Ata; Harva, Markus; Benson, Andrew; Raychaudhury, Somak

    2008-07-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with young (≲ 4 Gyr) stellar populations in the Sloan Digital Sky Survey Spectroscopic Catalogue. We call these galaxies E+F galaxies, analogous to E+A galaxies. These galaxies lie in the ‘Green Valley’, between the blue cloud and the red sequence on the colour-magnitude diagram. As such, these galaxies may represent an important transient stage in the evolution of galaxies from blue and star-forming to red and passive. We investigate the distribution in projected local galaxy surface density of the E+F galaxies, and compare it with the environment of early-type and E+A galaxies. We find that i) the E+A distribution peaks strongly in projected local galaxy surface density, Σ5, at ~ 0.1-0.2 Mpc-2, ii) early-types have a flatter peak at ~ 0.06-0.2 Mpc-2, iii) the E+Fs lie somewhere in between, and iv) the distributions of the models do not agree well with the data, peaking at higher densities, and under-predicting the number of E+As at low (Σ5 < 0.3 Mpc-2) densities. The dearth of E+A and E+F galaxies in dense environments confirms that E+A and E+F galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. The similarity of the environments in which the E+F population and the E+A galaxy sample are found, together with the spectral evidence, suggests that E+F galaxies are E+A galaxies, which have evolved by a further ~ one to a few Gyr.

  5. Search for Hyperluminous Infrared Dust-obscured Galaxies Selected with WISE and SDSS

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Nagao, T.

    2016-03-01

    We aim to search for hyperluminous infrared (IR) galaxies (HyLIRGs) with IR luminosity {L}{{IR}} > 1013 L⊙ by applying the selection method of dust-obscured galaxies (DOGs). They are spatially rare but could correspond to a maximum phase of cosmic star formation (SF) and/or active galactic nucleus (AGN) activity hence, they are a crucial population for understanding the SF and mass assembly history of galaxies. Combining the optical and IR catalogs obtained from the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE), we performed the extensive HyLIRGs survey; we selected 5311 IR-bright DOGs with i - [22] > 7.0 and flux at 22 μm > 3.8 mJy in 14,555 deg2, where i and [22] are i-band and 22 μm AB magnitudes, respectively. Among them, 67 DOGs have reliable spectroscopic redshifts that enable us to estimate their total IR luminosity based on the spectral energy distribution fitting. Consequently, we successfully discovered 24 HyLIRGs among the 67 spectroscopically confirmed DOGs. We found that (i) i - [22] color of IR-bright DOGs correlates with the total IR luminosity and (ii) the surface number density of HyLIRGs is >0.17 deg-2. A large fraction (˜73%) of IR-bright DOGs with i - [22] > 7.5 show {L}{{IR}} > 1013 L⊙, and the DOG criterion we adopted could be independently effective against the “W1W2-dropout method,” based on four WISE bands, for searching hyperluminous IR populations of galaxies.

  6. Spectroscopy of supernova host galaxies from the SDSS-II SN survey with the SDSS and BOSS spectrographs

    NASA Astrophysics Data System (ADS)

    Olmstead, Matthew Dwaune

    Type Ia supernovae (SNeIa) have been used as standard candles to measure cosmological distances. The initial discovery of the accelerated expansion of the universe was performed using ~50 SNe Ia. Large SNe surveys have increased the number of spectroscopically-confirmed SNe Ia to over a thousand with redshift coverage beyond z = 1. We are now in the age of abundant photometry without the ability for full follow-up spectroscopy of all SN candidates. SN cosmology using these large samples will increasingly rely on robust photometric classification of SN candidates. Photometric classification will increase the sample by including faint SNe as these are preferentially not observed with follow-up spectroscopy. The primary concern with using photometrically classified SNe Ia in cosmology is when a core-collapse SNe is incorrectly classified as an SN Ia. This can be mitigated by obtaining the host galaxy redshift of each SN candidate and using this information as a prior in the photometric classification, removing one degree of freedom. To test the impact of redshift on photometric classification, I have performed an assessment on photometric classification of candidates from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. I have tested the classification with and without redshift priors by looking at the change of photometric classification, the effect of data quality on photometric classification, and the effect of SN light curve properties on photometric classification. Following our suggested classification scheme, there are a total of 1038 photometrically classified SNe Ia when using a flat redshift prior and 1002 SNe~Ia with the spectroscopic redshift. For 912 (91.0%) candidates classified as likely SNe Ia without redshift information, the classification is unchanged when adding the host galaxy redshift. Finally, I investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2

  7. Homogeneous UGRIZ Photometry for ACS Virgo Cluster Survey Galaxies: A Non-parametric Analysis from SDSS Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wei; Côté, Patrick; West, Andrew A.; Peng, Eric W.; Ferrarese, Laura

    2010-11-01

    We present photometric and structural parameters for 100 ACS Virgo Cluster Survey (ACSVCS) galaxies based on homogeneous, multi-wavelength (ugriz), wide-field SDSS (DR5) imaging. These early-type galaxies, which trace out the red sequence in the Virgo Cluster, span a factor of nearly ~103 in g-band luminosity. We describe an automated pipeline that generates background-subtracted mosaic images, masks field sources and measures mean shapes, total magnitudes, effective radii, and effective surface brightnesses using a model-independent approach. A parametric analysis of the surface brightness profiles is also carried out to obtain Sérsic-based structural parameters and mean galaxy colors. We compare the galaxy parameters to those in the literature, including those from the ACSVCS, finding good agreement in most cases, although the sizes of the brightest, and most extended, galaxies are found to be most uncertain and model dependent. Our photometry provides an external measurement of the random errors on total magnitudes from the widely used Virgo Cluster Catalog, which we estimate to be σ(BT )≈ 0.13 mag for the brightest galaxies, rising to ≈ 0.3 mag for galaxies at the faint end of our sample (BT ≈ 16). The distribution of axial ratios of low-mass ("dwarf") galaxies bears a strong resemblance to the one observed for the higher-mass ("giant") galaxies. The global structural parameters for the full galaxy sample—profile shape, effective radius, and mean surface brightness—are found to vary smoothly and systematically as a function of luminosity, with unmistakable evidence for changes in structural homology along the red sequence. As noted in previous studies, the ugriz galaxy colors show a nonlinear but smooth variation over a ~7 mag range in absolute magnitude, with an enhanced scatter for the faintest systems that is likely the signature of their more diverse star formation histories.

  8. HOMOGENEOUS UGRIZ PHOTOMETRY FOR ACS VIRGO CLUSTER SURVEY GALAXIES: A NON-PARAMETRIC ANALYSIS FROM SDSS IMAGING

    SciTech Connect

    Chen, Chin-Wei; Cote, Patrick; Ferrarese, Laura; West, Andrew A.; Peng, Eric W.

    2010-11-15

    We present photometric and structural parameters for 100 ACS Virgo Cluster Survey (ACSVCS) galaxies based on homogeneous, multi-wavelength (ugriz), wide-field SDSS (DR5) imaging. These early-type galaxies, which trace out the red sequence in the Virgo Cluster, span a factor of nearly {approx}10{sup 3} in g-band luminosity. We describe an automated pipeline that generates background-subtracted mosaic images, masks field sources and measures mean shapes, total magnitudes, effective radii, and effective surface brightnesses using a model-independent approach. A parametric analysis of the surface brightness profiles is also carried out to obtain Sersic-based structural parameters and mean galaxy colors. We compare the galaxy parameters to those in the literature, including those from the ACSVCS, finding good agreement in most cases, although the sizes of the brightest, and most extended, galaxies are found to be most uncertain and model dependent. Our photometry provides an external measurement of the random errors on total magnitudes from the widely used Virgo Cluster Catalog, which we estimate to be {sigma}(B{sub T}){approx} 0.13 mag for the brightest galaxies, rising to {approx} 0.3 mag for galaxies at the faint end of our sample (B{sub T} {approx} 16). The distribution of axial ratios of low-mass ('dwarf') galaxies bears a strong resemblance to the one observed for the higher-mass ('giant') galaxies. The global structural parameters for the full galaxy sample-profile shape, effective radius, and mean surface brightness-are found to vary smoothly and systematically as a function of luminosity, with unmistakable evidence for changes in structural homology along the red sequence. As noted in previous studies, the ugriz galaxy colors show a nonlinear but smooth variation over a {approx}7 mag range in absolute magnitude, with an enhanced scatter for the faintest systems that is likely the signature of their more diverse star formation histories.

  9. Gamma-ray Emitting Narrow Line Seyfert 1 Galaxies in SDSS-DR12

    NASA Astrophysics Data System (ADS)

    Sharan Paliya, Vaidehi

    2017-08-01

    The detection of significant γ-ray emission from radio-loud narrow line Seyfert 1 galaxies (NLSy1s) enables to study the properties of relativistic jets at different jet launching environment than that generally claimed for blazars. Here, we report the first detection of the significant γ-ray emission from AGNs which are recently classified as NLSy1 from their SDSS optical spectrum. Comparing the γ-ray properties of these objects with 3LAC blazars reveals their spectral shapes to be similar to FSRQs, however, with low γ-ray luminosity ( ≤1046-47 erg s-1). Moreover, in the WISE color-color diagram, these objects occupy a region mainly populated by FSRQs, thus indicating γ-NLSy1s to be the low black hole mass counterpart of powerful FSRQs.

  10. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  11. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2016-12-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies with stellar masses ranging between 109 M⊙ to 1011.5 M⊙ from the SDSS-IV MaNGA IFU survey. Through the use of our full spectral fitting code FIREFLY, we derive light and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quanfify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties, and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types are positive (˜0.09 dex/Re) pointing to "outside-in" progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an "inside-out" formation of discs. We detect negative metallicity gradients in both early and late-type galaxies, but these are significantly steeper in late-types, suggesting that radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  12. Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey

    NASA Astrophysics Data System (ADS)

    Leclercq, Florent; Jasche, Jens; Wandelt, Benjamin

    2015-06-01

    Recent application of the Bayesian algorithm \\textsc{borg} to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of the tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution.

  13. Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey

    SciTech Connect

    Leclercq, Florent; Wandelt, Benjamin

    2015-06-01

    Recent application of the Bayesian algorithm \\textsc(borg) to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of the tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution.

  14. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  15. Mining the SDSS Database to Teach the Evolution of Galaxy Clusters to ASTRO101 Students

    NASA Astrophysics Data System (ADS)

    Hufnagel, Beth; Raddick, M. J.

    2007-12-01

    Astronomy research has been undergoing an information explosion over the last few decades, with significant progress made in streamlining and simplifying Internet access to everything from telescope application processes to abstracts to multi-wavelength data. These access tools are now user-friendly enough to bring us into a new realm of teaching, giving undergraduates access to research databases using software with a gentle learning curve. We present an online module that helps introductory-level, non-science undergraduates learn to extract information about the evolution of galaxy clusters from the Sloan Digital Sky Survey database. The students interface the database through the SkyServer web site at http://skyserver.sdss.org. This multimedia education module is intended for inclusion in an introductory undergraduate Astronomy course for non-science majors, as part of the galaxies and cosmology topics. It starts with a directed exploration of background information, e.g., galaxian mergers by simulations, and gradually segues into student exploration. It can be used as a PC-based laboratory activity, assigned as a homework, or used as a module in an on-line course. Support for this work was provided by the Southeast Clearinghouse (SERCH), the Maryland Space Grant Consortium, and the Simple Effective Education and Dissemination (SEED) grant program of the Astronomical Society of the Pacific.

  16. Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function

    NASA Astrophysics Data System (ADS)

    Carvalho, G. C.; Bernui, A.; Benetti, M.; Carvalho, J. C.; Alcaniz, J. S.

    2016-01-01

    The 2-point angular correlation function w (θ ) (2PACF), where θ is the angular separation between pairs of galaxies, provides the transversal baryon acoustic oscillation (BAO) signal almost model independently. In this paper we use 409 337 luminous red galaxies in the redshift range z =[0.440 ,0.555 ] obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate θBAO(z ) from the 2PACF at six redshift shells. Since noise and systematics can hide the BAO signature in the w -θ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model dependence in the analysis, namely, the value of the acoustic scale from cosmic microwave background (CMB) measurements and the correction in the θBAO(z ) position due to projection effects. Constraints on the dark energy equation-of-state parameter w (z ) from the θBAO(z ) diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard Λ CDM model as well as some of its extensions are in good agreement with these θBAO(z ) measurements.

  17. Infrared photometric study of SDSS selected narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-07-01

    The infrared photometric study of SDSS selected Narrow Line Seyfert 1 Galaxies (NLS1s) is presented in this paper. We have made cross-identifications for such NLS1s with 2MASS and WISE observations. Finally 992 NLS1s have 2MASS and WISE counterparts. Comparisons of NLS1s with the Broad Line Seyfert 1 (BLS1s) and Seyfert 2 galaxies are made. It is shown that from 1 μm to 5 μm NLS1s are redder than BLS1s and Seyfert 2 galaxies possibly due to the richer dust environment in NLS1 nuclei or to the orientation effect while in the longer wavelengths those three kinds of sources have quite similar behavior indicative of radiation mainly from the similar warm starburst-related dust and the related AGN dust. In addition, relations between infrared colors and related (to Hβ) strengths of some important lines are also investigated. The results show that the related strengths of [FeII] 4570 Å are positively correlated with infrared colors in the 1-5 μm region, but negatively correlated with infrared colors in the 12-22 μm region; the related strength of [OIII] 5007 Å are negatively correlated with infrared colors in the 1-5 μm region, but positively correlated with infrared colors in the 12-22 μm region; the related strength of [NII]6583 Å are also negatively correlated with infrared colors in the 1-5 μm region, but positively correlated with infrared colors in the 12-22 μm region. Therefore it is indicated that the behavior of [FeII] 4570 Å is just opposed to that for [OIII] 5007 Å and [NII] 6583 Å This result may be caused by different origins of such lines.

  18. SDSS-IV eBOSS emission-line galaxy pilot survey

    NASA Astrophysics Data System (ADS)

    Comparat, J.; Delubac, T.; Jouvel, S.; Raichoor, A.; Kneib, J.-P.; Yèche, C.; Abdalla, F. B.; Le Cras, C.; Maraston, C.; Wilkinson, D. M.; Zhu, G.; Jullo, E.; Prada, F.; Schlegel, D.; Xu, Z.; Zou, H.; Bautista, J.; Bizyaev, D.; Bolton, A.; Brownstein, J. R.; Dawson, K. S.; Escoffier, S.; Gaulme, P.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Mariappan, V.; Newman, J. A.; Oravetz, D.; Pan, K.; Percival, W. J.; Prakash, A.; Schneider, D. P.; Simmons, A.; Abbott, T. M. C.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Doel, P.; Eifler, T. F.; Estrada, J.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miquel, R.; Plazas, A. A.; Reil, K.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Zhang, Y.

    2016-08-01

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195 000 emission-line galaxies (ELGs) to measure the baryonic acoustic oscillation (BAO) standard ruler at redshift 0.9. To test different ELG selection algorithms, 9000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error. Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Finally, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements. The catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A121

  19. SDSS-IV eBOSS emission-line galaxy pilot survey

    SciTech Connect

    Comparat, J.; Delubac, T.; Jouvel, S.; Raichoor, A.; Kneib, J-P.; Yèche, C.; Abdalla, F. B.; Le Cras, C.; Maraston, C.; Wilkinson, D. M.; Zhu, G.; Jullo, E.; Prada, F.; Schlegel, D.; Xu, Z.; Zou, H.; Bautista, J.; Bizyaev, D.; Bolton, A.; Brownstein, J. R.; Dawson, K. S.; Escoffier, S.; Gaulme, P.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Mariappan, V.; Newman, J. A.; Oravetz, D.; Pan, K.; Percival, W. J.; Prakash, A.; Schneider, D. P.; Simmons, A.; Abbott, T. M. C.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Doel, P.; Eifler, T. F.; Estrada, J.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miquel, R.; Plazas, A. A.; Reil, K.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Zhang, Y.

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error. Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.

  20. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  1. The matter distribution in the local Universe as derived from galaxy groups in SDSS DR12 and 2MRS

    NASA Astrophysics Data System (ADS)

    Saulder, Christoph; van Kampen, Eelco; Chilingarian, Igor V.; Mieske, Steffen; Zeilinger, Werner W.

    2016-11-01

    Context. Friends-of-friends algorithms are a common tool to detect galaxy groups and clusters in large survey data. In order to be as precise as possible, they have to be carefully calibrated using mock catalogues. Aims: We create an accurate and robust description of the matter distribution in the local Universe using the most up-to-date available data. This will provide the input for a specific cosmological test planned as follow-up to this work, and will be useful for general extragalactic and cosmological research. Methods: We created a set of galaxy group catalogues based on the 2MRS and SDSS DR12 galaxy samples using a friends-of-friends based group finder algorithm. The algorithm was carefully calibrated and optimised on a new set of wide-angle mock catalogues from the Millennium simulation, in order to provide accurate total mass estimates of the galaxy groups taking into account the relevant observational biases in 2MRS and SDSS. Results: We provide four different catalogues: (i) a 2MRS based group catalogue; (ii) an SDSS DR12 based group catalogue reaching out to a redshift z = 0.11 with stellar mass estimates for 70% of the galaxies; (iii) a catalogue providing additional fundamental plane distances for all groups of the SDSS catalogue that host elliptical galaxies; (iv) a catalogue of the mass distribution in the local Universe based on a combination of our 2MRS and SDSS catalogues. Conclusions: While motivated by a specific cosmological test, three of the four catalogues that we produced are well suited to act as reference databases for a variety of extragalactic and cosmological science cases. Our catalogue of fundamental plane distances for SDSS groups provides further added value to this paper. The full catalogues (Tables A.1 to A.8) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A14

  2. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  3. Mapping the Real-space Distributions of Galaxies in SDSS DR7. I. Two-point Correlation Functions

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Yang, Xiaohu; Wang, Huiyuan; Zhang, Youcai; Mo, H. J.; van den Bosch, Frank C.; Li, Shijie; Liu, Chengze; Lu, Yi; Tweed, Dylan; Yang, Lei

    2016-12-01

    Using a method to correct redshift-space distortion (RSD) for individual galaxies, we mapped the real-space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use an ensemble of mock catalogs to demonstrate the reliability of our method. Here, in the first paper in a series, we focus mainly on the two-point correlation function (2PCF) of galaxies. Overall the 2PCF measured in the reconstructed real space for galaxies brighter than {}0.1{M}r-5{log}h=-19.0 agrees with the direct measurement to an accuracy better than the measurement error due to cosmic variance, if the reconstruction uses the correct cosmology. Applying the method to the SDSS DR7, we construct a real-space version of the main galaxy catalog, which contains 396,068 galaxies in the North Galactic Cap with redshifts in the range 0.01 ≤ z ≤ 0.12. The Sloan Great Wall, the largest known structure in the nearby universe, is not as dominant an overdense structure as it appears to be in redshift space. We measure the 2PCFs in reconstructed real space for galaxies of different luminosities and colors. All of them show clear deviations from single power-law forms, and reveal clear transitions from one-halo to two-halo terms. A comparison with the corresponding 2PCFs in redshift space nicely demonstrates how RSDs boost the clustering power on large scales (by about 40%-50% at scales ˜ 10 {h}-1 {Mpc}) and suppress it on small scales (by about 70%-80% on a scale of 0.3 {h}-1 {Mpc}).

  4. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Tuvikene, T.; Kipper, R.; Libeskind, N. I.

    2017-06-01

    Context. Galaxy groups and clusters are the main tools used to test cosmological models and to study the environmental effect of galaxy formation. Aims: This work provides a catalogue of galaxy groups and clusters, as well as potentially merging systems based on the SDSS main galaxy survey. Methods: We identified galaxy groups and clusters using the modified friends-of-friends (FoF) group finder designed specifically for flux-limited galaxy surveys. The FoF group membership is refined by multimodality analysis to find subgroups and by using the group virial radius and escape velocity to expose unbound galaxies. We look for merging systems by comparing distances between group centres with group radii. Results: The analysis results in a catalogue of 88 662 galaxy groups with at least two members. Among them are 6873 systems with at least six members which we consider to be more reliable groups. We find 498 group mergers with up to six groups. We performed a brief comparison with some known clusters in the nearby Universe, including the Coma cluster and Abell 1750. The Coma cluster in our catalogue is a merging system with six distinguishable subcomponents. In the case of Abell 1750 we find a clear sign of filamentary infall toward this cluster. Our analysis of mass-to-light ratio (M/L) of galaxy groups reveals that M/L slightly increases with group richness. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A100

  5. Low-redshift quasars in the SDSS Stripe 82: associated companion galaxies and signature of star formation

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.

    2017-04-01

    We obtained optical spectroscopy of close (<80 kpc) companion objects of a sample of 12 low-redshift quasars (z < 0.3) selected from the SDSS Stripe82 area and that are in the subsample of 52 QSOs for which both multicolour host galaxies properties and galaxy environment were recently investigated in detail. We found that for 8 out of 12 sources the companion galaxy is associated with the QSO having a difference of radial velocity that is less than 400 km s-1. Many of these associated companions exhibit [OII] λ3727 Å emission lines suggestive of episodes of (recent) star formation possibly induced by past interactions. The star formation rate of the companion galaxies as derived from [O II] line luminosity is, however, modest, with a median value of 1.0 ± 0.8 M⊙ yr-1, and the emission lines are barely consistent with expectation from gas ionization by the QSO. The role of the QSO for inducing star formation in close companion galaxies appears meager. For three objects we also detect the starlight spectrum of the QSO host galaxy, which is characterized by absorption lines of old stellar population and [O II] emission line.

  6. THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE

    SciTech Connect

    Wilman, David J.; Erwin, Peter

    2012-02-20

    We present results of an analysis of the local (z {approx} 0) morphology-environment relation for 911 bright (M{sub B} < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10{sup 11.7}-10{sup 14.8} h{sup -1} M{sub Sun }, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (where 'central' galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from {approx}10% to {approx}70%. Here, too, we find striking differences between the central and satellite populations. 20% {+-} 2% of central galaxies with stellar masses M{sub *} > 10{sup 10.5} M{sub Sun} are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>10{sup 13} h{sup -1} M{sub Sun }) halos, where they are 69% {+-} 4% of the M{sub *} > 10{sup 10.5} M{sub Sun} satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M{sub *} {approx}< 10{sup 11} M{sub Sun }) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent

  7. The Relation between Galaxy Morphology and Environment in the Local Universe: An RC3-SDSS Picture

    NASA Astrophysics Data System (ADS)

    Wilman, David J.; Erwin, Peter

    2012-02-01

    We present results of an analysis of the local (z ~ 0) morphology-environment relation for 911 bright (MB < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 1011.7-1014.8 h -1 M ⊙, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (where "central" galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from ~10% to ~70%. Here, too, we find striking differences between the central and satellite populations. 20% ± 2% of central galaxies with stellar masses M * > 1010.5 M ⊙ are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>1013 h -1 M ⊙) halos, where they are 69% ± 4% of the M * > 1010.5 M ⊙ satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass ( M * <~ 1011 M ⊙) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent with other recent studies which indicate that bars are not strongly influenced by galaxy environment. Radio sources in high

  8. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    SciTech Connect

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M.; Bell, E. F.; Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M.; Giavalisco, M.; Skelton, R.; Whitaker, K.; Momcheva, I.; Van Dokkum, P. G.; Dekel, A.; Ceverino, D.; Franx, M.; and others

    2014-09-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10{sup 9}-10{sup 11} M {sub ☉} are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M {sub *} > 10{sup 10} M {sub ☉}) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10{sup 9} M {sub ☉} (10{sup 10} M {sub ☉}) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.

  9. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marín, Héctor; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scóccola, Claudia G.; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Vargas-Magana, Mariana; Cuesta, Antonio J.; Neyrinck, Mark; Beutler, Florian; Comparat, Johan; Percival, Will J.; Ross, Ashley

    2016-03-01

    We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spectroscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light cones corresponding to an effective volume of ˜192 000 [h-1 Gpc]3 (the largest ever simulated volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the halo abundance matching modelling of the BOSS DR11&DR12 galaxy clustering data and on the data themselves. The production follows three steps. First, we apply the PATCHY code to generate a dark matter field and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the halo/stellar distribution reconstruction HADRON code to assign masses to the various objects. This step uses the mass distribution as a function of local density and non-local indicators (i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive objects) from the reference simulation applied to the corresponding patchy dark matter and galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey geometry, and in general within 1σ, for arbitrary stellar mass bins, the power spectrum up to k = 0.3 h Mpc-1, the two-point correlation functions down to a few Mpc scales, and the three-point statistics of the BOSS DR11&DR12 galaxy samples.

  10. Doubly Imaged Quasar SDSS J1515+1511: Time Delay and Lensing Galaxies

    NASA Astrophysics Data System (ADS)

    Shalyapin, Vyacheslav N.; Goicoechea, Luis J.

    2017-02-01

    We analyze new optical observations of the gravitational lens system SDSS J1515+1511. These include a 2.6-year photometric monitoring with the Liverpool Telescope (LT) in the r band, as well as a spectroscopic follow-up with the LT and the Gran Telescopio Canarias (GTC). Our r-band LT light curves cover a quiescent microlensing period of the doubly imaged quasar at {z}{{s}} = 2.049, which permits us to robustly estimate the time delay between the two images A and B: 211 ± 5 days (1σ confidence interval; A is leading). Unfortunately, the main lensing galaxy (G1) is so faint and close to the bright quasar that it is not feasible to accurately extract its spectrum through the GTC data. However, assuming the putative redshift {z}{{G}1} = 0.742, the GTC and LT spectra of the distant quasar are used to discuss the macrolens magnification, and the extinction and microlensing effects in G1. The new constraints on the time delay and macrolens magnification ratio essentially do not change previous findings on the mass scale of G1 and external shear, while the redshift of the lensing mass is found to be consistent with the assumed value of {z}{{G}1}. This is clear evidence that G1 is indeed located at {z}{{G}1} = 0.742. From the GTC data, we also obtain the redshift of two additional objects (the secondary galaxy G2 and a new absorption system) and discuss their possible roles in the lens scenario.

  11. The SDSS u-band Galaxy Survey: Luminosity functions and evolution

    SciTech Connect

    Baldry, Ivan K.; Glazebrook, K.; Budavari, T.; Eisenstein, D.J.; Annis, J.; Bahcall, N.A.; Blanton, M.R.; Brinkmann, J.; Csabai, I.; Heckman, T.M.; Lin, H.; Loveday, J.; Nichol, R.C.; Schneider, D.P.; /Johns Hopkins U. /Arizona U., Astron. Dept. - Steward Observ. /Fermilab /Princeton U. /CCPP, New York /Apache Point Observ. /Eotvos U. /Sussex U., Astron. Ctr. /Portsmouth U., ICG /Penn State U., Astron. Astrophys.

