Sample records for galaxies spitzer space

  1. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  2. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  3. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  4. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  5. NASA Spitzer 12th Anniversary Space Calendar

    NASA Image and Video Library

    2015-08-20

    NASA Spitzer Space Telescope celebrated its 12th anniversary with a new digital calendar showcasing some of the mission most notable discoveries and popular cosmic eye candy. The digital calendar is online at http://www.jpl.nasa.gov/images/spitzer/20150820/Spitzer12thAnniversaryCalendar.pdf The calendar follows the life of the mission, with each month highlighting top infrared images and discoveries from successive years -- everything from a dying star resembling the eye of a monster to a star-studded, swirling galaxy. The final month includes a brand new image of the glittery star-making factory known as the Monkey Head nebula. Spitzer, which launched into space on August 25, 2003, from Cape Canaveral, Florida, is still going strong. It continues to use its ultra-sensitive infrared vision to probe asteroids, comets, exoplanets (planets outside our solar system) and some of the farthest known galaxies. Recently, Spitzer helped discover the closest known rocky exoplanet to us, named HD219134b, at 21 light-years away. In fact, Spitzer's exoplanet studies continue to surprise the astronomy community. The telescope wasn't originally designed to study exoplanets, but as luck -- and some creative engineering -- would have it, Spitzer has turned out to be a critical tool in the field, probing the climates and compositions of these exotic worlds. This pioneering work began in 2005, when Spitzer became the first telescope to detect light from an exoplanet. http://photojournal.jpl.nasa.gov/catalog/PIA19872

  6. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  7. A Spitzer/glimpse Search For Galaxies: What Zone Of Avoidance?

    NASA Astrophysics Data System (ADS)

    Parsons, Lamarr; Benjamin, R. A.; GLIMPSE Team

    2007-12-01

    We report the results of a visual search for galaxy candidates in an area of twelve square degrees covered by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire-3D (GLIMPSE-3D) Spitzer Legacy programs. The areas searched consisted of three 2x2 degree blocks, with galactic coordinates centered at (330, -02), (330, +02) and (331, -02). All three regions were imaged for 2.4 seconds in the 3.6, 4.5, 5.8 and 8.0 µm bands using IRAC on the Spitzer Space Telescope. We report a total of 114 galaxy candidates, yielding an average of 9.5 candidates per square degree. We also show that the galaxy detection rate is dependent on galactic latitude, probably due to the lower diffuse 8 micron background at high latitudes. We have found that the detection rate increases from 4 per square degree (at b=1º) to 12 per square degree (at b=3º). We present the physical parameters of these galaxies, discuss their clustering, and note which have been previously detected in other wavebands/surveys. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  8. Pandora Cluster Seen by Spitzer

    NASA Image and Video Library

    2016-09-28

    This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920

  9. Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; van Dokkum, P.; Franx, M.; Labbe, I.; Förster Schreiber, N. M.; Wuyts, S.; Webb, T.; Rudnick, G.; Zirm, A.; Kriek, M.; van der Werf, P.; Blakeslee, J. P.; Illingworth, G.; Rix, H.-W.; Papovich, C.; Moorwood, A.

    2007-12-01

    We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2galaxies are very compact (effective radii re<1 kpc) at rest-frame optical wavelengths; the others are extended (1 kpcgalaxies from quiescent galaxies by modeling their rest-frame UV-NIR SEDs. The star-forming galaxies span the full range of sizes, while the quiescent galaxies all have re<2 kpc. In the redshift range where MIPS 24 μm imaging is a sensitive probe of reradiated dust emission (z<2.5), the 24 μm fluxes confirm that the light of the small quiescent galaxies is dominated by old stars, rather than dust-enshrouded star formation or AGN activity. The inferred surface mass densities and velocity dispersions for the quiescent galaxies are very high compared to those in local galaxies. The galaxies follow a Kormendy relation (between surface brightness and size) with approximately the same slope as locally, but shifted to brighter surface brightnesses, consistent with a mean stellar formation redshift of zf~5. This paper demonstrates a direct relation between star formation activity and size at z~2.5 and the existence of a significant population of massive, extremely dense, old stellar systems without readily identifiable counterparts in the local universe. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555 observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407; and observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 164.O-0612).

  10. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  11. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  12. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  13. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  14. Education with Infrared Astronomy and Spitzer

    NASA Astrophysics Data System (ADS)

    Hemphill, Rosa; Blackwell, J. A.; Herrold, A.; Petroff, E.

    2007-12-01

    We present education and outreach results using our experiences involving the Spitzer Space Telescope project, Star Formation in High Redshift Clusters with Spitzer. The project is a collaboration between the Spitzer Science Center and the National Optical Astronomy Observatory. Using the Spitzer Space Telescope, we measured star formation rates in three galaxy clusters at intermediate redshifts. Six teachers were chosen for the program, each with an interest and involvement in astronomy education. From this project, lesson plans, public outreach, lectures and demonstrations were generated which better the understanding of infrared astronomy, multiwavelength astronomy, galaxy and star formation, and cosmology. The teacher mentors are Dr. Gregory Rudnick (NOAO), Dr. Rose Finn (Siena College), and Dr. Vandana Desai (Caltech). Please see the companion posters by Emily Petroff, Zak Schroeder, and Thomas Loughran, et al, for information concerning the science results.

  15. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  16. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.

    2010-01-01

    We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.

  17. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  18. Spitzer Photometry of Approximately 1 Million Stars in M31 and 15 Other Galaxies

    NASA Technical Reports Server (NTRS)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6-8 micrometer and Multiband Imaging Photometer 24 micrometer point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances approximately 3.5-14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain approximately 1 million sources including approximately 859,000 in M31 and approximately 116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of pointspread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6-24 micrometer) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope.

  19. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent, E-mail: j.sorce@ipnl.in2p3.fr

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program calledmore » Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.« less

  20. The Brightest Galaxies at Cosmic Dawn: Securing the Largest Samples of z=9-11 galaxies for JWST by leveraging the HST archive with Spitzer/IRAC.

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard; Trenti, Michele; Calvi, Valentina; Bernard, Stephanie; Labbe, Ivo; Oesch, Pascal; Coe, Dan; Holwerda, Benne; Bradley, Larry; Mason, Charlotte; Schmidt, Kasper; Illingworth, Garth

    2015-10-01

    Hubble's WFC3 has been a game changer for studying early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources up to z~10, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Despite these efforts, the size of the highest redshift galaxy samples (z >9 and especially z > 10) is still very small, particularly at high luminosities (L > L*). To deliver transformational results, much larger numbers of bright z > 9 galaxies are needed both to map out the bright end of the luminosity/mass function and for spectroscopic follow-up (with JWST and otherwise). One especially efficient way of expanding current samples is (1) to leverage the huge amounts of pure-parallel data available with HST to identify large numbers of candidate z ~ 9 - 11 galaxies and (2) to follow up each candidate with shallow Spitzer/IRAC observations to distinguish the bona- fide z ~ 9 - 11 galaxies from z ~ 2 old, dusty galaxies. For this program we are requesting shallow Spitzer/IRAC follow-up of 20 candidate z ~ 9 - 11 galaxies we have identified from 130 WFC3/IR pointings obtained from more than 4 separate HST programs with no existing IRAC coverage. Based on our previous CANDELS/GOODS searches, we expect to confirm 5 to 10 sources as L > L* galaxies at z >= 9. Our results will be used to constrain the bright end of the LF at z >= 9, to provide targets for Keck spectroscopy to constrain the ionization state of the z > 8 universe, and to furnish JWST with bright targets for spectroscopic follow-up studies.

  1. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  2. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna

    2014-12-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.

  3. FINDING {eta} CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S., E-mail: khan@astronomy.ohio-state.edu, E-mail: kstanek@astronomy.ohio-state.edu, E-mail: ckochanek@astronomy.ohio-state.edu

    The late-stage evolution of the most massive stars such as {eta} Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of {eta} Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby ({approx}< 4 Mpc) galaxies to search for such analogs. We find 34 candidates with a flat or rising mid-IR spectral energy distributions toward longer mid-infrared wavelengths that emit >10{sup 5} L{sub Sun} in the IRAC bands (3.6 to 8.0more » {mu}m) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 {+-} 6 surviving candidates. Since we would detect true analogs of {eta} Car for roughly 200 years post-eruption, this implies that the rate of eruptions like {eta} Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M{sub Sun} star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 {mu}m, allowing identification of {eta} Car analogs for millennia rather than centuries post-eruption.« less

  4. Probing Cosmic Star Formation Using Long Gamma-Ray Bursts: New Constraints from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, William J.; Mirabel, I. Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on IRAC 4.5 μm, IRAC 8.0 μm, and MIPS 24 μm deep observations of 16 gamma-ray burst (GRB) host galaxies performed with the Spitzer Space Telescope, and we investigate in the thermal infrared the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with these objects. Our sample is derived from GRBs that were identified with subarcsecond localization between 1997 and 2001, and only a very small fraction (~20%) of the targeted sources are detected down to f4.5μm~3.5 μJy and f24μm~85 μJy (3 σ). This likely argues against a population dominated by massive and strongly starbursting (i.e., SFR>~100 Msolar yr-1) galaxies as has been recently suggested from submillimeter/radio and optical studies of similarly selected GRB hosts. Furthermore, we find evidence that some GRBs do not occur in the most infrared luminous regions-hence the most actively star-forming environments-of their host galaxies. Should the GRB hosts be representative of all star-forming galaxies at high redshift, models of infrared galaxy evolution indicate that >~50% of GRB hosts should have f24μm>~100 μJy. Unless the identification of GRBs prior to 2001 was prone to strong selection effects biasing our sample against dusty galaxies, we infer in this context that the GRBs identified with the current techniques cannot be directly used as unbiased probes of the global and integrated star formation history of the universe. Based on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory under NASA contract 1407.

  5. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  6. Spitzer Lensing Cluster Legacy Survey

    NASA Astrophysics Data System (ADS)

    Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin

    2015-11-01

    Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.

  7. Hidden Patterns of Light Revealed by Spitzer

    NASA Image and Video Library

    2012-06-07

    Astronomers have uncovered patterns of light that appear to be from the first stars and galaxies that formed in the universe. The light patterns were hidden within a strip of sky observed by NASA Spitzer Space Telescope.

  8. Confronting models of star formation quenching in galaxy clusters with archival Spitzer data

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory

    Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine

  9. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  10. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Greene, Jenny E.

    2010-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below ~ 106 M⊙. We have obtained Spitzer IRS low-resolution spectra, covering 5-38 μm, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between type 1 and type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. Here we present preliminary results from this project.

  11. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  12. Spitzer Digs Up Galactic Fossil

    NASA Image and Video Library

    2004-10-12

    This false-color image taken by NASA Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic "fossils" as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA06928

  13. Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.

    2006-06-01

    We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.5galaxies with Hα measurements, that L5-8.5μm provides a reliable estimate of LIR for most star-forming galaxies at z~2. We show that the range of LIR in the optical/near-IR-selected samples considered extends from ~=1010 to >1012 Lsolar, with a mean ~=2×1011 Lsolar. Using 24 μm observations as an independent probe of dust extinction, we find that, as in the local universe, the obscuration LIR/L1600 is strongly dependent on Lbol and ranges in value from <1 to ~1000 within the sample considered. However, the obscuration is generally ~10 times smaller at a given Lbol at z~2 than at z~0. We show that the values of LIR and obscuration inferred from the UV spectral slope β generally agree well with the values inferred from L5-8.5μm for Lbol<1012 Lsolar. Using the specific SFRs of galaxies as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from galaxies that have just begun to form stars to those that have already accumulated most of their stellar mass and are about to become, or already are, passively evolving. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous

  14. The Hidden Galaxy

    NASA Image and Video Library

    2011-01-18

    Maffei 2 is the poster child for an infrared galaxy that is almost invisible to optical telescopes. But this infrared image from NASA Spitzer Space Telescope penetrates the dust to reveal the galaxy in all its glory.

  15. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  16. Bulgeless Galaxy Hides Black Hole

    NASA Image and Video Library

    2014-03-26

    The galaxy NGC 4395 is shown here in infrared light, captured by NASA Spitzer Space Telescope. This dwarf galaxy is relatively small in comparison with our Milky Way galaxy, which is nearly 1,000 times more massive.

  17. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  18. Spitzer Makes Invisible Visible

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. http://photojournal.jpl.nasa.gov/catalog/PIA05734

  19. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  20. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  1. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Greene, J. E.; Ho, L. C.

    2009-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below 106 solar masses. We have obtained Spitzer IRS low-resolution spectra, covering 5-30 microns, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. We will present preliminary results from this project, including measurements of continuum shapes and dust temperatures, narrow-line region diagnostics, and PAH features, derived using the IDL code PAHFIT (Smith et al. 2007).

  2. Spitzer Observes Neutron Star Collision

    NASA Image and Video Library

    2017-10-16

    NASA's Spitzer Space Telescope has provisionally detected the faint afterglow of the explosive merger of two neutron stars in the galaxy NGC 4993. The event, labeled GW170817, was initially detected in gravitational waves and gamma rays. Subsequent observations by dozens of telescopes have monitored its afterglow across the entire spectrum of light. The event is located about 130 million light-years from Earth. Spitzer's observation on September 29, 2017, came late in the game, just over 6 weeks after the event was first seen. But if this weak detection is verified, it will play an important role in helping astronomers understand how many of the heaviest elements in the periodic table are created in explosive neutron star mergers. The left panel is a color composite of the 3.6 and 4.5 micron channels of the Spitzer IRAC instrument, rendered in cyan and red. The center panel is a median-filtered color composite showing a faint red dot at the known location of the event. The right panel shows the residual 4.5 micron data after subtracting out the light of the galaxy using an archival image that predates the event. An annotated version is at https://photojournal.jpl.nasa.gov/catalog/PIA21910

  3. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  4. Sombrero Galaxy Not So Flat After All

    NASA Image and Video Library

    2012-04-24

    New observations from NASA Spitzer Space Telescope reveal the Sombrero galaxy is not simply a regular flat disk galaxy of stars as previously believed, but a more round elliptical galaxy with a flat disk tucked inside.

  5. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  6. Spitzer Space Telescope Research Program for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Daou, D.

    2005-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers also attended a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work on their data with SSC and NOAO scientists. This program allows a team of 12 teachers and their students to utilize up to 3.5 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers.

  7. Redshifts for Spitzer-detected galaxies at z 6 - old stars in the first Gyr

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Stanway, Elizabeth; Chiu, Kuenley; Douglas, Laura; Eyles, Laurence; Bunker, Andrew

    2008-02-01

    We have identified a population of star-forming galaxies at z 6 through the i-drop Lyman-break technique using HST/ACS. Using Spitzer/IRAC imaging (tracing the rest-frame optical), we discovered from SED-fitting that some of this population harbour relatively old stars (300-500Myr) with significant Balmer breaks, implying formation epochs of z 10. Our work suggests that UV photons from star formation at z 10 may play a key role in reionizing the Universe. However, these conclusions are drawn from the only field (GOODS-South) which has both deep Spitzer/IRAC imaging and many i-drop spectroscopic redshifts. Hence the global conclusions are compromised by cosmic variance. We have 72-hours on Spitzer to image 6 other sight-lines with deep ACS data; we propose to use GMOS multiobject mode to obtain spectroscopic redshifts, which are crucial to reduce the large uncertainties in fitting the stellar ages and masses, and hence inferring the preceding star formation history and the contribution to reionization.

  8. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.

    2011-07-10

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg{sup 2} formore » the EP-N and 1.28 deg{sup 2} for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 {mu}m, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of {approx}1.5 deg{sup 2} for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 {mu}m channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 {mu}m), W2 (4.6 {mu}m), W3 (12 {mu}m), and W4 (22 {mu}m), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and

  9. Hubble Space Telescope,Spitzer Space Telescope

    NASA Image and Video Library

    2018-01-11

    This image showcases both the visible and infrared visualizations of the Orion Nebula. This view from a movie sequence looks down the 'valley' leading to the star cluster at the far end. The left side of the image shows the visible-light visualization, which fades to the infrared-light visualization on the right. These two contrasting models derive from observations by the Hubble and Spitzer space telescopes. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22089

  10. Pointing History Engine for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Ahmed, Asif; Brugarolas, Paul

    2007-01-01

    The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.

  11. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  12. BULGES OF NEARBY GALAXIES WITH SPITZER: THE GROWTH OF PSEUDOBULGES IN DISK GALAXIES AND ITS CONNECTION TO OUTER DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.

    2009-05-20

    We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role inmore » the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, {approx}2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without

  13. Galaxies Gather at Great Distances

    NASA Image and Video Library

    2006-06-05

    Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope.

  14. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  15. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  16. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  17. Stellar Jewels Shine in New Spitzer Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

    Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed.

    This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars.

    Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy.

    This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  18. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    NASA Astrophysics Data System (ADS)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  19. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  20. SERVS: the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Afonso, Jose; Alexander, Dave; Best, Philip; Bonfield, David; Castro, Nieves; Cava, Antonio; Chapman, Scott; Dunlop, James; Dyke, Eleanor; Edge, Alastair; Farrah, Duncan; Ferguson, Harry; Foucaud, Sebastian; Franceschini, Alberto; Geach, Jim; Gonzales, Eduardo; Hatziminaoglou, Evanthia; Hickey, Samantha; Ivison, Rob; Jarvis, Matt; Le Fèvre, Olivier; Lonsdale, Carol; Maraston, Claudia; McLure, Ross; Mortier, Angela; Oliver, Seb; Ouchi, Masami; Parish, Glen; Perez-Fournon, Ismael; Petric, Andreea; Pierre, Mauguerite; Readhead, Tony; Ridgway, Susan; Romer, Katherine; Rottgering, Huub; Rowan-Robinson, Michael; Sajina, Anna; Seymour, Nick; Smail, Ian; Surace, Jason; Thomas, Peter; Trichas, Markos; Vaccari, Mattia; Verma, Aprajita; Xu, Kevin; van Kampen, Eelco

    2008-12-01

    We will use warm Spitzer to image 18deg^2 of sky to microJy depth. This is deep enough to undertake a complete census of massive galaxies from z~6 to ~1 in a volume ~0.8Gpc^3, large enough to overcome the effects of cosmic variance, which place severe limitations on the conclusions that can be drawn from smaller fields. We will greatly enhance the diagnostic power of the Spitzer data by performing most of this survey in the region covered by the near-IR VISTA-VIDEO survey, and in other areas covered by near-IR, Herschel and SCUBA2 surveys. We will build complete near-infrared spectral energy distributions using the superb datasets from VIDEO, in conjunction with our Spitzer data, to derive accurate photometric redshifts and the key properties of stellar mass and star formation rates for a large sample of high-z galaxies. Obscured star formation rates and dust-shrouded BH growth phases will be uncovered by combining the Spitzer data with the Herschel and SCUBA2 surveys. We will thus build a complete picture of the formation of massive galaxies from z~6, where only about 1% of the stars in massive galaxies have formed, to z~1 where ~50% of them haveE Our large volume will allow us to also find examples of rare objects such as high-z quasars (~10-100 at z>6.5), high-z galaxy clusters (~20 at z>1.5 with dark halo masses >10^14 solar masses), and evaluate how quasar activity and galaxy environment affect star formation. This survey makes nearly optimal use of warm Spitzer; (a) all of the complementary data is either taken or will be taken in the very near future, and will be immediately publicly accessible, (b) the slew overheads are relatively small, (c) the observations are deep enough to detect high redshift galaxies but not so deep that source confusion reduces the effective survey area.

  1. Dissection of a Galaxy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor.

    This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside.

    Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms.

    The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved.

    This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  2. Dissection of a Galaxy

    NASA Image and Video Library

    2004-05-11

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor. This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside. Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms. The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved. This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05879

  3. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    NASA Astrophysics Data System (ADS)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  4. Stellar Jewels Shine in New Spitzer Image

    NASA Image and Video Library

    2004-05-27

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars. Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed. This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars. Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy. This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05989

  5. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  6. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  7. Spitzer Parallax Observations of Long Duration Gaia Microlensing Events

    NASA Astrophysics Data System (ADS)

    Carey, Sean; Calchi-Novati, Sebastiano; Wyrzykowski, Lukasz; Kruszynska, Katarzyna; Gromadzki, Mariusz; Rybicki, Krzysztof

    2018-05-01

    We proposed to observe of order ten long duration (>100 day) microlensing events identified in Gaia survey data with the Spitzer Space Telescope. The long duration events are likely due to massive lenses, hence they could be isolated black holes. These observations could make defintive mass measurements for the first time of isolated stellar remanant black holes in our Galaxy. The Spitzer data provide a key component to making an umabiguous mass measurement by providing the microlensing parallax (as has been done for >500 event by Spitzer so far). The Gaia data is used for the detection of the events and measurement of the astrometric motion caused by the microlensing event. From the astrometric microlensing signature, the Einstein radius of the lens can be measured and combined with the microlensing parallax yields the lens mass and distance.

  8. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  9. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  10. Creating a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Daou, D.; Pompea, S.; Thaller, M.

    2004-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have created a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers will also attend a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the SST and work with the SST archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy. During this camp, the teachers and their students will learn about the SST through the vast amount of data available in the Spitzer archives.

  11. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  12. Spitzer/IRS spectroscopy of the 12um Seyferts

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.; Houck, J.

    2009-01-01

    The extended 12um galaxy sample is a flux-limited sample of 893 galaxies selected from the IRAS Faint Source Catalog 2. A total of 118 objects from this sample have been classified optically as Seyfert galaxies, providing one of the largest infrared selected unbiased sample of active galactic nuclei (AGN). We present our prelimary results from our analysis of mid-infrared Spitzer/IRS spectra of 102 12um Seyferts (that is 86 % of the 12um Seyfert sample) which have been observed by various Spitzer programs and are available in the Spitzer archive. A number of mid-infared diagnostics have been developed to study the nature of nuclear dust enshrouded emission from AGNs, in order to disentangle the starburst-AGN connection. Since PAH emission is a tracer of star formation activity we have measured the 11.3um PAH feature for our Seyfert sample. We find that as the strength of the radiation field in AGNs increases the PAH molecules are destroyed, while the PAH EWs increase with the IRAS f60/f25 ratios of the host galaxies. We further probe this warm/cold color diagnostic, by contrasting our findings with those of we starbust galaxies, ULIRGs, as well as blue compact dwarf galaxies.

  13. Morphology of Our Galaxy Twin

    NASA Image and Video Library

    2004-06-28

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light. The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to "read" this story by dissecting the galaxy into its separate components. The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye. The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation. One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at sub-millimeter and radio

  14. Morphology of Our Galaxy's 'Twin'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light.

    The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to 'read' this story by dissecting the galaxy into its separate components.

    The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye.

    The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation.

    One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at

  15. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  16. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; hide

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  17. Galaxy Cluster IDCS J1426

    NASA Image and Video Library

    2016-01-07

    Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multi-wavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light detected by the Spitzer Space Telescope in red. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how such megastructures formed and evolved early in the universe. The light astronomers observed from IDCS 1426 began its journey to Earth when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early time. First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance. Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive. New data from the Chandra X-ray Observatory confirm the galaxy cluster's mass and show that about 90 percent of this mass is in the form of dark matter -- the mysterious substance that has so far been detected only through its gravitational pull on normal matter composed of atoms. http://photojournal.jpl.nasa.gov/catalog/PIA20063

  18. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  19. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience

  20. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISEmore » archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.« less

  1. GREATS: GOODS Re-ionization Era wide-Area Treasury from Spitzer

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Oesch, Pascal; Illingworth, Garth; van Dokkum, Pieter; Franx, Marijn; Gonzalez, Valentino; Bouwens, Rychard; Magee, Dan; Smit, Renske; Holden, Brad; Stefanon, Mauro; Stiavelli, Massimo

    2014-12-01

    Joint HST/WFC3 and Spitzer/IRAC observations are a powerful tool to probe the buildup of early galaxies, as demonstrated by the recent IRAC detections and stellar mass estimates of several bright z~9-10 galaxies (only 500 Myr after the Big Bang). However, the vast majority of galaxies in the reionization epoch have not been individually detected with IRAC, as extragalactic surveys have mostly focused on medium-deep and wide surveys. IRAC detections are crucial for understanding the evolution of the first galaxies, providing constraints on stellar masses, star formation histories, emission line strengths, and ages. We therefore propose to complete Spitzer's legacy with an ultradeep survey in the CANDELS/GOODS South and North fields at 3.6 and 4.5 micron to 27.1, 26.7 mag (AB,5sigma). Ultradeep data over substantial areas are needed to detect normal galaxies at z>7, provide good statistics, and mitigate field-to-field variance. We demonstrate using pilot ultradeep data from cycle 10 on a small area in GOODS-S, that we can successfully recover IRAC photometry to these limits. GREATS will result in the IRAC detection of 200 galaxies at 7galaxies and probe >50% of the total stellar mass density to z~8. The full UV-IR spectral energy distributions would for the first time enable detailed studies of trends and scatter with luminosity, redshift, color, and size. GREATS will also detect quiescent galaxies at 3galaxies at z~4. The characterization of galaxy properties at all redshifts back to z~9-10 is the logical final step in the legacy of Spitzer. The combined HST+Spitzer ultradeep imaging will be a vital benchmark for planning efficient JWST follow-up surveys 4+ years from now, and will provide targets for the first cycles of JWST NIRSPEC observations. With such remarkable datasets, Spitzer's heritage

  2. Strengthening the Connection Between Space and Society: A Comparative Analysis of Supernovae Distribution in the Andromeda Galaxy for Secondary School Students

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B.; Borders, K.; Thaller, M.; Plecki, M.; Usuda, K.