    2005-01-01

    We construct and analyze a u-band selected galaxy sample from the SDSS Southern Survey, which covers 275 deg{sup 2}. The sample includes 43223 galaxies with spectroscopic redshifts in the range 0.005 < z < 0.3 and with 14.5 < u < 20.5. The S/N in the u-band Petrosian aperture is improved by coadding multiple epochs of imaging data and by including sky-subtraction corrections. Luminosity functions for the near-UV {sup 0.1}u band ({lambda} {approx} 322 {+-} 26 nm) are determined in redshift slices of width 0.02, which show a highly significant evolution in M* of -0.8 {+-} 0.1 mag between z = 0 and 0.3; with M* - 5 log h{sub 70} = -18.84 {+-} 0.05 (AB mag), log {phi}* = -2.06 {+-} 0.03 (h{sub 70}{sup 3} Mpc{sup -3}) and log {rho}{sub L} = 19.11 {+-} 0.02 (h{sub 70} W Hz{sup -1}Mpc{sup -3}) at z = 0.1. The faint-end slope determined for z < 0.06 is given by {alpha} = -1.05 {+-} 0.08. This is in agreement with recent determinations from GALEX at shorter wavelengths. Comparing our z < 0.3 luminosity density measurements with 0.2 < z < 1.2 from COMBO-17, we find that the 280-nm density evolves as {rho}{sub L} {proportional_to} (1+z){sup {beta}} with {beta} = 2.1 {+-} 0.2; and find no evidence for any change in slope over this redshift range. By comparing with other measurements of cosmic star formation history, we estimate that the effective dust attenuation at 280 nm has increased by 0.8 {+-} 0.3 mag between z = 0 and 1.

  12. Properties of Wide-separation Lensed Quasars byClusters of Galaxies in the SDSS

    SciTech Connect

    Li, G.L.; Mao, S.; Jing, Y.P.; Lin, W.P.; Oguri, M.

    2007-02-03

    We use high-resolution N-body numerical simulations to study the number of predicted large-separation multiply-imaged systems produced by clusters of galaxies in the SDSS photometric and spectroscopic quasar samples. We incorporate the condensation of baryons at the center of clusters by (artificially) adding a brightest central galaxy (BCG) as a truncated isothermal sphere. We make predictions in two at cosmological models: a {Lambda}CDM model with a matter density {Omega}{sub m,0} = 0.3, and {sigma}{sub 8} 0.9 ({Lambda}CDM0), and a model favored by the WMAP three-year data with {Omega}{sub m,0} = 0.238, and {sigma}{sub 8} = 0.74 (WMAP3). We found that the predicted multiply-imaged quasars with separation > 10 is about 6.2 and 2.6 for the SDSS photometric (with an effective area 8000 deg{sup 2}) and spectroscopic (with an effective area 5000 deg{sup 2}) quasar samples respectively in the {Lambda}CDM0 model; the predicted numbers of large-separation lensed quasars agree well with the observations. These numbers are reduced by a factor of 7 or more in the WMAP3 model, and are consistent with data at {approx}< 8% level. The predicted cluster lens redshift peaks around redshift 0.5, and 90% are between 0.3 and 1. The ratio of systems with at least four image systems (N{sub img} {ge} 4) and those with N{sub img} {ge} 2 is about 1/3.5 for both the {Lambda}CDM0 and WMAP3 models, and for both the photometric and spectroscopic quasar samples.We find that the BCG creates a central circular region, comparable to the Einstein ring of the BCG, where the central image disappears in the usual three-image and five-image configurations. If we include four image systems as an extreme case of five-image systems (with an infinitely demagnified central image), we find that 68% of the central images are fainter by a factor of 100 than the brightest image, and about 80% are within 1.5 of the BCG.

  13. Observing Strategy for the SDSS-IV/MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; Yan, Renbin; Bershady, Matthew A.; Bundy, Kevin; Cherinka, Brian; Drory, Niv; MacDonald, Nicholas; Sánchez-Gallego, José R.; Wake, David A.; Weijmans, Anne-Marie; Blanton, Michael R.; Klaene, Mark A.; Moran, Sean M.; Sanchez, Sebastian F.; Zhang, Kai

    2015-07-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an integral-field spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). MaNGA’s 17 pluggable optical fiber-bundle integral field units (IFUs) will observe a sample of 10,000 nearby galaxies distributed throughout the SDSS imaging footprint (focusing particularly on the North Galactic Cap). In each pointing these IFUs are deployed across a 3° field; they yield spectral coverage 3600-10300 Å at a typical resolution R ˜ 2000, and sample the sky with 2″ diameter fiber apertures with a total bundle fill factor of 56%. Observing over such a large field and range of wavelengths is particularly challenging for obtaining uniform and integral spatial coverage and resolution at all wavelengths and across each entire fiber array. Data quality is affected by the IFU construction technique, chromatic and field differential refraction, the adopted dithering strategy, and many other effects. We use numerical simulations to constrain the hardware design and observing strategy for the survey with the aim of ensuring consistent data quality that meets the survey science requirements while permitting maximum observational flexibility. We find that MaNGA science goals are best achieved with IFUs composed of a regular hexagonal grid of optical fibers with rms displacement of 5 μm or less from their nominal packing position; this goal is met by the MaNGA hardware, which achieves 3 μm rms fiber placement. We further show that MaNGA observations are best obtained in sets of three 15 minute exposures dithered along the vertices of a 1.44 arcsec equilateral triangle; these sets form the minimum observational unit, and are repeated as needed to achieve a combined signal-to-noise ratio of 5 Å-1 per fiber in the r-band continuum at a surface brightness of 23 AB arcsec-2. In order to ensure uniform coverage and delivered image quality, we require that the

  14. Kiloparsec Mass/Light Offsets in the Galaxy Pair-Lyα Emitter Lens System SDSS J1011+0143

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Bolton, Adam S.; Moustakas, Leonidas A.; Stern, Daniel; Dey, Arjun; Brownstein, Joel R.; Burles, Scott; Spinrad, Hyron

    2016-03-01

    We report the discovery of significant mass/light offsets in the strong gravitational lensing system SDSS J1011+0143. We use the high-resolution Hubble Space Telescope (HST) F555W- and F814W-band imaging and Sloan Digital Sky Survey (SDSS) spectroscopy of this system, which consists of a close galaxy pair with a projected separation of ≈ 4.2 {{kpc}} at zlens ˜ 0.331 lensing an Lyα emitter (LAE) at zsource = 2.701. Comparisons between the mass peaks inferred from lens models and light peaks from HST imaging data reveal significant spatial mass/light offsets as large as 1.72 ± 0.24 ± 0.34 kpc in both filter bands. Such large mass/light offsets, not seen in isolated field lens galaxies and relaxed galaxy groups, may be related to the interactions between the two lens galaxies. The detected mass/light offsets can potentially serve as an important test for the self-interacting dark matter model. However, other mechanisms such as dynamical friction on spatially differently distributed dark matter and stars could produce similar offsets. Detailed hydrodynamical simulations of galaxy-galaxy interactions with self-interacting dark matter could accurately quantify the effects of different mechanisms. The background LAE is found to contain three distinct star-forming knots with characteristic sizes from 116 to 438 pc. It highlights the power of strong gravitational lensing in probing the otherwise too faint and unresolved structures of distance objects below subkiloparsec or even 100 pc scales through its magnification effect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program #10831.

  15. The impact of galactic properties and environment on the quenching of central and satellite galaxies: a comparison between SDSS, Illustris and L-Galaxies

    NASA Astrophysics Data System (ADS)

    Bluck, Asa F. L.; Mendel, J. Trevor; Ellison, Sara L.; Patton, David R.; Simard, Luc; Henriques, Bruno M. B.; Torrey, Paul; Teimoorinia, Hossen; Moreno, Jorge; Starkenburg, Else

    2016-11-01

    We quantify the impact that a variety of galactic and environmental properties have on the quenching of star formation. We collate a sample of ˜400 000 central and ˜100 000 satellite galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Specifically, we consider central velocity dispersion (σc), stellar, halo, bulge and disc mass, local density, bulge-to-total ratio, groupcentric distance and galaxy-halo mass ratio. We develop and apply a new statistical technique to quantify the impact on the quenched fraction (fQuench) of varying one parameter, while keeping the remaining parameters fixed. For centrals, we find that the fQuench-σc relationship is tighter and steeper than for any other variable considered. We compare to the Illustris hydrodynamical simulation and the Munich semi-analytic model (L-Galaxies), finding that our results for centrals are qualitatively consistent with their predictions for quenching via radio-mode AGN feedback, hinting at the viability of this process in explaining our observational trends. However, we also find evidence that quenching in L-Galaxies is too efficient and quenching in Illustris is not efficient enough, compared to observations. For satellites, we find strong evidence that environment affects their quenched fraction at fixed central velocity dispersion, particularly at lower masses. At higher masses, satellites behave identically to centrals in their quenching. Of the environmental parameters considered, local density affects the quenched fraction of satellites the most at fixed central velocity dispersion.

  16. SDSS-II Supernova survey. An analysis of the largest sample of type IA supernovae and correlations with host-galaxy spectral properties

    SciTech Connect

    Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; Kessler, Rick; Jha, Saurabh W.; March, Marisa C.; Scolnic, Daniel M.; Fischer, Johanna-Laina; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.; Smith, Mathew

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from the SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.

  17. NIBLES: an H I census of stellar mass selected SDSS galaxies. I. The Nançay H I survey

    NASA Astrophysics Data System (ADS)

    van Driel, W.; Butcher, Z.; Schneider, S.; Lehnert, M. D.; Minchin, R.; Blyth, S.-L.; Chemin, L.; Hallet, N.; Joseph, T.; Kotze, P.; Kraan-Korteweg, R. C.; Olofsson, A. O. H.; Ramatsoku, M.

    2016-11-01

    To investigate galaxy properties as a function of their total stellar mass, we obtained 21 cm H i line observations at the 100-m class Nançay Radio Telescope of 2839 galaxies from the Sloan Digital Sky Survey (SDSS) in the Local Volume (900 < cz < 12 000 km s-1), dubbed the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) sample. They were selected evenly over their entire range of absolute SDSS z-band magnitudes (Mz -13.5 to -24 mag), which were used as a proxy for their stellar masses. In this paper, a first, global presentation of the observations and basic results is given; their further analysis will be presented in other papers in this series. The galaxies were originally selected based on their properties, as listed in SDSS DR5. Comparing this photometry to their total H i masses, we noted that, for a few percent, the SDSS magnitudes appeared severely misunderestimated, as confirmed by our re-measurements for selected objects. Although using the later DR9 results eliminated this problem in most cases, 384 still required manual photometric source selection. Usable H i spectra were obtained for 2600 of the galaxies, of which 1733 (67%) were clearly detected and 174 (7%) marginally. The spectra for 241 other observed galaxies could not be used for further analysis owing to problems with either the H i or the SDSS data. We reached the target number of about 150 sources per half-magnitude bin over the Mz range -16.5 to -23 mag. Down to -21 mag the overall detection rate is rather constant at the 75% level but it starts to decline steadily towards the 30% level at -23 mag. Making regression fits by comparing total H i and stellar masses for our sample, including our conservatively estimated H i upper limits for non-detections, we find the relationship log(MH I/M⋆) = -0.59 log(M⋆) + 5.05, which lies significantly below the relationship found in the MH I/M⋆ - M⋆ plane when only using H i detections. Tables A.1-A.3 and spectra (ASCII files

  18. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  19. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    NASA Astrophysics Data System (ADS)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  20. A Photometrically Selected Galaxy Cluster Catalog from the SDSS DR4

    NASA Astrophysics Data System (ADS)

    Koester, B. P.; McKay, T. A.; Evrard, A. E.; Becker, M.; Bleem, L.; Annis, J.; Wechsler, R. H.; Sheldon, E. S.; Johnston, D.; Scranton, R.; Miller, C. J.; Nichol, R. C.

    2005-12-01

    We present an overview of a new BCG/red-sequence galaxy cluster catalog drawn from the Data Release 4 sample of Sloan Digital Sky Survey imaging. Galaxy clusters are selected by calculating the likelihood that each observed galaxy is a brightest cluster galaxy based on its color and magnitude, along with the degree to which galaxies cluster around it in color, magnitude, and space. This method provides a list of cluster locations together with estimates of their total galaxy content and accurate photometric redshifts (σ z < 0.02). The catalog covers the range 0.1 < z < 0.3 and includes 50,000 objects containing ten or more galaxies brighter than 0.4 L*. It successfully recovers luminous X-ray clusters, optically-selected clusters, and massive halos in mock galaxy catalogs with a low false-positive rate. Further details of the cluster finding algorithm and its performance, together with a description of the properties of the derived catalog will be presented.

  1. The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmic Flows and Cosmic Web from Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Monteagudo, Carlos Hernández; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-01-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy clustering catalogue. We rely on a given ΛCDM cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift dependent nonlinear bias. The bias parameters are derived from the data and a general renormalised perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the ARGO code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions (RSD). Our tests relying on accurate N-body based mock galaxy catalogues, show unbiased real space power spectra of the nonlinear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the nonlinear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual lightcone mock galaxy of r ˜ 0.68 including about 10% of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, e.g. BAO reconstructions, kinematic Sunyaev-Zeldovich (kSZ), integrated Sachs-Wolfe (ISW) measurements, or environmental studies.

  2. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  3. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  4. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  5. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 1014 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  6. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    SciTech Connect

    Durret, F.; Adami, C.; Bertin, E.; Hao, J.; Márquez, I.; Martinet, N.; Maurogordato, S.; Sauvaget, T.; Scepi, N.; Takey, A.; Ulmer, M. P.

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less than 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 1014 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.

  7. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY

    SciTech Connect

    Zehavi, Idit; Zheng Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Gunn, James E.; Lupton, Robert H.; Strauss, Michael A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Tegmark, Max; York, Donald G.

    2011-07-20

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} and increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M

  8. Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Zheng, Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Gunn, James E.; Lupton, Robert H.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Strauss, Michael A.; Tegmark, Max; York, Donald G.

    2011-07-01

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function wp (rp ) of volume-limited samples, extracted from the parent sample of ~700,000 galaxies over 8000 deg2, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a ΛCDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of wp (rp ) grows slowly with luminosity for L < L * and increases sharply at higher luminosities, with a large-scale bias factor b(> L) × (σ8/0.8) = 1.06 + 0.21(L/L *)1.12, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the "blue cloud" and "green valley" and continues across the "red sequence." The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at rp < 1 h -1 Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of wp (rp ). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L *, but the lowest luminosity red galaxies (0.04-0.25 L *) show very strong clustering on small scales (rp < 2 h -1 Mpc). Most of the observed trends can be naturally understood within the ΛCDM+HOD framework. The growth of wp (rp ) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M min. The mass at which a halo has, on average, one satellite galaxy brighter than L is M 1 ≈ 17 M min(L) over most of the

  9. VizieR Online Data Catalog: SPOGS. I. SDSS Shocked POststarburst Galaxy cand. (Alatalo+, 2016)

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Cales, S. L.; Rich, J. A.; Appleton, P. N.; Kewley, L. J.; Lacy, M.; Lanz, L.; Medling, A. M.; Nyland, K.

    2016-07-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench "quietly". Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY, 2011ApJS..195...13O) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z=0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an "E+A" selection. SPOGs* have a 13% 1.4GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this

  10. Transient Superstrong Coronal Lines and Broad Bumps in the Galaxy SDSS J074820.67+471214.3

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Gui; Zhou, Hong-Yan; Wang, Li-Fan; Lu, Hong-Lin; Xu, Dawei

    2011-10-01

    Variable superstrong coronal emission lines were observed in the spectrum of one galaxy, SDSS J095209.56+214313.3, and their enigmatic origin remains controversial. In this paper, we report the detection of variable broad emission bumps reminiscent of a supernova (SN) II-Plateau spectra taken a few days after the shock breakout in a second galaxy with variable superstrong coronal lines, SDSS J074820.67+471214.3. The coronal line spectrum shows unprecedentedly high ionization with superstrong [Fe X]λ6376, [Fe XI]λ7894, [Fe XIV]λ5304, [S XII]λ7612, and [Ar XIV]λ4414, but without detectable optical [Fe VII] line emission. The coronal line luminosities are similar to those observed in bright Seyfert galaxies and 20 times more luminous than those reported in the hottest Type IIn SN 2005ip inferred from its strong coronal lines. The coronal lines (σ ~ 120-240 km s-1) are much broader than the narrow emission lines (σ ~ 40 km s-1) from the star-forming regions in the galaxy, but are nearly at the same systematic redshift. We also detected a variable non-stellar continuum emission from its Sloan Digital Sky Survey spectroscopy and Galaxy Evolution Explorer photometry. In the follow-up spectra taken 4-5 years later, the coronal lines, SN-like feature, and non-stellar continuum disappeared, while the [O III]λ5007 intensity increased by a factor of about 10. Our analysis suggests that the coronal line region should be at least 10 light days in size and should be powered either by a steady ionizing source with a soft X-ray luminosity of at least a few 1042 erg s-1 or by a very luminous soft X-ray outburst. These findings can be more naturally explained by a star tidally disrupted by the central black hole than by an SN explosion. The similarity of the coronal line variability trend observed in the two galaxies suggests that the two transient events have the same origin, with SDSS J074820.67+471214.3 being caught at an earlier stage by the spectroscopic observation.

  11. PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7

    SciTech Connect

    Greisel, N.; Seitz, S.; Bender, R.; Saglia, R. P.; Snigula, J.; Drory, N.

    2013-05-10

    We describe the construction of a template set of spectral energy distributions (SEDs) for the estimation of photometric redshifts of luminous red galaxies (LRGs) with a Bayesian template fitting method. By examining the color properties of several publicly available SED sets within a redshift range of 0 < z {approx}< 0.5 and comparing them to Sloan Digital Sky Survey (SDSS) Data Release 7 data, we show that only some of the investigated SEDs approximately match the colors of the LRG data throughout the redshift range, however not at the quantitative level required for precise photometric redshifts. This is because the SEDs of galaxies evolve with time (and redshift) and because at fixed redshift the LRG colors have an intrinsic spread such that they cannot be matched by one SED only. We generate new SEDs by superposing model SEDs of composite stellar populations with a burst model, allowing both components to be reddened by dust, in order to match the data in five different redshift bins. We select a set of SEDs which represents the LRG data in color space within five redshift bins, thus defining our new SED template set for photometric redshift estimates. The results we obtain with the new template set and our Bayesian template fitting photometric redshift code (PhotoZ) are nearly unbiased, with a scatter of {sigma}{sub {Delta}z} = 0.027 (including outliers), a fraction of catastrophic outliers (|z{sub phot} - z{sub spec}|/(1 + z{sub spec}) > 0.15) of {eta} = 0.12%, and a normalized median absolute rest frame deviation (NMAD) of {sigma}{sub NMAD} = 1.48 Multiplication-Sign MAD = 0.017 for non-outliers. We show that templates that optimally describe the brightest galaxies (-24.5 {<=} M{sub R} {<=} -22.7) indeed vary from z = 0.1 to z = 0.5, consistent with aging of the stellar population. Furthermore, we find that templates that optimally describe galaxies at z < 0.1 strongly differ as a function of the absolute magnitude of the galaxies, indicating an increase in

  12. Photometric Redshifts and Systematic Variations in the Spectral Energy Distributions of Luminous Red Galaxies from SDSS DR7

    NASA Astrophysics Data System (ADS)

    Greisel, N.; Seitz, S.; Drory, N.; Bender, R.; Saglia, R. P.; Snigula, J.

    2013-05-01

    We describe the construction of a template set of spectral energy distributions (SEDs) for the estimation of photometric redshifts of luminous red galaxies (LRGs) with a Bayesian template fitting method. By examining the color properties of several publicly available SED sets within a redshift range of 0 < z <~ 0.5 and comparing them to Sloan Digital Sky Survey (SDSS) Data Release 7 data, we show that only some of the investigated SEDs approximately match the colors of the LRG data throughout the redshift range, however not at the quantitative level required for precise photometric redshifts. This is because the SEDs of galaxies evolve with time (and redshift) and because at fixed redshift the LRG colors have an intrinsic spread such that they cannot be matched by one SED only. We generate new SEDs by superposing model SEDs of composite stellar populations with a burst model, allowing both components to be reddened by dust, in order to match the data in five different redshift bins. We select a set of SEDs which represents the LRG data in color space within five redshift bins, thus defining our new SED template set for photometric redshift estimates. The results we obtain with the new template set and our Bayesian template fitting photometric redshift code (PhotoZ) are nearly unbiased, with a scatter of σΔz = 0.027 (including outliers), a fraction of catastrophic outliers (|z phot - z spec|/(1 + z spec) > 0.15) of η = 0.12%, and a normalized median absolute rest frame deviation (NMAD) of σNMAD = 1.48 × MAD = 0.017 for non-outliers. We show that templates that optimally describe the brightest galaxies (-24.5 <= MR <= -22.7) indeed vary from z = 0.1 to z = 0.5, consistent with aging of the stellar population. Furthermore, we find that templates that optimally describe galaxies at z < 0.1 strongly differ as a function of the absolute magnitude of the galaxies, indicating an increase in star formation activity for less luminous galaxies. Our findings based on the

  13. Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios

    SciTech Connect

    Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; McKay, Timothy A.; Blanton, Michael R.; Scranton, Ryan; Wechsler, Risa H.; Koester, Ben P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James

    2007-09-28

    We present measurements of the excess mass-to-light ratio measured around MaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with M{sub 200} {approx} 5 x 10{sup 12}h{sup -1}M{sub {circle_dot}} to clusters with M{sub 200} {approx} 5 x 10{sup 15}h{sup -1}M{sub {circle_dot}}. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean {Delta}{yields}(r) = {rho}(r) -- {bar {rho}} for clusters in bins of richness and optical luminosity. We also measure the excess {sup 0.25}i-band luminosity density {Delta}{ell}(r) = {ell}(r) -- {bar {ell}}. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25h{sup -1} kpc to 22h{sup -1} Mpc. From these profiles we calculate the cumulative excess mass {Delta}M(r) and excess light {Delta}L(r) as a function of separation from the BCG. On small scales, where {rho}(r) >> {bar {rho}}, the integrated mass-to-light profile ({Delta}M/{Delta}L)(r) may be interpreted as the cluster mass-to-light ratio. We find the ({Delta}M/{Delta}L){sub 200}, the mass-to-light ratio within r{sub 200}, scales with cluster mass as a power law with index 0.33{+-}0.02. On large scales, where {rho}(r) {approx} {bar {rho}}, the {Delta}M/{Delta}L approaches an asymptotic value independent of scale or cluster richness. For small groups, the mean ({Delta}M/{Delta}L){sub 200} is much smaller than the asymptotic value, while for large clusters ({Delta}M/{Delta}L)200 is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe {l_angle}M/L{r_angle}. We find {l_angle}M/L{r_angle} b{sup -2}{sub M/L} = 362 {+-} 54h measured in the {sup 0.25}i-bandpass. The parameter b{sup 2}{sub M/L} is primarily a function of the bias of the L {approx}< L* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in

  14. SDSS IV MaNGA - spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Heckman, Timothy M.; Law, David R.; Roman-Lopes, Alexandre; Pan, Kaike; Stanghellini, Letizia; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.

    2016-09-01

    We study the spatially resolved excitation properties of the ionized gas in a sample of 646 galaxies using integral field spectroscopy data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) programme. Making use of Baldwin-Philips-Terlevich diagnostic diagrams we demonstrate the ubiquitous presence of extended (kpc scale) low-ionization emission-line regions (LIERs) in both star-forming and quiescent galaxies. In star-forming galaxies LIER emission can be associated with diffuse ionized gas, most evident as extraplanar emission in edge-on systems. In addition, we identify two main classes of galaxies displaying LIER emission: `central LIER' (cLIER) galaxies, where central LIER emission is spatially extended, but accompanied by star formation at larger galactocentric distances, and `extended LIER' (eLIER) galaxies, where LIER emission is extended throughout the whole galaxy. In eLIER and cLIER galaxies, LIER emission is associated with radially flat, low H α equivalent width of line emission (<3 Å) and stellar population indices demonstrating the lack of young stellar populations, implying that line emission follows tightly the continuum due to the underlying old stellar population. The H α surface brightness radial profiles are always shallower than 1/r2 and the line ratio [O III] λ5007/[O II] λλ3727,29 (a tracer of the ionization parameter of the gas) shows a flat gradient. This combined evidence strongly supports the scenario in which LIER emission is not due to a central point source but to diffuse stellar sources, the most likely candidates being hot, evolved (post-asymptotic giant branch) stars. Shocks are observed to play a significant role in the ionization of the gas only in rare merging and interacting systems.

  15. Indirect Estimates of the Total Gas Content of SDSS-IV/MaNGA Galaxies from Optical Emission Lines

    NASA Astrophysics Data System (ADS)

    Tremonti, Christina A.; Pace, Zachary; Andrews, Brett; Law, David R.; Li, Cheng; Martinsson, Thomas; Masters, Karen; Stark, David; Sanchez, Sebastian; Storchi-Bergmann, Thaisa; MaNGA Team

    2016-01-01

    To understand galaxy evolution it is critical to obtain a census of both the stellar and gaseous contents of galaxies. The SDSS-IV MaNGA survey will deliver exquisite stellar mass maps of ~10,000 nearby galaxies. However, radio surveys capable of providing matched resolution gas data for a large fraction of the MaNGA sample are a decade or more away. We are therefore exploring a new technique for obtaining maps of the total gas content directly from the MaNGA data. Following the method outlined in Brinchmann et al. 2013, we use the dust optical depth and the nebular metallicity measured from optical emission lines to estimate the total gas surface density in individual spaxels. We combine this with estimates of the stellar mass in each spaxel to produce spatially resolved estimates of the gas mass fraction. We compare trends in the global gas mass fraction with stellar mass and NUV-r color to those found in the literature. We explore how the radial gas mass fraction gradients of MaNGA galaxies correlate with other properties such as total stellar mass, specific star formation rate (SFR/M*), concentration, and environment.

  16. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  17. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    SciTech Connect

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia -Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco -Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastian E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scoccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.

  18. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  19. VizieR Online Data Catalog: Narrow line Seyfert 1 galaxies from SDSS-DR3 (Zhou+, 2006)

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y.

    2017-01-01

    We carried out a systematic search for narrow line Seyfert 1 galaxies (NLS1s) from objects assigned as "QSOs" or "galaxies" in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. (1 data file).

  20. Properties of the most metal-poor gas-rich LSB dwarf galaxies SDSS J0015+0104 and J2354-0005 residing in the Eridanus void

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Martin, J.-M.; Lyamina, Y. A.; Kniazev, A. Y.

    2013-07-01

    SDSS J0015+0104 is the lowest metallicity low surface brightness dwarf (LSBD) galaxy known. The oxygen abundance in its H II region SDSS J001520.70+010436.9 (at ˜1.5 kpc from the galaxy centre) is 12+log (O/H) = 7.07 (Guseva et al.). This galaxy, at the distance of 28.4 Mpc, appears to reside deeply in the volume devoid of luminous massive galaxies, known as the Eridanus void. SDSS J235437.29-000501.6 is another Eridanus void LSBD galaxy, with parameter 12+log (O/H) = 7.36 (also Guseva et al.). We present the results of their H I observations with the Nançay Radio Telescope revealing their high ratios of M(H I)/LB ˜ 2.3. Based on the Sloan Digital Sky Survey images, we derived for both galaxies their radial surface brightness profiles and the main photometric parameters. Their colours and total magnitudes are used to estimate the galaxy stellar mass and ages. The related gas mass fractions, fg ˜ 0.98 and ˜0.97, and the extremely low metallicities (much lower than for their more typical counterparts with the same luminosity) indicate their unevolved status. We compare these Eridanus void LSBDs with several extreme LSBD galaxies residing in the nearby Lynx-Cancer void. Based on the combination of all their unusual properties, the two discussed LSBD galaxies are similar to the unusual LSBDs residing in the closer void. This finding presents additional evidence for the existence in voids of a sizeable fraction of low-mass unevolved galaxies. Their dedicated search might result in the substantial increase of the number of such objects in the local Universe and in the advancement of understanding their nature.

  1. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  2. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions

    NASA Astrophysics Data System (ADS)

    Satpathy, Siddharth; Alam, Shadab; Ho, Shirley; White, Martin; Bahcall, Neta A.; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Grieb, Jan Niklas; Kitaura, Francisco; Olmstead, Matthew D.; Percival, Will J.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Seo, Hee-Jong; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita

    2017-08-01

    We present a measurement of the linear growth rate of structure, f, from the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) using convolution Lagrangian perturbation theory (CLPT) with Gaussian streaming redshift space distortions (GSRSD) to model the two-point statistics of BOSS galaxies in DR12. The BOSS-DR12 data set includes 1198 006 massive galaxies spread over the redshift range 0.2 < z < 0.75. These galaxy samples are categorized in three redshift bins. Using CLPT-GSRSD in our analysis of the combined sample of the three redshift bins, we report measurements of fσ8 for the three redshift bins. We find fσ8 = 0.430 ± 0.054 at zeff = 0.38, fσ8 = 0.452 ± 0.057 at zeff = 0.51 and fσ8 = 0.457 ± 0.052 at zeff = 0.61. Our results are consistent with the predictions of Planck Λ cold dark matter-general relativity. Our constraints on the growth rates of structure in the Universe at different redshifts serve as a useful probe, which can help distinguish between a model of the Universe based on dark energy and models based on modified theories of gravity. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al., to produce the final cosmological constraints from BOSS.

  3. SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, Héctor J.; Sánchez, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-12-01

    Using the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling earlier (downsizing), though for a given mass, the global MGHs segregate by colour, specific star formation rate and morphological type. From the inferred radial mean MGHs, we find that at fractions of assembled mass larger than ˜80 per cent, the innermost regions formed stars, on average, in the inside-out mode. At earlier epochs, when the age estimation of the method becomes poor, the MGHs seem to be spatially homogeneous or even in the outside-in mode, especially for the red/quiescent/early-type galaxies. The innermost MGHs are, in general, less scattered around the mean than the outermost MGHs. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead, their radial MGHs are very diverse most of the time, with periods of outside-in and inside-out modes (or strong radial migration), suggesting this is an episodic star formation history. Blue/star-forming/late-type galaxies present, on average, a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching and radial migration. We also discuss the uncertainties and biases of the fossil record method and how these could affect our results.

  4. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Zheng, Zheng; Zehavi, Idit; Dawson, Kyle; Skibba, Ramin A.; Tinker, Jeremy L.; Weinberg, David H.; White, Martin; Schneider, Donald P.

    2015-01-01

    We present the measurements and modelling of the projected and redshift-space clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 11. For a volume-limited luminous red galaxy sample in the redshift range of 0.48 < z < 0.55, we perform halo occupation distribution modelling of the small- and intermediate-scale (0.1-60 h-1 Mpc) projected and redshift-space two-point correlation functions, with an accurate model built on high-resolution N-body simulations. To interpret the measured redshift-space distortions, the distribution of galaxy velocities must differ from that of the dark matter inside haloes of ˜1013-1014 h-1 M⊙, i.e. the data require the existence of galaxy velocity bias. Most notably, central galaxies on average are not at rest with respect to the core of their host haloes, but rather move around it with a 1D velocity dispersion of 0.22^{+0.03}_{-0.04} times that of the dark matter, implying a spatial offset from the centre at the level of ≲1 per cent of the halo virial radius. The luminous satellite galaxies move more slowly than the dark matter, with velocities 0.86^{+0.08}_{-0.03} times those of the dark matter, which suggests that the velocity and spatial distributions of these satellites cannot both be unbiased. The constraints mainly arise from the Fingers-of-God effect at non-linear scales and the smoothing to the Kaiser effect in the translinear regime; the robustness of the results is demonstrated by a variety of tests. We discuss the implications of the existence of galaxy velocity bias for investigations of galaxy formation and cosmology.

  5. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    SciTech Connect

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.; Tremonti, Christy; Diamond-Stanic, Aleksandar M.; Law, David R.; Cherinka, Brian; Yan, Renbin; Sánchez-Gallego, José R.; Drory, Niv; MacDonald, Nicholas; Weijmans, Anne-Marie; Thomas, Daniel; Masters, Karen; Coccato, Lodovico; Aragón-Salamanca, Alfonso; Avila-Reese, Vladimir; Badenes, Carles; Falcón-Barroso, Jésus; Belfiore, Francesco; and others

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

  6. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: The Clustering of Luminous Red Galaxies Using Photometric Redshifts

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; SDSS-IV/eBOSS

    2017-01-01

    SDSS-IV/eBOSS survey will allow a ˜1% measurement of the Baryon Acoustic Oscillation (BAO) scale and a 4.0%Redshift Space Distortion (RSD) measurement using a relatively uniform set of luminous, early-type galaxies in the redshift range 0.6 < z < 1. In this talk, I will present the 3D real space clustering of a sample of ~600,000 LRGs measured by the SDSS/eBOSS, using photometric redshifts. These galaxies have accurate photometric redshifts with an average error of z = 0.028. These LRGs range from redshift z = 0.6 to 1.0 over 10,000 deg2 of the sky, making it the largest volume ever used for galaxy clustering measurements. We measure the angular clusteringpower spectrum in different redshift slices and use well-calibrated redshift distributions to combine these into a high precision 3D real space clustering. i will present an evidence for BAO in the 2-point correlation function. The detection of BAO also allows the measurement of the comoving distance to z = 1.0. Traditionally, spectroscopic redshifts are used to estimate distances to the galaxies and, in turn, to measuregalaxy clustering. However, acquiring spectroscopic redshifts is a time consuming and expensive process even with modern multi-fiber spectrographs. Although photometric redshifts are less accurate, they are signicantly easier to obtain, and for a constant amount of time, one can image both wider areas and deeper volumes than would be possible with spectroscopy, allowing one to probe both larger scales and larger volumes. The ability to make precise clustering measurements with photometric data has been well demonstrated by Padmanabhan et al. (2007).

  7. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: anisotropic galaxy clustering in Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-04-01

    We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 < z < 0.75 and a sky coverage of 10 252 deg2. We analyse this data set in Fourier space, using the power-spectrum multipoles to measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  8. The 2XMMi/SDSS Galaxy Cluster Survey. II. The optically confirmed cluster sample and the LX - T relation

    NASA Astrophysics Data System (ADS)

    Takey, A.; Schwope, A.; Lamer, G.

    2013-10-01

    Aims: We compile a sample of X-ray-selected galaxy groups and clusters from the XMM-Newton serendipitous source catalogue (2XMMi-DR3) with optical confirmation and redshift measurement from the Sloan Digital Sky Survey (SDSS). We present an analysis of the X-ray properties of this new sample with particular emphasis on the X-ray luminosity-temperature (LX - T) relation. Methods: The X-ray cluster candidates were selected from the 2XMMi-DR3 catalogue in the footprint of the SDSS-DR7. We developed a finding algorithm to search for overdensities of galaxies at the positions of the X-ray cluster candidates in the photometric redshift space and to measure the redshifts of the clusters from the SDSS data. For optically confirmed clusters with good quality X-ray data we derived the X-ray flux, luminosity, and temperature from proper spectral fits, while the X-ray flux for clusters with low-quality X-ray data was obtained from the 2XMMi-DR3 catalogue. Results: The detection algorithm provides the photometric redshift of 530 galaxy clusters. Of these, 310 clusters have a spectroscopic redshift for at least one member galaxy. About 75 percent of the optically confirmed cluster sample are newly discovered X-ray clusters. Moreover, 301 systems are known as optically selected clusters in the literature while the remainder are new discoveries in X-ray and optical bands. The optically confirmed cluster sample spans a wide redshift range 0.03-0.70 (median z = 0.32). In this paper, we present the catalogue of X-ray-selected galaxy groups and clusters from the 2XMMi/SDSS galaxy cluster survey. The catalogue has two subsamples: (i) a cluster sample comprising 345 objects with their X-ray spectroscopic temperature and flux from the spectral fitting; and (ii) a cluster sample consisting of 185 systems with their X-ray flux from the 2XMMi-DR3 catalogue, because their X-ray data are insufficient for spectral fitting. For each cluster, the catalogue also provides the X-ray bolometric

  9. Discovery of A Very Bright, Strongly-Lensed z=2 Galaxy in the SDSS DR5

    SciTech Connect

    Lin, Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H.Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa; /Wako, RIKEN

    2008-09-30

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.03{double_prime} or 14.8 {+-} 0.1h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12}h{sup -1}M{sub {circle_dot}}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 h{sup -1} M{sub {circle_dot}} hr{sup -1}, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z {ge} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  10. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    SciTech Connect

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Prieto, Carlos Allende; Anderson, Scott F.; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; /Johns Hopkins U. /Michigan State U.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Ly{alpha} forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z {approx} 2.5. SEGUE-2, a now-completed continuation of the Sloan Extension for Galactic Understanding and Exploration, measured medium-resolution (R = {lambda}/{Delta}{lambda} 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R {approx} 30,000), high signal-to-noise ratio (S/N {ge} 100 per resolution element), H-band (1.51 {micro}m < {lambda} < 1.70 {micro}m) spectra of 10{sup 5} evolved, late-type stars, measuring separate abundances for {approx} 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s{sup -1}, {approx} 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained

  11. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ∼3 and ∼15 kpc. The inner component lies on the mass–size relation of ETGs at z ∼ 0.25–0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  12. Relativistic distortions in the large-scale clustering of SDSS-III BOSS CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Zhu, Hongyu; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena; Schneider, Donald P.

    2017-09-01

    General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys has reached a size where detection of such effects is becoming feasible. In this paper, we report the first detection of the redshift asymmetry from the cross-correlation function of two galaxy populations that is consistent with relativistic effects. The data set is taken from the Sloan Digital Sky Survey Data Release 12 CMASS galaxy sample, and we detect the asymmetry at the 2.7σ level by applying a shell-averaged estimator to the cross-correlation function. Our measurement dominates at scales around 10 h-1 Mpc, larger than those over which the gravitational redshift profile has been recently measured in galaxy clusters, but smaller than scales for which linear perturbation theory is likely to be accurate. The detection significance varies by 0.5σ with the details of our measurement and tests for systematic effects. We have also devised two null tests to check for various survey systematics and show that both results are consistent with the null hypothesis. We measure the dipole moment of the cross-correlation function, and from this the asymmetry is also detected, at the 2.8σ level. The amplitude and scale dependence of the clustering asymmetries are approximately consistent with the expectations of general relativity and a biased galaxy population, within large uncertainties. We explore theoretical predictions using numerical simulations in a companion paper.

  13. Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; Gavilán, M.; Terlevich, R.; Terlevich, E.; Hoyos, C.; Díaz, A. I.

    2015-07-01

    This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity - the equivalent width of the Hα line and the (u - r) colour - with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of ˜82 500 galaxies extracted from the Sloan Digital Sky Survey. The existence of a relatively tight `ageing sequence' in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive' (metal-poor and intensely star-forming) state to a `chemically evolved' (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching' and `rejuvenation' episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(Hα) and bluer (u - r) colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing' scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time-scale in dense environments, where many objects are found on a `quenched sequence' in the colour-equivalent width plane.

  14. SDSS IV MaNGA: Discovery of an Hα Blob Associated with a Dry Galaxy Pair—Ejected Gas or a “Dark” Galaxy Candidate?

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Lin, Jing-Hua; Hsu, Chin-Hao; Fu, Hai; Huang, Song; Sánchez, Sebastián F.; Gwyn, Stephen; Gelfand, Joseph D.; Cheung, Edmond; Masters, Karen; Peirani, Sébastien; Rujopakarn, Wiphu; Stark, David V.; Belfiore, Francesco; Bothwell, M. S.; Bundy, Kevin; Hagen, Alex; Hao, Lei; Huang, Shan; Law, David; Li, Cheng; Lintott, Chris; Maiolino, Roberto; Roman-Lopes, Alexandre; Wang, Wei-Hao; Xiao, Ting; Yuan, Fangting; Bizyaev, Dmitry; Malanushenko, Elena; Drory, Niv; Fernández-Trincado, J. G.; Pace, Zach; Pan, Kaike; Thomas, Daniel

    2017-03-01

    We report the discovery of a mysterious giant Hα blob that is ˜8 kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, and has been identified in the first-year SDSS-IV MaNGA data. The size of the Hα blob is ˜3-4 kpc in radius, and the Hα distribution is centrally concentrated. However, there is no optical continuum counterpart in the deep broadband images reaching ˜26.9 mag arcsec-2 in surface brightness. We estimate that the masses of the ionized and cold gases are 3.3× {10}5 {M}⊙ and < 1.3× {10}9 {M}⊙ , respectively. The emission-line ratios indicate that the Hα blob is photoionized by a combination of massive young stars and AGNs. Furthermore, the ionization line ratio decreases from MaNGA 1-24145 to the Hα blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations for this Hα blob include the AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness galaxy. However, the stripping scenario is less favored according to galaxy merger simulations and the morphology of the Hα blob. With the current data, we cannot distinguish whether this Hα blob is ejected gas due to a past AGN outburst, or a special category of “ultra-diffuse galaxy” interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.

  15. Tracing the cosmic velocity field at z∼ 0.1 from galaxy luminosities in the SDSS DR7

    SciTech Connect

    Feix, Martin; Nusser, Adi; Branchini, Enzo E-mail: adi@physics.technion.ac.il

    2014-09-01

    Spatial modulations in the distribution of observed luminosities (computed using redshifts) of ∼ 5× 10{sup 5} galaxies from the SDSS Data Release 7, probe the cosmic peculiar velocity field out to z∼ 0.1. Allowing for luminosity evolution, the r-band luminosity function, determined via a spline-based estimator, is well represented by a Schechter form with M{sup *}(z)-5 log{sub 10} h = -20.52 -1.6(z-0.1)± 0.05 and α{sup *} = -1.1± 0.03. Bulk flows and higher velocity moments in two redshift bins, 0.02 < z < 0.07 and 0.07 < z < 0.22, agree with the predictions of the ΛCDM model, as obtained from mock galaxy catalogs designed to match the observations. Assuming a ΛCDM model, we estimate σ{sub 8} ≈ 1.1± 0.4 for the amplitude of the linear matter power spectrum, where the low accuracy is due to the limited number of galaxies. While the low z bin is robust against coherent photometric uncertainties, the bias of results from the second bin is consistent with the ∼1% magnitude tilt reported by the SDSS collaboration. The systematics are expected to have a significantly lower impact in future datasets with larger sky coverage and better photometric calibration.

  16. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2017-01-01

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  17. The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-06-01

    We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  20. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  1. ANOMALOUS ANISOTROPIC CROSS-CORRELATIONS BETWEEN WMAP CMB MAPS AND SDSS GALAXY DISTRIBUTION AND IMPLICATIONS ON THE DARK FLOW SCENARIO

    SciTech Connect

    Li Zhigang; Chen Xuelei; Zhang Pengjie E-mail: pjzhang@shao.ac.cn

    2012-10-20

    We search for the dark flow induced diffuse kinetic Sunyaev-Zel'dovich (kSZ) effect through CMB-galaxy cross-correlation. Such angular correlation is anisotropic, with a unique cos ({theta}{sub DF}) angular dependence, and hence can be distinguished from other components. Here, {theta}{sub DF} is the angle between the opposite dark flow direction and the direction of the sky where the correlation is measured. We analyze the KIAS-VAGC galaxy catalog of SDSS-DR7 and the WMAP seven-year temperature maps, applying an unbiased optimal weighting scheme to eliminate any statistically isotropic components and to enhance the dark flow detection signal. Non-zero weighted cross-correlations are detected at 3.5 {sigma} for the redshift bin z < 0.1 and at 3 {sigma} for the bin 0.1 < z < 0.2, implying the existence of statistically anisotropic components in CMB. However, further analysis does not support the dark flow explanation. The observed directional dependence deviates from the {proportional_to}cos {theta}{sub DF} relation expected, and hence cannot be explained by the presence of a single dark flow, and if the observed cross-correlation is generated by the dark flow induced kSZ effect, the velocity would be too high ({approx}> 6000 km s{sup -1}). We report this work as the first attempt to search for dark flow through weighted CMB-galaxy cross-correlation and to draw the attention on the sources of the detected anomalous CMB-galaxy cross-correlation.

  2. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5

    SciTech Connect

    Liu, F. K.; Li, Shuo; Komossa, S.

    2014-05-10

    Galaxy mergers play a key role in the evolution of galaxies and the growth of their central supermassive black holes (SMBHs). A search for (active) SMBH binaries (SMBHBs) at the centers of the merger remnants is currently ongoing. Perhaps the greatest challenge is to identify the inactive SMBHBs, which might be the most abundant, but are also the most difficult to identify. Liu et al. predicted characteristic drops in the light curves of tidal disruption events (TDEs), caused by the presence of a secondary SMBH. Here, we apply that model to the light curve of the optically inactive galaxy SDSS J120136.02+300305.5, which was identified as a candidate TDE with XMM-Newton. We show that the deep dips in its evolving X-ray light curve can be well explained by the presence of a SMBHB at its core. A SMBHB model with a mass of the primary of M {sub BH} = 10{sup 7} M {sub ☉}, a mass ratio q ≅ 0.08, and a semi-major axis a {sub b} ≅ 0.6 mpc is in good agreement with the observations. Given that primary mass, introducing an orbital eccentricity is needed, with e {sub b} ≅ 0.3. Alternatively, a lower mass primary of M {sub BH} = 10{sup 6} M {sub ☉} in a circular orbit fits the light curve well. Tight binaries like this one, which have already overcome the 'final parsec problem', are prime sources of gravitational wave radiation once the two SMBHs coalesce. Future transient surveys, which will detect TDEs in large numbers, will place tight constraints on the SMBHB fraction in otherwise non-active galaxies.

  3. SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan

    2017-07-01

    We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R < 1Re). In the outer regions (R > 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.

  4. How environment drives galaxy evolution: Lessons learnt from satellite galaxies

    NASA Astrophysics Data System (ADS)

    Pasquali, A.

    2015-06-01

    It is by now well established that galaxy evolution is driven by intrinsic and environmental processes, both contributing to shape the observed properties of galaxies. A number of early studies, both observational and theoretical, have shown that the star formation activity of galaxies depends on their environmental local density and also on galaxy hierarchy, i.e. centrals vs. satellites. In fact, contrary to their central (most massive) galaxy of a group/cluster, satellite galaxies are stripped off their gas and stars and have their star formation quenched by their environment. Large galaxy surveys like SDSS now permit us to investigate in detail environment-driven transformation processes by comparing centrals and satellites. In this paper, I summarize what we have so far learnt about environmental effects by analysing the observed properties of local central and satellite galaxies in SDSS, as a function of their stellar mass and the dark matter mass of their host group/cluster.

  5. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, David H.; Beers, T.; Blanton, M.; Eisenstein, D.; Ford, H.; Ge, J.; Gillespie, B.; Gunn, J.; Klaene, M.; Knapp, G.; Kron, R.; Majewski, S.; Nichol, R.; O'Connell, R. W.; Raddick, M. J.; Rockosi, C.; Roe, N.; Schiavon, R.; Schneider, D.; Schlegel, D.; Skrutskie, M.; Snedden, S.; Strauss, M.; Wan, X.; White, M.

    2007-12-01

    Continuing the extraordinary legacy of the Sloan Digital Sky Survey (SDSS), SDSS-III will use the wide-field spectroscopic capabilities of the APO 2.5-meter telescope to carry out four surveys on three scientific themes: dark energy and cosmological parameters; the structure, dynamics, and chemical evolution of the Milky Way; and the structure of giant planet systems. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million luminous red galaxies and Lyman-alpha absorption towards 160,000 high redshift quasars. By using the baryon acoustic oscillation scale as a physically calibrated ruler, BOSS will determine the cosmic distance scale with percent-level precision at z=0.2-0.7 and z=2-3. SEGUE-2, an extension of the SDSS-II program SEGUE (Sloan Extension for Galactic Understanding and Exploration), will obtain optical spectra of 350,000 stars (resolution R=2,000, typical S/N=25) to probe the kinematics and chemical evolution of the outer Galaxy. The APO Galactic Evolution Experiment (APOGEE) will use high-resolution (R=20,000, S/N=100) H-band spectroscopy to penetrate interstellar dust obscuration, measuring radial velocities and detailed elemental abundance patterns of 100,000 red giant stars across the full range of the Galactic bulge, bar, disk, and halo. Together, SEGUE-2 and APOGEE will provide a picture of the Milky Way that is unprecedented in scope, richness, and detail. The Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will use fiber-fed interferometric spectrographs to monitor the radial velocities of 11,000 bright stars with the precision and cadence needed to detect gas giant planets having orbital periods from several hours to two years. MARVELS will provide a critical statistical data set for testing theories of the formation and dynamical evolution of planetary systems. The six-year SDSS-III program (2008-2014) is international in scope, with participating institutions from the U.S., Europe, and

  6. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  7. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  8. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~1014–1015 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precise (Δz ~ 0.001)more » redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  9. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    SciTech Connect

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J. -P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y. -T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H. -J.; Tinker, J.

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~1014–1015 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precise (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.

  10. NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES

    SciTech Connect

    De Putter, Roland; Mena, Olga; Giusarma, Elena; Ho, Shirley; Seo, Hee-Jong; White, Martin; Ross, Nicholas P.; Cuesta, Antonio; Ross, Ashley J.; Percival, Will J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey; Kirkby, David; Schneider, Donald P.; and others

    2012-12-10

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg{sup 2}, thus probing a volume of 3 h {sup -3} Gpc{sup 3} and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses {Sigma}m{sub {nu}} < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call ''CMASS'', with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small ({approx}1{sigma}-1.5{sigma}) bias in {Omega}{sub DM} h {sup 2}. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., {Sigma}m{sub {nu}} < 0.38 eV (95% CL) for WMAP+HST+CMASS (l{sub max} = 200). We also study the dependence of the neutrino bound on the multipole range (l{sub max} = 150 versus l{sub max} = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature {Omega}{sub K

  11. New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    de Putter, Roland; Mena, Olga; Giusarma, Elena; Ho, Shirley; Cuesta, Antonio; Seo, Hee-Jong; Ross, Ashley J.; White, Martin; Bizyaev, Dmitry; Brewington, Howard; Kirkby, David; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Percival, Will J.; Ross, Nicholas P.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Snedden, Stephanie

    2012-12-01

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg2, thus probing a volume of 3 h -3 Gpc3 and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses ∑m ν < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call "CMASS," with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (~1σ-1.5σ) bias in ΩDM h 2. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., ∑m ν < 0.38 eV (95% CL) for WMAP+HST+CMASS (lmax = 200). We also study the dependence of the neutrino bound on the multipole range (lmax = 150 versus lmax = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Ω K , while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from

  12. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  13. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-06-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {<=} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {<=} z {<=} 0.3. We find values for the cluster SN Ia rate of (0.37{sup +0.17+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.55{sup +0.13+0.02} {sub -0.11-0.01}) SNur h {sup 2} (SNux = 10{sup -12} L {sup -1} {sub xsun} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sup +0.18+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.49{sup +0.15+0.02} {sub -0.11-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sup +1.99+0.07} {sub -1.11-0.04}) SNur h {sup 2} and (0.36{sup +0.84+0.01} {sub -0.30-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sup +1.31+0.043} {sub -0.91-0.015} and 3.02{sup +1.31+0.062} {sub -1.03-0.048}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sup +0.15} {sub -0.14})+(0.91{sup +0.85} {sub -0.81}) x z] SNuB h {sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe

  14. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  15. TWO LENSED z {approx_equal} 3 LYMAN BREAK GALAXIES DISCOVERED IN THE SDSS GIANT ARCS SURVEY

    SciTech Connect

    Koester, Benjamin P.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva; Bayliss, Matthew B.; Hennawi, Joseph F.; Rigby, J. R.; Dahle, Hakon

    2010-11-01

    We report the discovery of two strongly lensed z {approx} 3 Lyman break galaxies (LBGs) discovered as u-band dropouts as part of the SDSS Giant Arcs Survey (SGAS). The first, SGAS J122651.3+215220 at z = 2.9233, is lensed by one of several sub-clusters, SDSS J1226+2152, in a complex massive cluster at z = 0.43. Its (g, r, i) magnitudes are (21.14, 20.60, 20.51) which translate to surface brightnesses, {mu} {sub g,r,i}, of (23.78, 23.11, 22.81). The second, SGAS J152745.1+065219, is an LBG at z = 2.7593 lensed by the foreground SDSS J1527+0652 at z = 0.39, with (g, r, z) = (20.90, 20.52, 20.58) and {mu} {sub g,r,z} = (25.15, 24.52, 24.12). Moderate resolution spectroscopy confirms the redshifts suggested by photometric breaks and shows both absorption and emission features typical of LBGs. Lens mass models derived from combined imaging and spectroscopy reveal that SGAS J122651.3+215220 is a highly magnified source (M {approx_equal} 40), while SGAS J152745.1+065219 is magnified by no more than M {approx_equal} 15. Compared with LBG survey results, the luminosities and lensing-corrected magnitudes suggest that SGAS J122651.3+215220 is among the faintest {approx_equal}20% of LBGs in that sample. SGAS J152745.1+065219, on the other hand, has an unlensed r-band apparent magnitude similar to that of the 'Cosmic Eye', which places it near the mean of LBG survey results over similar redshifts.