    2011-05-01

    In order to prepare students in grades 4-12 for a global workforce, NASA supports science, technology, engineering, and math (STEM) immersion education for secondary students. Secondary schools, through the NASA Explorer School program, the Spitzer Space Telescope, the National Optical Astronomy Observatory, and the WISE (Wide Field Infrared Survey Explorer) Telescope Teacher Ambassador program, offer authentic research opportunities for students. Spitzer and WISE studied the sky in infrared light. Among the objects WISE studied are asteroids, the coolest and dimmest stars, and the most luminous galaxies. The lessons learned from the NASA Explorer School program and Spitzer and WISE teacher and student programs can be applied to other programs, engaging students in authentic research experiences by using data from space-borne and earth-based observatories such Kitt Peak Observatory. Several ground based telescopes at Kitt Peak Observatory study visible light from objects such as supernovae. Utilizing a student research immersion philosophy along with data analysis skills learned from the Spitzer and WISE student research programs, an analysis of supernovae distribution with respect to location in the Andromeda galaxy was conducted using images of the Andromeda galaxy taken from the WIYN 0.9 meter telescope on Kitt Peak. A comparison was made between the 12 outer fields (spiral arms) and the 4 inner fields (central bulge). Novae were found by "blinking” images of each field throughout 100 epochs of data. Blinking is a technique used to compare images of fields and noting brightness (via x,y coordinates) in one field that is not visible in the same field during a different epoch. Although the central bulge was expected to contain more supernovae due to stellar density and proximity of stars to each other, analysis of data indicates that the there is also a concentration of supernovae that appeared in outer regions. WISE Telescope funding is gratefully acknowledged.

  3. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  4. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  5. Galaxies Gather at Great Distances

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years

    Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang.

    A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots.

    Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes.

    These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0

  6. Spitzer Observations of GRB Hosts: A Legacy Approach

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-06-09

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  8. Galaxies of all Shapes Host Black Holes Artist Concept

    NASA Image and Video Library

    2008-01-10

    Observations from NASA Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores in this artist concept.

  9. Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; van Dokkum, Pieter; Egami, Eiichi; Fazio, Giovanni; Franx, Marijn; Gawiser, Eric; Herrera, David; Huang, Jiasheng; Labbé, Ivo; Lira, Paulina; Marchesini, Danilo; Maza, José; Quadri, Ryan; Rudnick, Gregory; van der Werf, Paul

    2006-01-01

    We present Spitzer 24 μm imaging of 1.5galaxies (DRGs) in the 10'×10' extended Hubble Deep Field-South of the Multiwavelength Survey by Yale-Chile. We detect 65% of the DRGs with KAB<23.2 mag at S24μm>~40 μJy and conclude that the bulk of the DRG population is dusty active galaxies. A mid-infrared (MIR) color analysis with IRAC data suggests that the MIR fluxes are not dominated by buried AGNs, and we interpret the high detection rate as evidence for a high average star formation rate of =130+/-30 Msolar yr-1. From this, we infer that DRGs are important contributors to the cosmic star formation rate density at z~2, at a level of ~0.02 Msolar yr-1 Mpc-3 to our completeness limit of KAB=22.9 mag.

  10. The Infrared Spectrograph on the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Infrared Spectrograph (IRS) instrument on the Spitzer Space Telescope covered the 5 to 38 micron wavelength range at low and medium spectral resolutions. The instrument was very popular during Spitzers 5.7 year-long cold mission. Every year it attracted the most proposals, and garnered more observing hours, of any of the science instruments. This success was the culmination of a very long development period, where the instrument design changed radically. When the instrument was first selected by NASA in 1984 it was very complicated. As part of the overall reduction of the size of the SIRTF Observatory following its recovery from the missions cancellation in 1991 the IRS became smaller and much, much simpler. The only aspect of the instrument that increased from the original design was the pixel count of the detectors.

  11. Fire within the Antennae Galaxies

    NASA Image and Video Library

    2004-09-07

    This false-color image composite from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding "Antennae" galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image is a composite of infrared data from Spitzer and visible-light data from Kitt Peak National Observatory, Tucson, Ariz. Visible light from stars in the galaxies (blue and green) is shown together with infrared light from warm dust clouds heated by newborn stars (red). The two nuclei, or centers, of the merging galaxies show up as yellow-white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called "interacting" galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 0.44 microns are represented in blue, .70 microns in green and 8.0 microns in red. This image was taken on Dec. 24, 2003. http://photojournal.jpl.nasa.gov/catalog/PIA06854

  12. Spitzer Space Telescope proposal process

    NASA Astrophysics Data System (ADS)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  13. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O II] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  14. What Feeds the Beast in a Galaxy Cluster?

    NASA Image and Video Library

    2015-09-10

    A massive cluster of galaxies, called SpARCS1049+56, can be seen in this multi-wavelength view from NASA Hubble and Spitzer space telescopes. At the middle of the picture is the largest, central member of the family of galaxies (upper right red dot of central pair). Unlike other central galaxies in clusters, this one is bursting with the birth of new stars. Scientists say this star birth was triggered by a collision between a smaller galaxy and the giant, central galaxy. The smaller galaxy's wispy, shredded parts, called a tidal tail, can be seen coming out below the larger galaxy. Throughout this region are features called "beads on a string," which are areas where gas has clumped to form new stars. This type of "feeding" mechanism for galaxy clusters -- where gas from the merging of galaxies is converted to new stars -- is rare. The Hubble data in this image show infrared light with a wavelength of 1 micron in blue, and 1.6 microns in green. The Spitzer data show infrared light of 3.6 microns in red. http://photojournal.jpl.nasa.gov/catalog/PIA19837

  15. Probing the Physical Properties of High Redshift Optically Obscured Galaxies in the Bootes NOAO Deep Wide Field Survey using the Infrared Spectrograph on Spitzer

    NASA Astrophysics Data System (ADS)

    Higdon, S. J. U.; Weedman, D.; Higdon, J. L.; Houck, J. R.; Soifer, B. T.; Armus, L.; Charmandaris, V.; Herter, T. L.; Brandl, B. R.; Brown, M. J. I.; Dey, A.; Jannuzi, B.; Le Floc'h, E.; Rieke, M.

    2004-12-01

    We have surveyed a field covering 8.4 degrees2 within the NOAO Deep Wide Field Survey region in Boötes with the Multiband Imaging Photometer on the Spitzer Space Telescope to a limiting 24 um flux density of 0.3 mJy, identifying ˜ 22,000 point sources. Thirty one sources from this survey with F(24 um) > 0.75 mJy , which are optically ``invisible'' (R > 26) or very faint (I > 24) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. The spectra were extracted using the IRS SMART spectral analysis package in order to optimize their signal to noise. A suite of mid-IR spectral templates of well known galaxies, observed as part of the IRS GTO program, is used to perform formal fits to the spectral energy distribution of the Boötes sources. These fits enable us to measure their redshift, to calculate the depth of the 9.7 um silicate feature along with the strength of 7.7 um PAH, as well as to estimate their bolometric luminosities. We compare the mid-IR slope, the measured PAH luminosity, and the optical depth of these sources with those of galaxies in the local Universe. As a result we are able to estimate the contribution of a dust enshrouded active nucleus to the mid-IR and bolometric luminosity of these systems. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech.

  16. Galaxy Mission Completes Four Star-Studded Years in Space

    NASA Technical Reports Server (NTRS)

    2007-01-01

    developed.'

    'Four years after GALEX's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager.

    M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today.

    The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

  17. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  18. Hunting Elusive SPRITEs with Spitzer

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events

  19. Writing a success story: lessons learned from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Roellig, T. L.; Werner, M. W.

    2010-08-01

    A key to the success of the Spitzer Space Telescope (formerly SIRTF) Mission was a unique management structure that promoted open communication and collaboration among scientific, engineering, and contractor personnel at all levels of the project. This helped us to recruit and maintain the very best people to work on Spitzer. We describe the management concept that led to the success of the mission. Specific examples of how the project benefited from the communication and reporting structure, and lessons learned about technology are described.

  20. Why Are Galaxies So Smooth?

    NASA Image and Video Library

    2009-04-30

    This image from NASA's Spitzer Space Telescope shows the spiral galaxy NGC 2841, located about 46 million light-years from Earth in the constellation Ursa Major. The galaxy is helping astronomers solve one of the oldest puzzles in astronomy: Why do galaxies look so smooth, with stars sprinkled evenly throughout? An international team of astronomers has discovered that rivers of young stars flow from their hot, dense stellar nurseries, dispersing out to form large, smooth distributions. This image is a composite of three different wavelengths from Spitzer's infrared array camera. The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. The cooler areas are highlighted in red, and show the dusty, gaseous regions of the galaxy. Blue shows infrared light of 3.6 microns, green represents 4.5-micron light and red, 8.0-micron light. The contribution from starlight measured at 3.6 microns has been subtracted from the 8.0-micron data to enhance the visibility of the dust features.The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA12001

  1. Spitzer 24 Micron Observations of Optical/Near-Infrared-Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at Z approximately equal to 1-2?

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.; hide

    2004-01-01

    We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the

  2. Hot and Cold in the M100 Galaxy

    NASA Image and Video Library

    2012-08-15

    The galaxy Messier 100, or M100, shows its swirling spiral in this infrared image from NASA Spitzer Space Telescope. The arcing spiral arms of dust and gas that harbor star forming regions glow vividly when seen in the infrared.

  3. A warm Spitzer survey of the LSST/DES 'Deep drilling' fields

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Farrah, Duncan; Brandt, Niel; Sako, Masao; Richards, Gordon; Norris, Ray; Ridgway, Susan; Afonso, Jose; Brunner, Robert; Clements, Dave; Cooray, Asantha; Covone, Giovanni; D'Andrea, Chris; Dickinson, Mark; Ferguson, Harry; Frieman, Joshua; Gupta, Ravi; Hatziminaoglou, Evanthia; Jarvis, Matt; Kimball, Amy; Lubin, Lori; Mao, Minnie; Marchetti, Lucia; Mauduit, Jean-Christophe; Mei, Simona; Newman, Jeffrey; Nichol, Robert; Oliver, Seb; Perez-Fournon, Ismael; Pierre, Marguerite; Rottgering, Huub; Seymour, Nick; Smail, Ian; Surace, Jason; Thorman, Paul; Vaccari, Mattia; Verma, Aprajita; Wilson, Gillian; Wood-Vasey, Michael; Cane, Rachel; Wechsler, Risa; Martini, Paul; Evrard, August; McMahon, Richard; Borne, Kirk; Capozzi, Diego; Huang, Jiashang; Lagos, Claudia; Lidman, Chris; Maraston, Claudia; Pforr, Janine; Sajina, Anna; Somerville, Rachel; Strauss, Michael; Jones, Kristen; Barkhouse, Wayne; Cooper, Michael; Ballantyne, David; Jagannathan, Preshanth; Murphy, Eric; Pradoni, Isabella; Suntzeff, Nicholas; Covarrubias, Ricardo; Spitler, Lee

    2014-12-01

    We propose a warm Spitzer survey to microJy depth of the four predefined Deep Drilling Fields (DDFs) for the Large Synoptic Survey Telescope (LSST) (three of which are also deep drilling fields for the Dark Energy Survey (DES)). Imaging these fields with warm Spitzer is a key component of the overall success of these projects, that address the 'Physics of the Universe' theme of the Astro2010 decadal survey. With deep, accurate, near-infrared photometry from Spitzer in the DDFs, we will generate photometric redshift distributions to apply to the surveys as a whole. The DDFs are also the areas where the supernova searches of DES and LSST are concentrated, and deep Spitzer data is essential to obtain photometric redshifts, stellar masses and constraints on ages and metallicities for the >10000 supernova host galaxies these surveys will find. This 'DEEPDRILL' survey will also address the 'Cosmic Dawn' goal of Astro2010 through being deep enough to find all the >10^11 solar mass galaxies within the survey area out to z~6. DEEPDRILL will complete the final 24.4 square degrees of imaging in the DDFs, which, when added to the 14 square degrees already imaged to this depth, will map a volume of 1-Gpc^3 at z>2. It will find ~100 > 10^11 solar mass galaxies at z~5 and ~40 protoclusters at z>2, providing targets for JWST that can be found in no other way. The Spitzer data, in conjunction with the multiwavelength surveys in these fields, ranging from X-ray through far-infrared and cm-radio, will comprise a unique legacy dataset for studies of galaxy evolution.

  4. The Spitzer/IRAC Star Formation Reference Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Ashby, Matthew L. N.; Barmby, Pauline; Chakrabarti, Sukanya; Gonzalez-Alfonso, Eduardo; Huang, Jia-Sheng; Madden, Suzanne; Noeske, Kai; Pahre, Michael; Papovich, Casey; Robitaille, Thomas; Smith, Howard; Sturm, Eckhard; Surace, Jason; Wang, Zhong; Whitney, Barbara; Willner, Steven; Wu, Hong; Zezas, Andreas

    2008-03-01

    We propose a statistically robust study of 380 nearby, bright star-forming galaxies of all types to better understand the nature of star formation. The goal of this IRAC reference survey will be to measure total star formation rates via 8.0 micron PAH emission, with an emphasis on quantitative comparisons of multiple global star formation indicators including ultraviolet emission, H-alpha, and radio continuum measurements. The sample is selected to be fully representative of the entire ranges of infrared luminosity, dust temperature, and stellar mass exhibited by star-forming galaxies in the local universe: the sample galaxies exhibit all existing combinations of these properties with the minimum overall number, selected in a manner that allows results to be applied to the entire local galaxy population. Here we propose four-band Spitzer/IRAC photometry for the 275 out of 380 objects which lack suitable observations in the Spitzer archive. All sample galaxies already have extensive complementary data available including global ugrizJHK photometry plus radio continuum intensities. Most also have GALEX imaging; in addition we have already begun a ground-based campaign to acquire global H-alpha imaging for the complete sample. We are submitting this IRAC proposal in the context of a larger campaign that includes a GTO proposal to complete the MIPS 24 micron imaging, and a GO proposal to acquire the IRS low-resolution spectroscopy. Although these companion proposals will significantly increase the scientific return of our survey program, the success of this proposal is not contingent in any way on any other Spitzer proposal. Our international team is dedicated, experienced, and has adequate manpower and institutional resources, with expertise in all the relevant disciplines to ensure the success of this undertaking. PI Fazio believes this proposal to be the most important element of his extragalactic GTO program, and requests that it be assigned first priority.

  5. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  6. A Twisted Star-Forming Web in the Galaxy IC 342

    NASA Image and Video Library

    2011-07-20

    Looking like a spider web swirled into a spiral, galaxy IC 342 presents its delicate pattern of dust in this infrared light image from NASA Spitzer Space Telescope. The very center glows especially brightly in the infrared.

  7. The Great Observatories Origins Deep Survey Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2005-12-01

    The Great Observatories Origins Deep Survey (GOODS) is a multiwavelength anthology of deep field programs using NASA's Great Observatories and the most powerful ground-based facilities to create a public data resource for studying the formation and evolution of galaxies and active galactic nuclei (AGN) throughout cosmic history. GOODS incorporates a Spitzer Legacy Program, which has obtained the deepest observations with that telescope at 3.6 to 24 microns. The Spitzer/IRAC data detect the rest-frame near-infrared light from galaxies out to z ˜ 6, providing valuable information on their stellar populations and masses. The MIPS 24μ m data are a sensitive probe of re-emitted energy from dust-obscured star formation and AGN out to z ˜ 3. I will very briefly introduce the survey and summarize science highlights from the Spitzer data.

  8. Life at the Intersection of Colliding Galaxies

    NASA Image and Video Library

    2004-09-07

    This false-color image from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding "Antennae" galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image was taken by Spitzer's infrared array camera and is a combination of infrared light ranging from 3.6 microns (shown in blue) to 8.0 microns (shown in red). The dust emission (red) is by far the strongest feature in this image. Starlight was systematically subtracted from the longer wavelength data (red) to enhance dust features. The two nuclei, or centers, of the merging galaxies show up as white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called "interacting" galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 3.6 microns are represented in blue, 4.5 microns in green and 5.8-8.0 microns in red. This image was taken on Dec. 24, 2003. http://photojournal.jpl.nasa.gov/catalog/PIA06853

  9. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less

  10. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)

  11. IDEOS: Fitting Infrared Spectra from Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Viola, Vincent; Rupke, D.

    2014-01-01

    We fit models to heavily obscured infrared spectra taken by the Spitzer Space Telescope and prepare them for cataloguing in the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). When completed, IDEOS will contain homogeneously measured mid-infrared spectroscopic observables of more than 4200 galaxies beyond the Local Group. The software we use, QUESTFit, models the spectra using up to three extincted blackbodies (including silicate, water ice, and hydrocarbon absorption) and PAH templates. We present results from a sample of the approximately 200 heavily obscured spectra that will be present in IDEOS.

  12. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  13. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope Using Hubble Space Telescope Flux Standards

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.

    2011-05-01

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.

  14. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  15. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  16. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisari, Nora E.; Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handfulmore » of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.« less

  17. SPRITE: the Spitzer proposal review website

    NASA Astrophysics Data System (ADS)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  18. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  19. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  20. Spectrum from Faint Galaxy IRAS F00183-7111

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years, Spitzer has observed the presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust (see visible-light image in the inset), most of its luminosity is radiated at infrared wavelengths.

    The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.

    The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.

    Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by

  1. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  2. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  3. IRAC Imaging of LSB Galaxies

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  4. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  5. Faint Compact Galaxy in the Early Universe

    NASA Image and Video Library

    2015-12-03

    This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. The cluster's immense gravitational field magnifies the image of galaxies far behind it, in a phenomenon called gravitational lensing. The inset is an image of an extremely faint and distant galaxy that existed only 400 million years after the big bang. It was discovered by Hubble and NASA's Spitzer Space Telescope. The gravitational lens makes the galaxy appear 20 times brighter than normal. The galaxy is comparable in size to the Large Magellanic Cloud (LMC), a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate ten times faster than the LMC. This might be the growing core of what was to eventually evolve into a full-sized galaxy. The research team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America. http://photojournal.jpl.nasa.gov/catalog/PIA20054

  6. Spitzer Space Telescope Observations of Polars

    NASA Astrophysics Data System (ADS)

    Howell, S. B.; Brinkworth, C.; Chun, H.; Thomas, B.; Stefaniak, L.; Hoard, D. W.

    2005-12-01

    We have obtained the first Spitzer Space telescope observations of short orbital period polars. Using the Infrared Array Camera (IRAC), observations have been made in four broadband filters centered at 3.6, 4.5, 5.8, and 8.0 microns of the polars V347 Pav, GG Leo, RX J0154, and EF Eri. Spectral energy distributions have been produced for all four stars and in each case indicate excess emission in the longest wavebands. We examine our observations with respect to these binaries containing late M or brown dwarf type secondaries. We discuss the implications of the observed long wavelength emission excess in terms of the presence of dust and/or other possible emission mechanisms. The impact of this finding on the evolution of polars is also presented.

  7. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGsmore » (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.« less

  8. NASA Spitzer Space Telescope

    Science.gov Websites

    -2016 'Enterprise' Nebulae Seen by Spitzer Credits: NASA, ESA, G. Bacon and A. Feild (STScI), and H . Wakeford (STScI/Univ. of Exeter) 03.01.18 NASA Finds a Large Amount of Water in an Exoplanet's Atmosphere Tweet In the year since NASA announced the seven Earth-sized planets of the TRAPPIST-1 system

  9. Catalogue of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Herrera-Endoqui, M.; Díaz-García, S.; Laurikainen, E.; Salo, H.

    2015-10-01

    Context. A catalogue of the features for the complete Spitzer Survey of Stellar Structure in Galaxies (S4G), including 2352 nearby galaxies, is presented. The measurements are made using 3.6 μm images, largely tracing the old stellar population; at this wavelength the effects of dust are also minimal. The measured features are the sizes, ellipticities, and orientations of bars, rings, ringlenses, and lenses. Measured in a similar manner are also barlenses (lens-like structures embedded in the bars), which are not lenses in the usual sense, being rather the more face-on counterparts of the boxy/peanut structures in the edge-on view. In addition, pitch angles of spiral arm segments are measured for those galaxies where they can be reliably traced. More than one pitch angle may appear for a single galaxy. All measurements are made in a human-supervised manner so that attention is paid to each galaxy. Aims: We create a catalogue of morphological features in the complete S4G. Methods: We used isophotal analysis, unsharp masking, and fitting ellipses to measured structures. Results: We find that the sizes of the inner rings and lenses normalized to barlength correlate with the galaxy mass: the normalized sizes increase toward the less massive galaxies; it has been suggested that this is related to the larger dark matter content in the bar region in these systems. Bars in the low mass galaxies are also less concentrated, likely to be connected to the mass cut-off in the appearance of the nuclear rings and lenses. We also show observational evidence that barlenses indeed form part of the bar, and that a large fraction of the inner lenses in the non-barred galaxies could be former barlenses in which the thin outer bar component has dissolved. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A86

  10. Science Highlights from the Spitzer Survey of Stellar Structure in Galaxies (S4G) & Public Release of S4G Data

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2013-01-01

    The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest and the most homogenous survey of the distribution of mass and stellar structure in over 2,300 nearby galaxies. With an integration time of four minutes per pixel at 3.6 and 4.5 microns, the S4G maps are extremely deep, tracing the stellar surface densities of < 1 solar mass per square parsec! S4G is the ultimate survey of the endoskeleton of nearby galaxies from dwarfs to ellipticals and affords an incredible treasury of data which we can address a host of outstanding questions in galaxy evolution. At this special session we will present details on the public release of this survey which will include science ready images, masks for the foreground and background stars, globally integrated properties and radial profiles of all galaxies. In addition we will release the results from a GALFIT decomposition of 200 galaxies which will be supplemented with the remainder of the survey within six months. The data are being released through the NASA/IPAC Infrared Science Archive (IRSA). I will present an overview of the survey, the data we are releasing, introduce the speakers and present science highlights from the team.

  11. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    NASA Technical Reports Server (NTRS)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.; Novati, S.Calchi; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymanski, M. K.; hide

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  12. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent

  13. It Twins! Spitzer Finds Hidden Jet

    NASA Image and Video Library

    2011-04-04

    NASA Spitzer Space Telescope took this image of a baby star sprouting two identical jets green lines emanating from fuzzy star. The left jet was hidden behind a dark cloud, which Spitzer can see through.

  14. Leo P: A very low-mass, extremely metal-poor, star-forming galaxy

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Leo P Team

    2017-01-01

    Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.

  15. COMPLETE2: Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbe, Ivo; Caputi, Karina; Bouwens, Rychard; Oesch, Pascal; Ashby, Matthew; Dunlop, James; Franx, Marijn; Fynbo, Johan; Illingworth, Garth; Le Fevre, Olivier; Marchesini, Danilo; McCracken, Henry Joy; Milvang Jensen, Bo; Muzzin, Adam; van Dokkum, Pieter

    2018-05-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. We were previously awarded only half of the requested 3000 hours in cycle 13 to complete this legacy (due to scheduling constraints), and here we propose for the second half. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/ near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of re-ionization at z=6-8 with about 10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multi-wavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  16. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less

  17. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Smith, J. D. T.; Schlawin, E. A.; Armus, L.; Buckalew, B. A.; Cohen, S. A.; Helou, G.; Jarrett, T. H.; Johnson, L. C.; Moustakas, J.; Murphy, E. J.; Roussel, H.; Sheth, K.; Staudaher, S.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.; Malhotra, S.