  16. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  17. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  18. SDSS IV MaNGA: Gradients in Recent Star Formation Histories as Diagnostics for Galaxy Growth and Death

    NASA Astrophysics Data System (ADS)

    Li, Cheng; MaNGA Team

    2016-01-01

    The spatially resolved spectroscopy from MaNGA allows the radial gradients of recent star formation histories (SFH), as indicated by the 4000Å break (D4000) and the equivalent width of both Hδ absorption line and Hα emission line, to be obtained with high accuracy for a large sample of galaxies in the nearby universe. Analyses of both a dozen galaxies observed by the MaNGA prototype run (P-MaNGA) and ~700 galaxies in the current MaNGA sample have shown that the SFH gradients are useful for understanding disk growth and star formation cessation in local galaxies. We find the SFH gradient of a galaxy to strongly depend on the evolution stage of its central region. Centrally star-forming galaxies generally show very weak or no radial variations. In contrast, centrally quiescent galaxies present significant radial gradients in the sense that Dn(4000) decreases, while both EW(HδA) and EW(Hα) increase from the galactic center outward. This effect is seen mainly for high-mass galaxies with stellar mass above a few ×1010 M⊙, and depends weakly on galaxy morphology type. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence. In this talk I will present these analyses and discuss their implications on galaxy evolution.

  19. On the run: mapping the escape speed across the Galaxy with SDSS

    NASA Astrophysics Data System (ADS)

    Williams, Angus A.; Belokurov, Vasily; Casey, Andrew R.; Evans, N. Wyn

    2017-06-01

    We measure the variation of the escape speed of the Milky Way across a range of ˜40 kpc in Galactocentric radius. The local escape speed is found to be 521^{+46}_{-30}{ km s^{-1}}, in good agreement with other studies. We find that this has already fallen to 379^{+34}_{-28}{ km s^{-1}} at a radius of 50 kpc. Through measuring the escape speed and its variation, we obtain constraints on the Galactic mass profile and rotation curve. The gradient in the escape speed suggests that the total mass contained within 50 kpc is 30^{+7}_{-5}× 10^{10} M_{⊙}, implying a relatively light dark halo for the Milky Way. The local circular speed is found to be v_c(R_0) = 223^{+40}_{-34}{ km s^{-1}} and falls with radius as a power law with index -0.19 ± 0.05. Our method represents a novel way of estimating the mass of the Galaxy, and has very different systematics to more commonly used models of tracers, which are more sensitive to the central parts of the halo velocity distributions. Using our inference on the escape speed, we then investigate the orbits of high-speed Milky Way dwarf galaxies. For each considered dwarf, we predict small pericentre radii and large orbital eccentricities. This naturally explains the large observed ellipticities of two of the dwarfs, which are likely to have been heavily disrupted at pericentre.

  20. Cross-correlation Weak Lensing of SDSS Galaxy Clusters I: Measurements

    SciTech Connect

    Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Ben P.; McKay, Timothy A.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Lin, Huan; Frieman, Joshua A.; Wechsler, Risa H.; Annis, James; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka

    2007-09-28

    This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes {approx}130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible and bounding them where not. We find that the profiles scale strongly with richness and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios and provide a cosmological interpretation.

  1. The Sunyaev-Zeldovich Signal of the maxBCG SDSS Galaxy Clusters in WMAP

    SciTech Connect

    Draper, Patrick; Dodelson, Scott; Hao, Jiangang; Rozo, Eduardo

    2012-01-01

    The Planck Collaboration measured the Sunyaev-Zel'dovich (SZ) decrement of optically selected clusters from the Sloan Digital Sky Survey, finding that it falls significantly below expectations based on existing mass calibration of the maxBCG galaxy clusters. Resolving this tension requires either the data to go up, or the theoretical expectations to come down. Here, we use data from the Wilkinson Microwave Anisotropy Probe (WMAP) to perform an independent estimate of the SZ decrement of maxBCG clusters. The recovered signal is consistent with that obtained using Planck, though with larger error bars due to WMAP's larger beam size and smaller frequency range. Nevertheless, this detection serves as an independent confirmation of the magnitude of the effect, and demonstrates that the observed discrepancy must be theoretical in origin.

  2. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS

    SciTech Connect

    Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Benjamin P.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Frieman, Joshua A.; McKay, Timothy A.; Lin Huan; Annis, James; Wechsler, Risa H.; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka

    2009-10-01

    This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes approx130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc h {sup -1}) well into the surrounding large-scale structure (30 Mpc h {sup -1}), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible. The resulting signals are calibrated to the approx10% level, with the dominant remaining uncertainty being the redshift distribution of the background sources. We find that the profiles scale strongly with richness and luminosity. We find that the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers, we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios, and provide a cosmological interpretation.

  3. The power spectrum and bispectrum of SDSS DR11 BOSS galaxies - II. Cosmological interpretation

    NASA Astrophysics Data System (ADS)

    Gil-Marín, Héctor; Verde, Licia; Noreña, Jorge; Cuesta, Antonio J.; Samushia, Lado; Percival, Will J.; Wagner, Christian; Manera, Marc; Schneider, Donald P.

    2015-09-01

    We examine the cosmological implications of the measurements of the linear growth rate of cosmological structure obtained in a companion paper from the power spectrum and bispectrum monopoles of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 11, CMASS galaxies. This measurement was of f 0.43σ8, where σ8 is the amplitude of dark matter density fluctuations, and f is the linear growth rate, at the effective redshift of the survey, zeff = 0.57. In conjunction with cosmic microwave background (CMB) data, interesting constraints can be placed on models with non-standard neutrino properties and models where gravity deviates from General Relativity on cosmological scales. In particular, the sum of the masses of the three species of the neutrinos is constrained to mν < 0.49 eV (at 95 per cent confidence level) when the f 0.43σ8 measurement is combined with state-of-the-art CMB measurements. Allowing the effective number of neutrinos to vary as a free parameter does not significantly change these results. When we combine the measurement of f 0.43σ8 with the complementary measurement of fσ8 from the monopole and quadrupole of the two-point correlation function, we are able to obtain an independent measurements of f and σ8. We obtain f = 0.63 ± 0.16 and σ8 = 0.710 ± 0.086 (68 per cent confidence level). This is the first time when these parameters have been able to be measured independently using the redshift-space power spectrum and bispectrum measurements from galaxy clustering data only.

  4. The 3XMM/SDSS Stripe 82 Galaxy Cluster Survey. I. Cluster catalogue and discovery of two merging cluster candidates

    NASA Astrophysics Data System (ADS)

    Takey, A.; Durret, F.; Mahmoud, E.; Ali, G. B.

    2016-10-01

    We present a galaxy cluster survey based on XMM-Newton observations that are located in Stripe 82 of the Sloan Digital Sky Survey (SDSS). The survey covers an area of 11.25 deg2. The X-ray cluster candidates were selected as serendipitously extended detected sources from the third XMM-Newton serendipitous source catalogue (3XMM-DR5). A cross-correlation of the candidate list that comprises 94 objects with recently published X-ray and optically selected cluster catalogues provided optical confirmations and redshift estimates for about half of the candidate sample. We present a catalogue of X-ray cluster candidates previously known in X-ray and/or optical bands from the matched catalogues or NED. The catalogue consists of 54 systems with redshift measurements in the range of 0.05-1.19 with a median of 0.36. Of these, 45 clusters have spectroscopic confirmations as stated in the matched catalogues. We spectroscopically confirmed another 6 clusters from the available spectroscopic redshifts in the SDSS-DR12. The cluster catalogue includes 17 newly X-ray discovered clusters, while the remainder were detected in previous XMM-Newton and/or ROSAT cluster surveys. Based on the available redshifts and fluxes given in the 3XMM-DR5 catalogue, we estimated the X-ray luminosities and masses for the cluster sample. We also present the list of the remaining X-ray cluster candidates (40 objects) that have no redshift information yet in the literature. Of these candidates, 25 sources are considered as distant cluster candidates beyond a redshift of 0.6. We also searched for galaxy cluster mergers in our cluster sample and found two strong candidates for newly discovered cluster mergers at redshifts of 0.11 and 0.26. The X-ray and optical properties of these systems are presented. Tables A.1, C.1, and C.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A32

  5. Web life: Galaxy Zoo Mergers

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Many readers will already be familiar with the Galaxy Zoo, a project that allows members of the public to trawl through images of galaxies obtained by the Sloan Digital Sky Survey (SDSS) and classify them according to their shape and features (see Physics World September 2008 pp27-30). The image-processing power of the site's 150 000 "citizen scientists" has already helped astronomers pick out interesting spiral and elliptical galaxies for further study. Now a new offshoot - dubbed Galaxy Zoo: Understanding Cosmic Mergers - aims to use similar "crowdsourcing" methods to enhance our knowledge of interacting galaxies.

  6. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. III. MASS-TO-LIGHT RATIOS

    SciTech Connect

    Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; Blanton, Michael R.; McKay, Timothy A.; Scranton, Ryan; Wechsler, Risa H.; Koester, Benjamin P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James

    2009-10-01

    We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the Sloan Digital Sky Survey. This red-sequence cluster sample includes objects from small groups with M {sub 200} approx 5 x 10{sup 12} h {sup -1} M {sub sun} to clusters with M {sub 200} approx 10{sup 15} h {sup -1} M {sub sun}. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean DELTArho(r)=rho(r)-rho-bar for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density DELTAl(r)=l(r)-l-bar measured in the z = 0.25 i band. For both mass and light, we de-project the profiles to produce three-dimensional mass and light profiles over scales from 25 h {sup -1} kpc to 22 h {sup -1} Mpc. From these profiles we calculate the cumulative excess mass DELTAM(r) and excess light DELTAL(r) as a function of separation from the BCG. On small scales, where rho(r)>>rho-bar, the integrated mass-to-light profile (DELTAM/DELTAL)(r) may be interpreted as the cluster M/L. We find the (DELTAM/DELTAL){sub 200}, the M/L within r {sub 200}, scales with cluster mass as a power law with index 0.33 +- 0.02. On large scales, where rho(r)approxrho-bar, the DELTAM/DELTAL approaches an asymptotic value independent of cluster richness. For small groups, the mean (DELTAM/DELTAL){sub 200} is much smaller than the asymptotic value, while for large clusters (DELTAM/DELTAL){sub 200} is consistent with the asymptotic value. This asymptotic value should be proportional to the mean M/L of the universe (M/L). We find (M/L)b{sup -2} {sub M/L} = 362 +- 54h (statistical). There is additional uncertainty in the overall calibration at the approx10% level. The parameter b {sup 2} {sub M/L} is primarily a function of the bias of the L approx< L {sub *} galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find OMEGA {sub m}b{sup -2} {sub M

  7. GALEX-SDSS-WISE Legacy Catalog (GSWLC): Star Formation Rates, Stellar Masses, and Dust Attenuations of 700,000 Low-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Salim, Samir; Lee, Janice C.; Janowiecki, Steven; da Cunha, Elisabete; Dickinson, Mark; Boquien, Médéric; Burgarella, Denis; Salzer, John J.; Charlot, Stéphane

    2016-11-01

    In this paper, we present the GALEX-SDSS-WISE Legacy Catalog (GSWLC), a catalog of physical properties (stellar masses, dust attenuations, and star formation rates [SFRs]) for ˜700,000 galaxies with Sloan Digital Sky Survey (SDSS) redshifts below 0.3. GSWLC contains galaxies within the Galaxy Evolution Explorer footprint, regardless of a UV detection, covering 90% of SDSS. The physical properties were obtained from UV/optical spectral energy distribution (SED) fitting following Bayesian methodology of Salim et al., with improvements such as blending corrections for low-resolution UV photometry, flexible dust attenuation laws, and emission-line corrections. GSWLC also includes mid-IR SFRs derived from IR templates based on 22 μ {{m}} Wide-field Infrared Survey Explorer observations. These estimates are independent of UV/optical SED fitting, in order to separate possible systematics. The paper argues that the comparison of specific SFRs (sSFRs) is more informative and physically motivated than the comparison of SFRs. The sSFRs resulting from the UV/optical SED fitting are compared to the mid-IR sSFRs and to sSFRs from three published catalogs. For “main-sequence” galaxies with no active galactic nucleus (AGN) all sSFRs are in very good agreement (within 0.1 dex on average). In particular, the widely used aperture-corrected SFRs from the MPA/JHU catalog show no systematic offsets, in contrast to some integral field spectroscopy results. For galaxies below the main sequence (log sSFR \\lt -11), mid-IR (s)SFRs based on fixed luminosity-SFR conversion are severely biased (up to 2 dex) because the dust is primarily heated by old stars. Furthermore, mid-IR (s)SFRs are overestimated by up to 0.6 dex for galaxies with AGNs, presumably due to nonstellar dust heating. UV/optical (s)SFRs are thus preferred to IR-based (s)SFRs for quenched galaxies and those that host AGNs.

  8. At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data

    NASA Astrophysics Data System (ADS)

    Torrealba, G.; Koposov, S. E.; Belokurov, V.; Irwin, M.; Collins, M.; Spencer, M.; Ibata, R.; Mateo, M.; Bonaca, A.; Jethwa, P.

    2016-11-01

    We announce the discovery of the Aquarius 2 dwarf galaxy, a new distant satellite of the Milky Way, detected on the fringes of the VLT Survey Telescope (VST) ATLAS and the Sloan Digital Sky Survey (SDSS) surveys. The object was originally identified as an overdensity of red giant branch stars, but chosen for subsequent follow-up based on the presence of a strong blue horizontal branch, which was also used to measure its distance of ˜110 kpc. Using deeper imaging from the Inamori-Magellan Areal Camera and Spectrograph camera on the 6.5m Baade and spectroscopy with DEep Imaging Multi-Object Spectrograph on Keck, we measured the satellite's half-light radius 5.1 ± 0.8 arcmin, or ˜160 pc at this distance, and its stellar velocity dispersion of 5.4^{+3.4}_{-0.9} km s-1. With μ = 30.2 mag arcsec-2 and MV = -4.36, the new satellite lies close to two important detection limits: one in surface brightness; and one in luminosity at a given distance, thereby making Aquarius 2 one of the hardest dwarfs to find.

  9. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Takey, A.; Shoukry, A.

    2016-07-01

    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1-0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

  10. The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Samushia, Lado; Howlett, Cullan; Percival, Will J.; Burden, Angela; Manera, Marc

    2015-05-01

    We create a sample of spectroscopically identified galaxies with z < 0.2 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), covering 6813 deg2. Galaxies are chosen to sample the highest mass haloes, with an effective bias of 1.5, allowing us to construct 1000 mock galaxy catalogues (described in Paper II), which we use to estimate statistical errors and test our methods. We use an estimate of the gravitational potential to `reconstruct' the linear density fluctuations, enhancing the baryon acoustic oscillation (BAO) signal in the measured correlation function and power spectrum. Fitting to these measurements, we determine DV(zeff = 0.15) = (664 ± 25)(rd/rd, fid) Mpc; this is a better than 4 per cent distance measurement. This `fills the gap' in BAO distance ladder between previously measured local and higher redshift measurements, and affords significant improvement in constraining the properties of dark energy. Combining our measurement with other BAO measurements from Baryon Oscillation Spectroscopic Survey and 6-degree Field Galaxy Redshift Survey galaxy samples provides a 15 per cent improvement in the determination of the equation of state of dark energy and the value of the Hubble parameter at z = 0 (H0). Our measurement is fully consistent with the Planck results and the Λ cold dark matter concordance cosmology, but increases the tension between Planck+BAO H0 determinations and direct H0 measurements.

  11. A Tale of Three Galaxies: Anomalous Dust Properties in IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Hao, Lei; Li, Aigen

    2014-10-01

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ~5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  12. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  13. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O ii]λλ3726, 3729, [O iii]λ5007, [N ii]λλ6549, 6584, and [S ii]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, i.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O ii] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H ii regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H ii regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N ii]/Hα and [O ii]/Hα ratios between the disk and the halo. SDSS IV.

  14. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  15. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  16. The Color and Stellar Mass Dependence of Small-scale Galaxy Clustering in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Eisenstein, Daniel J.

    2017-02-01

    We measure the color and stellar mass dependence of clustering in spectroscopic galaxies at 0.6 < z < 0.65 using data from the Baryon Oscillation Spectroscopic Survey component of the Sloan Digital Sky Survey. We greatly increase the statistical precision of our clustering measurements by using the cross-correlation of 66,657 spectroscopic galaxies to a sample of 6.6 million fainter photometric galaxies. The clustering amplitude w(R) is measured as the ratio of the mean excess number of photometric galaxies found within a specified radius annulus around a spectroscopic galaxy to that from a random photometric galaxy distribution. We recover many of the familiar trends at high signal-to-noise ratio. We find the ratio of the clustering amplitudes of red and blue massive galaxies to be {w}{red}/{w}{blue}=1.92+/- 0.11 in our smallest annulus of 75–125 kpc. At our largest radii (2–4 Mpc), we find {w}{red}/{w}{blue}=1.24+/- 0.05. Red galaxies therefore have denser environments than their blue counterparts at z ∼ 0.625, and this effect increases with decreasing radius. Irrespective of color, we find that w(R) does not obey a simple power-law relation with radius, showing a dip around 1 Mpc. Holding stellar mass fixed, we find a clear differentiation between clustering in red and blue galaxies, showing that clustering is not solely determined by stellar mass. Holding color fixed, we find that clustering increases with stellar mass, especially for red galaxies at small scales (more than a factor of 2 effect over 0.75 dex in stellar mass).

  17. Morphological Galaxy Classification with Shapelets

    NASA Astrophysics Data System (ADS)

    Andrae, René; Melchior, Peter

    2008-12-01

    We present an unsupervised classification algorithm, that identifies natural classes of galaxy morphologies. Working on SDSS G-band imaging data, we encode the morphologies by shapelet decomposition. The algorithm employs a model-based soft clustering analysis to find groupings of similar data points. We demonstrate that the algorithm is able to clearly identify and distinguish groups of elliptical, face-on and edge-on spiral galaxies in a training data set. Based on the soft clustering results, we set up a soft classifier for a data set containing 1602 SDSS galaxies.

  18. Cosmic Voids in the SDSS DR12 BOSS Galaxy Sample: The Alcock-Paczynski Test

    NASA Astrophysics Data System (ADS)

    Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.

    2017-02-01

    We apply the Alcock–Paczyński (AP) test to stacked voids identified using the final data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We also use 1000 mock galaxy catalogs that match the geometry, density, and clustering properties of the BOSS sample in order to characterize the statistical uncertainties of our measurements and take into account systematic errors such as redshift space distortions. For both BOSS data and mock catalogs, we use the ZOBOV algorithm to identify voids, we stack together all voids with effective radii of 30{--}100 {h}-1 {Mpc} in the redshift range of 0.43–0.7, and we accurately measure the shape of the stacked voids. Our tests with the mock catalogs show that we measure the stacked void ellipticity with a statistical precision of 2.6%. The stacked voids in redshift space are slightly squashed along the line of sight, consistent with previous studies. We repeat this measurement of stacked void shape in the BOSS data, assuming several values of {{{Ω }}}{{m}} within the flat {{Λ }}{CDM} model, and we compare this to the mock catalogs in redshift space to perform the AP test. We obtain a constraint of {{{Ω }}}{{m}}={0.38}-0.15+0.18 at the 68% confidence level from the AP test. We discuss the sources of statistical and systematic noise that affect the constraining power of this method. In particular, we find that the measured ellipticity of stacked voids changes more weakly with cosmology than the standard AP prediction, leading to significantly weaker constraints. We discuss how constraints will improve in future surveys with larger volumes and densities.

  19. The 2XMMi/SDSS Galaxy Cluster Survey. I. The first cluster sample and X-ray luminosity-temperature relation

    NASA Astrophysics Data System (ADS)

    Takey, A.; Schwope, A.; Lamer, G.

    2011-10-01

    We present a catalogue of X-ray selected galaxy clusters and groups as a first release of the 2XMMi/SDSS Galaxy Cluster Survey. The survey is a search for galaxy clusters detected serendipitously in observations with XMM-Newton in the footprint of the Sloan Digital Sky Survey (SDSS). The main aims of the survey are to identify new X-ray galaxy clusters, investigate their X-ray scaling relations, identify distant cluster candidates, and study the correlation of the X-ray and optical properties. In this paper, we describe the basic strategy to identify and characterize the X-ray cluster candidates that currently comprise 1180 objects selected from the second XMM-Newton serendipitous source catalogue (2XMMi-DR3). Cross-correlation of the initial catalogue with recently published optically selected SDSS galaxy cluster catalogues yields photometric redshifts for 275 objects. Of these, 182 clusters have at least one member with a spectroscopic redshift from existing public data (SDSS-DR8). We developed an automated method to reprocess the XMM-Newton X-ray observations, determine the optimum source extraction radius, generate source and background spectra, and derive the temperatures and luminosities of the optically confirmed clusters. Here we present the X-ray properties of the first cluster sample, which comprises 175 clusters, among which 139 objects are new X-ray discoveries while the others were previously known as X-ray sources. For each cluster, the catalogue provides: two identifiers, coordinates, temperature, flux [0.5-2] keV, luminosity [0.5-2] keV extracted from an optimum aperture, bolometric luminosity L500, total mass M500, radius R500, and the optical properties of the counterpart. The first cluster sample from the survey covers a wide range of redshifts from 0.09 to 0.61, bolometric luminosities L500 = 1.9 × 1042-1.2 × 1045 erg s-1, and masses M500 = 2.3 × 1013-4.9 × 1014 M⊙. We extend the relation between the X-ray bolometric luminosity L500 and

  20. Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Baldry, I. K.; Alpaslan, M.; Bauer, A.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Conselice, C.; Driver, S. P.; Hopkins, A. M.; Jones, D. H.; López-Sánchez, Á. R.; Loveday, J.; Meyer, M. J.; Moffett, A.

    2015-06-01

    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s-1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter `Ef' classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys.

  1. Isolated Galaxies and Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, C.; Choi, Y. Y.

    2010-10-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.

  2. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    SciTech Connect

    Tanaka, Masaomi; Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki; Itoh, Ryosuke; Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Tominaga, Nozomu; Saito, Yoshihiko; Kawai, Nobuyuki; Stawarz, Łukasz; Gandhi, Poshak; Ali, Gamal; Essam, Ahmad; Hamed, Gamal; Aoki, Tsutomu; Contreras, Carlos; Hsiao, Eric Y.; Iwata, Ikuru; and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  3. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  4. VizieR Online Data Catalog: Metallicity of MPA-JHU SDSS-DR7 dwarf galaxies (Douglass+, 2017)

    NASA Astrophysics Data System (ADS)

    Douglass, K. A.; Vogeley, M. S.

    2017-07-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [OIII] and [SII] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [OII]λ3727, [OIII]λ4363, and [OIII]λλ4959,5007, we estimate the abundance of oxygen with the direct Te method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions. (1 data file).

  5. Characterizing the chemically enriched circumgalactic medium of ˜38 000 luminous red galaxies in SDSS DR12

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Hsin; Chen, Hsiao-Wen; Johnson, Sean D.; Weiner, Benjamin J.

    2016-01-01

    We report a definitive detection of chemically enriched cool gas around massive quiescent galaxies at z ≈ 0.4-0.7. The result is based on a survey of 37 621 luminous red galaxy (LRG)-quasi-stellar object pairs in SDSS DR12 with projected distance d < 500 kpc. The LRGs are characterized by a predominantly old stellar population (age ≳ 1 Gyr) with 13 per cent displaying [O II] emission features and LINER-like spectra. Both passive and [O II]-emitting LRGs share the same stellar mass distribution with a mean of ≈ 11.4 and a dispersion of 0.2 dex. Both LRG populations exhibit associated strong Mg II absorbers out to d < 500 kpc. The mean gas covering fraction at d ≲ 120 kpc is < κ rangle _{Mg II} > 15 per cent and declines quickly to < κ rangle _{Mg II} ≈ 5 per cent at d ≲ 500 kpc. No clear dependence on stellar mass is detected for the observed Mg II absorption properties. The observed velocity dispersion of Mg II-absorbing gas relative to either passive or [O II]-emitting LRGs is merely 60 per cent of what is expected from virial motion in these massive haloes. While no apparent azimuthal dependence is seen for < κ rangle _{Mg II} around passive LRGs at all radii, a modest enhancement in < κ rangle _{Mg II} is detected along the major axis of [O II]-emitting LRGs at d < 50 kpc. The suppressed velocity dispersion of Mg II-absorbing gas around both passive and [O II]-emitting LRGs, together with an elevated < κ rangle _{Mg II} along the major axis of [O II]-emitting LRGs at d < 50 kpc, provides important insights into the origin of the observed chemically enriched cool gas in LRG haloes. We consider different scenarios and conclude that the observed Mg II absorbers around LRGs are best explained by a combination of cool clouds formed in thermally unstable LRG haloes and satellite accretion through filaments.

  6. SUPERLUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity L{sub r} = 8–14L* (4.3–7.5 × 10{sup 44} erg s{sup −1}). These super spiral galaxies are also giant and massive, with diameter D = 57–134 kpc and stellar mass M{sub stars} = 0.3–3.4 × 10{sup 11}M{sub ⊙}. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and L{sub r} > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5–65 M{sub ⊙} yr{sup −1} place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  7. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function

    NASA Astrophysics Data System (ADS)

    Peng, Ying-jie; Lilly, Simon J.; Kovač, Katarina; Bolzonella, Micol; Pozzetti, Lucia; Renzini, Alvio; Zamorani, Gianni; Ilbert, Olivier; Knobel, Christian; Iovino, Angela; Maier, Christian; Cucciati, Olga; Tasca, Lidia; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; de Ravel, Loic; Sanders, David; Scoville, Nicholas; Contini, Thierry; Mainieri, Vincenzo; Scodeggio, Marco; Kneib, Jean-Paul; Le Fèvre, Olivier; Bardelli, Sandro; Bongiorno, Angela; Caputi, Karina; Coppa, Graziano; de la Torre, Sylvain; Franzetti, Paolo; Garilli, Bianca; Lamareille, Fabrice; Le Borgne, Jean-Francois; Le Brun, Vincent; Mignoli, Marco; Perez Montero, Enrique; Pello, Roser; Ricciardelli, Elena; Tanaka, Masayuki; Tresse, Laurence; Vergani, Daniela; Welikala, Niraj; Zucca, Elena; Oesch, Pascal; Abbas, Ummi; Barnes, Luke; Bordoloi, Rongmon; Bottini, Dario; Cappi, Alberto; Cassata, Paolo; Cimatti, Andrea; Fumana, Marco; Hasinger, Gunther; Koekemoer, Anton; Leauthaud, Alexei; Maccagni, Dario; Marinoni, Christian; McCracken, Henry; Memeo, Pierdomenico; Meneux, Baptiste; Nair, Preethi; Porciani, Cristiano; Presotto, Valentina; Scaramella, Roberto

    2010-09-01

    We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z ~ 1, leading to the idea of two distinct processes of "mass quenching" and "environment quenching." The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z ~ 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and αs for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by Δαs ~ 1. The other component is produced by environment effects and has the same M* and αs as the

  8. MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION

    SciTech Connect

    Peng Yingjie; Lilly, Simon J.; Kovac, Katarina; Knobel, Christian; Maier, Christian; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; Bolzonella, Micol; Pozzetti, Lucia; Zamorani, Gianni; Renzini, Alvio; Ilbert, Olivier; Cucciati, Olga; De Ravel, Loic; Iovino, Angela; Tasca, Lidia; Sanders, David; Scoville, Nicholas; Contini, Thierry

    2010-09-20

    We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z {approx} 1, leading to the idea of two distinct processes of 'mass quenching' and 'environment quenching'. The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z {approx} 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and {alpha}{sub s} for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by {Delta}{alpha}{sub s} {approx} 1. The other component is produced by

  9. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  10. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  11. Changing Ionization Conditions in SDSS Galaxies with Active Galactic Nuclei as a Function of Environment from Pairs to Clusters

    NASA Astrophysics Data System (ADS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  12. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  13. THE QUASAR-GALAXY CROSS SDSS J1320+1644: A PROBABLE LARGE-SEPARATION LENSED QUASAR

    SciTech Connect

    Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Shin, Min-Su; Sluse, Dominique; Strauss, Michael A.