    2009-03-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm-3 on ~23'' × 15'' scales and 500-600 cm-3 using ~11'' × 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  18. A Giant Gathering of Galaxies

    NASA Image and Video Library

    2015-11-03

    The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. This color image is constructed from multi-wavelength observations: Infrared observations from NASA's Spitzer Space Telescope are shown in red; near-infrared and visible light captured by the Gemini Observatory atop Mauna Kea in Hawaii is green and blue; and radio light from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), near Owens Valley in California, is purple. In addition to galaxies, clusters also contain a reservoir of hot gas with temperatures in the tens of millions of degrees Celsius/Kelvin. CARMA was used to detect this gas, and to determine the mass of this cluster. http://photojournal.jpl.nasa.gov/catalog/PIA20052

  19. Spitzer, Planck and Kepler Extended by NASA Artist Concept

    NASA Image and Video Library

    2012-04-05

    From left to right, artist concepts of the Spitzer, Planck and Kepler space telescopes. NASA extended Spitzer and Kepler for two additional years; and the U.S. portion of Planck, a European Space Agency mission, for one year.

  20. Fantastic Four Galaxies with Planet (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of an ongoing four-way collision between big galaxies (yellow blobs). NASA's Spitzer Space Telescope spotted this 'quadruple merger' of galaxies within a larger cluster of galaxies located nearly 5 billion light-years away.

    Though the galaxies appear intact, gravitational disturbances have caused them to stretch and twist, flinging billions of stars into space -- nearly three times as many stars as are in our Milky Way galaxy. The tossed stars are visible in the large plume emanating from the central, largest galaxy. If any of these stars have planets, their night skies would be filled with the monstrous merger, along with other galaxies in the cluster (smaller, bluish blobs).

    This cosmic smash-up is the largest known merger between galaxies of a similar size. While three of the galaxies are about the size of our Milky Way galaxy, the fourth (center of image) is three times as big. All four of the galaxies, as well as most other galaxies in the huge cluster, are blob-shaped ellipticals instead of spirals like the Milky Way.

    Ultimately, in about one hundred million years or so, the four galaxies E will unite into one. About half of the stars kicked out during the merger will fall back and join the new galaxy, making it one of the biggest galaxies in the universe.

  1. Unveiling the nature of bright z ≃ 7 galaxies with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McLeod, D. J.

    2017-04-01

    We present new Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) imaging of 25 extremely luminous (-23.2 ≤ MUV ≲ -21.2) Lyman-break galaxies (LBGs) at z ≃ 7. The sample was initially selected from 1.65 deg2 of ground-based imaging in the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman α emitters, 'Himiko' and 'CR7'. A deconfusion analysis of the deep Spitzer photometry available suggests that these galaxies exhibit strong rest-frame optical nebular emission lines (EW0(Hβ + [O III]) > 600 Å). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (fmulti > 0.4) in bright z ≃ 7 galaxies, and ubiquitous at the very bright end (MUV < -22.5). The galaxies have half-light radii in the range r1/2 ˜ 0.5-3 kpc. The size measurements provide the first determination of the size-luminosity relation at z ≃ 7 that extends to MUV ˜ -23. We find the relation to be steep with r1/2 ∝ L1/2. Excluding clumpy, multicomponent galaxies however, we find a shallower relation that implies an increased star formation rate surface density in bright LBGs. Using the new, independent, HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ≃ 7 favours a power-law decline at the bright end, compared to an exponential Schechter function drop-off. Finally, these results have important implications for the Euclid mission, which we predict will detect >1000 similarly bright galaxies at z ≃ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.

  2. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Star Formation: Answering Fundamental Questions During the Spitzer Warm Mission Phase

    NASA Astrophysics Data System (ADS)

    Strom, Steve; Allen, Lori; Carpenter, John; Hartmann, Lee; Megeath, S. Thomas; Rebull, Luisa; Stauffer, John R.; Liu, Michael

    2007-10-01

    Through existing studies of star-forming regions, Spitzer has created rich databases which have already profoundly influenced our ability to understand the star and planet formation process on micro and macro scales. However, it is essential to note that Spitzer observations to date have focused largely on deep observations of regions of recent star formation associated directly with well-known molecular clouds located within 500 pc. What has not been done is to explore to sufficient depth or breadth a representative sample of the much larger regions surrounding the more massive of these molecular clouds. Also, while there have been targeted studies of specific distant star forming regions, in general, there has been little attention devoted to mapping and characterizing the stellar populations and star-forming histories of the surrounding giant molecular clouds (GMCs). As a result, we have yet to develop an understanding of the major physical processes that control star formation on the scale or spiral arms. Doing so will allow much better comparison of star-formation in our galaxy to the star-forming complexes that dominate the spiral arms of external galaxies. The power of Spitzer in the Warm Mission for studies of star formation is its ability to carry out large-scale surveys unbiased by prior knowledge of ongoing star formation or the presence of molecular clouds. The Spitzer Warm Mission will provide two uniquely powerful capabilities that promise equally profound advances : high sensitivity and efficient coverage of many hundreds of square degrees, and angular resolution sufficient to resolve dense groups and clusters of YSOs and to identify contaminating background galaxies whose colors mimic those of young stars. In this contribution, we describe two major programs: a survey of the outer regions of selected nearby OB associations, and a study of distant GMCs and star formation on the scale of a spiral arm.

  4. Adding the missing piece: Spitzer imaging of the HSC-Deep/PFS fields

    NASA Astrophysics Data System (ADS)

    Sajina, Anna; Bezanson, Rachel; Capak, Peter; Egami, Eiichi; Fan, Xiaohui; Farrah, Duncan; Greene, Jenny; Goulding, Andy; Lacy, Mark; Lin, Yen-Ting; Liu, Xin; Marchesini, Danilo; Moutard, Thibaud; Ono, Yoshiaki; Ouchi, Masami; Sawicki, Marcin; Strauss, Michael; Surace, Jason; Whitaker, Katherine

    2018-05-01

    We propose to observe a total of 7sq.deg. to complete the Spitzer-IRAC coverage of the HSC-Deep survey fields. These fields are the sites of the PrimeFocusSpectrograph (PFS) galaxy evolution survey which will provide spectra of wide wavelength range and resolution for almost all M* galaxies at z 0.7-1.7, and extend out to z 7 for targeted samples. Our fields already have deep broadband and narrowband photometry in 12 bands spanning from u through K and a wealth of other ancillary data. We propose completing the matching depth IRAC observations in the extended COSMOS, ELAIS-N1 and Deep2-3 fields. By complementing existing Spitzer coverage, this program will lead to an unprecedended in spectro-photometric coverage dataset across a total of 15 sq.deg. This dataset will have significant legacy value as it samples a large enough cosmic volume to be representative of the full range of environments, but also doing so with sufficient information content per galaxy to confidently derive stellar population characteristics. This enables detailed studies of the growth and quenching of galaxies and their supermassive black holes in the context of a galaxy's local and large scale environment.

  5. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Bally, John; Masci, Frank; Cody, Ann Marie; Bond, Howard E.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Armus, Lee; Boyer, Martha; Cantiello, Matteo; Carlon, Robert L.; Cass, Alexander C.; Cook, David; Corgan, David T.; Faella, Joseph; Fox, Ori D.; Green, Wayne; Gehrz, R. D.; Helou, George; Hsiao, Eric; Johansson, Joel; Khan, Rubab M.; Lau, Ryan M.; Langer, Norbert; Levesque, Emily; Milne, Peter; Mohamed, Shazrene; Morrell, Nidia; Monson, Andy; Moore, Anna; Ofek, Eran O.; O' Sullivan, Donal; Parthasarathy, Mudumba; Perez, Andres; Perley, Daniel A.; Phillips, Mark; Prince, Thomas A.; Shenoy, Dinesh; Smith, Nathan; Surace, Jason; Van Dyk, Schuyler D.; Whitelock, Patricia A.; Williams, Robert

    2017-04-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer/IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between -11 and -14 (Vega-mag) and [3.6]-[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr-1 to >7 mag yr-1. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  6. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  7. Near-Infrared photometry of BOs and Centaurs in support of Spitzer Space Telescope data

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Josh P.; Trilling, David; Mommert, Michael

    2014-08-01

    We propose to measure near-infrared broadband colors of Centaurs and Kuiper Belt objects (KBOs). The proposed ground-based observations will complement 3.6 and 4.5 microns photometry of these bodies obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Extending reflectances past 2.5 micron with Spitzer enables sensitive searches for absorptions in the 3 to 5 micron region, where relevant species (e.g., complex organics, H2O, CO2, CH4, hydrated silicates) have their fundamental absorption bands. In order to assess the presence of absorptions, however, the Spitzer photometry must be tied to shorter wavelength near-infrared reflectances. Recently, Wright et al. (2012) combined IRAC/Spitzer and NIR colors for a sample of cold KBOs and showed how powerful this technique is detecting the presence of volatiles. In semester 2011B we obtained Gemini NIR data for 12 KBOs (results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). In semester 2011B and 2013A we obtained Gemini NIR data for 12 and 7 KBOs respectively (part of these results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). But our sample is not yet completed and we need more time to complete our study and cover a larger number of targets from our sample of Spitzer data. Approximately 54 objects in our sample that lack NIR colors are visible from GEMINI South in 2014B semester, we propose here to observe 16 of these objects.

  8. Missing GRB host galaxies in deep mid-infrared observations: implications on the use of GRBs as star formation tracers

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, Bill; Mirabel, Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on the first mid-infrared observations of 16 GRB host galaxies performed with the Spitzer Space Telescope, and investigate the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with GRBs. Only a very small fraction of our sample is detected by Spitzer, which is not consistent with recent works suggesting the presence of a GRB host population dominated by massive and strongly-starbursting galaxies (SFR >~ 100Msolaryr-1). Should the GRB hosts be representative of star-forming galaxies at high redshift, models of galaxy evolution indicate that >~ 50% of GRB hosts would be easily detected at the depth of our mid-infrared observations. Unless our sample suffers from a strong observational bias which remains to be understood, we infer in this context that the GRBs identified with the current techniques can not be directly used as unbiased probes of the global and integrated star formation history of the Universe.

  9. The Evolution of Dusty Star formation in Galaxy Clusters to z = 1: Spitzer Infrared Observations of the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster

  10. New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database

    NASA Technical Reports Server (NTRS)

    Laher, Russ; Rector, John

    2004-01-01

    Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.

  11. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors betweenmore » 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.« less

  12. The Taurus Spitzer Legacy Project

    NASA Astrophysics Data System (ADS)

    McCabe, Caer-Eve; Padgett, D. L.; Rebull, L.; Noriega-Crespo, A.; Carey, S.; Brooke, T.; Stapelfeldt, K. R.; Fukagawa, M.; Hines, D.; Terebey, S.; Huard, T.; Hillenbrand, L.; Guedel, M.; Audard, M.; Monin, J.; Guieu, S.; Knapp, G.; Evans, N. J., III; Menard, F.; Harvey, P.; Allen, L.; Wolf, S.; Skinner, S.; Strom, S.; Glauser, A.; Saavedra, C.; Koerner, D.; Myers, P.; Shupe, D.; Latter, W.; Grosso, N.; Heyer, M.; Dougados, C.; Bouvier, J.

    2009-01-01

    Without massive stars and dense stellar clusters, Taurus plays host to a distributed mode of low-mass star formation particularly amenable to observational and theoretical study. In 2005-2007, our team mapped the central 43 square degrees of the main Taurus clouds at wavelengths from 3.6 - 160 microns with the IRAC and MIPS cameras on the Spitzer Space Telescope. Together, these images form the largest contiguous Spitzer map of a single star-forming region (and any region outside the galactic plane). Our Legacy team has generated re-reduced mosaic images and source catalogs, available to the community via the Spitzer Science Center website http://ssc.spitzer.caltech.edu/legacy/all.html . This Spitzer survey is a central and crucial part of a multiwavelength study of the Taurus cloud complex that we have performed using XMM, CFHT, and the SDSS. The seven photometry data points from Spitzer allow us to characterize the circumstellar environment of each object, and, in conjunction with optical and NIR photometry, construct a complete luminosity function for the cloud members that will place constraints on the initial mass function. We present results drawing upon our catalog of several hundred thousand IRAC and thousands of MIPS sources. Initial results from our study of the Taurus clouds include new disks around brown dwarfs, new low luminosity YSO candidates, and new Herbig-Haro objects.

  13. NASA Telescopes Help Discover Surprisingly Young Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.

    2010-06-10

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtainmore » total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We

  15. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy

  16. Lonely Galaxy Lost in Space

    NASA Image and Video Library

    2015-06-10

    Most galaxies are clumped together in groups or clusters. A neighboring galaxy is never far away. But this galaxy, known as NGC 6503, has found itself in a lonely position, at the edge of a strangely empty patch of space called the Local Void. The Local Void is a huge stretch of space that is at least 150 million light-years across. It seems completely empty of stars or galaxies. The galaxy’s odd location on the edge of this never-land led stargazer Stephen James O’Meara to dub it the “Lost-In-Space galaxy” in his 2007 book, Hidden Treasures. NGC 6503 is 18 million light-years away from us in the northern circumpolar constellation of Draco. NGC 6503 spans some 30,000 light-years, about a third of the size of the Milky Way. This Hubble Space Telescope image shows NGC 6503 in striking detail and with a rich set of colors. Bright red patches of gas can be seen scattered through its swirling spiral arms, mixed with bright blue regions that contain newly forming stars. Dark brown dust lanes snake across the galaxy’s bright arms and center, giving it a mottled appearance. The Hubble Advanced Camera for Surveys data for NGC 6503 were taken in April 2003, and the Wide Field Camera 3 data were taken in August 2013. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Photo Credit: NASA, ESA, D. Calzetti (University of Massachusetts), H. Ford (Johns Hopkins University), and the Hubble Heritage Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in

  17. From Hot Jupiters to Super-Earths: Characterizing the Atmospheres of Extrasolar Planets with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2009-05-01

    The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.

  18. CROSS-CORRELATION OF NEAR- AND FAR-INFRARED BACKGROUND ANISOTROPIES AS TRACED BY SPITZER AND HERSCHEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, Cameron; Gong, Yan; Cooray, Asantha

    We present the cross-correlation between the far-infrared (far-IR) background fluctuations as measured with the Herschel Space Observatory at 250, 350, and 500 μm and the near-infrared (near-IR) background fluctuations with the Spitzer Space Telescope at 3.6 and 4.5 μm. The cross-correlation between the FIR and NIR background anisotropies is detected such that the correlation coefficient at a few to 10 arcminute angular scale decreases from 0.3 to 0.1 when the FIR wavelength increases from 250 to 500 μm. We model the cross-correlation using a halo model with three components: (a) FIR bright or dusty star-forming galaxies below the masking depth inmore » Herschel maps, (b) NIR faint galaxies below the masking depth, and (c) intra-halo light (IHL), or diffuse stars in dark matter halos, that is likely dominating the large-scale NIR fluctuations. The model is able to reasonably reproduce the auto-correlations at each of the FIR wavelengths and at 3.6 μm and their corresponding cross-correlations. While the FIR and NIR auto-correlations are dominated by faint, dusty, star-forming galaxies and IHL, respectively, we find that roughly half of the cross-correlation between the NIR and FIR backgrounds is due to the same dusty galaxies that remain unmasked at 3.6 μm. The remaining signal in the cross-correlation is due to IHL present in the same dark matter halos as those hosting the same faint and unmasked galaxies.« less

  19. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  20. Finding η Car Analogs in Nearby Galaxies Using Spitzer. II. Identification of An Emerging Class of Extragalactic Self-Obscured Stars

    NASA Astrophysics Data System (ADS)

    Khan, Rubab; Kochanek, C. S.; Stanek, K. Z.; Gerke, Jill

    2015-02-01

    Understanding the late-stage evolution of the most massive stars such as η Carinae is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. In Khan et al., we utilized Spitzer IRAC images of 7 nearby (lsim 4 Mpc) galaxies to search for such analogs, and found 34 candidates with flat or red mid-IR spectral energy distributions. Here, in Paper II, we present our characterization of these candidates using multi-wavelength data from the optical through the far-IR. Our search detected no true analogs of η Car, which implies an eruption rate that is a fraction 0.01 <~ F <~ 0.19 of the core-collapse supernova (ccSN) rate. This is roughly consistent with each M ZAMS >~ 70 M ⊙ star undergoing one or two outbursts in its lifetime. However, we do identify a significant population of 18 lower luminosity (log (L/L ⊙) ~= 5.5-6.0) dusty stars. Stars enter this phase at a rate that is a fraction 0.09 <~ F <~ 0.55 of the ccSN rate, and this is consistent with all 25 < M ZAMS < 60 M ⊙ stars undergoing an obscured phase at most lasting a few thousand years once or twice. These phases constitute a negligible fraction of post-main-sequence lifetimes of massive stars, which implies that these events are likely to be associated with special periods in the evolution of the stars. The mass of the obscuring material is of order ~M ⊙, and we simply do not find enough heavily obscured stars for theses phases to represent more than a modest fraction (~10% not ~50%) of the total mass lost by these stars. In the long term, the sources that we identified will be prime candidates for detailed physical analysis with the James Webb Space Telescope.

  1. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2004-01-01

    The James Webb Space Telescope (JWST) will extend the discoveries of the Hubble Space Telescope (HST) and the Spitzer Space Telescope (SST) by deploying a large cooled infrared telescope around the Sun-Earth Lagrange point L2. With a 6 m aperture and three instruments covering the wavelength range from 0.6 to 28 microns, it will provide sensitivities orders of magnitude better than any other facilities. It is intended to observe the light from the first galaxies and the first supernovae, the assembly of galaxies, and the formation and evolution of stars and planetary systems. In this talk I will review the scientific objectives and the ability of the system to meet them. I will close with a summary of possible future IR space missions, ranging from the far IR to planet-finding coronagraphs and interferometers

  2. Mid-ir Properties Of Seyferts: Spitzer/irs Spectroscopy Of The Iras 12µM Seyfert Sample

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.

    2009-05-01

    The study of Seyfert galaxies is of particular interest as they trace the build up of SMBH at the centers of galaxies and they are responsible for the most of the cosmic X-ray background at redshift z 0.8. Given the high obscuration of their nuclei by dust extinction, a large fraction of their emitted radiation is absorbed and reemitted in the infrared. It has been recently demonstrated that mid-infrared spectroscopy, in particular with ISO and Spitzer, is a powerful tool to probe the physics of the radiation field of deeply enshrouded galactic nuclei. Here we present our analysis on the properties of Seyfert galaxies based mostly on our uniformly extracted low-resolution Spitzer/IRS 5.5-35micron spectra for 103 Seyfert galaxies, nearly 90% of the local 12 µm IRAS Seyfert sample. We find that we are able to disentangle the AGN/starburst contribution of the mid-IR emission, and estimate the circumnuclear star formation rate using typical mid-IR tracers. We also find that the mid-IR properties of Type 1 and Type 2 Seyferts are indistinguishable at a given luminosiry range, placing constrains both on the infrared optical depth to their nuclei galaxies as well as to the applicability of the unified AGN model.

  3. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  4. BULGES OF NEARBY GALAXIES WITH SPITZER: SCALING RELATIONS IN PSEUDOBULGES AND CLASSICAL BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.as.utexas.ed

    2010-06-20

    We investigate scaling relations of bulges using bulge-disk decompositions at 3.6 {mu}m and present bulge classifications for 173 E-Sd galaxies within 20 Mpc. Pseudobulges and classical bulges are identified using Sersic index, Hubble Space Telescope morphology, and star formation activity (traced by 8 {mu}m emission). In the near-IR pseudobulges have n{sub b} < 2 and classical bulges have n{sub b} >2, as found in the optical. Sersic index and morphology are essentially equivalent properties for bulge classification purposes. We confirm, using a much more robust sample, that the Sersic index of pseudobulges is uncorrelated with other bulge structural properties, unlikemore » for classical bulges and elliptical galaxies. Also, the half-light radius of pseudobulges is not correlated with any other bulge property. We also find a new correlation between surface brightness and pseudobulge luminosity; pseudobulges become more luminous as they become more dense. Classical bulges follow the well-known scaling relations between surface brightness, luminosity, and half-light radius that are established by elliptical galaxies. We show that those pseudobulges (as indicated by Sersic index and nuclear morphology) that have low specific star formation rates are very similar to models of galaxies in which both a pseudobulge and classical bulge exist. Therefore, pseudobulge identification that relies only on structural indicators is incomplete. Our results, especially those on scaling relations, imply that pseudobulges are very different types of objects than elliptical galaxies.« less

  5. Fundamental Properties of the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  6. Exploring galaxy evolution with latent space walks

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Turp, Dennis; Zhang, Ce

    2018-01-01

    We present a new approach using artificial intelligence to perform data-driven forward models of astrophysical phenomena. We describe how a variational autoencoder can be used to encode galaxies to latent space, independently manipulate properties such as the specific star formation rate, and return it to real space. Such transformations can be used for forward modeling phenomena using data as the only constraints. We demonstrate the utility of this approach using the question of the quenching of star formation in galaxies.

  7. Spitzer Reveals Stellar Family Tree

    NASA Image and Video Library

    2008-08-22

    Generations of stars can be seen in this new infrared portrait from NASA Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities.

  8. NASA Telescopes Uncover Early Construction of Giant Galaxy

    NASA Image and Video Library

    2014-08-27

    Astronomers have for the first time caught a glimpse of the earliest stages of massive galaxy construction. The building site, dubbed “Sparky,” is a dense galactic core blazing with the light of millions of newborn stars that are forming at a ferocious rate. The discovery was made possible through combined observations from NASA’s Hubble and Spitzer space telescopes, the W.M. Keck Observatory in Mauna Kea, Hawaii, and the European Space Agency's Herschel space observatory, in which NASA plays an important role. A fully developed elliptical galaxy is a gas-deficient gathering of ancient stars theorized to develop from the inside out, with a compact core marking its beginnings. Because the galactic core is so far away, the light of the forming galaxy that is observable from Earth was actually created 11 billion years ago, just 3 billion years after the Big Bang. Read more: 1.usa.gov/1rAMSSr Credit: NASA, Z. Levay, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The Near and Far-IR SEDs of Spitzer GTO ULIRGs

    NASA Astrophysics Data System (ADS)

    Marshall, Jason; Armus, Lee; Spoon, Henrik

    2008-03-01

    Spectra of a sample of 109 ultraluminous infrared galaxies (ULIRGs) have been obtained as part of the Spitzer IRS GTO program, providing a dataset with which to study the underlying obscured energy source(s) (i.e., AGN and/or starburst activity) powering ULIRGs in the local universe, and providing insight into the high-redshift infrared-luminous galaxies responsible for the bulk of the star-formation energy density at z = 2-3. As part of this effort, we have developed the CAFE spectral energy distribution decomposition tool to analyze the UV to sub-mm SEDs of these galaxies (including their IRS spectra). Sufficient photometry for these decompositions exists for approximately half of the GTO ULIRGs. However, we lack crucial data for the other half of the sample in either or both the 2-5 micron gap between the near-IR passbands and the start of the IRS wavelength coverage and the far-IR beyond 100 microns. These spectral regions provide critical constraints on the amount of hot dust near the dust sublimation temperature (indicating the presence of an AGN) and the total luminosity and mass of dust in the galaxy (dominated by the coldest dust emitting at far-IR wavelengths). We therefore propose to obtain IRAC observations in all channels and MIPS observations at 70 and 160 microns for the 37 and 17 GTO ULIRGs lacking data in these wavelength ranges, respectively. Considering its very low cost of 7.3 total hours of observation, the scientific return from this program is enormous: nearly doubling the number of GTO ULIRGs with full spectral coverage, and completing a dataset that is sure to be an invaluable resource well beyond the lifetime of Spitzer.

  10. The Spectral Energy Distributions and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey

    2012-05-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙ 1013 L ⊙. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR(8-1000 μm)/νL ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  11. Spitzer Operations: Scheduling the Out Years

    NASA Technical Reports Server (NTRS)

    Mahoney, William A.; Effertz, Mark J.; Fisher, Mark E.; Garcia, Lisa J.; Hunt, Joseph C. Jr.; Mannings, Vincent; McElroy, Douglas B.; Scire, Elena

    2012-01-01

    Spitzer Warm Mission operations have remained robust and exceptionally efficient since the cryogenic mission ended in mid-2009. The distance to the now exceeds 1 AU, making telecommunications increasingly difficult; however, analysis has shown that two-way communication could be maintained through at least 2017 with minimal loss in observing efficiency. The science program continues to emphasize the characterization of exoplanets, time domain studies, and deep surveys, all of which can impose interesting scheduling constraints. Recent changes have significantly improved on-board data compression, which both enables certain high volume observations and reduces Spitzer's demand for competitive Deep Space Network resources.

  12. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  13. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  14. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, A. J.; Calzetti, D.; Johnson, B. D.

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since theremore » are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.« less

  15. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs havemore » power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.« less

  16. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  17. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING Spitzer. II. IDENTIFICATION OF AN EMERGING CLASS OF EXTRAGALACTIC SELF-OBSCURED STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rubab; Kochanek, C. S.; Stanek, K. Z.

    Understanding the late-stage evolution of the most massive stars such as η Carinae is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. In Khan et al., we utilized Spitzer IRAC images of 7 nearby (≲ 4 Mpc) galaxies to search for such analogs, and found 34 candidates with flat or red mid-IR spectral energy distributions. Here, in Paper II, we present our characterization of these candidates using multi-wavelength data from the optical through the far-IR. Our search detected no true analogs of η Car, which implies an eruption rate that is a fraction 0.01more » ≲ F ≲ 0.19 of the core-collapse supernova (ccSN) rate. This is roughly consistent with each M {sub ZAMS} ≳ 70 M {sub ☉} star undergoing one or two outbursts in its lifetime. However, we do identify a significant population of 18 lower luminosity (log (L/L {sub ☉}) ≅ 5.5-6.0) dusty stars. Stars enter this phase at a rate that is a fraction 0.09 ≲ F ≲ 0.55 of the ccSN rate, and this is consistent with all 25 < M {sub ZAMS} < 60 M {sub ☉} stars undergoing an obscured phase at most lasting a few thousand years once or twice. These phases constitute a negligible fraction of post-main-sequence lifetimes of massive stars, which implies that these events are likely to be associated with special periods in the evolution of the stars. The mass of the obscuring material is of order ∼M {sub ☉}, and we simply do not find enough heavily obscured stars for theses phases to represent more than a modest fraction (∼10% not ∼50%) of the total mass lost by these stars. In the long term, the sources that we identified will be prime candidates for detailed physical analysis with the James Webb Space Telescope.« less

  18. Spitzer Sees Water Loud and Clear

    NASA Image and Video Library

    2007-08-29

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B. The data were captured by NASA Spitzer Space Telescope.

  19. The Extreme Star Formation Activity of Arp 299 Revealed by Spitzer IRS Spectral Mapping

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Pereira-Santaella, Miguel; García-Marín, Macarena; Smith, J.-D. T.; Brandl, Bernhard; Charmandaris, Vassilis; Armus, Lee

    2009-05-01

    We present Spitzer/IRS spectral mapping observations of the luminous infrared galaxy Arp 299 (IC 694 + NGC 3690) covering the central ~45'' ~ 9 kpc. The integrated mid-IR spectrum of Arp 299 is similar to that of local starbursts despite its strongly interacting nature and high-IR luminosity, L IR ~ 6 × 1011 L sun. This is explained because the star formation (probed by, e.g., high [Ne III]15.56 μm/[Ne II]12.81 μm line ratios) is spread across at least 6-8 kpc. Moreover, a large fraction of this star formation is taking place in young regions of moderate mid-IR optical depths such as the C+C' complex in the overlap region between the two galaxies and in H II regions in the disks of the galaxies. It is only source A, the nuclear region of IC 694, which shows the typical mid-IR characteristics of ultraluminous infrared galaxies (ULIRGs; L IR > 1012 L sun), that is, very compact (less than 1 kpc) and dust-enshrouded star formation resulting in a deep silicate feature and moderate equivalent widths of the polycyclic aromatic hydrocarbons. The nuclear region of NGC 3690, known as source B1, hosts a low-luminosity active galactic nucleus (AGN) and is surrounded by regions of star formation. Although the high-excitation [Ne V]14.32 μm line typical of AGN is not detected in B1, its upper limit is consistent with the value expected from the X-ray luminosity. The AGN emission is detected in the form of a strong hot-dust component that accounts for 80%-90% of the 6 μm luminosity of B1. The similarity between the Arp 299 integrated mid-IR spectrum and those of high-z ULIRGs suggests that Arp 299 may represent a local example, albeit with lower IR luminosity and possibly higher metallicity, of the star formation processes occurring at high-z. Based on observations obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  20. The Seven Sisters Pose for Spitzer

    NASA Image and Video Library

    2007-04-16

    The Seven Sisters, also known as the Pleiades star cluster, seem to float on a bed of feathers in a new infrared image from NASA Spitzer Space Telescope. Clouds of dust sweep around the stars, swaddling them in a cushiony veil.

  1. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  2. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  3. VizieR Online Data Catalog: Spitzer photometry of ~1million stars in M31 & 15 gal. (Khan, 2017)

    NASA Astrophysics Data System (ADS)

    Khan, R.

    2017-03-01

    For M31, we used the IRAC 3.6, 4.5, 5.8, and 8um mosaics produced by Mould+ (2008, J/ApJ/687/230) and the MIPS 24um mosaic produced by Gordon+ (2006ApJ...638L..87G). For the other galaxies, we used the IRAC and MIPS mosaics produced by the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt+ 2003PASP..115..928K) and the Local Volume Legacy Survey (LVL; Dale+ 2009, J/ApJ/703/517). We utilize the full mosaics available for each galaxy. (17 data files).

  4. Hubble Space Telescope Imaging of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.

    2003-02-01

    We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the

  5. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  6. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  7. Dusty Disks, Diffuse Clouds, and Dim Suns: Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.

    2004-01-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  8. Dusty Disks, Diffuse Clouds, and Dim Suns - Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.

    2004-05-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  9. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  10. A GLIMPSE of Star Formation in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Winston, Elaine; Hora, Joseph L.; Tolls, Volker

    2018-01-01

    The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.

  11. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  12. Deep Spitzer/IRAC Imaging of the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier

    2013-10-01

    The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.

  13. Space Interferometry Mission: Dynamical Observations of Galaxies (SIMDOG)

    NASA Technical Reports Server (NTRS)

    Shaya, Edward J.; Borne, Kirk D.; Nusser, Adi; Peebles, P. J. E.; Tonry, John; Tully, Brent R.; Vogel, Stuart; Zaritsky, Dennis

    2004-01-01

    Space Interferometry Mission (SIM) will be used to obtain proper motions for a sample of 27 galaxies; the first proper motion measurements of galaxies beyond the satellite system of the Milky Way. SIM measurements lead to knowledge of the full 6-dimensional position and velocity vector of each galaxy. In conjunction with new gravitational flow models, the result will be the first total mass measurements of individual galaxies. The project, includes developnient of powerful theoretical methods for orbital calculations. This SIM study will lead to vastly improved determinations of individual galaxy masses, halo sizes, and the fractional contribution of dark matter. Astronomers have struggled to calculate the orbits of galaxies with only position and redshift information. Traditional N-body techniques are unsuitable for an analysis backward in time from a present distribution if any components of velocity or position are not very precisely known.

  14. Analytic halo approach to the bispectrum of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki

    2017-02-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  15. Solar System Studies in the Infrared with the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Stansberry, J. A.; Cleve, J. Van; Burgdorf, M. J.; Fernandez, Y. R.; Meadows, V. S.; Reach, W. T.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is a cryogenic telescope (85 cm diameter) operating in a heliocentric orbit trailing the Earth. Its three instruments provide capabilities for spectroscopy, wide-field and small-field imaging at many wavelengths in the range 3.5-160 microns. Observations to be executed in the first two years in programs defined by the Guaranteed Time Observer (GTO) group (the authors of this presentation) consist of photometry, spectroscopy, and radiometry of many Solar System objects, including Titan and other satellites of the outer planets, Pluto, Centaurs, trans-Neptunian objects, comers, asteroids, Uranus, and Neptune. At the time of the preparation of this abstract, some preliminary observations have been made, but the final calibration and reduction of the data are still in progress. The latest results of the Solar System investigations will be presented here.

  16. Planck, Herschel & Spitzer unveil overdense z>2 regions

    NASA Astrophysics Data System (ADS)

    Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve

    2014-12-01

    At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST

  17. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independentmore » of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.« less

  18. Colors of Ellipticals from GALEX to Spitzer

    NASA Astrophysics Data System (ADS)

    Schombert, James M.

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV, ugri, JHK and 3.6 μm. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  19. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  20. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D. A.; Turner, J. A.; Cook, D. O.

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {submore » C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.« less

  1. Metal Deficiency in Two Massive Dead Galaxies at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Morishita, T.; Abramson, L. E.; Treu, T.; Wang, X.; Brammer, G. B.; Kelly, P.; Stiavelli, M.; Jones, T.; Schmidt, K. B.; Trenti, M.; Vulcani, B.

    2018-03-01

    Local massive early-type galaxies are believed to have completed most of their star formation ∼10 Gyr ago and evolved without having substantial star formation since that time. If so, their progenitors should have roughly solar stellar metallicities (Z *), comparable to their values today. We report the discovery of two lensed massive ({log}{M}* /{M}ȯ ∼ 11), z ∼ 2.2 dead galaxies that appear markedly metal deficient given this scenario. Using 17-band HST+K s +Spitzer photometry and deep Hubble Space Telescope (HST) grism spectra from the Grism Lens Amplified Survey from Space (GLASS) and supernova (SN) Refsdal follow-up campaigns covering features near λ rest ∼ 4000 Å, we find these systems to be dominated by A-type stars with {log}{Z}* /{Z}ȯ =-0.40+/- 0.02 and ‑0.49 ± 0.03 (30%–40% solar) under standard assumptions. The second system’s lower metallicity is robust to isochrone changes, though this choice can drive the first system’s from {log}{Z}* /{Z}ȯ =-0.6 to 0.1. If these two galaxies are representative of larger samples, this finding suggests that evolutionary paths other than dry minor merging are required for these massive galaxies. Future analyses with direct metallicity measurements—e.g., by the James Webb Space Telescope—will provide critical insight into the nature of such phenomena.

  2. NGC 5523: An isolated product of soft galaxy mergers?

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  3. Spitzer Telescope Sends Rose for Valentine Day

    NASA Image and Video Library

    2004-02-12

    A cluster of newborn stars herald their birth in this interstellar Valentine Day commemorative picture obtained with NASA Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped and rose-colored nebulosity known as NGC 7129. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus. A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon. As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons. The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are

  4. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  5. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  6. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsicmore » index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.« less

  7. Galactic Distribution of Planets from Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2014-12-01

    We will measure the 'microlens parallaxes' of about 120 microlensing events that peak during Spitzer's 'bulge window' (2015 Jun 09 - Jul 19), by comparing simultaneous Spitzer and ground-based microlensing lightcurves, making use of Spitzer's location about 1 AU from Earth. These measurements will enable mass and distance measurements of about 4 microlensing planets. The ensemble of planet and non-planet distance measurements will yield the first probe of the Galactic distribution of planets Microlens planet mass measurements are very rare and have proved extremely interesting in every case. Microlensing identifies planets at and beyond the snowline, probing unique parameter space and providing vital information to constrain planet formation and migration theories. But the sample of ground-based microlens-parallax measurements is highly biased toward special systems. Spitzer would provide the first unbiased study. The same survey would provide a unique probe of brown dwarf binaries, and yield the first mass-based (not light-based) measurement of the stellar mass function (i.e., including dark objects such as black holes). A very successful 2014 'Pilot Program' demonstrates that this project is technically and scientifically viable. (As in the previous 'Pilot Program', we request zero day proprietary period.)

  8. DEMOGRAPHICS OF BULGE TYPES WITHIN 11 Mpc AND IMPLICATIONS FOR GALAXY EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.umd.edu

    2011-06-01

    We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 {mu}m and Hubble Space Telescope data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of 10{sup 9} M{sub sun}. Classical bulges and ellipticalmore » galaxies account for {approx}1/4, and disks for {approx}3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above 10{sup 10.5} M{sub sun}. Galaxies with pseudobulges dominate at 10{sup 9.5}-10{sup 10.5} M{sub sun}. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.« less

  9. Infrared-Bright Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  10. Submillimeter Follow-up of WISE-selected Hyperluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; Bussmann, Shane; Comerford, Julia M.; Cutri, Roc; Evans, Neal J., II; Griffith, Roger; Jarrett, Thomas; Lake, Sean; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam; Weiner, Benjamin; Wright, Edward L.; Yan, Lin

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (~1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 1013 L ⊙. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  11. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam atmore » 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.« less

  12. Submillimeter Follow-Up of WISE-Selected Hyperluminous Galaxies

    NASA Technical Reports Server (NTRS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approx.1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 microns, yet are clearly detected at 12 and 22 microns. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 microns, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 microns, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60 C120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) Stellar Luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  13. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    NASA Technical Reports Server (NTRS)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  14. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  15. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  16. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  17. Physical Properties of Spectroscopically Confirmed Galaxies at z >= 6. I. Basic Characteristics of the Rest-frame UV Continuum and Lyα Emission

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Mechtley, Matthew; Fan, Xiaohui; Cohen, Seth H.; Windhorst, Rogier A.; Davé, Romeel; Finlator, Kristian; Kashikawa, Nobunari; Ouchi, Masami; Shimasaku, Kazuhiro

    2013-08-01

    We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z >= 6. The sample consists of 51 Lyα emitters (LAEs) at z ~= 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 <= z <= 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 μm and 4.5 μm bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between β ~= -1.5 and -3.5, with an average value of β ~= -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around β ~= -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Lyα equivalent width (EW) in a range of ~10 to ~200 Å. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Lyα emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Lyα emission (EW < 20 Å) that could be the dominant contribution to the total ionizing flux at z >= 6. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Based in part on observations made with the

  18. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  19. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  20. Designing a space-based galaxy redshift survey to probe dark energy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni

    2010-12-01

    A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

  1. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  2. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive

  3. A Cauldron of Stars at the Galaxy's Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This dazzling infrared image from NASA's Spitzer Space Telescope shows hundreds of thousands of stars crowded into the swirling core of our spiral Milky Way galaxy. In visible-light pictures, this region cannot be seen at all because dust lying between Earth and the galactic center blocks our view.

    In this false-color picture, old and cool stars are blue, while dust features lit up by blazing hot, massive stars are shown in a reddish hue. Both bright and dark filamentary clouds can be seen, many of which harbor stellar nurseries. The plane of the Milky Way's flat disk is apparent as the main, horizontal band of clouds. The brightest white spot in the middle is the very center of the galaxy, which also marks the site of a supermassive black hole.

    The region pictured here is immense, with a horizontal span of 890 light-years and a vertical span of 640 light-years. Earth is located 26,000 light-years away, out in one of the Milky Way's spiral arms. Though most of the objects seen in this image are located at the galactic center, the features above and below the galactic plane tend to lie closer to Earth.

    Scientists are intrigued by the giant lobes of dust extending away from the plane of the galaxy. They believe the lobes may have been formed by winds from massive stars.

    This image is a mosaic of thousands of short exposures taken by Spitzer's infrared array camera, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). The entire region was imaged in less than 16 hours.

  4. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  5. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schombert, James M., E-mail: jschombe@uoregon.edu

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composedmore » of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.« less

  6. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  7. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  8. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  9. An Enhanced Multiwavelength Photometric Catalog for the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina

    2017-01-01

    Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.

  10. Older Galaxy Pair Has Surprisingly Youthful Glow

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version

    A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again.

    Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years).

    The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies.

    This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  11. Early 2017 observations of TRAPPIST-1 with Spitzer

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  12. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  13. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  14. The distant red galaxy neighbour population of 1

    NASA Astrophysics Data System (ADS)

    Bornancini, C.; García Lambas, D.

    We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.

  15. A Dwarf Galaxy Star Bar and Dusty Wing

    NASA Image and Video Library

    2012-01-10

    In combined data from ESA Herschel and NASA Spitzer telescopes, irregular distribution of dust in the Small Magellanic Cloud becomes clear. A stream of dust extends to left, known as the galaxy wing, and a bar of star formation appears to right.

  16. The Spitzer Survey of Stellar Structure in Galaxies (S4G): Precise Stellar Mass Distributions from Automated Dust Correction at 3.6 μm

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Meidt, Sharon E.; Schinnerer, Eva; Cisternas, Mauricio; Muñoz-Mateos, Juan Carlos; Sheth, Kartik; Knapen, Johan; van de Ven, Glenn; Norris, Mark A.; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne W.; Athanassoula, E.; Bosma, Albert; Groves, Brent; Ho, Luis C.; Gadotti, Dimitri A.; Zaritsky, Dennis; Regan, Michael; Hinz, Joannah; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Mizusawa, Trisha; Kim, Taehyun; Erroz-Ferrer, Santiago; Laine, Jarkko; Comerón, Sébastien

    2015-07-01

    The mid-infrared is an optimal window to trace stellar mass in nearby galaxies and the 3.6 μ {{m}} IRAC band has been exploited to this effect, but such mass estimates can be biased by dust emission. We present our pipeline to reveal the old stellar flux at 3.6 μm and obtain stellar mass maps for more than 1600 galaxies available from the Spitzer Survey of Stellar Structure in Galaxies (S4G). This survey consists of images in two infrared bands (3.6 and 4.5 μ {{m}}), and we use the Independent Component Analysis (ICA) method presented in Meidt et al. to separate the dominant light from old stars and the dust emission that can significantly contribute to the observed 3.6 μ {{m}} flux. We exclude from our ICA analysis galaxies with low signal-to-noise ratio ({{S}}/{{N}}\\lt 10) and those with original [3.6]-[4.5] colors compatible with an old stellar population, indicative of little dust emission (mostly early Hubble types, which can directly provide good mass maps). For the remaining 1251 galaxies to which ICA was successfully applied, we find that as much as 10%-30% of the total light at 3.6 μ {{m}} typically originates from dust, and locally it can reach even higher values. This contamination fraction shows a correlation with specific star formation rates, confirming that the dust emission that we detect is related to star formation. Additionally, we have used our large sample of mass estimates to calibrate a relationship of effective mass-to-light ratio (M/L) as a function of observed [3.6]-[4.5] color: {log}({\\text{}}M/L) = -0.339(+/- 0.057) × ([3.6]-[4.5])-0.336(+/- 0.002). Our final pipeline products have been made public through IRSA, providing the astronomical community with an unprecedentedly large set of stellar mass maps ready to use for scientific applications.

  17. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  18. Spitzer observations of red galaxies: Implication for high-redshift star formation

    NASA Astrophysics Data System (ADS)

    Papovich, Casey

    2006-03-01

    My colleagues and I identified distant red galaxies (DRGs) with J - Ks > 2.3 in the southern Great Observatories Origins Deep Surveys (GOODS-S) field. These galaxies reside at z ˜ 1-3.5, (< z> ≃ 2.2) and based on their ACS (0.4-1 μm), ISAAC (1-2.2 μm), and IRAC (3-8 μm) photometry, they typically have stellar masses M ⩾ 10 11 M⊙. Interestingly, more than 50% of these objects have 24 μm flux densities ⩾50 μJy. Attributing the IR emission to star-formation implies star-formation rates (SFRs) of ≃100-1000 M⊙ yr -1. As a result, galaxies with M ⩾ 10 11 M⊙ have specific SFRs equal to or exceeding the global value at z ˜ 1.5-3. In contrast, galaxies with M ⩾ 10 11 M⊙ at z ˜ 0.3-0.75 have specific SFRs less than the global average, and more than an order of magnitude lower than that for massive DRGs at z ˜ 1.5-3. Thus, the bulk of star formation in massive galaxies is largely complete by z ˜ 1.5. The red colors and large inferred stellar masses in the DRGs suggest that much of the star formation in these galaxies occurred at redshifts z ≳ 5-6. Using model star-formation histories that match the DRG colors and stellar masses at z ˜ 2-3, and measurements of the UV luminosity density at z ≳ 5-6, we consider what constraints exist on the stellar initial mass function in the progenitors of the massive DRGs at z ˜ 2-3.

  19. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  20. Dust Evolution in Low-Metallicity Environments: Bridging the Gap Between Local Universe and Primordial Galaxies

    NASA Astrophysics Data System (ADS)

    Galliano, Frederic; Barlow, Mike; Bendo, George; Boselli, Alessandro; Buat, Veronique; Chanial, Pierre; Clements, David; Davies, Jon; Eales, Steve; Gomez, Haley; Isaak, Kate; Madden, Suzanne; Page, Mathew; Perez Fournon, Ismael; Sauvage, Marc; Spinoglio, Luigi; Vaccari, Mattia; Wilson, Christine

    2008-03-01

    The local galaxy Science Advisory Group (SAG 2) in the Herschel/SPIRE consortium, has constructed a Guaranteed Time Key Program using the PACS and SPIRE insruments to obtain 60 to 550 micron photometry of a statistically significant sample of 51 dwarf galaxies in our local universe chosen to cover an impressivly broad range of physical conditions. Here we propose the necessary complementary IRAC, MIPS and IRS Spitzer observations which together with the Herschel GT database will provide a rich database to the community to perform the dust and gas analyses in unprecedented detail in low metallicity galaxies ranging between 1/50 to 1 solar metallicity. Due to their chemical youth, and to the extreme conditions they experience, low metallicity environments constitute a keystone to understand dust evolution. The primary goal of this combined Herschel and Spitzer project is to study in details the physical processes at play within the ISM of these galaxies. We will take advantage of the powerful combination of Spitzer, Herschel and ancillary data to decompose the SED into the emission coming from the main phases of the ISM. Such a decomposition will provide reliable estimate of the abundances of the principal dust species, as a fonction of metallicity and physical conditions. These results will be exploited to compare the various evolutionary processes affecting the dust content of galaxies. All these outstanding scientific advances will be the true legacy value that this project brings to the community.

  1. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  2. Galaxies Coming of Age in Cosmic Blobs

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The "coming of age" of galaxies and black holes has been pinpointed, thanks to new data from NASA's Chandra X-ray Observatory and other telescopes. This discovery helps resolve the true nature of gigantic blobs of gas observed around very young galaxies. About a decade ago, astronomers discovered immense reservoirs of hydrogen gas -- which they named "blobs" - while conducting surveys of young distant galaxies. The blobs are glowing brightly in optical light, but the source of immense energy required to power this glow and the nature of these objects were unclear. A long observation from Chandra has identified the source of this energy for the first time. The X-ray data show that a significant source of power within these colossal structures is from growing supermassive black holes partially obscured by dense layers of dust and gas. The fireworks of star formation in galaxies are also seen to play an important role, thanks to Spitzer Space Telescope and ground-based observations. "For ten years the secrets of the blobs had been buried from view, but now we've uncovered their power source," said James Geach of Durham University in the United Kingdom, who led the study. "Now we can settle some important arguments about what role they played in the original construction of galaxies and black holes." Galaxies are believed to form when gas flows inwards under the pull of gravity and cools by emitting radiation. This process should stop when the gas is heated by radiation and outflows from galaxies and their black holes. Blobs could be a sign of this first stage, or of the second. Based on the new data and theoretical arguments, Geach and his colleagues show that heating of gas by growing supermassive black holes and bursts of star formation, rather than cooling of gas, most likely powers the blobs. The implication is that blobs represent a stage when the galaxies and black holes are just starting to switch off their rapid growth because of these heating processes. This

  3. A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    DTIC Science & Technology

    2006-10-23

    spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust

  4. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. Themore » rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local

  5. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Tanvir, N. R.; Hjorth, J.

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated withmore » low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.« less

  6. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not havemore » the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.« less

  7. Interferometric imaging of the high-redshift radio galaxy, 4C60.07: an SMA, Spitzer and VLA study reveals a binary AGN/starburst

    NASA Astrophysics Data System (ADS)

    Ivison, R. J.; Morrison, G. E.; Biggs, A. D.; Smail, Ian; Willner, S. P.; Gurwell, M. A.; Greve, T. R.; Stevens, J. A.; Ashby, M. L. N.