    2013-03-10

    We report the discovery of a pair of quasars at z = 1.487, with a separation of 8.''585 {+-} 0.''002. Subaru Telescope infrared imaging reveals the presence of an elliptical and a disk-like galaxy located almost symmetrically between the quasars, in a cross-like configuration. Based on absorption lines in the quasar spectra and the colors of the galaxies, we estimate that both galaxies are located at redshift z = 0.899. This, as well as the similarity of the quasar spectra, suggests that the system is a single quasar multiply imaged by a galaxy group or cluster acting as a gravitational lens, although the possibility of a binary quasar cannot be fully excluded. We show that the gravitational lensing hypothesis implies that these galaxies are not isolated, but must be embedded in a dark matter halo of virial mass {approx}4 Multiplication-Sign 10{sup 14} h {sup -1}{sub 70} M{sub Sun} assuming a Navarro-Frenk-White model with a concentration parameter of c{sub vir} = 6, or a singular isothermal sphere profile with a velocity dispersion of {approx}670 km s{sup -1}. We place constraints on the location of the dark matter halo, as well as the velocity dispersions of the galaxies. In addition, we discuss the influence of differential reddening, microlensing, and intrinsic variability on the quasar spectra and broadband photometry.

  14. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  15. HETDEX: Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Drory, Niv; Gebhardt, K.; Jogee, S.; Fabricius, M.; Greene, J.; HETDEX Collaboration

    2012-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey using the VIRUS instrument. VIRUS consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. The IFUs have a fill-factor of 1/3 which will be filled-in by dithering. We cover 1/4.5 of our 300-square-degree main survey area with fibers. We reach m_AB 22.6 (21.5,20.7) at S/N 3 (5,10) per resolution element. With these limits, g 17 spiral galaxies will have S/N>3 per resolution element per fiber in the continuum to 2 effective radii, and emission line spectra to at least their optical radius. HETDEX will spatially resolve 4000 local galaxies to that limit without any pre-selection; an additional 9000 local galaxies will have spatially resolved spectroscopy beyond that limit. At g 19 we still obtain integrated galaxy spectra at S/N 10 per resolution element in the continuum. These spatially resolved absorption and emission spectra provide information on star formation, the state of the IGM, and stellar populations, as well as rotation curves for an unbiased galaxy sample unprecedented in size. Since a wealth of information about a galaxy's formation history is encoded in gradients across the galaxy, moving from single-fiber (SDSS-like) spectra to large samples of spatially resolved galaxy spectroscopy opens a new parameter space for future studies of galaxy formation.

  16. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  17. Three-point Correlation Functions of SDSS Galaxies: Luminosity and Color Dependence in Redshift and Projected Space

    NASA Astrophysics Data System (ADS)

    McBride, Cameron K.; Connolly, Andrew J.; Gardner, Jeffrey P.; Scranton, Ryan; Newman, Jeffrey A.; Scoccimarro, Román; Zehavi, Idit; Schneider, Donald P.

    2011-01-01

    The three-point correlation function (3PCF) provides an important view into the clustering of galaxies that is not available to its lower order cousin, the two-point correlation function (2PCF). Higher order statistics, such as the 3PCF, are necessary to probe the non-Gaussian structure and shape information expected in these distributions. We measure the clustering of spectroscopic galaxies in the Main Galaxy Sample of the Sloan Digital Sky Survey, focusing on the shape or configuration dependence of the reduced 3PCF in both redshift and projected space. This work constitutes the largest number of galaxies ever used to investigate the reduced 3PCF, using over 220,000 galaxies in three volume-limited samples. We find significant configuration dependence of the reduced 3PCF at 3-27 h -1 Mpc, in agreement with ΛCDM predictions and in disagreement with the hierarchical ansatz. Below 6 h -1 Mpc, the redshift space reduced 3PCF shows a smaller amplitude and weak configuration dependence in comparison with projected measurements suggesting that redshift distortions, and not galaxy bias, can make the reduced 3PCF appear consistent with the hierarchical ansatz. The reduced 3PCF shows a weaker dependence on luminosity than the 2PCF, with no significant dependence on scales above 9 h -1 Mpc. On scales less than 9 h -1 Mpc, the reduced 3PCF appears more affected by galaxy color than luminosity. We demonstrate the extreme sensitivity of the 3PCF to systematic effects such as sky completeness and binning scheme, along with the difficulty of resolving the errors. Some comparable analyses make assumptions that do not consistently account for these effects.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    DOE PAGES

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; ...

    2016-06-26

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ8(z), and the physical matter density Ωmh2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationallymore » expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.« less

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    SciTech Connect

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; Ross, Ashley J.; Zhao, Gong Bo; Wang, Yuting; Antonio J. Cuesta; Rubino-Martin, J. A.; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J.; Gil-Martin, Hector; Grieb, Jan Kiklas; Ho, Shirley; Kitaura, Francisco -Shu; Percival, Will J.; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sanchez, Ariel G.; Satpathy, Siddharth; Slosar, Anze; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.; Brownstein, Joel R.; Nichol, Robert C.; Olmstead, Matthew D.

    2016-08-08

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ8(z), and the physical matter density Ωmh2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.

  20. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    SciTech Connect

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; Ross, Ashley J.; Zhao, Gong Bo; Wang, Yuting; Antonio J. Cuesta; Rubino-Martin, J. A.; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J.; Gil-Martin, Hector; Grieb, Jan Kiklas; Ho, Shirley; Kitaura, Francisco -Shu; Percival, Will J.; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sanchez, Ariel G.; Satpathy, Siddharth; Slosar, Anze; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.; Brownstein, Joel R.; Nichol, Robert C.; Olmstead, Matthew D.

    2016-06-26

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ8(z), and the physical matter density Ωmh2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.

  1. Interacting Galaxies

    NASA Image and Video Library

    2008-04-24

    This beautiful pair of interacting galaxies consists of NGC 5754, the large spiral on the right, and NGC 5752, the smaller companion in the bottom left corner of the image. This image is from NASA Hubble Space Telescope.

  2. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  3. Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Walterbos, R.; Murdin, P.

    2000-11-01

    The Andromeda galaxy is the closest SPIRAL GALAXY to the MILKY WAY, just visible to the naked eye on a dark night as a faint smudge of light in the constellation Andromeda. The earliest records of the Andromeda nebula, as it is still often referred to, date back to AD 964, to the `Book of the Fixed Stars' published by the Persian astronomer AL-SÛFI. The first European to officially note the Andro...

  4. Photometric redshifts and model spectral energy distributions of galaxies from the SDSS-III BOSS DR10 data

    NASA Astrophysics Data System (ADS)

    Greisel, N.; Seitz, S.; Drory, N.; Bender, R.; Saglia, R. P.; Snigula, J.

    2015-08-01

    We construct a set of model spectra specifically designed to match the colours of the Baryon Oscillation Spectroscopic Survey CMASS galaxies and to be used with photometric redshift template fitting techniques. As a basis, we use a set of spectral energy distributions(SEDs) of single and composite stellar population models. These models cannot describe well the whole colour range populated by the CMASS galaxies at all redshifts, wherefore we modify them by multiplying the SEDs with λ-β for λ > λi for different values of λi and β. When fitting these SEDs to the colours of the CMASS sample, with a burst and dust components in superposition, we can recreate the location in colour spaces inhabited by the CMASS galaxies. From the best-fitting models, we select a small subset in a two-dimensional plane, whereto the galaxies were mapped by a self-organizing map. These models are used for the estimation of photometric redshifts with a Bayesian template fitting code. The photometric redshifts with the novel templates have a very small outlier rate of 0.22 per cent, a low bias <Δz/(1 + z)> = 2.0 × 10-3, and scatter of σ68 = 0.026 in the rest frame. Using our models, the galaxy colours are reproduced to a better extent with the photometric redshifts of this work than with photometric redshifts of Sloan Digital Sky Survey.

  5. VizieR Online Data Catalog: Kohonen selected E+A galaxies from SDSS DR7 (Meusinger+, 2017)

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Bruenecke, J.; Schalldach, P.; in der, Au A.

    2016-11-01

    We present a catalogue of 2665 E+A galaxies of type E+A. The selection is based on a huge Kohonen self-organising map (SOM) of about one million spectra from the Sloan Digital Sky Survey Data Release 7 and is defined by the following criteria for the equivalent widths (EW) of the Halpha, Hdelta and [OII] lines: EW(Hα)>-5Å, EW(Hδ)>3Å, EW([OII])>-5Å (positive values for absorption). The galaxy redshifts cover the range z=0.02 to 0.4, with a mean redshift of z=0.13. The catalogue contains the redshift and EWs. In addition, morphological types from the Galaxy Zoo project are listed. (1 data file).

  6. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel

    2016-08-01

    We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.

  7. A Tale of Three Galaxies: Deciphering the Infrared Emission of the Spectroscopically Anomalous Galaxies IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei; Nikutta, Robert

    2015-08-01

    The Spitzer/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep ˜5-8 μm emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep ˜5-8 μm emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions (“astronomical silicate,” amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these galaxies. We find that the dust temperature is the primary cause in regulating the steep ˜5-8 μm continuum and silicate emission, insensitive to the exact silicate or carbon dust mineralogy and grain size a as long as a≲ 1 μ {{m}}. More specifically, the temperature of the ˜5-8 μm continuum emitter (which is essentially carbon dust) of these galaxies is ˜250-400 K, much lower than that of typical quasars, which is ˜640 K. Moreover, it appears that larger dust grains are preferred in quasars. The lower dust temperature and smaller grain sizes inferred for these three galaxies compared with that of quasars could be due to the fact that they may harbor a young/weak AGNs that is not maturely developed yet.

  8. SDSS J143244.91+301435.3: a link between radio-loud narrow-line Seyfert 1 galaxies and compact steep-spectrum radio sources?

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Antón, S.; Ballo, L.; Dallacasa, D.; Della Ceca, R.; Fanali, R.; Foschini, L.; Hamilton, T.; Kraus, A.; Maccacaro, T.; Mack, K.-H.; Marchã, M. J.; Paulino-Afonso, A.; Sani, E.; Severgnini, P.

    2014-06-01

    We present SDSS J143244.91+301435.3, a new case of a radio-loud narrow-line Seyfert 1 (RL NLS1) with a relatively high radio power (P1.4 GHz = 2.1 × 1025 W Hz-1) and large radio-loudness parameter (R1.4 = 600 ± 100). The radio source is compact with a linear size below ˜1.4 kpc but, in contrast to most of the RL NLS1 discovered so far with such a high R1.4, its radio spectrum is very steep (α = 0.93, Sν ∝ ν-α) and does not support a `blazar-like' nature. Both the small mass of the central supermassive black hole and the high accretion rate relative to the Eddington limit estimated for this object (3.2 × 107 M⊙ and 0.27, respectively, with a formal error of ˜0.4 dex for both quantities) are typical of the NLS1 class. Through modelling the spectral energy distribution of the source, we have found that the galaxy hosting SDSS J143244.91+301435.3 is undergoing quite intense star formation (SFR = 50 M⊙ yr-1), which, however, is expected to contribute only marginally (˜1 per cent) to the observed radio emission. The radio properties of SDSS J143244.91+301435.3 are remarkably similar to those of compact steep-spectrum (CSS) radio sources, a class of active galactic nuclei (AGN) mostly composed of young radio galaxies. This may suggest a direct link between these two classes of AGN, with CSS sources possibly representing the misaligned version (the so-called `parent population') of RL NLS1 showing blazar characteristics.

  9. On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies. GMOS-IFU spectroscopy and SDSS photometry of the double-knot galaxy HS 2236+1344

    NASA Astrophysics Data System (ADS)

    Lagos, P.; Papaderos, P.; Gomes, J. M.; Smith Castelli, A. V.; Vega, L. R.

    2014-09-01

    Aims: The main goal of this study is to carry out a spatially resolved investigation of the warm interstellar medium (ISM) in the extremely metal-poor blue compact dwarf (BCD) galaxy HS 2236+1344. Special emphasis is laid on analysis of the spatial distribution of chemical abundances, emission-line ratios, and the kinematics of the ISM, and to the recent star-forming (SF) activity in this galaxy. Methods: This study is based on optical integral field unit spectroscopy data from Gemini Multi-Object Spectrograph (GMOS) at the Gemini North telescope and archival Sloan Digital Sky Survey (SDSS) images. The galaxy was observed at medium spectral resolution over the spectral range from ~4300 Å to 7300 Å. The data were obtained in two different positions across the galaxy, obtaining a total 4″ × 8″ field that encompasses most of its ISM. Results: Emission-line maps and broad-band images obtained in this study indicate that HS 2236+1344 hosts three giant H ii regions (GH iiRs). Our data also reveal some faint curved features in the BCD periphery that might be due to tidal perturbations or expanding ionized-gas shells. The ISM velocity field shows systematic gradients along the major axis of the BCD, with its southeastern and northwestern half differing by ~80 km s-1 in their recessional velocity over the field of view. The Hα and Hβ equivalent-width distribution in the central part of HS 2236+1344 is consistent with a very young (~3 Myr) burst. Our surface photometry analysis reveals an underlying low surface brightness component with moderately red colors, which suggest that the galaxy has undergone previous star formation. We derive an integrated oxygen abundance of 12 + log (O / H) = 7.53 ± 0.06 and a nitrogen-to-oxygen ratio of log (N / O) = -1.57 ± 0.19. Our results are consistent, within the uncertainties, with a homogeneous distribution of oxygen and nitrogen within the ISM of the galaxy. The high-ionization He ii λ4686 emission line is detected only in

  10. Galaxy 'Hunting' Made Easy

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Galaxies found under the Glare of Cosmic Flashlights Astronomers using ESO's Very Large Telescope have discovered in a single pass about a dozen otherwise invisible galaxies halfway across the Universe. The discovery, based on a technique that exploits a first-class instrument, represents a major breakthrough in the field of galaxy 'hunting'. ESO PR Photo 40a/07 ESO PR Photo 40a/07 Newly Found Galaxies (SINFONI/VLT) The team of astronomers led by Nicolas Bouché have used quasars to find these galaxies. Quasars are very distant objects of extreme brilliance, which are used as cosmic beacons that reveal galaxies lying between the quasar and us. The galaxy's presence is revealed by a 'dip' in the spectrum of the quasar - caused by the absorption of light at a specific wavelength. The team used huge catalogues of quasars, the so-called SDSS and 2QZ catalogues, to select quasars with dips. The next step was then to observe the patches of the sky around these quasars in search for the foreground galaxies from the time the Universe was about 6 billion years old, almost half of its current age. "The difficulty in actually spotting and seeing these galaxies stems from the fact that the glare of the quasar is too strong compared to the dim light of the galaxy," says Bouché. This is where observations taken with SINFONI on ESO's VLT made the difference. SINFONI is an infrared 'integral field spectrometer' that simultaneously delivers very sharp images and highly resolved colour information (spectra) of an object on the sky. ESO PR Photo 32e/07 ESO PR Photo 40b/07 Chasing 'Hidden' Galaxies (Artist's Impression) With this special technique, which untangles the light of the galaxy from the quasar light, the team detected 14 galaxies out of the 20 pre-selected quasar patches of sky, a hefty 70% success rate. "This high detection rate alone is a very exciting result," says Bouché. "But, these are not just ordinary galaxies: they are most notable ones, actively forming a lot of

  11. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

    SciTech Connect

    Gil-Marin, Hector; Percival, Will J.; Cuesta, Antonio J.; Brownstein, Joel R.; Chuang, Chia -Hsun; Ho, Shirley; Kitaura, Francisco -Shu; Maraston, Claudia; Prada, Francisco; Rodriguez-Torres, Sergio; Ross, Ashley J.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magana, Mariana; Zhao, Gong -Bo

    2016-05-30

    Here, we present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of rHDA = 0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of rHDA = 0.47, for the CMASS sample.

  12. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

    DOE PAGES

    Gil-Marin, Hector; Percival, Will J.; Cuesta, Antonio J.; ...

    2016-05-30

    Here, we present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-momentmore » provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of rHDA = 0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of rHDA = 0.47, for the CMASS sample.« less

  13. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Gil-Marín, Héctor; Percival, Will J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Schlegel, David J.; Thomas, Daniel; Tinker, Jeremy L.; Zhao, Gong-Bo

    2016-08-01

    We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of zlowz = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of zcmass = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations σ8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on fσ8, the product of the Hubble constant and the comoving sound horizon at the baryon-drag epoch H(z)rs(zd), and the angular distance parameter divided by the sound horizon DA(z)/rs(zd). We find f(zlowz)σ8(zlowz) = 0.394 ± 0.062, DA(zlowz)/rs(zd) = 6.35 ± 0.19, H(zlowz)rs(zd) = (11.41 ± 0.56) 103 km s- 1 for the LOWZ sample, and f(zcmass)σ8(zcmass) = 0.444 ± 0.038, DA(zcmass)/rs(zd) = 9.42 ± 0.15, H(zcmass)rs(zd) = (13.92 ± 0.44) 103 km s- 1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial Λcold dark matter values, we find f(zlowz)σ8(zlowz) = 0.485 ± 0.044 and f(zcmass)σ8(zcmass) = 0.436 ± 0.022 for the LOWZ and CMASS samples, respectively.

  14. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples

    NASA Astrophysics Data System (ADS)

    Anderson, Lauren; Aubourg, Éric; Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Blanton, Michael; Bolton, Adam S.; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Chuang, Chia-Hsun; Cuesta, Antonio J.; Dawson, Kyle S.; Eisenstein, Daniel J.; Escoffier, Stephanie; Gunn, James E.; Guo, Hong; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Lupton, Robert H.; Manera, Marc; Maraston, Claudia; McBride, Cameron K.; Mena, Olga; Montesano, Francesco; Nichol, Robert C.; Nuza, Sebastián E.; Olmstead, Matthew D.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Parejko, John; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M.; Reid, Beth; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Sabiu, Cristiano G.; Saito, Shun; Samushia, Lado; Sánchez, Ariel G.; Schlegel, David J.; Schneider, Donald P.; Scoccola, Claudia G.; Seo, Hee-Jong; Skibba, Ramin A.; Strauss, Michael A.; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Magaña, Mariana Vargas; Verde, Licia; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Xu, Xiaoying; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo

    2014-06-01

    We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd,fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd,fid) at z = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd,fid) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ± 3.4 km s-1 Mpc-1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.

  15. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A.; Olmstead, Matthew D.

    2017-02-01

    We measure and analyse the bispectrum of the final data release 12 (DR12), galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32, and the CMASS sample contains 777 202 galaxies with an effective redshift of zCMASS = 0.57. Combining the power spectrum, measured relative to the line of sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, f, and the amplitude of dark matter density fluctuations, σ8, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z)rs(zd), and the angular distance parameter divided by the sound horizon, DA(z)/rs(zd). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(zLOWZ)σ8(zLOWZ) = 0.427 ± 0.056, DA(zLOWZ)/rs(zd) = 6.60 ± 0.13, H(zLOWZ)rs(zd) = (11.55 ± 0.38)103 km s-1 for the LOWZ sample, and f(zCMASS)σ8(zCMASS) = 0.426 ± 0.029, DA(zCMASS)/rs(zd) = 9.39 ± 0.10, H(zCMASS)rs(zd) = (14.02 ± 0.22)103 km s-1 for the CMASS sample. We find general agreement with previous Baryon Oscillation Spectroscopic Survey DR11 and DR12 measurements. Combining our data set with Planck15 we perform a null test of General Relativity through the γ-parametrization finding γ =0.733^{+0.068}_{-0.069}, which is ˜2.7σ away from the General Relativity predictions.

  16. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  17. SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Wang, Huiyuan; Ge, Junqiang; Mao, Shude; Li, Cheng; Li, Ran; Mo, Houjun; Goddard, Daniel; Bundy, Kevin; Li, Hongyu; Nair, Preethi; Lin, Lihwai; Long, R. J.; Riffel, Rogério; Thomas, Daniel; Masters, Karen; Bizyaev, Dmitry; Brownstein, Joel R.; Zhang, Kai; Law, David R.; Drory, Niv; Roman Lopes, Alexandre; Malanushenko, Olena

    2017-03-01

    We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA (Mapping Nearby Galaxies at APO) integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV - r colour and environments, as identified by both the large-scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV - r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.

  18. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo

    2017-01-01

    We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  20. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  1. Constraining the Merging History of Massive Galaxies Since Redshift 3 Using Close Pairs. I. Major Pairs from Candels and the SDSS

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Cook, Joshua; Kodra, Dritan; Newman, Jeffrey; Somerville, Rachel S.; Barro, Guillermo; Behroozi, Peter; Conselice, Christopher; Dekel, Avishai; Faber, Sandra M.; Closson Ferguson, Henry; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Perez-Gonzalez, Pablo; Grogin, Norman A.; Guo, Yicheng; Hathi, Nimish P.; Hopkins, Philip F.; Kartaltepe, Jeyhan S.; Kocevski, Dale; Koekemoer, Anton M.; Koo, David C.; Lee, Seong-Kook; Lotz, Jennifer M.; Lucas, Ray A.; Nayyeri, Hooshang; Peth, Michael; Pforr, Janine; Primack, Joel R.; Santini, Paola; Simmons, Brooke D.; Stefanon, Mauro; Straughn, Amber; Snyder, Gregory F.; Wuyts, Stijn

    2017-01-01

    Major galaxy-galaxy merging can play an important role in the history of massive galaxies (stellar masses > 2E10 Msun) over cosmic time. An important way to measure the impact of major merging is to study close pairs of galaxies stellar mass or flux ratios between 1 and 4. We improve on the best recent efforts by probing merging of lower mass galaxies, anchoring evolutionary trends from five Hubble Space Telescope Legacy fields in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) to the nearby universe using Sloan Digital Sky Survey (SDSS) to measure the fraction of massive galaxies in such pairs during six epochs spanning 01.5. This implies that major merging may not be as important at high redshifts as previously thought, merger timescales may not be fully understood, or we may be missing evidence of mergers at z~2-3 owing to CANDELS selections effects. Next, we will analyze pair fractions and merging timescales within realistic mocks of CANDELS from state of the art Semi-Analytic Model (SAM) to better understand and calibrate our empirical results.

  2. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  3. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  4. Disrupted Stars in Unusual Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Tidal disruption events (TDEs) occur when a star passes a little too close to a supermassive black hole at the center of a galaxy. Tidal forces from the black hole cause the passing star to be torn apart, resulting in a brief flare of radiation as the stars material accretes onto the black hole. A recent study asks the following question: do TDEs occur most frequently in an unusual type of galaxy?A Trend in DisruptionsSo far, we have data from eight candidate TDEs that peaked in optical and ultraviolet wavelengths. The spectra from these observations have shown an intriguing trend: many of these TDEs host galaxies exhibit weak line emission (indicating little or no current star-formation activity), and yet they show strong Balmer absorption lines (indicating star formation activity occurred within the last Gyr). These quiescent, Balmer-strong galaxies likely underwent a period of intense star formation that recently ended.To determine if TDEs are overrepresented in such galaxies, a team of scientists led by Decker French (Steward Observatory, University of Arizona) has quantified the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) that exhibit similar properties to those of TDE hosts.Quantifying OverrepresentationSpectral characteristics of SDSS galaxies (gray) and TDE candidate host galaxies (colored points): line emission vs. Balmer absorption. The lower right-hand box identifies thequiescent, Balmer-strong galaxies which contain most TDE events, yet are uncommon among the galaxy sample as a whole. Click for a better look! [French et al. 2016]French and collaborators compare the optical spectra of the TDE host galaxies to those of nearly 600,000 SDSS galaxies, using two different cutoffs for the Balmer absorption the indicator of past star formation. Their strictest cut, filtering for very high Balmer absorption, selected only 0.2% of the SDSS galaxies, yet 38% of the TDEs are hosted in such galaxies. Using a more relaxed cutoff selects 2.3% of

  5. Multiwavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan; Oegerle, William R. (Technical Monitor)

    2002-01-01

    I have developed a technique for measuring multi-variate luminosity functions of galaxies. Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principle component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multiwavelength luminosity function for the galaxies in the released SDSS catalog, and show that the results are consistent with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by the SIRTF and GALEX missions.

  6. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

    DOE PAGES

    Alam, Shadab; Ata, Metin; Bailey, Stephen; ...

    2017-03-28

    Here we present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effectsmore » on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock–Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = -1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s-1 Mpc-1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2km s-1 Mpc-1

  7. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Gil-Marín, Héctor; Percival, Will J.; Cuesta, Antonio J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Zhao, Gong-Bo

    2016-08-01

    We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of r_{HD_A}=0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of r_{HD_A}=0.47, for the CMASS sample. We demonstrate that our results are not affected by the fiducial cosmology assumed for the analysis. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same data set (Cuesta et al. 2016, companion paper) and report the consensus values: H(zLOWZ)rs(zd) = (11.63 ± 0.69) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.67 ± 0.15 with r_{HD_A}=0.35 for the LOWZ sample; H(zCMASS)rs(zd) = (14.67 ± 0.42) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.47 ± 0.12 with r_{HD_A}=0.52 for the CMASS sample.