    2008-11-01

    High-resolution submillimetre (submm) imaging of the high-redshift radio galaxy (HzRG), 4C60.07, at z = 3.8, has revealed two dusty components of roughly equal integrated flux. Spitzer imaging shows that one of these components (`B') is coincident with an extremely red active galactic nucleus (AGN), offset by ~4arcsec (~30kpc) from the HzRG core. The other submm component (`A') - resolved by our synthesized beam and devoid of emission at 3.6-8.0μm - lies between `B' and the HzRG core. Since the radio galaxy was discovered via its extremely young, steep-spectrum radio lobes and the creation of these lobes was likely triggered by the interaction, we argue that we are witnessing an early-stage merger, prior to its eventual equilibrium state. The interaction is between the host galaxy of an actively fuelled black hole (BH) and a gas-rich starburst/AGN (`B') marked by the compact submm component and coincident with broad CO(4-3) emission. The second submm component (`A') is a plume of cold, dusty gas, associated with a narrow (~150kms-1) CO feature, and may represent a short-lived tidal structure. It has been claimed that HzRGs and submillimetre-selected galaxies (SMGs) differ only in the activity of their AGNs, but such complex submm morphologies are seen only rarely amongst SMGs, which are usually older, more relaxed systems. Our study has important implications: where a galaxy's gas reservoir is not aligned with its central BH, CO may be an unreliable probe of dynamical mass, affecting work on the co-assembly of BHs and host spheroids. Our data support the picture wherein close binary AGN are induced by mergers. They also raise the possibility that some supposedly jet-induced starbursts may have formed co-evally (yet independently of) the radio jets, both triggered by the same interaction. Finally, we note that the HzRG host would have gone unnoticed without its jets and its companion, so there may be many other unseen BHs at high redshift, lost in the sea of ~5

  8. Probing the Build-Up of Quiescent Galaxies at z>3

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven

    We propose to perform the most robust investigation to date into the evolution of massive quiescent and star-forming galaxies at z > 3, at a time when the universe was less than two billion years old. The build-up of quiescent galaxies in particular is poorly understood, primarily due to large Poisson and cosmic variance issues that have plagued previous studies that probed small volumes, leading to a disagreement on the quiescent fraction by a factor of >3 in the literature. Our proposed work is only now possible due to a new legacy survey led by our team: the Spitzer-HETDEX Exploratory Large Area Survey (SHELA), which is imaging a 23 deg^2 area of the sky at optical, and near, mid and far-infrared, and X-ray wavelengths. In particular, the wide area coverage of the Spitzer/IRAC data allows us to be sensitive to massive galaxies at very high redshifts, the Herschel data allows us to rule out lower-redshift counterparts, and the XMM-Newton data allows us to remove quasar contaminants from our sample. This survey covers a volume >14X that of the largest previous survey for quiescent galaxies at z=3.5, and ~6X larger than that of the largest previous survey for star-forming galaxies at z=4. All of these data exist in the region soon to be observed by the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will provide high-precision measures of halo masses and local density at z~3. Using this exquisite multi-wavelength dataset, we will measure the abundance of massive quiescent galaxies at z ~ 3-5, and, combining with measures of the halo masses and environment, compare properties of quiescent galaxies to star-forming galaxies to investigate the physical cause behind the quenching. We will also investigate the onset of quenching in star-forming galaxies in two ways, first by studying the relation between star formation rate and stellar mass, to search for a break in the typically-linear relation at high masses, and second by constraining the feedback

  9. M33: A Close Neighbor Reveals its True Size and Splendor (3-color composite)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    One of our closest galactic neighbors shows its awesome beauty in this new image from NASA's Spitzer Space Telescope. M33, also known as the Triangulum Galaxy, is a member of what's known as our Local Group of galaxies. Along with our own Milky Way, this group travels together in the universe, as they are gravitationally bound. In fact, M33 is one of the few galaxies that is moving toward the Milky Way despite the fact that space itself is expanding, causing most galaxies in the universe to grow farther and farther apart.

    When viewed with Spitzer's infrared eyes, this elegant spiral galaxy sparkles with color and detail. Stars appear as glistening blue gems (several of which are actually foreground stars in our own galaxy), while dust rich in organic molecules glows green. The diffuse orange-red glowing areas indicate star-forming regions, while small red flecks outside the spiral disk of M33 are most likely distant background galaxies. But not only is this new image beautiful, it also shows M33 to be surprising large bigger than its visible-light appearance would suggest. With its ability to detect cold, dark dust, Spitzer can see emission from cooler material well beyond the visible range of M33's disk. Exactly how this cold material moved outward from the galaxy is still a mystery, but winds from giant stars or supernovas may be responsible.

    M33 is located about 2.9 million light-years away in the constellation Triangulum. This is a three-color composite image showing infrared observations from two of Spitzer instruments. Blue represents combined 3.6- and 4.5-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  10. LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.

    2018-01-01

    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive ( = 1015 M⊙) clusters at 0.15 < z < 0.3. Highly complete spectroscopic coverage combined with 24 μm imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M⋆ = 2 × 1010 M⊙. The fraction fSF of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R ≈ 1.3 r200, the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.

  11. A Survey of Stellar Populations in Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Pandya, Viraj; Brodie, Jean; Glaccum, Bill; van Dokkum, Pieter; Alabi, Busola; Cohen, Yotam; Danieli, Shany; Abraham, Bob; Martinez-Delgado, David; Greco, Johnny; Greene, Jenny

    2018-05-01

    Ultra-diffuse galaxies (UDGs) are a recently identified, mysterious class of galaxies with luminosities like dwarfs, but sizes like giants. Quiescent UDGs are found in all environments from cluster to isolated, and intensive study has revealed three very distinctive sub-types: low surface brightness dwarfs, 'failed galaxies', and low-dark-matter UDGs. Following up on our recent, successful Spitzer pilot work to characterize the stellar populations (ages and metallicities) of UDGs, we propose a survey of 25 UDGs with a range of optical properties and environments, in order to understand the formation histories of different the different UDG sub-types.

  12. Kepler Supernova Remnant: A View from Spitzer Space Telescope

    NASA Image and Video Library

    2004-10-06

    This Spitzer false-color image is a composite of data from the 24 micron channel of Spitzer's multiband imaging photometer (red), and three channels of its infrared array camera: 8 micron (yellow), 5.6 micron (blue), and 4.8 micron (green). Stars are most prominent in the two shorter wavelengths, causing them to show up as turquoise. The supernova remnant is most prominent at 24 microns, arising from dust that has been heated by the supernova shock wave, and re-radiated in the infrared. The 8 micron data shows infrared emission from regions closely associated with the optically emitting regions. These are the densest regions being encountered by the shock wave, and probably arose from condensations in the surrounding material that was lost by the supernova star before it exploded. The composite above (PIA06908, PIA06909, and PIA06910) represent views of Kepler's supernova remnant taken in X-rays, visible light, and infrared radiation. Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images. http://photojournal.jpl.nasa.gov/catalog/PIA06910

  13. Stellar Masses and Star Formation Rates of Lensed, Dusty, Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony. H.; Spilker, J. S.; Strandet, M.; Ashby, M. L. N.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; de Breuck, C.; Brodwin, M.; Chapman, S. C.; Fassnacht, C. D.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Malkan, M.; Marrone, D. P.; Saliwanchik, B. R.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2015-10-01

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜5 ×1010 M⊙. The intrinsic IR luminosities range from 4 × 1012 L⊙ to 4 × 1013 L⊙. They all have prodigious intrinsic SFRs of 510-4800 M⊙ yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  14. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  15. Elemental Abundances of Blue Compact Dwarfs from Mid-Infrared Spectroscopy with Spitzer

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Bernard-Salas, J.; Charmandaris, V.; Lebouteiller, V.; Hao, Lei; Brandl, B. R.; Houck, J. R.

    2008-01-01

    We present a study of elemental abundances in a sample of 13 blue compact dwarf (BCD) galaxies, using the ~10-37 μm high-resolution spectra obtained with Spitzer IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, although sulfur is underabundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon and sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, and oxygen) studies reveals a good overall agreement for sulfur, while the infrared-derived neon abundances are slightly higher than the optical values. This indicates either that the metallicities of dust-enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.

  16. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  17. Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong

    2008-03-15

    In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less

  18. OGLE-2017-BLG-1130: The First Binary Gravitational Microlens Detected from Spitzer Only

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Calchi Novati, S.; Udalski, A.; Gould, A.; Mao, Shude; Zang, W.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Spitzer Team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the binary gravitational microlensing event OGLE-2017-BLG-1130 (mass ratio q ∼ 0.45), the first published case in which the binary anomaly was detected only by the Spitzer Space Telescope. This event provides strong evidence that some binary signals can be missed by observations from the ground alone but detected by Spitzer. We therefore invert the normal procedure, first finding the lens parameters by fitting the space-based data and then measuring the microlensing parallax using ground-based observations. We also show that the normal four-fold space-based degeneracy in the single-lens case can become a weak eight-fold degeneracy in binary-lens events. Although this degeneracy is resolved in event OGLE-2017-BLG-1130, it might persist in other events.

  19. The distribution of infrared point sources in nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gogoi, Rupjyoti; Shalima, P.; Misra, Ranjeev

    2018-02-01

    Infrared (IR) point sources as observed by Spitzer, in nearby early-type galaxies should either be bright sources in the galaxy such as globular clusters, or they may be background sources such as AGNs. These objects are often counterparts of sources in other wavebands such as optical and X-rays and the IR information provides crucial information regarding their nature. However, many of the IR sources may be background objects and it is important to identify them or at least quantify the level of background contamination. Moreover, the distribution of these IR point sources in flux, distance from the centre and colour would be useful in understanding their origin. Archival Spitzer IRAC images provide a unique opportunity for such a study and here we present the results of such an analysis for four nearby galaxies, NGC 1399, NGC 2768, NGC 4365 and NGC 4649. We estimate the background contamination using several blank fields. Our results suggest that IR colours can be effectively used to differentiate between sources in the galaxy and background ones. In particular we find that sources having AGN like colours are indeed consistent with being background AGNs. For sources with non AGN like colours we compute the distribution of flux and normalised distance from the centre which is found to be of a power-law form. Although our sample size is small, the power-law index for the galaxies are different indicating perhaps that the galaxy environment may be playing a part in their origin and nature.

  20. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  1. Preface: The Evolving ISM in the Milky Way and Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sheth, K.; Noriega-Crespo, A.; Ingalls, J.; Paladini, R.

    2009-01-01

    The fourth Spitzer Science Symposium "The Evolving ISM in the Milky Way and Nearby Galaxies" was held in Pasadena, CA from 2-5 December, 2007. The conference focused on synthesizing recent results for the interstellar medium (ISM) and its interplay with star formation in the Milky Way and nearby galaxies. In the Milky Way and Local Group galaxies we have an unparalleled view of the astrophysics of the interstellar medium, where one can study in detail the spatially-resolved energetics and the complex interplay of physical and chemical processes that govern the ISM. The ISM is both a fossil record of past star formation and evolutionary processes and a natal medium for future star formation.The Spitzer Space Telescope has provided a plethora of exciting results that have revolutionized our understanding of the ISM and star formation, particularly from large programs such as MIPSGAL, GLIMPSE, C2D, etc. How do these new discoveries of the local processes governing the ISM impact our understanding of nearby galaxies? How important are local processes when averaged over an entire galaxy? Legacy programs like SINGS and SAGE are two examples of rich and diverse sets of data for nearby galaxies where such questions may be examined?. ISM physics is the critical ingredient for turning gas and dust diagnostics into information about evolutionary processes such as star formation. The exceptional view of the far-infrared Milky way captured by Spitzer and the extraordinary data gathered from nearby galaxies was the main reason for organizing this conference to synthesize the most recent developments in the coupled fields of the ISM and Nearby Galaxies. Over the three days, we heard invited and contributed talks from over fifty participants. The poster session had over 100 posters and results from nearly a quarter of them were also presented in an abbreviated one to two minute format. The conference also had some firsts. We tried to be as environmentally sensitive as possible by

  2. Celestial Cities and the Roads That Connect Them

    NASA Image and Video Library

    2008-01-25

    Observations from NASA Spitzer Space Telescope show that filamentary galaxies form stars at twice the rate of their densely clustered counterparts. This is a representation of galaxies in and surrounding a galaxy cluster called Abell 1763.

  3. Identification of red supergiants in nearby galaxies with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, N. E.; Bonanos, A. Z.; Mehner, A.; García-Álvarez, D.; Prieto, J. L.; Morrell, N. I.

    2014-02-01

    Context. The role of episodic mass loss in massive-star evolution is one of the most important open questions of current stellar evolution theory. Episodic mass loss produces dust and therefore causes evolved massive stars to be very luminous in the mid-infrared and dim at optical wavelengths. Aims: We aim to increase the number of investigated luminous mid-IR sources to shed light on the late stages of these objects. To achieve this we employed mid-IR selection criteria to identity dusty evolved massive stars in two nearby galaxies. Methods: The method is based on mid-IR colors, using 3.6 μm and 4.5 μm photometry from archival Spitzer Space Telescope images of nearby galaxies and J-band photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we followed-up with spectroscopy. Results: Our spectral classification and analysis yielded the discovery of two M-type supergiants in IC 1613, three K-type supergiants and one candidate F-type giant in Sextans A, and two foreground M giants. We show that the proposed criteria provide an independent way for identifying dusty evolved massive stars that can be extended to all nearby galaxies with available Spitzer/IRAC images at 3.6 μm and 4.5 μm. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio de El Roque de Los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, and the 2.5 m du Pont telescope in operation at Las Campanas Observatory, Chile.Spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A75

  4. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    NASA Technical Reports Server (NTRS)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  5. Map of Exoplanets Found in Our Galaxy Artist Concept

    NASA Image and Video Library

    2015-04-14

    Astronomers have discovered one of the most distant planets known, a gas giant about 13,000 light-years from Earth, called OGLE-2014-BLG-0124L. The planet was discovered using a technique called microlensing, and the help of NASA's Spitzer Space Telescope and the Optical Gravitational Lensing Experiment, or OGLE. In this artist's illustration, planets discovered with microlensing are shown in yellow. The farthest lies in the center of our galaxy, 25,000 light-years away. Most of the known exoplanets, numbering in the thousands, have been discovered by NASA's Kepler space telescope, which uses a different strategy called the transit method. Kepler's cone-shaped field of view is shown in pink/orange. Ground-based telescopes, which use the transit and other planet-hunting methods, have discovered many exoplanets close to home, as shown by the pink/orange circle around the sun. http://photojournal.jpl.nasa.gov/catalog/PIA19333

  6. VizieR Online Data Catalog: Keck/MOSFIRE spectroscopy of ZFOURGE galaxies (Tran+, 2017)

    NASA Astrophysics Data System (ADS)

    Tran, K.-V. H.; Alcorn, L. Y.; Kacprzak, G. G.; Nanayakkara, T.; Straatman, C.; Yuan, T.; Cowley, M.; Dave, R.; Glazebrook, K.; Kewley, L. J.; Labbe, I.; Martizzi, D.; Papovich, C.; Quadri, R.; Spitler, L. R.; Tomczak, A.

    2017-06-01

    Here we combine Hα emission from our ZFIRE survey (Nanayakkara+ 2016, J/ApJ/828/21) with galaxy properties from the ZFOURGE survey (Straatman+ 2016, J/ApJ/830/51) and IR luminosities from Spitzer to track how galaxies grow at z~2. ZFIRE is a near-IR spectroscopic survey with MOSFIRE on Keck I where targets are selected from ZFOURGE, an imaging survey that combines deep near-IR observations taken with the FourStar Imager at the Magellan Observatory with public multi-wavelength observations, e.g., Hubble Space Telescope (HST) imaging from CANDELS (Grogin+ 2011ApJS..197...35G). The Keck/MOSFIRE spectroscopy was obtained on observing runs in 2013 December and 2014 February. A total of eight slit masks were observed in the K-band (1.93-2.38um). We also observed two masks in the H-band covering 1.46-1.81um. (1 data file).

  7. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies basedmore » on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.« less

  8. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the

  9. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; ...

    2015-11-19

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the

  10. What lensed galaxies say about winds and physical conditions in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Gladders, Michael; Sharon, Keren; Wuyts, Eva; Bayliss, Matthew B.; Bordoloi, Rongmon

    2015-08-01

    Gravitational lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using imaging from Hubble and Spitzer, and high-quality spectroscopy from Keck, Magellan, and Hubble, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed. In particularly favorable cases, the imaging and spectra measure variations in physical and wind properties over spatial scales down to ~200 pc. My talk will include results from Bayliss et al. 2014, Wuyts et al. 2014, Whitaker et al. 2014, and Rigby et al. 2014, as well as results not yet published.

  11. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory

    2017-08-01

    Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  12. Featured Image: A Molecular Cloud Outside Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  13. Fingerprints in the Light

    NASA Image and Video Library

    2005-03-01

    This spectrum shows the light from a dusty, distant galaxy located 11 billion light-years away. The galaxy is invisible to optical telescopes, but NASA Spitzer Space Telescope captured the light from it and dozens of other similar galaxies.

  14. The Nature of Deeply Buried Ultraluminous Infrared Galaxies: A Unified Model for Highly Obscured Dusty Galaxy Emission

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Elitzur, M.; Armus, L.; Diaz-Santos, T.; Charmandaris, V.

    2018-05-01

    We present models of deeply buried ultraluminous infrared galaxy (ULIRG) spectral energy distributions (SEDs) and use them to construct a three-dimensional diagram for diagnosing the nature of observed ULIRGs. Our goal is to construct a suite of SEDs for a very simple model ULIRG structure, and to explore how well this simple model can (by itself) explain the full range of observed ULIRG properties. We use our diagnostic to analyze archival Spitzer Space Telescope Infrared Spectrograph data of ULIRGs and find that: (1) in general, our model does provide a comprehensive explanation of the distribution of mid-IR ULIRG properties; (2) >75% (in some cases 100%) of the bolometric luminosities of the most deeply buried ULIRGs must be powered by a dust-enshrouded active galactic nucleus; (3) an unobscured “keyhole” view through ≲10% of the obscuring medium surrounding a deeply buried ULIRG is sufficient to make it appear nearly unobscured in the mid-IR; (4) the observed absence of deeply buried ULIRGs with large polycyclic aromatic hydrocarbon (PAH) equivalent widths is naturally explained by our models, showing that deep absorption features are “filled-in” by small quantities of foreground unobscured PAH emission (e.g., from the host galaxy disk) at the level of ∼1% the bolometric nuclear luminosity. The modeling and analysis we present will also serve as a powerful tool for interpreting the high angular resolution spectra of high-redshift sources to be obtained with the James Webb Space Telescope.

  15. Galactic Train Wrecks

    NASA Image and Video Library

    2011-05-25

    This montage combines observations from NASA Spitzer Space Telescope and NASA Galaxy Evolution Explorer GALEX spacecraft showing three examples of colliding galaxies from a new photo atlas of galactic train wrecks.

  16. M33: A Close Neighbor Reveals its True Size and Splendor

    NASA Technical Reports Server (NTRS)

    2009-01-01

    One of our closest galactic neighbors shows its awesome beauty in this new image from NASA's Spitzer Space Telescope. M33, also known as the Triangulum Galaxy, is a member of what's known as our Local Group of galaxies. Along with our own Milky Way, this group travels together in the universe, as they are gravitationally bound. In fact, M33 is one of the few galaxies that is moving toward the Milky Way despite the fact that space itself is expanding, causing most galaxies in the universe to grow farther and farther apart.

    When viewed with Spitzer's infrared eyes, this elegant spiral galaxy sparkles with color and detail. Stars appear as glistening blue gems (many of which are actually foreground stars in our own galaxy), while dust in the spiral disk of the galaxy glows pink and red. But not only is this new image beautiful, it also shows M33 to be surprising large bigger than its visible-light appearance would suggest. With its ability to detect cold, dark dust, Spitzer can see emission from cooler material well beyond the visible range of M33's disk. Exactly how this cold material moved outward from the galaxy is still a mystery, but winds from giant stars or supernovas may be responsible.

    M33 is located about 2.9 million light-years away in the constellation Triangulum. This composite image was taken by Spitzer's infrared array camera. The color blue indicates infrared light of 3.6 microns, green shows 4.5-micron light, and red 8.0 microns.

  17. Galaxy power-spectrum responses and redshift-space super-sample effect

    NASA Astrophysics Data System (ADS)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  18. THE PANCHROMATIC STARBURST IRREGULAR DWARF SURVEY (STARBIRDS): OBSERVATIONS AND DATA ARCHIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D., E-mail: kmcquinn@astro.umn.edu

    2015-06-22

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The datamore » sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging.« less

  19. A History of H I Stripping in Virgo: A Phase-space View of VIVA Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Hyein; Chung, Aeree; Smith, Rory; Jaffé, Yara L.

    2017-04-01

    We investigate the orbital histories of Virgo galaxies at various stages of H I gas stripping. In particular, we compare the location of galaxies with different H I morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H I stripping are found in the first infall region of Virgo, while galaxies undergoing active H I stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yet symmetric, H I disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H I-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H I properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.

  20. The Nature of Red-Sequence Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  1. Gargantuan Super Spiral Galaxies Loom Large in the Cosmos

    NASA Image and Video Library

    2016-03-17

    In archived NASA data, researchers have discovered "super spiral" galaxies that dwarf our own spiral galaxy, the Milky Way, and compete in size and brightness with the largest galaxies in the universe. The unprecedented galaxies have long hidden in plain sight by mimicking the appearance of typical spirals. Three examples of super spirals are presented here in images taken by the Sloan Digital Sky Survey. The super spiral on the left (Figure 1), catalogued as 2MASX J08542169+0449308, contains two galactic nuclei, instead of just the usual one, and thus looks like two eggs frying in a pan. The central image (Figure 2) shows a super spiral designated 2MASX J16014061+2718161, and it also contains the double nuclei. On the right (Figure 3), a huge galaxy with the moniker SDSS J094700.08+254045.7 stands as one of the biggest and brightest super spirals. The mega-galaxy's starry disk and spiral arms stretch about 320,000 light-years across, or more than three times the breadth of the Milky Way. These double nuclei, which are known to result from the recent merger of two galaxies, could offer a vital hint about the potential origin of super spirals. Researchers speculate that a special merger involving two, gas-rich spiral galaxies could see their pooled gases settle down into a new, larger stellar disk -- presto, a super spiral. The super spirals were discovered using the NASA/IPAC Extragalactic Database, or NED, an online repository containing information on over 100 million galaxies. NED brings together a wealth of data from many different projects, including ultraviolet light observations from the Galaxy Evolution Explorer, visible light from Sloan Digital Sky Survey, infrared light from the 2-Micron All-Sky Survey, and links to data from other missions such as NASA's Spitzer Space Telescope and Wide-Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA20064

  2. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  3. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  4. A Search to Uncover the Infrared Excess (IRXS) Sources in the Spitzer Enhanced Imaging Products (SEIP) Catalog

    NASA Astrophysics Data System (ADS)

    Rowe, Jamie Lynn; Duranko, Gary; Gorjian, Varoujan; Lineberger, Howard; Orr, Laura; Adewole, Ayomikun; Bradford, Eric; Douglas, Alea; Kohl, Steven; Larson, Lillia; Lascola, Gus; Orr, Quinton; Scott, Mekai; Walston, Joseph; Wang, Xian

    2018-01-01

    The Spitzer Enhanced Imaging Products catalog (SEIP) is a collection of nearly 42 million point sources obtained by the Spitzer Space Telescope during its 5+ year cryogenic mission. Strasburger et al (2014) isolated sources with a signal-to-noise ratio (SNR) >10 in five infrared (IR) wavelength channels (3.6, 4.5, 5.8, 8 and 24 microns) to begin a search for sources with infrared excess (IRXS). They found 76 objects that were never catalogued before. Based on this success, we intend to dig deeper into the catalog in an attempt to find more IRXS sources, specifically by lowering the SNR on the 3.6, 4.5, and 24 micron channels. The ultimate goal is to use this large sample to seek rare astrophysical sources that are transitional in nature and evolutionarily very important.Our filtering of the database at SNR > 5 yielded 461,000 sources. This was further evaluated and reduced to only the most interesting based on source location on a [3.6]-[4.5] vs [4.5]-[24] color-color diagram. We chose a sample of 985 extreme IRXS sources for further inspection. All of these candidate sources were visually inspected and cross-referenced against known sources in existing databases, resulting in a list of highly reliable IRXS sources.These sources will prove important in the study of galaxy and stellar evolution, and will serve as a starting point for further investigation.

  5. STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z = 0.866

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganá, T. F.; Martins, L. P.; Ulmer, M. P.

    2016-07-10

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μ m imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for thismore » cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.« less

  6. Spectroscopic Confirmation of a Massive Red-sequence Selected Galaxy Cluster at Z=1.34 in the SpARCS-South Cluster Survey

    NASA Technical Reports Server (NTRS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.

  7. Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Smith, Beverly J.; Rosado, Margarita; Beckman, John E.; Bitsakis, Theodoros; Camps-Fariña, Artemi; Font, Joan; Cox, Isaiah S.

    2018-02-01

    We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.

  8. Morphologies of mid-IR variability-selected AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Polimera, Mugdha; Sarajedini, Vicki; Ashby, Matthew L. N.; Willner, S. P.; Fazio, Giovanni G.

    2018-05-01

    We use multi-epoch 3.6 and 4.5 μm data from the Spitzer Extended Deep Survey (SEDS) to probe the AGN population among galaxies to redshifts ˜3 via their mid-IR variability. About 1 per cent of all galaxies in our survey contain varying nuclei, 80 per cent of which are likely to be AGN. Twenty-three per cent of mid-IR variables are also X-ray sources. The mid-IR variables have a slightly greater fraction of weakly disturbed morphologies compared to a control sample of normal galaxies. The increased fraction of weakly distorted hosts becomes more significant when we remove the X-ray emitting AGN, while the frequency of strongly disturbed hosts remains similar to the control galaxy sample. These results suggest that mid-IR variability identifies a unique population of obscured, Compton-thick AGN revealing elevated levels of weak distortion among their host galaxies.