  8. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering - towards an accurate model

    NASA Astrophysics Data System (ADS)

    Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Rodríguez-Torres, Sergio; Ross, Ashley J.; Zhao, Gong-bo; Wang, Yuting; Cuesta, Antonio J.; Rubiño-Martín, J. A.; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Satpathy, Siddharth; Slosar, Anže; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Brownstein, Joel R.; Nichol, Robert C.; Olmstead, Matthew D.

    2017-10-01

    We analyse the broad-range shape of the monopole and quadrupole correlation functions of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalized growth rate f(z)σ8(z) and the physical matter density Ωm h2. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a 'single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models. We develop a new methodology to speed up the analysis. Using the range 40 h-1 Mpc < s < 180 h-1 Mpc, we obtain {DA(z)rs,fid/rs (Mpc), H(z)rs/rs,fid km s-1 Mpc-1, f(z)σ8(z), Ωm h2} = {956 ± 28, 75.0 ± 4.0, 0.397 ± 0.073, 0.143 ± 0.017} at z = 0.32 and {1421 ± 23, 96.7 ± 2.7, 0.497 ± 0.058, 0.137 ± 0.015} at z = 0.59 where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc for the fiducial cosmology used in this study. Combining our measurements with Planck data, we obtain Ωm = 0.306 ± 0.009, H0 = 67.9 ± 0.7 km s-1 Mpc-1 and σ8 = 0.815 ± 0.009 assuming Λcold dark matter (CDM); Ωk = 0.000 ± 0.003 and w = -1.02 ± 0.08 assuming owCDM. Our results show no tension with the flat ΛCDM cosmological paradigm. This paper is part of a set that analyses the final galaxy clustering data set from Baryon Oscillation Spectroscopic Survey.

  9. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Ata, Metin; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A.; Bolton, Adam S.; Brownstein, Joel R.; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J.; Dawson, Kyle S.; Eisenstein, Daniel J.; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K.; Nichol, Robert C.; Olmstead, Matthew D.; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M.; Reid, Beth A.; Rodríguez-Torres, Sergio A.; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Scóccola, Claudia G.; Seo, Hee-Jong; Sheldon, Erin S.; Simmons, Audrey; Slosar, Anže; Strauss, Michael A.; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A.; Wang, Yuting; Weinberg, David H.; White, Martin; Wood-Vasey, W. Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo

    2017-09-01

    We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = -1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s-1 Mpc-1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s-1 Mpc-1. Assuming flat

  10. Whirlpool Galaxy

    NASA Image and Video Library

    1999-12-04

    The image from NASA Hubble Telescope shows spiral arms and dust clouds in the nearby Whirlpool galaxy. Visible starlight and light from the emission of glowing hydrogen is seen, which is associated with the most luminous young stars in the spiral arms.

  11. SDSS-IV MaNGA IFS Galaxy Survey—Survey Design, Execution, and Initial Data Quality

    NASA Astrophysics Data System (ADS)

    Yan, Renbin; Bundy, Kevin; Law, David R.; Bershady, Matthew A.; Andrews, Brett; Cherinka, Brian; Diamond-Stanic, Aleksandar M.; Drory, Niv; MacDonald, Nicholas; Sánchez-Gallego, José R.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai; Aragón-Salamanca, Alfonso; Belfiore, Francesco; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Brownstein, Joel; Cappellari, Michele; D'Souza, Richard; Emsellem, Eric; Fu, Hai; Gaulme, Patrick; Graham, Mark T.; Goddard, Daniel; Gunn, James E.; Harding, Paul; Jones, Amy; Kinemuchi, Karen; Li, Cheng; Li, Hongyu; Maiolino, Roberto; Mao, Shude; Maraston, Claudia; Masters, Karen; Merrifield, Michael R.; Oravetz, Daniel; Pan, Kaike; Parejko, John K.; Sanchez, Sebastian F.; Schlegel, David; Simmons, Audrey; Thanjavur, Karun; Tinker, Jeremy; Tremonti, Christy; van den Bosch, Remco; Zheng, Zheng

    2016-12-01

    The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy for 10,000 nearby galaxies at a spectral resolution of R ˜ 2000 from 3622 to 10354 Å. The design of the survey is driven by a set of science requirements on the precision of estimates of the following properties: star formation rate surface density, gas metallicity, stellar population age, metallicity, and abundance ratio, and their gradients; stellar and gas kinematics; and enclosed gravitational mass as a function of radius. We describe how these science requirements set the depth of the observations and dictate sample selection. The majority of targeted galaxies are selected to ensure uniform spatial coverage in units of effective radius (R e ) while maximizing spatial resolution. About two-thirds of the sample is covered out to 1.5R e (Primary sample), and one-third of the sample is covered to 2.5R e (Secondary sample). We describe the survey execution with details that would be useful in the design of similar future surveys. We also present statistics on the achieved data quality, specifically the point-spread function, sampling uniformity, spectral resolution, sky subtraction, and flux calibration. For our Primary sample, the median r-band signal-to-noise ratio is ˜70 per 1.4 Å pixel for spectra stacked between 1R e and 1.5R e . Measurements of various galaxy properties from the first-year data show that we are meeting or exceeding the defined requirements for the majority of our science goals.

  12. Extragalatic zoo. I. [New galaxies

    SciTech Connect

    Schorn, R.A.

    1988-01-01

    The characteristics of various types of extragalactic objects are described. Consideration is given to cD galaxies, D galaxies, N galaxies, Markarian galaxies, liners, starburst galaxies, and megamasers. Emphasis is also placed on the isolated extragalatic H I region; the isolated extragalatic H II region; primeval galaxies or photogalaxies; peculiar galaxies; Arp galaxies; interacting galaxies; ring galaxies; and polar-ring galaxies. Diagrams of these objects are provided.

  13. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  14. The SWELLS survey - II. Breaking the disc-halo degeneracy in the spiral galaxy gravitational lens SDSS J2141-0001

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Brewer, Brendon J.; Marshall, Philip J.; Auger, Matthew W.; Treu, Tommaso; Koo, David C.; Bolton, Adam S.; Holden, Bradford P.; Koopmans, Leon V. E.

    2011-11-01

    The degeneracy among the disc, bulge and halo contributions to galaxy rotation curves prevents an understanding of the distribution of baryons and dark matter in disc galaxies. In an attempt to break this degeneracy, we present an analysis of the strong gravitational lens SDSS J2141-0001, discovered as part of the Sloan Lens ACS survey. The lens galaxy is a high-inclination, disc-dominated system. We present new Hubble Space Telescope multicolour imaging, gas and stellar kinematics data derived from long-slit spectroscopy and K-band laser guide star adaptive optics imaging, both from the Keck telescopes. We model the galaxy as a sum of concentric axisymmetric bulge, disc and halo components and infer the contribution of each component, using information from gravitational lensing and gas kinematics. This analysis yields a best-fitting total (disc plus bulge) stellar mass of log10(M*/M⊙) = 10.99+0.11- 0.25. The photometric data combined with stellar population synthesis models yield log10(M*/M⊙) = 10.97 ± 0.07 and 11.21 ± 0.07 for the Chabrier and Salpeter initial mass functions (IMFs), respectively. Assuming no cold gas, a Salpeter IMF is marginally disfavoured, with a Bayes factor of 2.7. Accounting for the expected gas fraction of ≃ 20 per cent reduces the lensing plus kinematics stellar mass by 0.10 ± 0.05 dex, resulting in a Bayes factor of 11.9 in favour of a Chabrier IMF. The dark matter halo is roughly spherical, with minor to major axis ratio q3, h= 0.91+0.15- 0.13. The dark matter halo has a maximum circular velocity of Vmax= 276+17- 18 km s-1, and a central density parameter of log10ΔV/2= 5.9+0.9- 0.5. This is higher than predicted for uncontracted dark matter haloes in Λ cold dark matter cosmologies, log10ΔV/2= 5.2, suggesting that either the halo has contracted in response to galaxy formation, or that the halo has a higher than average concentration. Larger samples of spiral galaxy strong gravitational lenses are needed in order to

  15. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  16. Colour asymmetry between galaxies with clockwise and counterclockwise handedness

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Recent studies have shown that SDSS galaxies with clockwise patterns are photometrically different from galaxies with anti-clockwise patterns. The purpose of this study is to identify possible differences between the colour of galaxies with clockwise handedness and the colour of galaxies with anti-clockwise handedness. A dataset of 162,514 SDSS galaxies was separated into clockwise and counterclockwise galaxies, and the colours of spiral galaxies with clockwise handedness were compared to the colour of spiral galaxies with anti-clockwise handedness. The results show that the i-r colour in clockwise galaxies in SDSS is significantly higher compared to anti-clockwise SDSS galaxies. The colour difference is strongest between the right ascension of 30° and 60°, while the RA range of 180° to 210° shows a much smaller difference. Similarly, comparing other photometric measurements in clockwise and anti-clockwise galaxies exhibit statistically significant difference, showing the SDSS pipeline is sensitive to the handedness of the galaxy.

  17. The SAMI Galaxy Survey: first 1000 galaxies

    NASA Astrophysics Data System (ADS)

    Allen, J. T.

    2015-02-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey is an ongoing project to obtain integral field spectroscopic observations of ~3400 galaxies by mid-2016. Including the pilot survey, a total of ~1000 galaxies have been observed to date, making the SAMI Galaxy Survey the largest of its kind in existence. This unique dataset allows a wide range of investigations into different aspects of galaxy evolution. The first public data from the SAMI Galaxy Survey, consisting of 107 galaxies drawn from the full sample, has now been released. By giving early access to SAMI data for the entire research community, we aim to stimulate research across a broad range of topics in galaxy evolution. As the sample continues to grow, the survey will open up a new and unique parameter space for galaxy evolution studies.

  18. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O iii]/[O ii] ∼ 10–60). They also have some of the lowest stellar masses ({log}(M/{M}ȯ )∼ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  19. Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Saghiha, H.; Hilbert, S.; Schneider, P.; Simon, P.

    2012-11-01

    Context. The gravitational lensing effect provides various ways to study the mass environment of galaxies. Aims: We investigate how galaxy-galaxy(-galaxy) lensing can be used to test models of galaxy formation and evolution. Methods: We consider two semi-analytic galaxy formation models based on the Millennium Run N-body simulation: the Durham model by Bower et al. (2006, MNRAS, 370, 645) and the Garching model by Guo et al. (2011, MNRAS, 413, 101). We generate mock lensing observations for the two models, and then employ Fast Fourier Transform methods to compute second- and third-order aperture statistics in the simulated fields for various galaxy samples. Results: We find that both models predict qualitatively similar aperture signals, but there are large quantitative differences. The Durham model predicts larger amplitudes in general. In both models, red galaxies exhibit stronger aperture signals than blue galaxies. Using these aperture measurements and assuming a linear deterministic bias model, we measure relative bias ratios of red and blue galaxy samples. We find that a linear deterministic bias is insufficient to describe the relative clustering of model galaxies below ten arcmin angular scales. Dividing galaxies into luminosity bins, the aperture signals decrease with decreasing luminosity for brighter galaxies, but increase again for fainter galaxies. This increase is likely an artifact due to too many faint satellite galaxies in massive group and cluster halos predicted by the models. Conclusions: Our study shows that galaxy-galaxy(-galaxy) lensing is a sensitive probe of galaxy evolution.

  20. The 8 O'Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data

    SciTech Connect

    Allam, Sahar S.; Tucker, Douglas L.; Lin, Huan; Diehl, H.Thomas; Annis, James; Buckley-Geer, Elizabeth J.; Frieman, Joshua A.; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2006-11-01

    We report on the serendipitous discovery of the brightest Lyman Break Galaxy (LBG) currently known, a galaxy at z = 2.73 that is being strongly lensed by the z = 0.38 Luminous Red Galaxy (LRG) SDSS J002240.91+143110.4. The arc of this gravitational lens system, which we have dubbed the ''8 o'clock arc'' due to its time of discovery, was initially identified in the imaging data of the Sloan Digital Sky Survey Data Release 4 (SDSS DR4); followup observations on the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system and led to the identification of the arc's spectrum as that of an LBG. The arc has a spectrum and a redshift remarkably similar to those of the previous record-holder for brightest LBG (MS 1512-cB58, a.k.a ''cB58''), but, with an estimated total magnitude of (g,r,i) = (20.0,19.2,19.0) and surface brightness of ({mu}{sub g}, {mu}{sub r}, {mu}{sub i}) = (23.3, 22.5, 22.3) mag arcsec{sup -2}, the 8 o'clock arc is thrice as bright. The 8 o'clock arc, which consists of three lensed images of the LBG, is 162{sup o}(9.6'') long and has a length-to-width ratio of 6:1. A fourth image of the LBG--a counter-image--can also be identified in the ARC 3.5m g-band images. A simple lens model for the system assuming a singular isothermal ellipsoid potential yields an Einstein radius of {theta}{sub Ein} = 2.91'' {+-} 0.14'', a total mass for the lensing LRG (within the 10.6 {+-} 0.5 h{sup -1} kpc enclosed by the lensed images) of 1.04 x 10{sup 12} h{sup -1} M{sub {circle_dot}}, and a magnification factor for the LBG of 12.3{sub -3.6}{sup +15}. The LBG itself is intrinsically quite luminous ({approx} 6 x L{sub *}) and shows indications of massive recent star formation, perhaps as high as 160 h{sup -1} M{sub {circle_dot}} yr{sup -1}.

  1. Galaxy formation

    PubMed Central

    Peebles, P. J. E.

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326

  2. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  3. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  4. A Super Special Galaxy

    NASA Image and Video Library

    2011-03-24

    There something special going on in the nearby Circinus galaxy, as revealed by this image from NASA WISE telescope. The Circinus galaxy is located in the constellation of Circinus and is obscured by the plane of our Milky Way galaxy.

  5. Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    SciTech Connect

    Johnston, David E.; Sheldon, Erin S.; Wechsler, Risa H.; Rozo, Eduardo; Koester, Benjamin P.; Frieman, Joshua A.; McKay, Timothy A.; Evrard, August E.; Becker, Matthew R.; Annis, James

    2007-09-28

    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  6. NIBLES - an HI census of stellar mass selected SDSS galaxies. II. Arecibo follow-up HI observations

    NASA Astrophysics Data System (ADS)

    Butcher, Z.; Schneider, S.; van Driel, W.; Lehnert, M. D.; Minchin, R.

    2016-11-01

    We obtained Arecibo Hi line follow-up observations of 154 of the 2600 galaxies in the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) sample. These observations are on average four times more sensitive than the original observations at the Nançay Radio Telescope. The main goal of this survey is to characterize the underlying Hi properties of the NIBLES galaxies which were undetected or marginally detected at Nançay. Of the Nançay non-detections, 85% were either clearly or marginally detected at Arecibo, while 89% of the Nançay marginal detections were clearly detected. Based on the statistics of the detections relative to g-i color and r-band luminosity (Lr) distribution among our Arecibo observations, we anticipate 60% of our 867 Nançay non-detections and marginal detections could be detected at the sensitivity of our Arecibo observations. Follow-up observations of our low luminosity (Lr < 108.5L⊙) blue sources indicate that they have, on average, more concentrated stellar mass distributions than the Nançay detections in the same luminosity range, suggesting we may be probing galaxies with intrinsically different properties. These follow-up observations enable us to probe Hi mass fractions, log(MHI/M⋆) 0.5 dex and 1 dex lower, on average, than the NIBLES and ALFALFA surveys respectively. Reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A60

  7. Galaxy collisions.

    NASA Astrophysics Data System (ADS)

    Struck, C.

    Theories of how galaxies, the fundamental constituents of large-scale structure, form and evolve have undergone a dramatic paradigm shift in the last few decades. Earlier views were of rapid, early collapse and formation of basic structures, followed by slow evolution of the stellar populations and steady buildup of the chemical elements. Current theories emphasize hierarchical buildup via recurrent collisions and mergers, separated by long periods of relaxation and secular restructuring. Thus, collisions between galaxies are now seen as a primary process in their evolution. This article begins with a brief history of how this once peripheral subject found its way to center stage. The author then tours parts of the vast array of collisional forms that have been discovered to date. Many examples are provided to illustrate how detailed numerical models and multiwaveband observations have allowed the general chronological sequence of collisional morphologies to be deciphered, and how these forms are produced by the processes of tidal kinematics, hypersonic gas dynamics, collective dynamical friction and violent relaxation. Galaxy collisions may trigger the formation of a large fraction of all the stars ever formed, and play a key role in fueling active galactic nuclei. Current understanding of the processes involved is reviewed. The last decade has seen exciting new discoveries about how collisions are orchestrated by their environment, how collisional processes depend on environment, and how these environments depend on redshift or cosmological time. These discoveries and prospects for the future are summarized in the final sections.

  8. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  9. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  10. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  11. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    de Mello, D.; Sosey, M.

    2004-12-01

    We will present the analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We found: (i) three starbursts with no companion, (ii) four starbursts with clear interaction and in the process of merging, (iii) nine starbursts with at least one companion. We have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. Direct links to the SDSS images and related photometry are provided for easy reference.

  12. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    Nieto-Santisteban, M. A.; Sosey, M.; de Mello, D.

    2004-12-01

    We present an analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We also have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. We see the NVO environment as an extrememly useful tool for astronomical research. As such, this poster also details the effective ways in which we were able to access both the SDSS catalogue as well as other internet resources, encorporating the entire project into a very useful internet website.

  13. Active versus non-active galaxies: The seagull wings

    NASA Astrophysics Data System (ADS)

    Mateus, A.; Cid Fernandes, R.; Storchi-Bergmann, T.; Stasińska, G.; Sodré, L.

    2004-11-01

    We have compared galaxies hosting an active nucleus with non-active galaxies in the SDSS by analyzing their stellar populations. We conclude that the Seyfert 2 phenomenon appears in galaxies of intermediate masses (˜2 × 1010 M⊙), while low mass galaxies do not produce active nuclei, and high mass galaxies tend to produce a low level of non-stellar activity. We also compared the environment of active and non-active galaxies of similar masses and concluded that there is no excess of close neighbors among the Seyferts when compared with non-active galaxies.

  14. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  15. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  16. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  17. A tale of three galaxies: A "CLUMPY" view of the spectroscopically anomalous galaxies IRAS F10398+1455, IRAS F21013-0739 and SDSS J0808+3948

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Nikutta, Robert; Hao, Lei; Li, Aigen

    2016-11-01

    We investigate the dust properties in three spectroscopically anomalous galaxies (IRAS F10398+1455, IRAS F21013-0739 and SDSS J0808+3948). Their Spitzer/IRS spectra are characterized by a steep ∼5-8 μm emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent 10 μm silicate emission. The steep ∼5-8 μm continuum and strong PAH emission features suggest the presence of starbursts, while the silicate emission is indicative of significant heating from AGNs. The simultaneous detection of these two observational properties has rarely been reported on galactic scale. We employ the PAHFIT software to estimate their starlight contributions, and the CLUMPY model for the components contributed by the AGN tori. We find that the CLUMPY model is generally successful in explaining the overall dust infrared emission, although it appears to emit too flat at the ∼5-8 μm continuum to be consistent with that observed in IRAS F10398+1455 and IRAS F21013-0739. The flat ∼5-8 μm continuum calculated from the CLUMPY model could arise from the adopted specific silicate opacity of Ossenkopf et al. (1992) which exceeds that of the Draine and Lee (1984) "astronomical silicate" by a factor up to 2 in the ∼5-8 μm wavelength range. Future models with a variety of dust species incorporated in the CLUMPY radiation transfer regime are needed for a thorough understanding of the dust properties of these spectroscopically anomalous galaxies.

  18. The Galaxy End Sequence

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; de Vis, Pieter; Smith, Matthew W. L.; Appah, Kiran; Ciesla, Laure; Duffield, Chris; Schofield, Simon

    2017-03-01

    A common assumption is that galaxies fall in two distinct regions of a plot of specific star formation rate (SSFR) versus galaxy stellar mass: a star-forming galaxy main sequence (GMS) and a separate region of 'passive' or 'red and dead galaxies'. Starting from a volume-limited sample of nearby galaxies designed to contain most of the stellar mass in this volume, and thus representing the end-point of ≃12 billion years of galaxy evolution, we investigate the distribution of galaxies in this diagram today. We show that galaxies follow a strongly curved extended GMS with a steep negative slope at high galaxy stellar masses. There is a gradual change in the morphologies of the galaxies along this distribution, but there is no clear break between early-type and late-type galaxies. Examining the other evidence that there are two distinct populations, we argue that the 'red sequence' is the result of the colours of galaxies changing very little below a critical value of the SSFR, rather than implying a distinct population of galaxies. Herschel observations, which show at least half of early-type galaxies contain a cool interstellar medium, also imply continuity between early-type and late-type galaxies. This picture of a unitary population of galaxies requires more gradual evolutionary processes than the rapid quenching process needed to explain two distinct populations. We challenge theorists to predict quantitatively the properties of this 'Galaxy End Sequence'.

  19. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Wen Xiaoqing; Xu Jianying; Ding Yingping; Huang Tong

    2010-06-10

    At a stellar mass of 3 x 10{sup 10} M {sub {Theta}} we divide the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) into two distinct families and explore the environmental dependence of galaxy properties for High Stellar Mass (HSM) and Low Stellar Mass (LSM) galaxies. It is found that for HSM and LSM galaxies, the environmental dependence of some typical galaxy properties, such as color, morphologies, and star formation activities, is still very strong, which at least shows that the stellar mass is not fundamental in correlations between galaxy properties and the environment. We also note that the environmental dependence of the size for HSM and LSM galaxies is fairly weak, which is mainly due to the galaxy size being insensitive to environment.

  20. Evolving Galaxies in a Hierachical Universe

    NASA Astrophysics Data System (ADS)

    Hahn, Changhoon

    2017-01-01

    Observations of galaxies using large surveys (SDSS, COSMOS, PRIMUS, etc.) have firmly established a global view of galaxy properties out to z~1. Galaxies are broadly divided into two classes: blue, typically disk-like star forming galaxies and red, typically elliptical quiescent ones with little star formation. The star formation rates (SFR) and stellar masses of star forming galaxies form an empirical relationship referred to as the "star formation main sequence". Over cosmic time, this sequence undergoes significant decline in SFR and causes the overall cosmic star formation decline. Simultaneously, physical processes cause significant fractions of star forming galaxies to "quench" their star formation. Hierarchical structure formation and cosmological models provide precise predictions of the evolution of the underying dark matter, which serve as the foundation for these detailed trends and their evolution. Whatever trends we observe in galaxy properties can be interpreted within the narrative of the underlying dark matter and halo occupation framework. More importantly, through careful statistical treatment and precise measurements, this connection can be utilized to better constrain and understand key elements of galaxy evolution. In this spirit, for my dissertation I connect observations of evolving galaxy properties to the framework of the hierarchical Universe and use it to better understand physical processes responsible for the cessation of star formation in galaxies. For instance, through this approach, I constrain the quenching timescale of central galaxies and find that they are significantly longer than the quenching timescale of satellite galaxies.

  1. Multi-wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Miller, N. A.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, we optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, we derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  2. Multi-Wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and ab- sorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  3. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  4. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    NASA Astrophysics Data System (ADS)

    Bizyaev, D.; Walterbos, R. A. M.; Yoachim, P.; Riffel, R. A.; Fernández-Trincado, J. G.; Pan, K.; Diamond-Stanic, A. M.; Jones, A.; Thomas, D.; Cleary, J.; Brinkmann, J.

    2017-04-01

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed Hα emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.

  5. O vi Emission Imaging of a Galaxy with the Hubble Space Telescope: a Warm Gas Halo Surrounding the Intense Starburst SDSS J115630.63+500822.1

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Melinder, Jens; Östlin, Göran; Scarlata, Claudia; Lehnert, Matthew D.; Mannerström-Jansson, Gustav

    2016-09-01

    We report results from a new Hubble Space Telescope campaign that targets the O vi λ λ 1032,1038 Å doublet in emission around intensely star-forming galaxies. The program aims to characterize the energy balance in starburst galaxies and gas cooling in the difficult-to-map coronal temperature regime of 2{--}5× {10}5 K. We present the first resolved image of gas emission in the O vi line. Our target, SDSS J115630.63+500822.1, is very compact in the continuum but displays O vi emission to radii of 23 kpc. The surface brightness profile is well fit by an exponential with a scale length of 7.5 kpc. This is 10 times the size of the photoionized gas, and we estimate that about 1/6 the total O vi luminosity comes from resonantly scattered continuum radiation. Spectroscopy—which closely resembles a stacked sample of archival spectra—confirms the O vi emission, and determines the column density and outflow velocity from blueshifted absorption. The combination of measurements enables a large number of calculations with few assumptions. The O vi regions fill only ∼ {10}-3 of the volume. By comparing the cooling time with the cloud sound-crossing time, the cooling distance with the size, and the pressure in the O vi and nebular gas, we conclude that the O vi-bearing gas cannot have been lifted to the scale height at this temperature, and must be cooling in situ through this coronal temperature regime. The coronal phase contains ∼1% of the ionized mass, and its kinetic energy at a given instant is ∼1% of the budget set by supernova feedback. However, a much larger amount of the gas must have cooled through this phase during the star formation episode. The outflow exceeds the escape velocity and the gas may become unbound, but it will recombine before it escapes and become visible to Lyman (and O i) spectroscopy. The mapping of this gas represents a crucial step in further constraining galaxy formation scenarios and guiding the development of future astronomical

  6. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  7. Compact Quiescent Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ~ 0.4 and z ~ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of "inside-out" buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  8. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  9. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    SciTech Connect

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Bekki, Kenji; Dopita, Michael A.; Nicholls, David C.; Kilborn, Virginia

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  10. Detection of Baryon Acoustic Oscillation features in the large-scale 3-point correlation function of SDSS BOSS DR12 CMASS galaxies

    DOE PAGES

    Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...

    2017-03-01

    We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find DV = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-pointmore » correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less

  11. Evolutionary Implications from SDSS J085338.27+033246.1: A Spectacular Narrow-Line Seyfert 1 Galaxy with Young Poststarburst

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wei, J. Y.

    2006-09-01

    We analyze the physical properties of the poststarburst active galactic nucleus (AGN) SDSS J085338.27+033246.1 according to its optical spectrum and discuss its implications on AGNs' evolution. The spectra principal component analysis (PCA) method is developed to extract emission lines and absorption features from the total light spectrum. The emission-line analysis indicates that the object can be classified as a narrow-line Seyfert 1 galaxy with FeII/HβB=2.4+/-0.2, large Eddington ratio (~0.34), small black hole mass (~1.1×107 Msolar), and intermediately strong radio emission. A simple single stellar population model indicates that the absorption features are rather well reproduced by a ~100 Myr old starburst with a mass of ~7×109 Msolar. However, the current star formation rate, ~3.0 Msolar yr-1, inferred from the [O II] emission is much smaller than the past average star formation rate, ~70 Msolar yr-1. The line ratio diagnosis using Baldwin-Phillips-Terlevich (BPT) diagrams indicates that the narrow emission lines are almost entirely emitted from H II regions. We further discuss a possible evolutionary path that links AGN and starburst phenomena.

  12. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  13. VizieR Online Data Catalog: SDSS-RM project: z<1 QSO host galaxies (Matsuoka+, 2015)

    NASA Astrophysics Data System (ADS)

    Matsuoka, Y.; Strauss, M. A.; Shen, Y.; Brandt, W. N.; Greene, J. E.; Ho, L. C.; Schneider, D. P.; Sun, M.; Trump, J. R.

    2016-01-01

    We use the data acquired in the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, in which a single spectroscopic field was repeatedly observed to explore the variability of quasars. The full technical details of the project are found in Shen et al. (2015, J/ApJS/216/4). SDSS-RM was conducted during the dark/gray time in the final season (2013-2014) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013AJ....145...10D). The target field (centered at RAJ2000=14:14:49.00, DEJ2000=+53:05:00.0) coincides with the Panoramic Survey Telescope & Rapid Response System 1 (Pan-STARRS 1; Kaiser et al. 2010SPIE.7733E..0EK) Medium Deep Field MD07, which lies within the Canada-France-Hawaii Telescope Legacy Survey W3 field. (1 data file).

  14. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  15. VizieR Online Data Catalog: SDSS-IV eBOSS emission-line galaxy pilot survey (Comparat+, 2016)

    NASA Astrophysics Data System (ADS)

    Comparat, J.; Delubac, T.; Jouvel, S.; Raichoor, A.; Kneib, J.-P.; Yeche, C.; Abdalla, F. B.; Le Cras, C.; Maraston, C.; Wilkinson, D. M.; Zhu, G.; Jullo, E.; Prada, F.; Schlegel, D.; Xu, Z.; Zou, H.; Bautista, J.; Bizyaev, D.; Bolton, A.; Brownstein, J. R.; Dawson, K. S.; Escoer, S.; Gaulme, P.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Mariappan, V.; Newman, J. A.; Oravetz, D.; Pan, K.; Percival, W. J.; Prakash, A.; Schneider, D. P.; Simmons, A.; Abbott, T. M. C.; Allam, S.; Banerji, M.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Doel, P.; Eifler, T. F.; Estrada, J.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miquel, R.; Plazas, A. A.; Reil, K.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Zhang, Y.

    2016-06-01

    To select targets, we used photometry coming from the following surveys: SDSS (Alam et al., 2012ApJS..203...21A), WISE (Cutri et al., 2012, Cat. II/311) and SCUSS (Zou et al., 2015AJ....150..104Z). (1 data file).

  16. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  17. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  18. Can retired galaxies mimic active galaxies? Clues from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Vale Asari, N.; Cid Fernandes, R.; Gomes, J. M.; Schlickmann, M.; Mateus, A.; Schoenell, W.; Sodré, L., Jr.; Seagal Collaboration

    2008-11-01

    The classification of galaxies as star forming or active is generally done in the ([OIII]/Hβ, [NII]/Hα) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a seagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these `retired' galaxies would be produced by hot post-asymptotic giant branch stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is, however, uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagull's right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.

  19. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  20. Galaxy formation and evolution

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.

    1991-01-01

    The presence of high z quasars and radio galaxies tells us that galaxy formation began at z greater than 5, but leaves unanswered the question of when the bulk of galaxies formed. Recent near infrared number counts of galaxies strongly favor a cosmological geometry with q(sub 0) = 0.5 and lambda = 0. Such a model grossly underpredicts blue galaxy counts. Spectroscopy shows that the excess blue galaxies at B = 24 are dwarfs at z approximately equals 0.4 which are no longer seen at the present time. These dwarfs must contain a large amount of baryonic matter which is not included in current estimates of baryonic omega .

  1. Galaxy formation and evolution

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.

    1991-01-01

    The presence of high-z quasars and radio galaxies indicates that galaxy formation began at z greater than 5, but leaves unanswered the question of when the bulk of galaxies formed. Recent near-infrared number counts of galaxies strongly favor a cosmological geometry with q0 = 0.5 and Lambda = 0. Such a model grossly underpredicts blue galaxy counts. Spectroscopy shows that the excess blue galaxies at B = 24 are dwarfs at z = 0.4, which are no longer seen at the present time. These dwarfs must contain a large amount of baryonic matter which is not included in current estimates of baryonic Omega.

  2. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  3. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  4. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  5. Harnessing the full power of the widest Chandra field: average accretion rates of black holes in SDSS galaxies through X-ray stacking

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Hickox, Ryan C.; Alexander, David M.; Forman, William R.; Jones, Christine; Lehmer, Bret

    2017-08-01

    Galaxy-scale bars are expected to provide an effective means for driving material towards the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). I will present our latest results on a statistically-complete study of the effect of bars on average BH accretion. From a well-selected sample of over 50,000 spiral galaxies extracted from the Sloan Digital Sky Survey, we separate those sources considered to contain galaxy-scale bars from those that do not. Using the first 16 years worth of data taken by the Chandra X-ray Observatory, we identify X-ray luminous AGN and perform the widest-area X-ray stacking analysis to date on the remaining X-ray undetected sources. Through our X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars, and robustly concluding that large-scale bars have little or no effect on the average growth of BHs in nearby (z < 0.15) galaxies over gigayear timescales.

  6. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  7. The Star Formation History of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Stanonik, Kathryn

    The Cosmic Web that permeates our universe is defined by the alignment of galaxies into filaments, clusters, and walls, as well as by the voids between them which are (mostly) empty. Void galaxies, found occupying these underdense regions, are an environmentally defined population whose isolated nature and extreme environment provides an ideal opportunity to test theories of galaxy formation and evolution. Their existence also poses a well defined observational constraint to Lambda CDM cosmological models. We propose to do UV imaging of a sample of SDSS selected void galaxies located in the deepest underdensities of nearby voids. Our galaxies were selected using the Delaunay Tesselation Field estimator, a novel, purely structural and geometric technique, to produce a sample that more uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe the neutral gas content in a huge volume around each targeted void galaxy, while still resolving individual galaxy kinematics and detecting faint companions in H I. We specifically aim to study the star formation history of these systems, which appear to be in a more youthful stage of their evolution than field galaxies. With this combination of UV and H I data we will address questions ranging from how galaxies get their gas, how they form stars, and what role environment plays in these processes.

  8. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  9. Galaxies in Hiding

    NASA Image and Video Library

    2013-06-05

    There are nearly 200 galaxies within the marked circles in this image from NASA Spitzer Space Telescope. These are part of the Perseus-Pisces supercluster of galaxies located 250 million light-years away.

  10. The Hidden Galaxy

    NASA Image and Video Library

    2011-01-18

    Maffei 2 is the poster child for an infrared galaxy that is almost invisible to optical telescopes. But this infrared image from NASA Spitzer Space Telescope penetrates the dust to reveal the galaxy in all its glory.

  11. Masking Out Galaxies

    NASA Image and Video Library

    2014-11-06

    This graphic illustrates how the Cosmic Infrared Background Experiment, or CIBER, team measures a diffuse glow of infrared light filling the spaces between galaxies. The glow does not come from any known stars and galaxies.

  12. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  13. Classic Galaxy with Glamour

    NASA Image and Video Library

    2005-04-11

    Young hot blue stars dominate the outer spiral arms of nearby galaxy NGC 300, while the older stars congregate in the nuclear regions which appear yellow-green in this image from NASA Galaxy Evolution Explorer.

  14. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  15. Active Galactic Nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Weigel, Anna; Sartori, Lia F.; Oh, Kyuseok; Koss, Michael; Schawinski, Kevin

    2017-01-01

    In order to perform a more complete census of active galactic nuclei (AGN) in the local Universe, we investigate the use of the He II emission line diagnostic diagram by Shirazi & Brinchmann (2012) in addition to the standard methods based on other optical emission lines. The He II based diagnostics is more sensitive to AGN ionization in the presence of strong star formation than conventional line diagnostics. We survey a magnitude-limited sample of 81,192 galaxies from the Sloan Digital Sky Survey Data Release 7 at 0.02 < z < 0.05 and apply both the conventional BPT emission line diagnostic diagrams, as well as the He II diagram to identify AGN. In this sample, 1,075 galaxies are selected as AGN using the BPT diagram, while an additional 234 galaxies are identified as AGN using the He II diagnostic, representing a 22% increase of AGN in the parent galaxy sample. We use archival Chandra observations to confirm the AGN nature of candidates selected through He II based diagnostic. Finally, we explore the host galaxy properties of these new He II selected AGN candidates and find that they are most common in star-forming galaxies on the blue cloud and on the main sequence where ionization from star-formation is most likely to mask AGN emission in the BPT lines. We note in particular a high He II AGN fraction in galaxies above the high-mass end of the main sequence where quenching is expected to occur. We discuss how this technique can help inform galaxy/black hole co-evolution scenarios.

  16. Active galactic nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Bär, Rudolf E.; Weigel, Anna K.; Sartori, Lia F.; Oh, Kyuseok; Koss, Michael; Schawinski, Kevin

    2017-04-01

    In order to perform a more complete census of active galactic nuclei (AGN) in the local Universe, we investigate the use of the He II λ4685 emission line diagnostic diagram by Shirazi & Brinchmann (2012) in addition to the standard methods based on other optical emission lines. The He II-based diagnostics is more sensitive to AGN ionization in the presence of strong star formation than conventional line diagnostics. We survey a magnitude-limited sample of 63 915 galaxies from the Sloan Digital Sky Survey Data Release 7 at 0.02 < z < 0.05 and use both the conventional BPT emission line diagnostic diagrams, as well as the He II diagram to identify AGN. In this sample, 1075 galaxies are selected as AGN using the BPT diagram, while additional 234 galaxies are identified as AGN using the He II diagnostic diagram, representing a 22 per cent increase of AGN in the parent galaxy sample. We explore the host galaxy properties of these new He II-selected AGN candidates and find that they are most common in star-forming galaxies on the blue cloud and on the main sequence where ionization from star formation is most likely to mask AGN emission in the BPT lines. We note in particular a high He II AGN fraction in galaxies above the high-mass end of the main sequence where quenching is expected to occur. We use archival Chandra observations to confirm the AGN nature of candidates selected through He II-based diagnostic. Finally, we discuss how this technique can help inform galaxy/black hole coevolution scenarios.

  17. Asymmetry Between Galaxies with Clockwise Handedness and Counterclockwise Handedness

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2016-05-01

    While it is clear that spiral galaxies can have different handedness, galaxies with clockwise patterns are assumed to be symmetric to galaxies with counterclockwise patterns in all of their other characteristics. Here, we use data from SDSS DR7 to show that photometric data can distinguish between clockwise and counterclockwise galaxies. Pattern recognition algorithms trained and tested using the photometric data of a clean, manually crafted data set of 13,440 spiral galaxies with z\\lt 0.25 can predict the handedness of a spiral galaxy in ˜64% of the cases, which is significantly higher than the mere chance accuracy of 50% (P\\lt {10}-5). Experiments with a different data set of 10,281 automatically classified galaxies showed similar results of ˜65% classification accuracy, suggesting that the observed asymmetry is also consistent in data sets annotated in a fully automatic process, without human intervention. That shows that the photometric data collected by SDSS is sensitive to the handedness of the galaxy. Analysis of the number of galaxies classified as clockwise and counterclockwise by crowdsourcing shows that manual classification between spiral and elliptical galaxies can be affected by the handedness of the galaxy, and therefore the galaxy morphology analyzed by citizen science campaigns might be biased by the galaxy handedness. The code and data used in the experiment are publicly available, and the experiment can be easily replicated.

  18. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  19. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  20. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  1. VizieR Online Data Catalog: 3XMM/SDSS Stripe 82 Galaxy Cluster Survey. I. (Takey+, 2016)

    NASA Astrophysics Data System (ADS)

    Takey, A.; Durret, F.; Mahmoud, E.; Ali, G.

    2016-06-01

    The 3XMM/SDSS Stripe 82 cluster survey is mainly based on the XMM X-ray serendipitous source catalogue. The latest version of the catalogue, 3XMM-DR5, was released on 2015 April 28. The 3XMM-DR5 catalogue contains 565962 X-ray detections comprising 396910 X-ray sources, which were detected in 7781 EPIC (PN, MOS1, MOS2) observations made public on/or before 2013 December 31. These observations cover 877deg2 of the sky (Rosen et al. 2016A&A...590A...1R, Cat. IX/46). (4 data files).

  2. VizieR Online Data Catalog: Extremely metal-poor (XMP) galaxies in SDSS. II. (Almeida+, 2016)

    NASA Astrophysics Data System (ADS)

    Sanchez Almeida, J.; Perez-Montero, E.; Morales-Luis, A. B.; Munoz-Tunon, C.; Garcia-Benito, R.; Nuza, S. E.; Kitaura, F. S.

    2016-05-01

    First, we search for XMP candidates using the algorithm k-means (Sanchez Almeida et al. 2010ApJ...714..487S; Ordovas-Pascual & Sanchez Almeida 2014A&A...565A..53O). It leads to 1281 candidates. Then, we use the SDSS-DR7 spectra of the candidates to measure their integrated metallicity, which narrows down the list to 196 XMPs. We also include a second list (Table 2) with 332 potential XMPs that are selected under less restrictive noise constraints. (2 data files).

  3. Little Galaxy Explored

    NASA Image and Video Library

    2010-01-05

    This infrared portrait of the Small Magellanic Cloud, taken by NASA Spitzer Space Telescope, reveals the stars and dust in this galaxy as never seen before. This nearby satellite galaxy to our Milky Way galaxy is some 200,000 light-years away.

  4. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  5. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  6. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  7. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  8. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.

    2017-07-01

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.

  9. A New Catalog of Isolated Galaxies

    NASA Astrophysics Data System (ADS)

    Vázquez-Mata, J. A.; Hernández-Toledo, H. M.; Park, Changbom; Choi, Yun-Young

    2010-05-01

    We present a new catalog of isolated galaxies (coined as UNAM-KIAS) obtained through an automated systematic search. The 1520 isolated galaxies were found in ~ 1.4 steradians of the sky in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) photometry. The selection algorithm was implemented from a variation of the criteria developed by Karachentseva (1973), with full redshift information. This new catalog is aimed to carry out comparative studies of environmental effects and constraining the currently competing scenarios of galaxy formation and evolution.

  10. Effect of bars on the galaxy properties

    NASA Astrophysics Data System (ADS)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than g< 16.5 mag into strong-bar, weak-bar, and unbarred galaxies. With the goal of providing an appropriate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshifts, magnitudes, morphology, bulge sizes, and local density environment distributions to those of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies; this represents a bar fraction of 25.82% with respect to the full sample of spiral galaxies, in good agreement with several previous studies. We also found that strong-barred galaxies show lower efficiency in star formation activity and older stellar populations (as derived with the Dn(4000) spectral index) with respect to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong-barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred disk objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values compared to unbarred and weak-barred disk objects, which show similar distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve that falls abruptly with more significance in the range of low stellar masses (log (M∗/M⊙) < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing

  11. Low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  12. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  13. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Lintott, Chris J.; Schawinski, Kevin; Slosar, Anže; Land, Kate; Bamford, Steven; Thomas, Daniel; Raddick, M. Jordan; Nichol, Robert C.; Szalay, Alex; Andreescu, Dan; Murray, Phil; Vandenberg, Jan

    2008-09-01

    In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 × 107 individual classifications made by ~105 participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour-magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology. This publication has been made possible by the participation of more than 100000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at http://www.galaxyzoo.org/Volunteers.aspx E-mail: cjl@astro.ox.ac.uk (CJL); kevins@astro.ox.ac.uk (KS)

  14. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  15. Using Galaxy Winds to Constrain Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Klypin, A.; Ceverino, D.; Kacprzak, G.; Klimek, E.

    2010-01-01

    Analysis of mock quasar spectra of metal absorption lines in the proximity of formed galaxies in cosmological simulation is a highly promising for understanding the role of galaxies in IGM physics, or IGM physics in the role of galaxy formation in context of the cosmic web. Such analysis using neutral hydrogen in the cosmic web has literally revolutionized our understanding of the Lyman alpha forest. We are undertaking a wholesale approach to use powerful Lambda-CDM simulations to interpret absorption line data from redshift 1-3 starbursting galaxies e.g. Lyman break galaxies, etc) The data with which direct quantitative comparison is made are from the DEEP survey (Weiner et al.) and the collective work of Steidel et al. and collaborators. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, which has gas cell resolutions of 20-50 pc. Physical processes implemented in the code include realistic radiative cooling, star formation, metal enrichment and thermal feedback due to type II and type Ia supernovae. We quantitatively compare the spatial and kinematic distribution of HI, MgII, CIV, and OVI of absorption lines over a range of impact parameters for various simulated galaxies as a function of redshift, and discuss key insights for interpreting the underlying temperature, density, and ionization structure of the halo/cosmic-web interface, and the influence of galaxies on its chemical enrichment.

  16. VizieR Online Data Catalog: SDSS-DR8 galaxies classified by WND-CHARM (Kuminski+, 2016)

    NASA Astrophysics Data System (ADS)

    Kuminski, E.; Shamir, L.

    2016-06-01

    The image analysis method used to classify the images is WND-CHARM (wndchrm; Shamir et al. 2008, BMC Source Code for Biology and Medicine, 3: 13; 2010PLSCB...6E0974S; 2013ascl.soft12002S), which first computes 2885 numerical descriptors from each SDSS image such as textures, edges, shapes), the statistical distribution of the pixel intensities, the polynomial decomposition of the image, and fractal features. These features are extracted from the raw pixels, as well as the image transforms and multi-order image transforms. See section 2 for further explanations. In a similar way than the catalog we also compiled a catalog of all objects with spectra in DR8. For each object, that catalog contains the spec ObjID, the R.A., the decl., the z, z error, the certainty of classification as elliptical, the certainty of classification as spiral, and the certainty of classification as a star. See section 3.1 for further explanations. (2 data files).

  17. Lyman Alpha Galaxies and Galaxy Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta; Rhoads, James; Dey, Arjun; Jannuzi, Buell

    2003-02-01

    The Large Area Lyman Alpha survey has successfully identified the population of young Lyα emitting galaxies predicted over 30 years ago. High equivalent widths of Lyα line in these sources suggest that they are a very young (age < 10^7 years), metal poor, population of stars at redshifts 4.5, 5.7 and 6.6, making them very interesting objects to study in the context of galaxy formation scenarios. We have begun to do exactly this using the correlation function of LALA galaxies, with fairly puzzling results. Before this leads to more complications in theoretical galaxy formation scenarios, we would like to put the observational results on a firm footing. In order to do that we ask for one night of Keck/Deimos time for spectroscopic confirmation of 50 secure LALA sources at z=4.5, and a similar number of fainter sources, in order to (1) characterize the completeness of this survey, and (2) weed out foreground emission line galaxies which affect the small scale correlation function. The excellent match between wide-field capabilities of DEIMOS and the LALA survey will allow the most complete confirmation and characterization of the high redshift Lyα population yet in terms of photometric sample reliability, while our planned spectra of foreground emission line galaxies will lead to a characterization of emission line selected star-forming galaxies at 0.25 < z < 1.5. We will use our spectroscopic sample to obtain a clean measurement of the small scale correlations among Lyα galaxies (which are clearly seen in our photometric sample). This will let us understand the halo mass, occupancy number, and duty cycle of these objects, and hence better how Lyα sources fit into the bigger picture of galaxy formation.

  18. Modelling the UV spectrum of SDSS-III/BOSS galaxies: hints towards the detection of the UV upturn at high-z

    NASA Astrophysics Data System (ADS)

    Le Cras, Claire; Maraston, Claudia; Thomas, Daniel; York, Donald G.

    2016-09-01

    We exploit stellar population models of absorption line indices in the ultraviolet (from 2000 to 3200 Å) to study the spectra of massive galaxies. Our central aim is to investigate the occurrence at high redshift of the UV upturn, i.e. the increased UV emission due to old stars observed in massive galaxies and spiral bulges in the local Universe. We use a large (˜275 000) sample of z ˜ 0.6 massive (M*/M⊙ > 11.5) galaxies using both individual spectra and stacks and employ a suite of models including a UV contribution from old populations, spanning various effective temperatures, fuel consumptions and metallicities. We find that a subset of our indices; Mg I, Fe I, and BL3096, are able to differentiate between old and young UV ages. We find evidence for old stars contributing to the UV in massive galaxies, rather than star formation. The data favour models with low/medium upturn temperatures (10 000-25 000 K) consistent with local galaxies, depending on the assumed metallicity, and with a larger fuel (f ˜ 6.5× 10^{-2} {M}_{⊙}). Models with one typical temperature are favoured over models with a temperature range, which would be typical of an extended horizontal branch. Old UV-bright populations are found in the whole galaxy sample (92 per cent), with a mass fraction peaking around 20-30 per cent. Upturn galaxies are massive and have redder colours, in agreement with findings in the local Universe. We find that the upturn phenomenon appears at z ˜ 1 and its frequency increases towards lower redshift, as expected by stellar evolution of low-mass stars. Our findings will help constrain stellar evolution in the exotic UV upturn phase.

  19. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2015-08-01

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  20. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  1. Local analogs of high-redshift galaxies: Interstellar medium conditions

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2017-03-01

    Local analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ~= 2 - 3 galaxies, but higher than those in normal SDSS galaxies by ~= 0.6 dex and ~= 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  2. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  3. A PAH Deficit in Extremely Low Luminosity Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Rongying; Hogg, D. W.

    2006-12-01

    We present a study of 29 extremely low luminosity galaxies randomly selected from the footprint of the Sloan Digital Sky Survey (SDSS). The galaxies comprise a statistically complete sample of galaxies with Mr > -15 and recession velocity v < 2000 km s^-1 as measured in SDSS Data Release 2 (DR2). We also observe these sample galaxies in all four channels with the Spitzer Infrared Array Camera (IRAC). The photometry in SDSS shows that these galaxies appear to be visually blue (g-r < 0.6), and the IRAC color analysis shows that they are blue in IRAC infrared color [3.6]-[8]. The IRAC [3.6] magnitude measures the starlight, and the [8] measures PAH emissions. We find that these star-forming galaxies show very low PAH to star ratios. This result agrees with earlier observations on other dwarf galaxies including SBS0335-052 and small samples from ISO and the overlap of the SDSS with the Spitzer First Look Survey, but it is worth emphasizing that this sample has a lower mean luminosity than those samples. The PAH deficiency of these galaxies is discussed in the context of their metallicity and dust properties.

  4. The Influence of Large-scale Environments on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Wei, Yu-qing; Wang, Lei; Dai, Cai-ping

    2017-07-01

    The star formation properties of galaxies and their dependence on environments play an important role for understanding the formation and evolution of galaxies. Using the galaxy sample of the Sloan Digital Sky Survey (SDSS), different research groups have studied the physical properties of galaxies and their large-scale environments. Here, using the filament catalog from Tempel et al. and the galaxy catalog of large-scale structure classification from Wang et al., and taking the influence of the galaxy morphology, high/low local density environment, and central (satellite) galaxy into consideration, we have found that the properties of galaxies are correlated with their residential large-scale environments: the SSFR (specific star formation rate) and SFR (star formation rate) strongly depend on the large-scale environment for spiral galaxies and satellite galaxies, but this dependence is very weak for elliptical galaxies and central galaxies, and the influence of large-scale environments on galaxies in low density region is more sensitive than that in high density region. The above conclusions remain valid even for the galaxies with the same mass. In addition, the SSFR distributions derived from the catalogs of Tempel et al. and Wang et al. are not entirely consistent.

  5. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  6. Galaxy Classifications with Deep Learning

    NASA Astrophysics Data System (ADS)

    Lukic, Vesna; Brüggen, Marcus

    2017-06-01

    Machine learning techniques have proven to be increasingly useful in astronomical applications over the last few years, for example in object classification, estimating redshifts and data mining. One example of object classification is classifying galaxy morphology. This is a tedious task to do manually, especially as the datasets become larger with surveys that have a broader and deeper search-space. The Kaggle Galaxy Zoo competition presented the challenge of writing an algorithm to find the probability that a galaxy belongs in a particular class, based on SDSS optical spectroscopy data. The use of convolutional neural networks (convnets), proved to be a popular solution to the problem, as they have also produced unprecedented classification accuracies in other image databases such as the database of handwritten digits (MNIST †) and large database of images (CIFAR ‡). We experiment with the convnets that comprised the winning solution, but using broad classifications. The effect of changing the number of layers is explored, as well as using a different activation function, to help in developing an intuition of how the networks function and to see how they can be applied to radio galaxy images.

  7. Seyfert galaxies and ``Unified Scheme''

    NASA Astrophysics Data System (ADS)

    Pashchenko, I. N.; Pilipenko, S. V.; Vitrishchak, V. M.

    2011-01-01

    From spectroscopic point of view Seyfert galaxies (as other Active Galactic Nuclei --- AGN) basically are subdivided into two types: with and without broad permitted emission lines in their optical spectra (so called type I and type II Seyfert galaxies or AGNs). One of the most fundumental idea concerning AGN is that observed AGN type (I or II) is determined by inclination angle of AGN to the line of sight (LOS). At high inclination angles LOS crosses dusty torus which absorbs and scatters line emission. But in some recent papers the differences in close (<100 kpc) environment of SyI and SyII (SyII have more close companions), which are incompatible with Unification Scheme, were found and the possibility of physical (intrinsic) differences between Seyfert I and II was discussed. It was shown that this difference could be due to selection effects caused by the sample criteria. We sampled SyI and SyII galaxies from the Sloan Digital Sky Survey (SDSS) on the basis of their emission line properties thus excluding selection and discuss the properties of the environment of Seyfert galaxies.

  8. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  9. ENVIRONMENTAL DEPENDENCE OF ALL OF THE FIVE-BAND LUMINOSITIES FOR THE APPARENT-MAGNITUDE-LIMITED MAIN GALAXY SAMPLE OF THE SDSS DR7

    SciTech Connect

    Deng Xinfa

    2012-01-15

    In this study, I use the apparent-magnitude-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 7 and investigate the environmental dependence of all of the five-band luminosities. To decrease the radial selection effect, I divide the whole sample into many subsamples with a redshift binning size of {Delta}z = 0.01 and analyze the environmental dependence of all of the five-band luminosities of subsamples in each redshift bin. It turns out that luminous galaxies in M{sub u} (the u-band absolute magnitude) exist preferentially in low-density regions of the universe, while faint galaxies in M{sub u} are located preferentially in high-density regions, especially in the redshift range 0.05 {<=} z {<=} 0.10.