  9. A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyein; Chung, Aeree; Smith, Rory

    We investigate the orbital histories of Virgo galaxies at various stages of H i gas stripping. In particular, we compare the location of galaxies with different H i morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H i stripping are found in the first infall region of Virgo, while galaxies undergoing active H i stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yetmore » symmetric, H i disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H i-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H i properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.« less

  10. The Survey of HI in Extremely Low-mass Dwarfs: A Multi-Wavelength Perspective on Low-Mass Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies drawn from the Arecibo Legacy Fast ALFA (ALFALFA) catalog. HST/Spitzer joint program GO-12658 revealed the stellar populations of the first 12 SHIELD galaxies (Cannon et al. 2011), allowing accurate distance measurements (McQuinn et al. 2014) and detailed studies of the patterns of recent star formation in each galaxy (McQuinn et al. 2015). These HST and Spitzer images are a critical interpretive benchmark for ground-based optical imaging and spectroscopy (Haurberg et al. 2015), as well as for sensitive VLA HI spectral line imaging of the SHIELD galaxies (McNichols et al. 2016; Teich et al. 2016). These results have furthered our understanding of the evolution of galaxies in a mass regime that was previously only sparsely populated. With the low-redshift ALFALFA catalog now complete, the scope of the SHIELD program has been expanded to include all 82 galaxies that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. In HST program 13750, images of 18 more SHIELD galaxies have again set the physical scales for supporting HI spectral line imaging with both the VLA and the WSRT (Gordon et al. 2016). Taken as a whole, the ongoing SHIELD program is one of the most comprehensive multiwavelength studies of the physical properties of low-mass galaxies outside of the Local Group.

  11. Distance determinations to shield galaxies from Hubble space telescope imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc bymore » applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.« less

  12. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  13. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysismore » of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.« less

  14. The Panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS): Observations and Data Archive

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D.

    2015-06-01

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The data sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  15. UV to IR Luminosities and Dust Attenuation Determined from ~4000 K-selected Galaxies at 1 < z < 3 in the ZFOURGE Survey

    NASA Astrophysics Data System (ADS)

    Forrest, Ben; Tran, Kim-Vy H.; Tomczak, Adam R.; Broussard, Adam; Labbé, Ivo; Papovich, Casey; Kriek, Mariska; Allen, Rebecca J.; Cowley, Michael; Dickinson, Mark; Glazebrook, Karl; van Houdt, Josha; Inami, Hanae; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel; McCarthy, Patrick J.; Monson, Andrew; Morrison, Glenn; Nanayakkara, Themiya; Persson, S. Eric; Quadri, Ryan F.; Spitler, Lee R.; Straatman, Caroline; Tilvi, Vithal

    2016-02-01

    We build a set of composite galaxy spectral energy distributions (SEDs) by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ˜4000 Ks-band selected galaxies, we define 38 composite galaxy SEDs that yield continuous low-resolution spectra (R ˜ 45) over the rest-frame range 0.1-4 μm. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope (β) in the IRX-β dust relation at 1 < z < 3. Blue star-forming composite SEDs show IRX and β values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U - V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. The Characterization of Galaxy Structure

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis

    There is no all-encompassing intuitive physical understanding of galactic structure. We cannot predict the size, surface brightness, or luminosity of an individual galaxy based on the mass of its halo, or other physical characteristics, from simple first principles or even empirical guidelines. We have come to believe that such an understanding is possible because we have identified a simple scaling relation that applies to all gravitationally bound stellar systems,from giant ellipticals to dwarf spheroidals, from spiral galaxies to globular clusters. The simplicity (and low scatter) of this relationship testifies to an underlying order. In this proposal, we outline what we have learned so far about this scaling relationship, what we need to do to refine it so that it has no free parameters and provides the strongest possible test of galaxy formation and evolution models, and several ways in which we will exploit the relationship to explore other issues. Primarily, the proposed work involves a study of the uniform IR surface photometry of several thousand stellar systems using a single data source (the Spitzer S4G survey) to address shortcomings posed by the current heterogeneous sample and combining these data with the GALEX database to study how excursions from this relationship are related to current or on-going star formation. This relationship, like its antecedents the Fundamental Plane or Tully-Fisher relationship, can also be used to estimate distances and stellar mass-to-light ratios. We will describe the key advantages our relationship has relative to the existing work and how we will exploit those using archival NASA data from the Spitzer, GALEX, and WISE missions.

  17. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  18. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  19. The AGN Luminosity Fraction in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  20. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.

    2016-03-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.

  1. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  2. Measuring the Evolution of Stellar Populations And Gas Metallicity in Galaxies with Far-Infrared Space Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose a study of the evolution of stellar populations and gas metallicities in about 80 nearby star forming galaxies based on mining the NASA data archives for observations of the [NIII] 57 µm, [OIII] 52 µm and/or 88 µm, [NII] 122 and [CII] 158 µm far-infrared (FIR) fine- structure lines and other archives for thermal radio continuum. These lines are powerful probes of both stellar populations and gas properties and our primary science derives from these tracers. For sources that show both signs of active galactic nuclei (AGN) and star formation, we will take advantage of the readily available NASA Spitzer IRS data base that includes mid-IR [NeII] 12.8 µm, [NeIII] 15.6 µm and [NeV] 14.3 µm, [OIV] 25.9 µm and PAH observations. These complementary data reveal the relative fractions of the FIR line emission that might arise from star formation and the narrow line regions (NLR) associated with an AGN, thereby providing a robust set of observations to compare with star formation models. Subsets of the FIR lines have been detected from hundreds of nearby galaxies. From both theoretical studies and the results of these pioneering observations we know that these lines can be powerful probes of stellar populations and star formation in galaxies. Here we plan to use various combinations of the lines to constrain (1) the age of the stellar populations (through lines that trace the hardness of the stellar radiation fields, hence stellar spectral type), (2) the degree of processing of the interstellar medium (through lines that trace growth of secondary to primary element abundances for example, the N/O ratio), (3) the efficiency of star formation (through growth in absolute abundances of N and O, the N/H and O/H ratios), and (4) the current day mass function of upper main sequence stars. Surprisingly, there has been no systematic study of the large sample of these line detections made with PACS on Herschel in order to truly assess and calibrate their diagnostic

  3. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  4. The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Rinehart, Stephen A.

    2012-01-01

    The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration.

  5. Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog

    NASA Astrophysics Data System (ADS)

    Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.

    We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups 1/2=250 ± 110 km/s. We find that UZC galaxy pairwise velocity dispersion is 1/2 = 460 ± 35 km/s. Such findings point towards a smoothly varying peculiar velocity field from galaxies to systems of galaxies, a expected in a hierarchical scenario of structure formation. We estimate the real-space correlation function in the power-law approximation ξ(r)=(r/r0)γ for groups and galaxies in UZC. We obtain the correlation length, r0, from the projected correlation function W(σ)=∫- ∞∞ξ(σ,π)dπ= 2 ∫0∞ ξ(σ,π) dπ using the values of γ derived from the correlation function in projected separations ω(σ). The best fitting parameters are γ=-1.89 ± 0.17 and r0=9.7 ± 4.5 Mpc h-1 for groups, and γ=-2.00 ± 0.03, r0=5.29 ± 0.21 Mpc h-1 for galaxies. We carried out an estimate of the parameter β= Ω0.6/b for groups and galaxies using the linear approximation regime relating the real and the redshift-space correlation functions. We find βgalaxies=0.51 ± 0.15 for galaxies, in agreement with previous works, while for groups we obtain a noisy estimate β < 1.5. We have tested our methods on mock UZC catalogs taken from N-body simulations. The results of these tests show that the

  6. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to bemore » double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.« less

  7. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  8. Spitzer Sees Water Loud and Clear

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B.

    The data were captured by NASA's Spitzer Space Telescope using an instrument called a spectrograph. A spectrograph collects light and sorts it according to color, or wavelength. In this case, infrared light from NGC 1333-IRAS 4B was broken up into the wavelengths listed on the horizontal axis of the plot. The sharp spikes, called spectral lines, occur at wavelengths at which the stellar object is particularly bright. The signature of water vapor is revealed in the pattern of wavelengths at which the spikes appear.

    By comparing the observed data to a model (lower curve), astronomers can also determine the physical and chemical details of the region. For example, astronomers say these data suggest that ice in a cocoon surrounding the forming star is falling inward. The ice then smacks supersonically into a dusty planet-forming disk surrounding the stellar embryo, heats up and vaporizes quickly, releasing the infrared light that Spitzer collected.

  9. GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean

    2018-06-01

    It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.

  10. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    NASA Astrophysics Data System (ADS)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  11. Exoplanet Characterization With Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  12. Depth Perception in Space (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows how astronomers use the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax to determine the distance of dark planets, black holes and failed stars that lurk invisibly among us. These objects do not produce light, and are too faint to detect from Earth. However, astronomers can deduce their presence from the way they affect the light from background objects. When such a dark body passes in front of a bright star, its gravity warps the path of the star's light and causes it to brighten -- this process is called gravitational microlensing.

    By comparing the 'peak brightness' of the microlensing event from two perspectives -- Earth and Spitzer -- scientists can determine how far away the dark object is. Peak brightness is the moment when the observer, the dark object and background star are most closely aligned.

    Humans naturally use parallax to determine distance -- this is commonly referred to as depth perception. In the case of humans, each eye sees the position of an object differently. The brain takes each eye's perspective, and instantaneously calculates how far away the object is. In space, astronomers can use the same trick to determine the distance of an invisible dark object.

    In this illustration, the dark object is the moving black ball between Earth, Spitzer and our neighboring galaxy the Small Magellanic Cloud (SMC; bottom right).

    To determine the object's distance, astronomers observe the microlensing event at its 'peak brightness' from Earth when the dark object crosses our line-of-sight (dashed line) to a given star in the SMC. This represents one perspective, like looking at an object with only your left eye.

    To get the other 'right eye' perspective, astronomers also observe the peak brightness with Spitzer when the object later moves through its line-of-sight. Because astronomers know the exact distance between Earth and Spitzer, they can determine the

  13. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Technical Reports Server (NTRS)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  14. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Yee, J. C.; Carey, S.; Poleski, R.; Skowron, J.; Kozłowski, S.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Albrow, M.; Beaulieu, J. P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Lončarić, K.; McDougall, A.; Morales, J. C.; Ranc, C.; Zhu, W.; PLANET Collaboration; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Fukunaga, D.; Inayama, K.; Koshimoto, N.; Namba, S.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Collaboration; Maoz, D.; Kaspi, S.; Friedmann, M.; Wise Group; Bachelet, E.; Figuera Jaimes, R.; Bramich, D. M.; Tsapras, Y.; Horne, K.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Kains, N.; RoboNet Collaboration; Bozza, V.; Dominik, M.; Jørgensen, U. G.; Alsubai, K. A.; Ciceri, S.; D'Ago, G.; Haugbølle, T.; Hessman, F. V.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Skottfelt, J.; Southworth, J.; Starkey, D.; Surdej, J.; Wertz, O.; Zarucki, M.; MiNDSTEp Consortium; Gaudi, B. S.; Pogge, R. W.; DePoy, D. L.; μFUN Collaboration

    2015-05-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ˜1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun’s galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  15. New View of Distant Galaxy Reveals Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  16. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  17. Do Massive Galaxies at z~6 Present a Challenge for Hierarchical Merging?

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Capak, Peter L.; Masters, Daniel; Speagle, Josh S.; Splash

    2015-01-01

    The Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) recently released an initial view of the massive star-forming galaxy population at 4 < z < 6 over 1.8 square degrees. SPLASH found approximately 100 galaxy candidates with best-fit stellar masses over 10^11 solar. If even 10% of these are truly this massive and at such a high redshift, the corresponding number density would be inconsistent with the halo mass functions produced at these redshifts by numerical simulations. We will discuss these candidates, prospects for followup observations, and the potential implications for our understanding of the initial formation and early evolution of galaxies in the high-redshift universe.

  18. Hubble and Spitzer Space Telescope Observations of the Debris Disk around the nearby K Dwarf HD 92945

    NASA Astrophysics Data System (ADS)

    Golimowski, D. A.; Krist, J. E.; Stapelfeldt, K. R.; Chen, C. H.; Ardila, D. R.; Bryden, G.; Clampin, M.; Ford, H. C.; Illingworth, G. D.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.

    2011-07-01

    We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2farcs0-3farcs0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3farcs0-5farcs1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to lsim180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a min = 4.5 μm and a size distribution proportional to a -3.7 throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M ⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low

  19. Investigating the presence of 500 μm submillimeter excess emission in local star forming galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Allison; Calzetti, Daniela; Galametz, Maud

    Submillimeter excess emission has been reported at 500 μm in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 μm for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12 + log (O/H) = 7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 μm. We model the far-IRmore » peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 μm photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 μm excess and metallicity. A few individual sources do show excess (10%-20%) at 500 μm; conversely, for other sources, the model overpredicts the measured 500 μm flux density by as much as 20%, creating a 500 μm 'deficit'. None of our sources has an excess larger than the calculated 1σ uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 μm in our sample. Our results differ from previous studies detecting 500 μm excess in KINGFISH galaxies largely due to new, improved photometry used in this study.« less

  20. Modeling IR SED of AGN with Spitzer and Herschel data

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2012-12-01

    One of the remaining open issues in the context of the analysis of Active Galactic Nuclei (AGN) is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst (SB) activity. What is, in this picture, the role played by the obscur- ing dust around the nucleus and what do the state of the art AGN torus models have to say? Can the IR data provided by Spitzer and Herschel help us in extensively investigate both phenomena and, if so, how and with what limitations? In this paper we present our contribution to the efforts of answering these questions. We show some of the main results coming from a comparative study of various AGN SED modeling approaches, focusing mostly on the much-debated issue about the morphology of the dust distribution in the toroidal structure surrounding the AGN. We found that the properties of dust in AGN as measured by matching observations (be it broad band IR photometry or IR spectra) with models, strongly depend on the choice of the dust distribution. Then, we present the spec- tral energy distribution (SED) fitting procedure we developed, making make the best use of Spitzer and Herschel SPIRE mid- and far-IR observations, to dig into the role played by the possible presence of an AGN on the host galaxy's properties.

  1. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  2. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the

  3. The Effects of Galaxy Interactions on Star Formation

    NASA Astrophysics Data System (ADS)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  4. An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Sansom, Anne E.

    2015-11-01

    SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 μm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy.

  5. VizieR Online Data Catalog: X-ray observations of HCG galaxies (Tzanavaris+, 2016)

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-04-01

    In this paper we study a sample of 15 compact groups (CGs) observed with Chandra/ACIS, Swift/UVOT and Spitzer/IRAC-MIPS for which archival data exist, allowing us to obtain SFRs, stellar masses, sSFRs and X-ray fluxes and luminosities. Table 1 shows the group sample, including redshifts, luminosity distances and group evolutionary types. Allowing for the fact that some galaxies do not fall in the field of view of all three instruments, the total number of CG galaxies analyzed is 47. Details on the Swift and Spitzer observations and data for systems in this sample can be found in Tzanavaris et al. (2010ApJ...716..556T) and (L. Lenkic et al. 2015, in preparation). For Chandra/ACIS observations we refer the reader to Tzanavaris et al. (2014, J/ApJS/212/9) and Desjardins et al. (2013ApJ...763..121D; 2014ApJ...790..132D). (2 data files).

  6. Dusty Death of a Massive Star

    NASA Image and Video Library

    2006-06-06

    NASA Spitzer Space Telescope shows the supernova remnant 1E0102.2-7219 sits next to the nebula N76 in a bright, star-forming region of the Small Magellanic Cloud, a satellite galaxy to our Milky Way galaxy.

  7. Spitzer Observations of the New Luminous Red Nova M85 OT2006-1

    NASA Astrophysics Data System (ADS)

    Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L.

    2007-04-01

    M85 OT2006-1 is the latest and most brilliant addition to the small group of known luminous red novae (LRNe). An identifying characteristic of the previously detected events (M31 RV, V4332 Sgr, and V838 Mon) was a spectral redward evolution connected with an emerging infrared component following the optical decay. Here we report on the discovery of a similar feature in Keck NIRC and Spitzer photometry of M85 OT2006-1 6 months posteruption. We find that its 2.1-22 μm spectral energy distribution is best described by a blackbody with effective temperature Teff=950+/-150 K and bolometric luminosity L=2.9+0.4-0.5×105 Lsolar. Assuming spherical geometry, the blackbody effective radius, R=2.0+0.6-0.4×104 Rsolar, and corresponding expansion velocity, v=870+260-180 km s-1, are remarkably similar to the properties of M31 RV 70 days after its eruption. Furthermore, we propose a search strategy for LRNe in the local universe making use of the longevity of their infrared excess emission and discuss the expected number of events in the Spitzer Infrared Nearby Galaxies Survey.

  8. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  9. Spitzer Observations of the X-ray Sources of NGC 4485/90

    NASA Astrophysics Data System (ADS)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  10. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  11. Bursting with Stars and Black Holes Artist Concept

    NASA Image and Video Library

    2007-10-25

    A growing black hole, called a quasar, is seen at the center of a faraway galaxy in this artist concept. Astronomers using NASA Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

  12. Spirals, Bridges and Tails: Star Formation and the Disturbed ISM in Colliding Galaxies before Merger.

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly

    2004-09-01

    We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.

  13. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.

    2004-01-01

    PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.

  14. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  15. Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna

    2018-05-01

    Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.

  16. Spitzer Spectroscopy of the Transition Object TW Hya

    DTIC Science & Technology

    2010-02-24

    results bear on our understanding of the evolutionary state of the TW Hya disk . Subject headings: (stars:) circumstellar matter — (stars:) planetary systems... protoplanetary disks — stars: pre-main sequence — (stars: individual) TW Hya 1. Introduction Spectroscopy with the Spitzer Space Telescope has...region of the disk . (2) If a planet has formed with a mass sufficient to open a gap (∼ 1MJ), gas will be cleared in the vicinity of its orbit, but gap

  17. The AGN fraction of submm-selected galaxies and contributions to the submm/mm-wave extragalactic background light

    NASA Astrophysics Data System (ADS)

    Serjeant, S.; Negrello, M.; Pearson, C.; Mortier, A.; Austermann, J.; Aretxaga, I.; Clements, D.; Chapman, S.; Dye, S.; Dunlop, J.; Dunne, L.; Farrah, D.; Hughes, D.; Lee, H.-M.; Matsuhara, H.; Ibar, E.; Im, M.; Jeong, W.-S.; Kim, S.; Oyabu, S.; Takagi, T.; Wada, T.; Wilson, G.; Vaccari, M.; Yun, M.

    2010-05-01

    We present a comparison of the SCUBA half degree extragalactic survey (SHADES) at 450 μm, 850 μm and 1100 μm with deep guaranteed time 15 μm AKARI FU-HYU survey data and Spitzer guaranteed time data at 3.6-24 μm in the Lockman hole east. The AKARI data was analysed using bespoke software based in part on the drizzling and minimum-variance matched filtering developed for SHADES, and was cross-calibrated against ISO fluxes. Our stacking analyses find AKARI 15 μm galaxies with ⪆200 μJy contribute >10% of the 450 μm background, but only <4% of the 1100 μm background, suggesting that different populations contribute at mm-wavelengths. We confirm our earlier result that the ultra-deep 450 μm SCUBA-2 cosmology survey will be dominated by populations already detected by AKARI and Spitzer mid-infrared surveys. The superb mid-infrared wavelength coverage afforded by combining Spitzer and AKARI photometry is an excellent diagnostic of AGN contributions, and we find that (23-52)% of submm-selected galaxies have AGN bolometric fractions fAGN > 0.3.

  18. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  19. The Durham/UKST Galaxy Redshift Survey - VII. Redshift-space distortions in the power spectrum

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Hoyle, Fiona; Shanks, T.

    2001-03-01

    We investigate the effect of redshift-space distortions in the power spectrum parallel and perpendicular to the line of sight of the observer, PS(k∥,k⊥), using the optically selected Durham/UKST Galaxy Redshift Survey. On small, non-linear scales anisotropy in the power spectrum is dominated by the galaxy velocity dispersion; the `Finger of God' effect. On larger, linear scales coherent peculiar velocities caused by the infall of galaxies into overdense regions are the main cause of anisotropy. According to gravitational instability theory these distortions depend only on the density and bias parameters via β~Ωm0.6b. Geometrical distortions also occur if the wrong cosmology is assumed, although these would be relatively small given the low redshift of the survey. To quantify these effects, we assume the real-space power spectrum of the APM Galaxy Survey, and fit a simple model for the redshift-space and geometrical distortions. Assuming a flat Ωm=1 universe, we find values for the one-dimensional pairwise velocity dispersion of σp=410+/-170kms-1, and β=0.38+/-0.17. An open Ωm=0.3, and a flat Ωm=0.3, ΩΛ=0.7 universe yield σp=420kms-1, β=0.40, and σp=440kms-1, β=0.45, respectively, with comparable errors. These results are consistent with estimates using the two-point galaxy correlation function, ξ(σ,π), and favour either a low-density universe with Ωm~0.3 if galaxies trace the underlying mass distribution, or a bias factor of b~2.5 if Ωm=1.

  20. The Great Exoplanet Eclipse: Spitzer Observations of the Benchmark Sub-Saturn-Mass Planet KELT-11b

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Beatty, Thomas; Line, Michael; Kreidberg, Laura; Lopez, Eric; Stassun, Keivan; Rodriguez, Joseph; Pepper, Joshua; James, David

    2017-10-01

    KELT-11b is a unique sub-Saturn-mass planet with a super-Jupiter radius that is in orbit around a bright, metal-rich, sub-giant star. We propose to observe a single eclipse of KELT-11b with Spitzer in IRAC Channel 2, which will allow us to precisely constrain the orbital eccentricity of the planet, study atmospheric circulation in an as yet unexplored regime of planetary surface gravity and temperature, and perform comparative science with other exoplanets in order to explore the correlation between surface gravity and thermal structure. Spitzer is the only active facility capable of providing the high precision, continuous infrared eclipse photometry of KELT-11b that is required to reach these objectives. The Spitzer infrared eclipse combined with near-infrared transmission spectroscopy that we will obtain with WFC3 on the Hubble Space Telescope will ultimately enable a detailed investigation of the atmospheric properties of KELT-11b and will provide a benchmark for planning thermal observations of exoplanets with the James Webb Space Telescope.

  1. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laag, Edward; Croft, Steve; Canalizo, Gabriela

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less

  2. Observations of starburst galaxies: Science and supporting technology

    NASA Astrophysics Data System (ADS)

    Laag, Edward Aric

    In chapter 1 we report on the development of wavefront reconstruction and control algorithms for multi-conjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The UCO/Lick Observatory Laboratory for Adaptive Optics Multi-Conjugate testbed allows us to test wide field of view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field of view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed-loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. Chapter 2 introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the SDSS using emission line strength diagnostics to have SFR ≥ 50 M⊙ yr-1 based on a Kroupa IMF. The MESS was designed to complement samples of nearby star forming galaxies such as the luminous infrared galaxies (LIRGs), and ultraviolet luminous galaxies (UVLGs). Observations using the multiband imaging photometer (MIPS; 24, 70, and 160mum channels) on the Spitzer Space Telescope indicate the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median LTIR ˜ 3 x 1011 L⊙ . The selection criteria for the

  3. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  4. Charting Ingredients for Life

    NASA Image and Video Library

    2005-07-27

    This graph, or spectrum, from NASA Spitzer Space Telescope, charts light from a faraway galaxy located 10 billion light years from Earth. It tracks mid-infrared light from an extremely luminous galaxy when the universe was only 1/4 of its current age.

  5. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  6. Extra X-rays at the Hub of Our Milky Way Galaxy

    NASA Image and Video Library

    2015-04-29

    NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has captured a new high-energy X-ray view (magenta, Figure 1) of the bustling center of our Milky Way galaxy. The smaller circle shows the area where the NuSTAR image was taken -- the very center of our galaxy, where a giant black hole resides. That region is enlarged to the right, in the larger circle, to show the NuSTAR data. The NuSTAR picture is one of the most detailed ever taken of the center of our galaxy in high-energy X-rays. The X-ray light, normally invisible to our eyes, has been assigned the color magenta. The brightest point of light near the center of the X-ray picture is coming from a spinning dead star, known as a pulsar, which is near the giant black hole. While the pulsar's X-ray emissions were known before, scientists were surprised to find more high-energy X-rays than predicted in the surrounding regions, seen here as the elliptical haze. Astronomers aren't sure what the sources of the extra X-rays are, but one possibility is a population of dead stars. The background picture was captured in infrared light by NASA's Spitzer Space Telescope. The NuSTAR image has an X-ray energy range of 20 to 40 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA19334

  7. Luminous Infrared Galaxies Observed from the Ground and Space in the 2020s

    NASA Astrophysics Data System (ADS)

    Inami, Hanae; Armus, L.; Packham, C.; Dickinson, M.