  10. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2-3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows -0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  11. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0galaxies, in a local vicinity of 10 h-1 Mpc radius to determine some photometric and population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  12. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  13. TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY

    SciTech Connect

    Galbany, Lluis; Miquel, Ramon; Oestman, Linda; Brown, Peter J.; Olmstead, Matthew D.; Cinabro, David; D'Andrea, Chris B.; Nichol, Robert C.; Frieman, Joshua; Jha, Saurabh W.; Marriner, John; Nordin, Jakob; Sako, Masao; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; and others

    2012-08-20

    We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  14. Dense cores in galaxies out to z = 2.5 in SDSS, UltraVISTA, and the five 3D-HST/Candels fields

    SciTech Connect

    Van Dokkum, Pieter G.; Nelson, Erica June; Momcheva, Ivelina; Leja, Joel; Oesch, Pascal; Bezanson, Rachel; Van der Wel, Arjen; Skelton, Rosalind E.; Labbé, Ivo; Muzzin, Adam; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Schreiber, Natascha M. Förster; Fumagalli, Mattia; Wuyts, Stijn; Kriek, Mariska; Marchesini, Danilo

    2014-08-10

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 10{sup 10} M{sub ☉} inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ∼50% at z = 2.5 to ∼15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M{sub 1{sub kpc}} > 3 × 10{sup 10} M{sub ☉} make up ∼0.1% of the stellar mass density of the universe today but 10%-20% at z ∼ 2, depending on their initial mass function. The formation of these cores required the conversion of ∼10{sup 11} M{sub ☉} of gas into stars within ∼1 kpc, while preventing significant star formation at larger radii.

  15. Morphology of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    King, Ivan

    1991-07-01

    This is a proposal to study the morphology of distant galaxies, a field that has lagged far behind what has been learned from spectroscopic work. The targeted galaxies all have been extensively observed from the ground. Nearly all are in the redshift range 0.24-0.65. Ground-based data include broad-baseline 4-color photometry and, in nearly all cases, redshifts. The targets include a rich X-ray cluster that is surprisingly deficient in blue galaxies, and three other fields that each have numerous galaxies that have been richly observed from the ground. Each field will be observed with the WFC, while a parallel observation observes a similarly well-studied galaxy with the FOC at greater resolving power. These observations will take the first crucial step toward investigating the morphology of the rich sample of medium-redshift galaxies in the Koo-Kron redshift surveys.

  16. The evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Gunn, J. E.

    1982-01-01

    The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.

  17. Classic Galaxy with Glamour

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue).

    This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy.

    Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  18. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.; Brinks, E.

    The life and evolution of galaxies are dramatically affected by environmental effects. Interactions with the intergalactic medium and collisions with companions cause major perturbations in the morphology and contents of galaxies: in particular stars and gas clouds may be gravitationally pulled out from their parent galaxies during tidal encounters, forming rings, tails and bridges. This debris of collisions lies at the origin of a new generation of small galaxies, the so-called "tidal dwarf galaxies" (TDGs). The authors have carried out multi-wavelength observations of some 20 TDGs. These systems are made of two stellar components: young stars, formed from the recent collapse of expelled H I clouds, and an older stellar population, tidally pulled out from the disks of their interacting parent galaxies. In the observed TDGs, the current star formation episode is fuelled by a large reservoir of H I gas and is younger than 10 Myr.

  19. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  20. Galaxies Grow from Inside Out

    NASA Image and Video Library

    2013-10-31

    Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.

  1. Bulgeless Galaxy Hides Black Hole

    NASA Image and Video Library

    2014-03-26

    The galaxy NGC 4395 is shown here in infrared light, captured by NASA Spitzer Space Telescope. This dwarf galaxy is relatively small in comparison with our Milky Way galaxy, which is nearly 1,000 times more massive.

  2. Galaxy evolution. Galactic paleontology.

    PubMed

    Tolstoy, Eline

    2011-07-08

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  3. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  4. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  5. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  6. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  7. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  8. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  9. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  10. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  11. Clusters of Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nichol, Robert C.

    I review here past and present research on clusters and groups of galaxies within the Sloan Digital Sky Survey (SDSS). I begin with a short review of the SDSS and efforts to find clusters of galaxies using both the photometric and spectroscopic SDSS data. In particular, I discuss the C4 algorithm, which is designed to search for clusters and groups within a seven-dimensional (7-D) data space, i.e., simultaneous clustering in both color and space. The C4 catalog has a well-quantified selection function based on mock SDSS galaxy catalogs constructed from the Hubble Volume simulation. These simulations indicate that the C4 catalog is >90% complete, with <10% contamination, for halos of M200 >1014 Modot at z<0.14. Furthermore, the observed summed r-band luminosity of C4 clusters is linearly related to M200, with <30% scatter at any given halo mass. I also briefly review the selection and observation of luminous red galaxies and demonstrate that these galaxies have a similar clustering strength as clusters and groups of galaxies. I outline a new collaboration planning to obtain redshifts for 10,000 luminous red galaxies at 0.4 SDSS photometric data and the Anglo-Australian Telescope 2dF instrument. Finally, I review the role of clusters and groups of galaxies in the study of galaxy properties as a function of environment. In particular, I discuss the ``star formation rate-density'' and ``morphology-radius'' relations for the SDSS and note that both of these relationships have a critical density (or ``break'') at a projected local galaxy density of ˜1 h75-2 {Mpc-2 (or between 1 to 2 virial radii). One possible physical mechanism to explain this observed critical density is the stripping of warm gas from the halos of infalling spiral galaxies, thus leading to a slow strangulation of star formation in these galaxies. This scenario is consistent with the recent discovery (within the SDSS) of an excess of ``passive'' or ``anemic'' spiral galaxies located

  12. Lyman Alpha Galaxies and Galaxy Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta

    2005-08-01

    The Large Area Lyman Alpha survey has successfully identified the population of young Lyα emitting galaxies predicted over 35 years ago. High equivalent widths of Lyα in these sources suggest that they are a very young (age < 10^7 years), metal poor, population of stars, making them very interesting objects for understanding galaxy formation. With two nights of Magellan+IMACS time, we will obtain spectroscopic confirmation of 150-200 secure LALA sources at redshift z=4.5. Followup of a similar number of fainter Lyα candidates will characterize the completeness and weed out foreground emission line galaxies. The excellent match between wide-field capabilities of IMACS and the LALA survey makes this the most complete confirmation and characterization of the high redshift Lyα population yet. With our spectroscopic sample, we will: (1) Search for AGN among our sample- a few should be found if the AGN fraction is comparable to that in Lyman break galaxies. (2) Produce a high S/N coadded spectrum, where we will look for (a) HeII (1640Å) emission, which is an indicator of Pop III stars; and (b) ISM absorption lines, whose velocity offset relative to the Lyα emission is an indicator of galactic winds in these early starbursts. (3) Obtain a clean measurement of spatial correlations among Lyα galaxies, and thereby derive the halo mass, occupancy number, and duty cycle of Lyα galaxies, to see how they fit into the bigger picture of galaxy formation.

  13. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: higher order correlations revealed by germ-grain Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Wiegand, Alexander; Eisenstein, Daniel J.

    2017-05-01

    We probe the higher order clustering of the galaxies in the final data release (DR12) of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS), using the method of germ-grain Minkowski functionals (MFs). Our sample consists of 410 615 BOSS galaxies from the northern Galactic cap in the redshift range 0.450-0.595. We show the MFs to be sensitive to contributions up to the six-point correlation function for this data set. We ensure with a custom angular mask that the results are more independent of boundary effects than in previous analyses of this type. We extract the higher order part of the MFs and quantify the difference to the case without higher order correlations. The resulting χ2 value of over 10 000 for a modest number of degrees of freedom, O(200), indicates a 100σ deviation and demonstrates that we have a highly significant signal of the non-Gaussian contributions to the galaxy distribution. This statistical power can be useful in testing models with differing higher order correlations. Comparing the galaxy data to the quick particle mesh and MultiDark(MD)-Patchy mocks, we find that the latter better describes the observed structure. From an order-by-order decomposition, we expect that, for example, already a reduction of the amplitude of the MD-Patchy mock power spectrum by 5 per cent would remove the remaining tension.

  14. Cosmological Constraints from the Redshift Dependence of the Alcock-Paczynski Effect: Application to the SDSS-III BOSS DR12 Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Weinberg, David H.; Schneider, Donald P.; Kim, Juhan; Hong, Sungwook E.

    2016-12-01

    We apply the methodology developed in Li et al. to BOSS DR12 galaxies and derive cosmological constraints from the redshift dependence of the Alcock-Paczynski (AP) effect. The apparent anisotropy in the distribution of observed galaxies arise from two main sources, the redshift-space distortion (RSD) effect due to the galaxy peculiar velocities, and the geometric distortion when incorrect cosmological models are assumed for transforming redshift to comoving distance, known as the AP effect. Anisotropies produced by the RSD effect are, although large, maintaining a nearly uniform magnitude over a large range of redshift, while the degree of anisotropies from the AP effect varies with redshift by a much larger magnitude. We split the DR12 galaxies into six redshift bins, measure the two-point correlation function in each bin, and assess the redshift evolution of anisotropies. We obtain constraints of {{{Ω }}}m=0.290+/- 0.053,w=-1.07+/- 0.15, which are comparable with the current constraints from other cosmological probes such as SNe Ia, cosmic microwave background, and baryon acoustic oscillation (BAO). Combining these cosmological probes with our method yield tight constraints of {{{Ω }}}m=0.301+/- 0.006,w=-1.054+/- 0.025. Our method is complementary to the other large-scale structure (LSS) probes like BAO and topology. We expect this technique will play an important role in deriving cosmological constraints from LSS surveys.

  15. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: angular clustering tomography and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Grieb, Jan Niklas; Crocce, Martin; Scoccimarro, Roman; Alam, Shadab; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Samushia, Lado; Tinker, Jeremy; Thomas, Daniel; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo

    2017-07-01

    We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final Baryon Oscillation Spectroscopic Survey (BOSS) DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, ω(θ), in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and Type Ia supernova (SNIa). We explore a number of cosmological models, including the standard Λ cold dark matter model and its most interesting extensions, such as deviations from wDE = -1, non-minimal neutrino masses, spatial curvature and deviations from general relativity (GR) using the growth-index γ parametrization. These results are, in general, comparable to the most precise present-day constraints on cosmological parameters, and show very good agreement with the standard model. In particular, combining CMB, ω(θ) and SNIa, we find a value of wDE consistent with -1 to a precision better than 5 per cent when it is assumed to be constant in time, and better than 6 per cent when we also allow for a spatially curved Universe.

  16. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  17. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  18. The Spectral Energy Distributions of Interacting Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Johnson, Kelsey E.; Stierwalt, Sabrina; Kallivayalil, Nitya; Besla, Gurtina; Patton, David R.; Privon, George C.

    2016-01-01

    We present spectral energy distributions (SEDs) for the TiNy Titans survey, the first systematic study of interactions between dwarf galaxies. Galaxy interactions are known to be of fundamental importance to the evolution of massive galaxies -- they have been observed to impact morphology, star formation rates, and ISM composition. Such interactions also occur frequently between low mass dwarf galaxies, but this process is poorly understood and largely overlooked in comparison. Although the majority of mergers at all redshifts are expected to take place between low mass galaxies, until now there have not been comparable systematic studies of dwarf galaxy interactions, leaving open the question of whether interactions between low mass galaxies can strongly affect their own evolution. The TiNy Titans survey, a complete sample of isolated dwarf galaxy pairs selected from the Sloan Digital Sky Survey (SDSS), is specifically designed to address this gap in our understanding of galaxy evolution. The SEDs presented here, generated from archival WISE, SDSS, and GALEX photometric data, allow us to characterize the typical interacting dwarf galaxy, as well as quantify the deviations from this average distribution. We also present trends in the SEDs as a function of projected radial separation, a proxy for interaction stage.

  19. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  20. Galaxy NGC 4013

    NASA Image and Video Library

    1999-12-15

    An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.

  1. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, Raphael; Hong, Sungwook E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  2. UPDATED NEARBY GALAXY CATALOG

    SciTech Connect

    Karachentsev, Igor D.; Makarov, Dmitry I.; Kaisina, Elena I.

    2013-04-15

    We present an all-sky catalog of 869 nearby galaxies having individual distance estimates within 11 Mpc or corrected radial velocities V{sub LG} < 600 km s{sup -1}. The catalog is a renewed and expanded version of the Catalog of Neighboring Galaxies by Karachentsev et al. It collects data on the following galaxy observables: angular diameters, apparent magnitudes in far-UV, B, and K{sub s} bands, H{alpha} and H I fluxes, morphological types, H I-line widths, radial velocities, and distance estimates. In this Local Volume (LV) sample, 108 dwarf galaxies still remain without measured radial velocities. The catalog yields also calculated global galaxy parameters: linear Holmberg diameter, absolute B magnitude, surface brightness, H I mass, stellar mass estimated via K-band luminosity, H I rotational velocity corrected for galaxy inclination, indicative mass within the Holmberg radius, and three kinds of ''tidal index,'' which quantify the local density environment. The catalog is supplemented with data based on the local galaxies, which presents their optical and available H{alpha} images, as well as other services. We briefly discuss the Hubble flow within the LV and different scaling relations that characterize galaxy structure and global star formation in them. We also trace the behavior of the mean stellar mass density, H I-mass density, and star formation rate density within the volume considered.

  3. GALAXIES: SNAPSHOTS IN TIME

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sequence of NASA Hubble Space Telescope (HST) images of remote galaxies offers tantalizing initial clues to the evolution of galaxies in the universe. [far left column] These are traditional spiral and elliptical-shaped galaxies that make up the two basic classes of island star cities that inhabit the universe we see in our current epoch (14 billion years after the birth of the universe in the Big Bang). Elliptical galaxies contain older stars, while spirals have vigorous ongoing star formation in their dusty, pancake-shaped disks. Our Milky Way galaxy is a typical spiral, or disk-shaped galaxy, on the periphery of the great Virgo cluster. Both galaxies in this column are a few tens of millions of light-years away, and therefore represent our current stage of the universe s evolution. [center left column] These galaxies existed in a rich cluster when the universe was approximately two-thirds its present age. Elliptical galaxies (top) appear fully evolved because they resemble today's descendants. By contrast, some spirals have a frothier appearance, with loosely shaped arms of young star formation. The spiral population appears more disrupted due to a variety of possible dynamical effects that result from dwelling in a dense cluster. [center right column] Distinctive spiral structure appears more vague and disrupted in galaxies that existed when the universe was nearly one-third its present age. These objects do not have the symmetry of current day spirals and contain irregular lumps of starburst activity. However, even this far back toward the beginning of time, the elliptical galaxy (top) is still clearly recognizable. However, the distinction between ellipticals and spirals grows less certain with increasing distance. [far right column] These extremely remote, primeval objects existed with the universe was nearly one-tenth its current age. The distinction between spiral and elliptical galaxies may well disappear at this early epoch. However, the object in

  4. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  5. Blue diffuse dwarf galaxies: a clearer picture

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e. galaxies with <1/10 solar metallicity. However, due to the bright emission-line-based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ∼150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 < 12 + log(O/H) < 8.01), with ∼20 per cent of our sample classified as being XMP galaxies, and find that they are actively forming stars at rates of ∼1-33 × 10-2 M⊙ yr-1 in H II regions randomly embedded in a blue, low-surface-brightness continuum. Stellar masses are calculated from population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  6. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  7. Primordial (pseudo)bulges in isolated galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Blasco-Herrera, J.; Argudo-Fernández, M.; Ramírez-Moreta, P.; Garrido, J.; Ruiz, J. E.; Sánchez-Expósito, S.; Santander-Vela, J. D.

    2015-05-01

    Important clues about spiral galaxy formation lie in the nature of their central bulges. In this sense, properties of bulges in isolated galaxies best reflect their origin because of their minimized environmental evolutionary effects. We report here the structural parameters and (g-i) bulge/disk colors for a sample of 189 isolated galaxies selected from the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies). A 2D bulge/disk/bar decomposition of SDSS i-band images was performed in order to identify the pseudobulges in our sample. We derived (g-i) bulge colors using aperture photometry. Pseudobulges in our sample show median colors (g-i)˜ 1.06, while their associated disks are much bluer, (g-i)˜ 0.77. Moreover, 64 % (113/177) of pseudobulges follow the red sequence of early-type galaxies. The bluer pseudobulges in our sample tend to be located in those galaxies more affected by the tidal interactions. The red bulge colors and low B/T values for AMIGA isolated galaxies are consistent with an early formation epoch. The results found here suggest that environment could be playing a role in rejuvenating the pseudobulges.

  8. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  9. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, H. M.

    There is an ongoing argument regarding galaxies, like there is regarding children, of whether the final outcome is driven primarily by nature or nurture. In the case of galaxies, the total mass plays the role of genetics (nature) and the number of nearby galaxies plays the role of family life (nurture). Untangling the role of each has been particularly difficult for galaxies because the mass of a galaxy is closely tied to its environment.

  10. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  11. Bayesian Inference of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Weinberg, M.; Katz, N.

    2011-01-01

    Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.

  12. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Wang, Yuting; Saito, Shun; Wang, Dandan; Ross, Ashley J.; Beutler, Florian; Grieb, Jan Niklas; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Percival, Will J.; Brownstein, Joel R.; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Weinberg, David H.; Zhu, Fangzhou

    2017-04-01

    We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) Data Release12 covering the redshift range of 0.20 < z < 0.75. By allowing for overlap between neighbouring redshift slices, we successfully obtained the isotropic and anisotropic BAO distance measurements within nine redshift slices to a precision of 1.5-3.4 per cent for DV/rd, 1.8-4.2 per cent for DA/rd and 3.7-7.5 per cent for H rd, depending on effective redshifts. We provide our BAO measurement of DA/rd and H rd with the full covariance matrix, which can be used for cosmological implications. Our measurements are consistent with those presented in Alam et al., in which the BAO distances are measured at three effective redshifts. We constrain dark energy parameters using our measurements and find an improvement of the Figure-of-Merit of dark energy in general due to the temporal BAO information resolved. This paper is a part of a set that analyses the final galaxy clustering data set from BOSS.

  13. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Zhao, Gong-Bo; Chuang, Chia-Hsun; Ross, Ashley J.; Percival, Will J.; Gil-Marín, Héctor; Cuesta, Antonio J.; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Brownstein, Joel R.; Eisenstein, Daniel J.; Ho, Shirley; Kneib, Jean-Paul; Olmstead, Matthew D.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Zhu, Fangzhou

    2017-08-01

    We perform a tomographic baryon acoustic oscillations (BAOs) analysis using the two-point galaxy correlation function measured from the combined sample of Baryon Oscillation Spectroscopic Survey Data Release 12 (BOSS DR12), which covers the redshift range of 0.2 < z < 0.75. Upon splitting the sample into multiple overlapping redshift slices to extract the redshift information of galaxy clustering, we obtain a measurement of DA(z)/rd and H(z)rd at nine effective redshifts with the full covariance matrix calibrated using MultiDark-Patchy mock catalogues. Using the reconstructed galaxy catalogues, we obtain the precision of 1.3-2.2 per cent for DA(z)/rd and 2.1-6.0 per cent for H(z)rd. To quantify the gain from the tomographic information, we compare the constraints on the cosmological parameters using our nine-bin BAO measurements, the consensus three-bin BAO and redshift space distortion measurements at three effective redshifts in Alam et al., and the non-tomographic (one-bin) BAO measurement at a single effective redshift. Comparing the nine-bin with one-bin constraint result, it can improve the dark energy Figure of Merit by a factor of 1.24 for the Chevallier-Polarski-Linder parametrization for equation-of-state parameter wDE. The errors of w0 and wa from nine-bin constraints are slightly improved when compared to the three-bin constraint result.

  14. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  15. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  16. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  17. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  18. Galaxy And Mass Assembly (GAMA): Structural Investigation of Galaxies via Model Analysis

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.; Hill, David T.; Alpaslan, Mehmet; Baldry, Ivan K.; Bamford, Steven P.; Bland-Hawthorn, Joss; Brough, Sarah; Graham, Alister W.; Häussler, Boris; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Norberg, Peder; Phillipps, Steven; Popescu, Cristina C.; Prescott, Matthew; Taylor, Edward N.; Tuffs, Richard J.

    2012-04-01

    We present single-Sérsic two-dimensional (2D) model fits to 167 600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey imaging data available from the Galaxy And Mass Assembly (GAMA) data base. In order to facilitate this study we developed Structural Investigation of Galaxies via Model Analysis (SIGMA), an R wrapper around several contemporary astronomy software packages including SOURCE EXTRACTOR, PSF EXTRACTOR and GALFIT 3. SIGMA produces realistic 2D model fits to galaxies, employing automatic adaptive background subtraction and empirical point spread function measurements on the fly for each galaxy in GAMA. Using these results, we define a common coverage area across the three GAMA regions containing 138 269 galaxies. We provide Sérsic magnitudes truncated at 10re which show good agreement with SDSS Petrosian and GAMA photometry for low Sérsic index systems (n < 4), and much improved photometry for high Sérsic index systems (n > 4), recovering as much as Δm= 0.5 mag in the r band. We employ a K-band Sérsic index/u-r colour relation to delineate the massive (n > ˜2) early-type galaxies (ETGs) from the late-type galaxies (LTGs). The mean Sérsic index of these ETGs shows a smooth variation with wavelength, increasing by 30 per cent from g through K. LTGs exhibit a more extreme change in Sérsic index, increasing by 52 per cent across the same range. In addition, ETGs and LTGs exhibit a 38 and 25 per cent decrease, respectively, in half-light radius from g through K. These trends are shown to arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxy populations.

  19. An archetypal dwarf galaxy

    NASA Image and Video Library

    2013-01-07

    The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. One of the biggest and brightest spiral galaxies in the night sky, Messier 101 is also the subject of one of Hubble's most famous images (heic0602). Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighbourhood. NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing starbirth, NGC 5477 looks much like an archetypal dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white. The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars. In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars. This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes. 

  20. Binary Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Ip, Peter Shun Sang

    1994-01-01

    CCD images of the binary-rich clusters of galaxies A373, A408, A667, A890, and A1250 taken at the Canada-France-Hawaii telescope show that about half the binary galaxies' are actually star-galaxy or star-star pairs. These clusters are not binary-rich. N-body simulations are used to study the effect of static cluster potentials on binary and single galaxies. The softening procedure is discussed in detail. Since Plummer softening is not self-consistent, and since the force laws for various other density models are similar to each other, uniform-density softening is used. The choice of the theoretical galaxy model in terms of the potential at various locations. A fixed cluster potential cannot stabilize binary galaxies against merger, but can disrupt even quite tightly bound binaries. A moderately good predictor of whether a binary merges or disrupts is the mean torque over a quarter of the initial binary period. But the dynamics of the situation is quite complicated, and depends on an interplay between the motion of the binary through the cluster and the absorption of orbital energy by the galaxies. There is also a substantial amount of mass loss. Simulations of single galaxies in cluster show that this mass loss is due mainly to the cluster potential, and not to an interplay between the merging binary and the cluster. This mass loss is driven partially by virial equilibrium responding to the initial tidal truncation by the cluster. Besides verifying some general results of mass loss from satellite systems in the tidal field of larger bodies, it was found that the galaxy loses mass at an exponential rate.

  1. Dynamic Chemical Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin

    Cosmological hydrodynamic simulations have just achieved the ability to reproduce the properties of galaxies with the precision that was previously only reserved for semi-analytical models. These simulations are invaluable in determining how galaxies process gas into stars over a Hubble time; however the state of the art resolves an L* halo with on the order of 10^5 resolution elements in volumes extending ~100 Mpc on a side. Our proposal applies the EAGLE (Evolution and Assembly of GaLaxies and their Environments) simulation code to cosmological renormalization zooms to resolve an L* halo with up to 10^8 resolution elements, which is required to reproduce observations probing the baryonic cycle of accretion, feedback, and gas recycling that are likely central regulators of galaxy growth. Our unique approach directly models the chemical observables of facilities including Hubble and Chandra, using our newly developed Eagle-Network following the time-dependent ionization, chemistry, and cooling of 157 ionic and molecular species. This proposal focuses on understanding the physics in the circumgalactic medium (CGM), including i) the dynamics of the baryon content of L* halos, ii) the probes of the metal census of Milky Way-like galaxies, and iii) the origin of the galaxy bimodality of star-forming and quenched galaxies. We challenge standard models that assume equilibrium with a uniform extra-galactic ionization background by exploring time-dependent radiative transfer from fluctuating active galactic nuclei. Our approach aims to identify major problems with standard interpretations of data from NASA observatories, and seeks to understand the diverse physics ranging from atomic processes setting how gas cools in the intergalactic medium to the rate and duty cycles of supermassive black hole growth at the centers of galaxies. Now is the time to confront the dynamics at the intersection of the CGM and galaxies using cutting-edge theoretical tools to gain insight on the

  2. Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chi; Ho, Shirley; Mandelbaum, Rachel; Bahcall, Neta A.; Brownstein, Joel R.; Freeman, Peter E.; Genovese, Christopher R.; Schneider, Donald P.; Wasserman, Larry

    2017-04-01

    We study the effects of filaments on galaxy properties in the Sloan Digital Sky Survey (SDSS) Data Release 12 using filaments from the 'Cosmic Web Reconstruction' catalogue, a publicly available filament catalogue for SDSS. Since filaments are tracers of medium- to high-density regions, we expect that galaxy properties associated with the environment are dependent on the distance to the nearest filament. Our analysis demonstrates that a red galaxy or a high-mass galaxy tends to reside closer to filaments than a blue or low-mass galaxy. After adjusting the effect from stellar mass, on average, early-forming galaxies or large galaxies have a shorter distance to filaments than late-forming galaxies or small galaxies. For the main galaxy sample, all signals are very significant (>6σ). For the LOWZ and CMASS sample, the stellar mass and size are significant (>2σ). The filament effects we observe persist until z = 0.7 (the edge of the CMASS sample). Comparing our results to those using the galaxy distances from redMaPPer galaxy clusters as a reference, we find a similar result between filaments and clusters. Moreover, we find that the effect of clusters on the stellar mass of nearby galaxies depends on the galaxy's filamentary environment. Our findings illustrate the strong correlation of galaxy properties with proximity to density ridges, strongly supporting the claim that density ridges are good tracers of filaments.

  3. Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Casteels, Kevin R. V.; Edmondson, Edward M.; Fortson, Lucy F.; Kaviraj, Sugata; Keel, William C.; Melvin, Thomas; Nichol, Robert C.; Raddick, M. Jordan; Schawinski, Kevin; Simpson, Robert J.; Skibba, Ramin A.; Smith, Arfon M.; Thomas, Daniel

    2013-11-01<