    2014-07-01

    The dust-penetrating power of infrared observations will allow us to reveal the physical and chemical properties in and around the dust enshrouded nuclei of galaxies. While current near-infrared spectroscopic observations with 8-10m class telescopes can access to z=1-3 regime, they are still very challenging and limited to luminous targets. For z=0 objects, these telescopes can resolve HII regions, but we still do not fully understand the properties of more extreme star formation environments (e.g., rich in gas), which are more prevalent at higher redshifts. Near- and mid-infrared TMT instruments (e.g., two of the first light instruments IRIS and IRMS, and a planned mid-infrared instrument MICHI) will exploit TMT's unprecedented high spatial resolution to constrain the physical processes in individual dusty, intense star-forming regions of local galaxies as well as obtain resolved spectra for z=2-3 star-forming galaxies. During the era of 2020, JWST and SPICA are also expected to be commissioned. The high sensitivity of these space-based infrared observatories will facilitate investigations of the properties of dusty galaxies at even higher redshifts (z > 3). Only with the combination of ground- and space-observatories, we will be able to obtain a complete picture of star formation and AGN activity to explore the evolution of LIRGs which dominate the peak of the galaxy growth in the universe.

  8. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  9. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  10. HST/WFC3 near-infrared spectroscopy of quenched galaxies at z ∼ 1.5 from the WISP survey: Stellar population properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are wellmore » fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.« less

  11. Far-infrared Line Spectra of Active Galaxies from the Herschel/PACS Spectrometer: The Complete Database

    NASA Astrophysics Data System (ADS)

    Fernández-Ontiveros, Juan Antonio; Spinoglio, Luigi; Pereira-Santaella, Miguel; Malkan, Matthew A.; Andreani, Paola; Dasyra, Kalliopi M.

    2016-10-01

    We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/Photoconductor Array Camera and Spectrometer archive for a sample of 170 local active galactic nuclei (AGNs), plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 μm spectral range. The observations are compared to a set of Cloudy photoionization models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionization potential of the emission lines. The new [O IV]{}25.9μ {{m}}/[O III]{}88μ {{m}} versus [Ne III]{}15.6μ {{m}}/[Ne II]{}12.8μ {{m}} diagram is proposed as the best diagnostic to separate (1) AGN activity from any kind of star formation and (2) low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [O IV]{}25.9μ {{m}}/[O III]{}88μ {{m}} ratios, which are much higher when compared to the predicted values. Finally, the ([Ne III]{}15.6μ {{m}} + [Ne II]{}12.8μ {{m}})/([S IV]{}10.5μ {{m}} +[S III]{}18.7μ {{m}}) ratio is proposed as a promising metallicity tracer to be used in obscured objects, where optical lines fail to accurately measure the metallicity. The diagnostic power of mid- to far-infrared spectroscopy shown here for local galaxies will be of crucial importance to study galaxy evolution during the dust-obscured phase at the peak of the star formation and black hole accretion activity (1\\lt z\\lt 4). This study will be addressed by future deep spectroscopic surveys with present and forthcoming facilities such as the James Webb Space Telescope, the Atacama Large Millimeter/submillimeter Array, and the Space Infrared telescope for Cosmology and Astrophysics.

  12. Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS

    NASA Astrophysics Data System (ADS)

    Fang, Jerome J.; Faber, S. M.; Koo, David C.; Rodríguez-Puebla, Aldo; Guo, Yicheng; Barro, Guillermo; Behroozi, Peter; Brammer, Gabriel; Chen, Zhu; Dekel, Avishai; Ferguson, Henry C.; Gawiser, Eric; Giavalisco, Mauro; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; McGrath, Elizabeth J.; McIntosh, Daniel; Newman, Jeffrey A.; Pacifici, Camilla; Pandya, Viraj; Pérez-González, Pablo G.; Primack, Joel R.; Salmon, Brett; Trump, Jonathan R.; Weiner, Benjamin; Willner, S. P.; Acquaviva, Viviana; Dahlen, Tomas; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Gruetzbauch, Ruth; Johnson, Seth; Mobasher, Bahram; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Santini, P.; van der Wel, Arjen; Wiklind, Tommy; Wuyts, Stijn

    2018-05-01

    This is the first in a series of papers examining the demographics of star-forming (SF) galaxies at 0.2 < z < 2.5 in CANDELS. We study 9100 galaxies from GOODS-S and UDS, having published values of redshifts, masses, star formation rates (SFRs), and dust attenuation (A V ) derived from UV–optical spectral energy distribution fitting. In agreement with previous works, we find that the UVJ colors of a galaxy are closely correlated with its specific star formation rate (SSFR) and A V . We define rotated UVJ coordinate axes, termed S SED and C SED, that are parallel and perpendicular to the SF sequence and derive a quantitative calibration that predicts SSFR from C SED with an accuracy of ∼0.2 dex. SFRs from UV–optical fitting and from UV+IR values based on Spitzer/MIPS 24 μm agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star formation decline and quenching, exhibit “mass-accelerated evolution” (“downsizing”). A population of transition galaxies below the SF main sequence is identified. These objects are located between SF and quiescent galaxies in UVJ space, and have lower A V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and SF galaxies are given as a function of mass and redshift.

  13. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie

    2010-12-01

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  14. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2011-11-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  15. Our Chaotic Neighbor

    NASA Image and Video Library

    2006-09-01

    This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. The infrared image, a mosaic of more than 100,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies. The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight. The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons. About one-third of the whole galaxy can be seen in the Spitzer image. This picture is a composite of infrared light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns is red and orange: 4.5-micron light is green; and 3.6-micron light is blue. http://photojournal.jpl.nasa.gov/catalog/PIA07136

  16. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  17. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.

    2008-11-01

    Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  18. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to amore » factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.« less

  19. OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foyle, K.; Rix, H.-W.; Walter, F.

    2011-07-10

    We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less

  20. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  1. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  2. What's Old is New in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Large Magellanic Cloud

    This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy.

    The infrared image, a mosaic of 300,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies.

    The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red color around these bright regions is from dust heated by stars, while the red dots scattered throughout the picture are either dusty, old stars or more distant galaxies. The greenish clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight.

    Astronomers say this image allows them to quantify the process by which space dust -- the same stuff that makes up planets and even people -- is recycled in a galaxy. The picture shows dust at its three main cosmic hangouts: around the young stars, where it is being consumed (red-tinted, bright clouds); scattered about in the space between stars (greenish clouds); and in expelled shells of material from old stars (randomly-spaced red dots).

    The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons

  3. What Old is New in the Large Magellanic Cloud

    NASA Image and Video Library

    2006-09-01

    This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. The infrared image, a mosaic of 300,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies. The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red color around these bright regions is from dust heated by stars, while the red dots scattered throughout the picture are either dusty, old stars or more distant galaxies. The greenish clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight. Astronomers say this image allows them to quantify the process by which space dust -- the same stuff that makes up planets and even people -- is recycled in a galaxy. The picture shows dust at its three main cosmic hangouts: around the young stars, where it is being consumed (red-tinted, bright clouds); scattered about in the space between stars (greenish clouds); and in expelled shells of material from old stars (randomly-spaced red dots). The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons. About one-third of the entire galaxy can be seen in the Spitzer image. This picture is a composite of infrared

  4. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria

    2017-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.

  5. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia

    2017-04-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  6. Spitzer Observations of M33 & M83 and the Hot Star, Hii Region Connection

    NASA Astrophysics Data System (ADS)

    Rubin, R.; Simpson, J.; Colgan, S.; Dufour, R.; Citron, R.; Ray, K.; Erickson, E.; Haas, M.; Pauldrach, A.

    2007-05-01

    H II regions play a crucial role in the measurement of current interstellar abundances. They also serve as laboratories for atomic physics and provide fundamental data about heavy element abundances that serve to constrain models of galactic chemical evolution. We observed emission lines of [S IV] 10.5, H (7-6) 12.4, [Ne II] 12.8, [Ne III] 15.6, & [S III] 18.7 micron cospatially with the Spitzer Space Telescope using the Infrared Spectrograph (IRS) in short-high mode (SH). Here we concentrate on the galaxy M33 and compare the results with our earlier similar study of M83. In each of these substantially face-on spirals, we observed ˜25 H II regions, covering a full range of galactocentric radii (RG). For most of the M33 H II regions, we were able to measure the H (7-6) line while none were detectable in M83. This limited our M83 study to a determination of the Ne++/Ne+, /, and S3+/S++ abundance ratios vs. RG. Angular brackets denote fractional ionizations. As well as having the addition of fluxes for the H(7-6) line, the M33 H II regions are generally of much higher ionization than those in M83, resulting in larger Ne++/Ne+ and S3+/ S++ abundance ratios. For M33, in addition to what we derived for those nebulae in M83, we are also able to derive Ne/H, S/H and Ne/S vs. RG. Important advantages compared with prior optical studies are: 1) the IR lines have a weak and similar electron temperature (Te) dependence while optical lines vary exponentially with Te and 2) the IR lines suffer far less from interstellar extinction. Additionally, these data may be used as constraints on the ionizing spectral energy distribution for the stars exciting these nebulae by comparing the above ionic ratios with predictions using stellar atmosphere models from several different non-LTE model sets. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract

  7. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  8. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhardt, Charles L.; Capak, Peter; Masters, Dan

    2014-08-20

    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam observations on the 1.8 deg{sup 2} Cosmological Evolution Survey we estimate the masses and star formation rates of 3398 M {sub *} > 10{sup 10} M {sub ☉} star-forming galaxies at 4 < z < 6 with a substantial population up to M {sub *} ≳ 10{sup 11.5} M {sub ☉}. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the ''main sequence'' of star-forming galaxies) extends to z ∼ 6. The observed relation and scatter is consistentmore » with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z ∼ 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.« less

  9. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  10. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  11. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  12. Advanced Optimal Extraction for the Spitzer/IRS

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Bernard-Salas, J.; Sloan, G. C.; Barry, D. J.

    2010-02-01

    We present new advances in the spectral extraction of pointlike sources adapted to the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we created a supersampled point-spread function of the low-resolution modules. We describe how to use the point-spread function to perform optimal extraction of a single source and of multiple sources within the slit. We also examine the case of the optimal extraction of one or several sources with a complex background. The new algorithms are gathered in a plug-in called AdOpt which is part of the SMART data analysis software.

  13. Tracing accelerated galaxy formation in a proto-cluster at z=3.8 with GMOS

    NASA Astrophysics Data System (ADS)

    Handel Hughes, David; Lowenthal, James; Wilson, Grant; Yun, Min S.; Fazio, Giovanni G.; Huang, Jiasheng; Aretxaga, Itziar; Porras, Alicia; Smail, Ian; Ivison, Rob J.; Stevens, Jason; Dunlop, James S.

    2007-08-01

    The 1.1mm AzTEC camera has recently conducted the largest and most sensitive survey at mm-wavelengths towards a powerful high-redshift radio galaxy: 4C41.17 at z 3.8. The 1.1mm map reveals a significant over-density of luminous, massive dust-enshrouded galaxies, a factor of 10 more numerous than the blank-field mm-galaxy population, which statistically is expected to lie at lower-redshifts, z 2.2. The AzTEC sources are expected to trace the bulk of the elliptical galaxy formation within a massive protocluster at z 3.8, over an unprecedentedly large area of 6 x 6 Mpc^2. We propose to acquire multi-object spectroscopic observations over 3 adjacent GMOS fields to provide redshifts for 5 SMA/AzTEC sources, which have sub-arcsec interferometric precisions, identifying unambiguously their optical/IR counterparts, which are inferred to be forming stars at rates in excess of 500 M_sun/yr ( L(FIR) > 10^13 L_sun ). Although these are dusty objects, we expect most of them to have patchy obscuration, and thus be able to detect emission-lines from the star-forming regions, as has been achieved with the mm-selected blank-field population. Additional slitlets in the 3 GMOS masks will also simultaneously measure the redshift of 30 neighbouring (< 20") optical/Spitzer selected galaxies that could be associated with the haloes of these SMA detected AzTEC sources, and 60 additional optical/Spitzer sources that, through photo-z, are likely to be at z 3.8 and be associated with other mm-galaxies that lie within the AzTEC map. These GMOS data will identify whether small groups of dynamically-interacting galaxies in the local environment (dark matter haloes) of the gas-rich, luminous starburst AzTEC sources are stimulating the accelerated levels of galaxy formation observed towards this biased region (protocluster) in the early Universe.

  14. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less

  15. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Bradley, Larry; Huang, Kuang-Han; Ryan, Russell; Dawson, Will; Zitrin, Adi; Hoag, Austin; Jones, Christine; Czakon, Nicole; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard

    2015-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). Furthermore, it is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 41 powerful cosmic telescopes selected using Planck data from the RELICS program (Reionization Lensing Cluster Survey; 190 HST orbits). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to detect early galaxies with Spitzer and directly study stellar properties of a large number, ~20 galaxies (10 at z~7, 7 at z~8, 3 at z~9, and 1 at z~10). Spitzer data will much improve photometric redshifts of the earliest galaxies and will be crucial to ascertain the nature of any z>~10 candidate galaxies uncovered in the HST data. Spitzer also allows for an efficient selection of likely line emitters (as demonstrated by our recent spectroscopic confirmation of the most distant galaxy to date at z=8.68). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z~9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  16. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  17. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of itsmore » counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.« less

  18. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth

  19. CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Koo, David C.; CANDELS

    2017-06-01

    For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.

  20. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    . This will allow them to answer important questions about the composition, history and fates of the two galaxies as well as of the Milky Way. "We want to determine the orbits of M31 and M33. That will help us learn about their history, specifically, how close have they come in the past?" Reid explained. "If they have passed very closely, then maybe M33's small size is a result of having material pulled off it by M31 during the close encounter," he added. Accurate knowledge of the motions of both galaxies also will help determine if there's a collision in their future. In addition, orbital analysis can give astronomers valuable clues about the amount and distribution of dark matter in the galaxies. M33's motion in space M33's motion in space, relative to M31 and the Milky Way CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The direct measurement of M33's transverse angular spin is the first time such a measurement has been done accurately. In the 1920s, some astronomers thought they had measured the spin of spiral galaxies, but their results proved to be in error. More recently, radio astronomers have measured the Doppler shift of hydrogen gas in galaxies to determine the spin speed, which, when combined with the angular spin, gives a direct estimate of the distance of the galaxy. The astronomers' task was not simple. Not only did they have to detect an impressively tiny amount of motion across the sky, but they also had to separate the actual motion of M33 from the apparent motion caused by our Solar System's motion around the center of the Milky Way. The motion of the Solar System and the Earth around the Galactic center, some 26,000 light-years away, has been accurately measured using the VLBA over the last decade. "The VLBA is the only telescope system in the world that could do this work," Reid said. "Its extraordinary ability to resolve fine detail is unmatched and was the absolute prerequisite to making these measurements." Reid worked with

  1. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    NASA Astrophysics Data System (ADS)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the

  2. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  3. The redshift-space neighborhoods of 36 loose groups of galaxies. 1: The data

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We have selected 36 loose groups of galaxies (RGH89) with at least five members, and with mean redshift average value of CZ is greater than 3200 km/s. These groups all lie within the first two slices of the CfA redshift survey 8(sup h) less than or equal to alpha less than or equal to 17(sup h) and 26.5 deg less than or equal to delta less than or equal to 38.5 deg). For each of these groups, we define the redshift-space neighborhood as a region centered on the group coordinates and delimited by a circle of projected radius R(sub cir) = 1.5/h Mpc on the sky, and by a velocity interval delta (sub cz) = 3000 km/s. Here we give the redshifts of 334 galaxies in these redshift-space neighborhoods. For completeness, we also give the redshifts of the 232 original members. These data include 199 new redshifts. We demonstrate that these samples of fainter galaxies significantly increase the number of members.

  4. "Missing Mass" Found in Recycled Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    2007-05-01

    remains a mystery. "Still, this new information about the matter comprising galactic disks should help us work toward a better understanding of their formation and evolution," Bournaud concluded. Bournaud and Duc worked with Mederic Boquien, also of the AIM laboratory (CEA/CNRS); Elias Brinks of the University of Hertfordshire in the UK; Phillipe Amram of the Astronomical Observatory of Marseille-Provence; Ute Lisenfeld of the University of Granada, Spain; Barbel S. Koribalski of the Australia Telescope National Facility; Fabian Walter of the Max Planck Institute for Astronomy in Heidelberg, Germany; and Vassilis Charmandaris of the University of Crete, Greece. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The California Institute of Technology leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, a division of Caltech, manages the mission and built the science instrument, and also manages the Spitzer Space Telescope.

  5. Spitzer Space Telescope IRS Spectral Mapping of Photoionized Columns in M16 and the Carina HII Regions

    NASA Astrophysics Data System (ADS)

    Cotera, Angela; Simpson, J. P.; Sellgren, K.; Stolovy, S. R.

    2013-01-01

    Photoevaporated columns of dust and gas - also called elephant trunks, pillars or fingers - are found in the periphery of many H II regions. They have been observed within the Galaxy, the SMC and the LMC. These features are thought to be sites of current star formation, but the question remains whether the columns persist because stars formed in the denser regions prior to interactions with the UV radiation and stellar winds of nearby massive stars, or because of core collapse resulting from these interactions. We have obtained Spitzer IRS spectral maps of three columns within M 16 and three columns within the Carina nebula, to test our understanding of the impact on these transitory features of differing stellar populations and initial conditions. We use the wealth of molecular, atomic and PAH emission lines located within the spectral range of the high resolution IRS modes (9.9-37.2 micron) to determine the excitation state, dust and gas temperatures, and probe the shock characteristics within the columns as a function of location. Using the IRS spectral mapping mode, in conjunction with the CUBISM tool and the CLOUDY H II region model code, we have constructed detailed maps of the accessible emission lines and derived parameters for each column. Mapping the distribution of the physical states of the dust and gas in these columns is enhancing our understanding of the competing processes within these dynamic objects. The data presented here represent the only IRS spectral maps of photoionized pillars.

  6. Measuring the X-shaped structures in edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  7. Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2007-12-01

    We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.

  8. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (gsim30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ~1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (gsim1 nW m-2 sr-1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these source

  9. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  10. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST & Euclid

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  11. Nascent starbursts: a missing link in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Roussel, Helene; Beck, Rainer; Condon, Jim; Helou, George; Smith, John-David

    2005-06-01

    We have identified a rare category of galaxies characterized by an extreme deficiency in synchro- tron radiation, relative to dust emission, and very high dust temperatures. We studied in detail the most extreme such object, and concluded in favor of a starburst just breaking out, less than one megayear old, in a galaxy having undergone no major star formation episode in the last 100 Myr. Such systems offer a perfect setting to study the initial conditions and early dynamics of starbursts and understand better the regulation of the infrared-radio continuum correlation in galaxies. For the prototypical nascent starburst, the mid-infrared spectrum is quite peculiar, suggesting tran- sient dust species and high optical depth; tracers of dust and molecular gas are the only indicators of unusual activity, and the active regions are likely very compact and dust-bounded, suppressing ionization. Only Spitzer data can provide the needed physical diagnostics for such regions. A sample of 25 nascent starbursts was drawn from the cross-correlation of the IRAS Faint Source Catalog and the NVSS VLA radio survey, and carefully selected based on our multi-wavelength VLA maps to span a range of infrared to radio ratios and luminosities. This sample allows a first step beyond studying prototypes toward a statistical analysis addressing systematic physical pro- perties, classification and search for starburst development sequences. We propose imaging and spectroscopic observations from 3 to 160 microns to characterize the state of the interstellar medium and the gas and dust excitation origin. Our aim is to learn from these unique systems how a star formation burst may develop in its very earliest phases, how it affects the fueling material and the host galaxy. Acquired observations of the radio continuum, cold molecular gas and tracers of shocks and HII regions will help us interpret the rich Spitzer data set and extract a coherent picture of the interstellar medium in our targets.

  12. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  13. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  14. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  15. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    NASA Astrophysics Data System (ADS)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  16. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel

    2015-08-01

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  17. Massive Galaxies at z=2-3: A Large Population of Disky Star-Forming Systems?

    NASA Astrophysics Data System (ADS)

    Weinzirl, Tim; Jogee, S.; GOODS-NICMOS Collaboration

    2011-01-01

    The assembly modes via which galaxies develop their present-day mass and structure remain hotly debated. We explore this issue using one of the largest samples of massive galaxies (166 with stellar mass Mstar ≥ 5 × 1010 M⊙) at z=1-3 with NICMOS F160W observations from the GOODS NICMOS Survey (GNS), along with complementary ACS, Spitzer, and Chandra data. Our findings are: (1) The majority of the massive galaxies at z=2-3 have a disky structure (as characterized by the index of single-component Sersic profiles). Most are also compact with half-light radii less than 2 kpc. These massive galaxies at z=2-3 appear to be radically different in structure from their more massive descendants at z 0. Through artificial redshfiting experiments based on redshifted simulated NICMOS data of such massive z 0 elliptical, S0, and spiral galaxies, we show that most of this difference in structure is not due to cosmological or instrumental effects. This implies that significant structural evolution is needed to convert the massive z=2-3 systems into their z 0 elliptical and S0 descendants, and places important constraints on the associated evolutionary mechanisms (e.g., major mergers and cold accretion). (2) Using IR luminosities inferred from Spitzer detections, we find that over z=1-3, the mean star formation rate (SFR) rises substantially, even if AGN candidates are excluded. SFRs of several hundred solar masses per year or higher are common. The results imply a much higher average cold gas fraction than exists in z 0 galaxies. (3) We identify AGN candidates using a variety of techniques (X-ray properties, IR power-law, and IR-to-optical excess) and classify about one-third of the massive galaxies at z=1-3 as AGN hosts. The AGN fraction rises with redshift and is 40% at z=2-3. A significant fraction of the AGN candidates have disky structures although they host massive black holes.

  18. The Universe First Fireworks

    NASA Image and Video Library

    2006-12-18

    This is an image from NASA Spitzer Space Telescope of stars and galaxies in the Ursa Major constellation. This infrared image covers a region of space so large that light would take up to 100 million years to travel across it.

  19. The Ongoing Assembly of a Central Cluster Galaxy: Phase-space Substructures in the Halo of M87

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Strader, Jay; Brodie, Jean P.; Mihos, J. Christopher; Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline; Arnold, Jacob A.

    2012-03-01

    The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a ~0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of ~1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.

  20. Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Sicilia-Aguilar Aurora; Hartmann, Lee W.; Calvet Nuria; Megeath, S. T.; Muzerolle, James; Allen, Lori; D'Alessio, Paola; Merin, Bruno; Stauffer, John; Lada, Charles; hide

    2006-01-01

    We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.

  1. VizieR Online Data Catalog: UV and IR properties for galaxies (Mao+, 2014)

    NASA Astrophysics Data System (ADS)

    Mao, Y.-W.; Kong, X.; Lin, L.

    2017-03-01

    Broadband FUV and NUV imaging data were obtained from GALEX observations and downloaded from the Multimission Archive at Space Telescope Science Institute (MAST) Web site (http://galex.stsci.edu/); 8um (dust-only) and 24um images were observed by the Spitzer Space Telescope (Spitzer) and retrieved from the SINGS data distribution service (http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/). Hα narrowband imaging data are also employed in this work. The Hα narrowband image for NGC 3031 was observed by the 60/90 cm Schmidt telescope at Xing-Long station of the National Astronomical Observatories of China with the filter of transmission profile FWHM~120Å. (2 data files).

  2. Multiwavelength Search and Studies of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    Since 1950s, Byurakan Astrophysical Observatory (BAO) has always been one of the centres for surveys and studies of active galaxies. Here I review our search and studies of active galaxies during last 30 years using various wavelength ranges, as well as some recent related works. These projects since late 1980s were focused on multiwavelength search and studies of AGN and Starbursts (SB). 1103 blue stellar objects (BSOs) on the basis of their UV-excess were selected using Markarian Survey (First Byurakan Survey, FBS) plates and Markarian's criteria used for the galaxies. Among many blue stars, QSOs and Seyfert galaxies were found by follow-up observations. 1577 IRAS point sources were optically identified using FBS low-dispersion spectra and many AGN, SB and high-luminosity IR galaxies (LIRG/ULIRG) were discovered. 32 extremely high IR/opt flux ratio galaxies were studies with Spitzer. 2791 ROSAT FSC sources were optically identified using Hamburg Quasar Survey (HQS) low-dispersion spectra and many AGN were discovered by follow-up observations. Fine analysis of emission line spectra was carried out using spectral line decomposition software to establish true profiles and calculate physical parameters for the emitting regions, as well as to study the spectral variability of these objects. X-ray and radio selection criteria were used to find new AGN and variable objects for further studies. Multiwavelength approach allowed revealing many new AGN and SB and obtaining a number of interesting relations using their observational characteristics and physical properties.

  3. SpS1-The Spitzer atlas of stellar spectra

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Makowiecki, W.; van Dyk, S.; Song, I.; Stauffer, J.; Rho, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2010-11-01

    We present Spitzer Space Telescope spectra of 147 stars (R~64 - 128, λλ = 5 - 35 μm, S/N~100) covering most spectral and luminosity classes within the HR diagram. The spectra are available from the NASA/IPAC Infrared Science Archive (IRSA) and from the first author's webpage (http://web.ipac.caltech.edu/staff/ardila/Atlas/). The Atlas contains spectra of ‘typical’ stars, which may serve to refine galactic synthesis models, study stellar atmospheres, and establish a legacy for future IR missions, such as JWST.

  4. Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Toshikazu

    2015-08-01

    Most stars are born as clusters in Giant Molecular Clouds (hereafter GMCs), and therefore the understanding of the evolution of GMCs in a galaxy is one of the key issues to investigate the evolution of the galaxy. The recent state-of-the-art radio telescopes have been enabling us to reveal the distribution of GMCs extensively in the Galaxy as well as in the nearby galaxies, and the physical properties and the evolution of the GMCs leading to cluster formations are actively being investigated. Here we present a review of studies of spatially resolved GMCs in the Galaxy and in the Large Magellanic Cloud (LMC), aiming at providing a template of GMC properties. For the Galactic GMCs, we will focus on the recent extensive survey of GMCs along the Galactic plane; the recent studies suggest cloud-cloud collision as mechanism of massive star formation. For the extra galactic GMCs, we will present recent high-resolution observations of GMCs in the LMC.The LMC is among the nearest star-forming galaxy (distance ~ 50kpc) and is almost face-on. From these aspects, it is becoming the most popular region for studying interstellar medium over an entire galaxy. For molecular gas, the NANTEN covered the entire LMC with a spatial resolution of 40 pc, revealing 272 molecular clouds whose mass ranges from ~104 to ~107 M⊙, which is the first uniform sample of GMCs in a single galaxy. Our Spitzer SAGE and Herschel HERITAGE surveys show that the interstellar medium has much smaller scale structures; full of filamentary and shell-like structures. In order to resolve the filamentary distributions and pre-stellar cores we definitely need to resolve clouds at sub-pc resolutions with ALMA and to cover regions of active cluster formation which are to be selected based on the Spitzer and Hershel data. Our ALMA targets in Cycle 1 and Cycle 2 include N159, which is the most intense and concentrated molecular cloud as shown by the brightest CO J=3-2 source in the LMC, and GMCs with different

  5. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less

  6. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  7. Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  8. Multiwavelength Properties of Faint Submillimeter Galaxies with Archival ALMA Data

    NASA Astrophysics Data System (ADS)

    Patil, Pallavi; Lacy, Mark; Nyland, Kristina

    2018-01-01

    Detection of Faint submillimeter galaxies was made possible by large improvements in the spatial resolution and sensitivity by interferometric observations. These galaxies are a dominant contributor to the extragalactic background light at millimeter wavelengths and are likely to play a significant role in galaxy evolution. We present a catalog of 28 such galaxies with S(1.1 mm) < 1.0 mJy that have 13-band optical/near IR photometry (Spitzer DeepDrill, VIDEO, CFHTLS, and HSC) and serendipitous detections in ALMA band 6. ALMA 1.1 mm continuum observations were cross-matched with the K-band VIDEO catalog in the XMM-LSS field to identify multiwavelength counterparts. A forced Photometry approach based on the Tractor image modeling code is used to construct the catalog. The median photometric redshift of the sample is z ~ 1.96 along with two high redshift candidates at z ~ 5. We have provided population statistics using multiband photometry and estimated galaxy properties such as dust and gas masses. We aim to provide a detailed characterization of this population to ultimately devise better selection techniques for future wide-area sky surveys.

  9. VizieR Online Data Catalog: Spitzer solar-type stars list (Meyer+, 2006)

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.; Hillenbrand, L. A.; Backman, D.; Beckwith, S.; Bouwman, J.; Brooke, T.; Carpenter, J.; Cohen, M.; Cortes, S.; Crockett, N.; Gorti, U.; Henning, T.; Hines, D.; Hollenbach, D.; Kim, J. S.; Lunine, J.; Malhotra, R.; Mamajek, E.; Metchev, S.; Moro-Martin, A.; Morris, P.; Najita, J.; Padgett, D.; Pascucci, I.; Rodmann, J.; Schlingman, W.; Silverstone, M.; Soderblom, D.; Stauffer, J.; Stobie, E.; Strom, S.; Watson, D.; Weidenschilling, S.; Wolf, S.; Young, E.

    2008-01-01

    We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of 328 stars ranging in age from 3Myr to 3Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system and its habitable planets a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site. (4 data files).

  10. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  11. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  12. Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

    NASA Image and Video Library

    2017-12-08

    By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. DUSTiNGS. III. Distribution of Intermediate-age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Boyer, Martha L.; Mitchell, Mallory B.; Skillman, Evan D.; Gehrz, R. D.; Groenewegen, Martin A. T.; McDonald, Iain; Sloan, G. C.; van Loon, Jacco Th.; Whitelock, Patricia A.; Zijlstra, Albert A.

    2017-01-01

    We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 μm data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Using complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 μm photometry, separating thermally pulsating asymptotic giant branch stars from the larger red giant branch populations. Unlike the constant TRGB in the I band, at 3.6 μm, the TRGB magnitude varies by ˜0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample, with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ˜1‧-2‧. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. Finally, we identify unique features in individual galaxies, such as extended tidal features in Sex A and Sag DIG and a central concentration of AGB stars in the inner regions of NGC 185 and NGC 147.

  14. Missing Black Holes Found!

    NASA Image and Video Library

    2007-10-25

    NASA Spitzer and Chandra space telescopes have uncovered a long-lost population of active supermassive black holes, or quasars located deep in the bellies of distant, massive galaxies circled in blue.

  15. FIR/THz Space Interferometry: Science Opportunities, Mission Concepts, and Technical Challenges

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2007-01-01

    Sensitive far-IR imaging and spectroscopic measurements of astronomical objects on sub-arcsecond angular scales are essential to our understanding of star and planet formation, the formation and evolution of galaxies, and to the detection and characterization of extrasolar planets. Cold single-aperture telescopes in space, such as the Spitzer Space Telescope and the Herschel Space Observatory, are very sensitive, but they lack the necessary angular resolution by two or more orders of magnitude. Far-IR space interferometers will address this need in the coming decades. Several mission concepts have already been studied, including in the US the Space Infrared Interferometric Telescope (SPIRIT) and the more ambitious Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). This talk will describe science goals and summarize alternative concepts for future FIR/THz space interferometry missions. Small arrays of sensitive, fast, direct detectors are a key enabling technology for SPIRIT and SPECS. I will describe the technology requirements for far-IR interferometry, including the detector requirements, and their derivation from the mission science goals and instrument concepts.

  16. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  17. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  18. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  19. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  20. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST, Euclid, WFIRST

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  1. Deep IR imaging of Submillimeter Galaxies detected by SMA: Unambiguously Identifying SMGs at High Redshifts

    NASA Astrophysics Data System (ADS)

    Huang, Jiasheng; Aretxaga, Itziar; Ashby, Mat; Fazio, Giovanni; Hughes, David; Ilbert, Olivier; Le Floc'h, Emeric; Lowenthal, James; Sanders, David; Scoville, Nick; Webb, Tracy; Wilner, David; Wilson, Grant; Yan, Lin; Younger, Joshua; Yun, Min

    2007-05-01

    In 2007 January, we detected no fewer than five AzTEC 1.1 mm galaxies via high-resolution interferometric imaging with the Sub-Millimeter Array (SMA) atop Mauna Kea at 890 microns. Despite the fact that these sources are all radio-quiet SMGs, with the high S/N SMA detections in the narrow SMA beam we unambiguously determine the position of the AzTEC galaxies with subarcsecond accuracy. All the counterparts, which lie in the SCOSMOS survey, are detected by IRAC at 3.6 and 4.5 microns in the existing SCOSMOS mosaics. Only two are detected at the longer IRAC wavelengths, however, and none are detected in the existing 24 micron data. Furthermore, only two are detected at optical wavelengths. These sources thus present (incomplete) SEDs that appear consistent with their being either 1. deeply dust-enshrouded galaxies at z=2, or 2. a distant z=4 population of very luminous objects. Because they are so optically faint, only broadband imaging such as Spitzer can provide will permit construction of their rest-frame optical-near-IR SEDs. This appears to be the only way to discriminate between the two possibilities for the origin of SMGs that are radio-quiet. Accordingly, we ask for 37.4 h to carry out a very deep imaging program utilizing all three Spitzer instruments to construct the SEDs for the four SMGs in our sample.

  2. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  3. DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands

    NASA Astrophysics Data System (ADS)

    Clark, C. J. R.; Verstocken, S.; Bianchi, S.; Fritz, J.; Viaene, S.; Smith, M. W. L.; Baes, M.; Casasola, V.; Cassara, L. P.; Davies, J. I.; De Looze, I.; De Vis, P.; Evans, R.; Galametz, M.; Jones, A. P.; Lianou, S.; Madden, S.; Mosenkov, A. V.; Xilouris, M.

    2018-01-01

    Aims: The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques to study dust in the 875 DustPedia galaxies - representing the vast majority of extended galaxies within 3000 km s-1 that were observed by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of wavelength coverage and number of galaxies) of any previous local-Universe survey. Methods: We constructed a database containing our own custom Herschel reductions, along with standardised archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched photometry, which we combined with external supplementary photometry from IRAS and Planck. Results: We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies. Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21 857 photometric measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive & Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available to the community. Photometry data tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A37

  4. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  5. The Frontier Fields: Survey Design and Initial Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotz, J. M.; Koekemoer, A.; Grogin, N.

    What are the faintest distant galaxies we can see with the Hubble Space Telescope ( HST ) now, before the launch of the James Webb Space Telescope ? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abellmore » S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5 σ point-source depths of ∼29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10–100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ∼30–33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μ m bands to 5 σ point-source depths of ∼26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.« less

  6. The Frontier Fields: Survey Design and Initial Results

    NASA Astrophysics Data System (ADS)

    Lotz, J. M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E. A.; Borncamp, D.; Brammer, G.; Durbin, M.; Gunning, H.; Hilbert, B.; Jenkner, H.; Khandrika, H.; Levay, Z.; Lucas, R. A.; MacKenty, J.; Ogaz, S.; Porterfield, B.; Reid, N.; Robberto, M.; Royle, P.; Smith, L. J.; Storrie-Lombardi, L. J.; Sunnquist, B.; Surace, J.; Taylor, D. C.; Williams, R.; Bullock, J.; Dickinson, M.; Finkelstein, S.; Natarajan, P.; Richard, J.; Robertson, B.; Tumlinson, J.; Zitrin, A.; Flanagan, K.; Sembach, K.; Soifer, B. T.; Mountain, M.

    2017-03-01

    What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ˜29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ˜30-33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ˜26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.

  7. Origin of the Universe: From the First Stars to Planets with JWST

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, protoplanetary systems, and the formation of evolution of planetary systems. We will review the motivations for JWST's science goals in the context of recent Hubble Space Telescope, and Spitzer Space Telescope observations and review the status of the JWST Observatory.

  8. The distant red galaxy neighbour population of 1 <~ z <~ 2 QSOs and optically obscured sources

    NASA Astrophysics Data System (ADS)

    Bornancini, Carlos G.; García Lambas, Diego

    2007-05-01

    We study the distant red galaxy (DRG; J - Ks > 2.3) neighbour population of quasi-stellar objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 <~ z <~ 2. We perform a similar analysis for optically obscured active galactic nuclei (AGNs; i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 μm) with the Spitzer Space Telescope and a mean redshift z ~ 2.2 in the Flamingos Extragalactic Survey (FLAMEX). Both QSOs and obscured AGN target samples cover 4.7 deg2 in the same region of the sky. We find a significant difference in the environment of these two target samples. Neighbouring galaxies close to QSOs tend to be bluer than galaxies in optically obscured source environments. We also present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r0 = 5.4 +/- 1.6 Mpc h-1 and a slope of γ = 1.94 +/- 0.10. For the optically obscured galaxy sample, we find r0 = 8.9 +/- 1.4 Mpc h-1 and a slope of γ = 2.27 +/- 0.20. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compared to QSOs. Based on observations and/or data products by the Flamingos Extragalactic Survey. FLAMINGOS was designed and constructed by the IR instrumentation group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory. E-mail: bornancini@oac.uncor.edu

  9. The Stability of Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T.; Swaters, R. A.; Verheijen, M. A.

    2013-01-01

    Using measurements of velocity dispersion and mass surface density for both the gas and stellar components, we calculate the multi-component stability (Q) for 30 galaxy disks observed by the DiskMass Survey. Despite their sub-maximality (Bershady et al. 2011, ApJL, 739, 47), we find all disks to be stable with roughly 85% falling in the range 1galaxy. We measure the shape of the SVE using methods developed by Westfall (2009, PhD Thesis) and Westfall et al. (2011, ApJ, 742, 18); these methods primarily hinge on asymmetric-drift measurements determined by our gas and stellar rotation curves. We find high-quality SVE measurements for a third of the galaxies in our sample. Practical (inclination) limitations and/or the requisite dynamical assumptions in these methods currently prevent satisfactory SVE solutions for the remainder of our sample; for these galaxies, we determine Q using reasonable SVE estimates based on our own high-quality results and others gathered from the literature (e.g., van der Kruit & de Grijs 1999, A&A, 352, 129; Gerssen & Shapiro Griffin 2012, MNRAS, 423, 2726). Finally, we explore correlations between disk stability and other galaxy properties such as star-formation rate, gas mass fraction, disk maximality, and Hubble type to understand their interdependencies within the context of the secular evolution of galaxy disks. We acknowledge support for this work from the National Science Foundation (AST-0307417, AST-0607516, OISE-0754437, AST-1009491), The Netherlands Organisation for Scientific Research (grant 614.000.807), the UW Graduate School (PRJ13SL, 050167, and the Vilas Associate award), the Leids Kerkhoven-Bosscha Fonds, and NASA/JPL/Spitzer (GO-30894).

  10. The spectral evolution of the first galaxies. III. Simulated James Webb Space Telescope spectra of reionization-epoch galaxies with Lyman-continuum leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian

    In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less

  11. The spectral evolution of the first galaxies. III. Simulated James Webb Space Telescope spectra of reionization-epoch galaxies with Lyman-continuum leakage

    DOE PAGES

    Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian; ...

    2017-02-09

    In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less

  12. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  13. Omega Centauri Looks Radiant in Infrared

    NASA Image and Video Library

    2008-04-10

    A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy.

  14. Short-Wavelength Infrared Views of Messier 81

    NASA Image and Video Library

    2003-12-18

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major which also includes the Big Dipper.

  15. Black Hole Jets Make Shock Waves

    NASA Image and Video Library

    2014-07-02

    A composite image of the spiral galaxy NGC 4258 showing X-ray emission observed with NASA Chandra X-ray Observatory blue and infrared emission observed with NASA Spitzer Space Telescope red and green.

  16. Obscured Activity and Stellar Mass in z~0.7 Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Rieke, George; Diamond-Stanic, Aleks; Moustakas, John; Tremonti, Christy

    2008-03-01

    We are proposing 3.6-24 micron imaging of a sample of z~0.7 post-starburst galaxies. These galaxies are presumed to be late-stage mergers that have evolved past their ULIRG/quasar phase and are in transition to becoming early-type galaxies. We have detected outflowing winds with velocities ranging from 500-2200 km/s for 2/3 of the sample, so it is tempting to conclude that these spectacular outflows are the result of feedback from an AGN that has expelled cold gas quenched star formation. However, it is not clear that the existing near-UV and optical data are telling the full story. With Spitzer, we can verify whether or not these 'post-starburst' galaxies are truly quiescent by measuring the amount obscured star formation and black hole activity. We will also be able to determine how significant the recent starburst event was by accurately measuring stellar mass using the red end of the stellar SED. If these galaxies do have non-negligible dust emission, we will be able to use broad-band colors as blunt tools to measure spectral features and compare to known star-forming galaxies, AGNs, and LIRGs. If not, we will have strong evidence that the feedback event has been able to halt galaxy-wide star formation.

  17. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  18. RELICS: Reionization Lensing Cluster Survey - Discovering Brightly Lensed Distant Galaxies for JWST

    NASA Astrophysics Data System (ADS)

    Coe, Dan; Bradley, Larry; Salmon, Brett; Avila, Roberto J.; Ogaz, Sara; Bradac, Marusa; Huang, Kuang-Han; Strait, Victoria; Hoag, Austin; Sharon, Keren q.; Cerny, Catherine; Paterno-Mahler, Rachel; Johnson, Traci Lin; Mahler, Guillaume; Zitrin, Adi; Sendra Server, Irene; Acebron, Ana; Cibirka, Nathália; Rodney, Steven; Strolger, Louis; Riess, Adam; Dawson, William; Jones, Christine; Andrade-Santos, Felipe; Lovisari, Lorenzo; Czakon, Nicole; Umetsu, Keiichi; Trenti, Michele; Vulcani, Benedetta; Carrasco, Daniela; Livermore, Rachael; Stark, Daniel P.; Mainali, Ramesh; Frye, Brenda; Oesch, Pascal; Lam, Daniel; Toft, Sune; Ryan, Russell; Peterson, Avery; Past, Matthew; Kikuchihara, Shotaro; Ouchi, Masami; Oguri, Masamune

    2018-01-01

    The Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program has completed observations of 41 massive galaxy clusters with 188 orbits of HST ACS and WFC3/IR imaging and 390 hours of Spitzer IRAC imaging. This poster presents an overview of the program and data releases. Reduced images, catalogs, and lens models for all clusters are now available on MAST. RELICS is studying the clusters, supernovae, and lensed high-redshift galaxies. A companion poster presents our high-redshift results: over 300 lensed z ~ 6 - 10 candidates, including some of the brightest known at these redshifts (Salmon et al. 2018). These will be excellent targets for detailed follow-up study in JWST Cycle 1 GO proposals.

  19. VizieR Online Data Catalog: Herschel FIR spectra of GOALS galaxies (Diaz-Santos+, 2017)

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos-Munoz, L.; Linden, S. T.; Inami, H.; Larson, K. L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.

    2018-04-01

    We have obtained FIR spectroscopic observations for 200 luminous infrared galaxies (LIRG) systems from the Great Observatories All-Sky LIRG Survey (GOALS; Armus+ 2009PASP..121..559A) using the Integral Field Spectrometer (IFS) of the PACS instrument on board Herschel. Since some targets contain multiple components, there are 241 individual galaxies with available spectra in at least one emission line. Most of the data were collected as part of our OT1 and OT2 programs (OT1larmus1, OT2larmus1; P.I.: L. Armus), accounting for more than 200hr of observing time in total. Additional observations that are publicly available in the Herschel archive were included from various projects. The main programs from where these complementary data were gathered are KPGTesturm1 (P.I.: E. Sturm), KPOTpvanderw1 (PI: P. van der Werf), and OT1dweedman1 (P.I.: D. Weedman). The IFS on PACS is able to perform simultaneous spectroscopy in the 51-73 or 70-105um and the 102-210um ranges. In addition to the PACS/IFS spectra, we obtained observations of the [NII]205 emission line using the SPIRE FTS for 121 galaxies in the GOALS sample (Lu+ 2017, J/ApJS/230/1 ; OT1nlu1; P.I.: N. Lu). As part of the Spitzer GOALS legacy program, all galaxies observed with Herschel/PACS have available Spitzer/IRS low-resolution, R~60-120 (SL module: 5.2-14.5um; LL module: 14-38um), and medium-resolution, R~600 (SH module: 9.9-19.6um; LH module: 18.7-37.2um), slit spectroscopy. (3 data files).

  20. Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST /MIRI Serendipitous Spectroscopic Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonato, Matteo; Sajina, Anna; McKinney, Jed

    The James Webb Space Telescope ’s Medium Resolution Spectrometer (MRS), will offer nearly two orders of magnitude improvement in sensitivity and >3× improvement in spectral resolution over our previous space-based mid-IR spectrometer, the Spitzer IRS. In this paper, we make predictions for spectroscopic pointed observations and serendipitous detections with the MRS. Specifically, pointed observations of Herschel sources require only a few minutes on source integration for detections of several star-forming and active galactic nucleus lines, out to z = 3 and beyond. But the same data will also include tens of serendipitous 0 ≲ z ≲ 4 galaxies per fieldmore » with infrared luminosities ranging ∼10{sup 6}–10{sup 13} L {sub ☉}. In particular, for the first time and for free we will be able to explore the L {sub IR} < 10{sup 9} L {sub ☉} regime out to z ∼ 3. We estimate that with ∼ 100 such fields, statistics of these detections will be sufficient to constrain the evolution of the low- L end of the infrared luminosity function, and hence the star formation rate function. The above conclusions hold for a wide range in the potential low- L end of the IR luminosity function, and account for the PAH deficit in low- L , low-metallicity galaxies.« less

  1. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran

    The James Webb Space Telescope (JWST) is expected to revolutionize our understanding of the high-redshift universe, and may be able to test the prediction that the first, chemically pristine (Population III) stars are formed with very high characteristic masses. Since isolated Population III stars are likely to be beyond the reach of JWST, small Population III galaxies may offer the best prospects of directly probing the properties of metal-free stars. Here, we present Yggdrasil, a new spectral synthesis code geared toward the first galaxies. Using this model, we explore the JWST imaging detection limits for Population III galaxies and investigatemore » to what extent such objects may be identified based on their JWST colors. We predict that JWST should be able to detect Population III galaxies with stellar population masses as low as {approx}10{sup 5} M{sub sun} at z {approx} 10 in ultra deep exposures. Over limited redshift intervals, it may also be possible to use color criteria to select Population III galaxy candidates for follow-up spectroscopy. The colors of young Population III galaxies dominated by direct starlight can be used to probe the stellar initial mass function (IMF), but this requires almost complete leakage of ionizing photons into the intergalactic medium. The colors of objects dominated by nebular emission show no corresponding IMF sensitivity. We also note that a clean selection of Population III galaxies at z {approx} 7-8 can be achieved by adding two JWST/MIRI filters to the JWST/NIRCam filter sets usually discussed in the context of JWST ultra deep fields.« less

  2. Spitzer-IRS Spectroscopic Studies of Oxygen-Rich Asymptotic Giant Branch Star and Red Supergiant Star Dust Properties

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret

    2015-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  3. Galaxy Evolution Studies with the SPace IR Telescope for Cosmology and Astrophysics (SPICA): The Power of IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Spinoglio, L.; Alonso-Herrero, A.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bianchi, S.; Bocchio, M.; Bolatto, A.; Bradford, C.; Braine, J.; Carrera, F. J.; Ciesla, L.; Clements, D. L.; Dannerbauer, H.; Doi, Y.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Ferrara, A.; Fischer, J.; Franceschini, A.; Gallerani, S.; Giard, M.; González-Alfonso, E.; Gruppioni, C.; Guillard, P.; Hatziminaoglou, E.; Imanishi, M.; Ishihara, D.; Isobe, N.; Kaneda, H.; Kawada, M.; Kohno, K.; Kwon, J.; Madden, S.; Malkan, M. A.; Marassi, S.; Matsuhara, H.; Matsuura, M.; Miniutti, G.; Nagamine, K.; Nagao, T.; Najarro, F.; Nakagawa, T.; Onaka, T.; Oyabu, S.; Pallottini, A.; Piro, L.; Pozzi, F.; Rodighiero, G.; Roelfsema, P.; Sakon, I.; Santini, P.; Schaerer, D.; Schneider, R.; Scott, D.; Serjeant, S.; Shibai, H.; Smith, J.-D. T.; Sobacchi, E.; Sturm, E.; Suzuki, T.; Vallini, L.; van der Tak, F.; Vignali, C.; Yamada, T.; Wada, T.; Wang, L.

    2017-11-01

    IR spectroscopy in the range 12-230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z 6.

  4. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Image and Video Library

    2008-04-28

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait. The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust. From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic. Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away. Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky —equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history? M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red. http://photojournal.jpl.nasa.gov/catalog/PIA10600

  5. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z Almost-Equal-To 11 GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Dan; Postman, Marc; Bradley, Larry

    2013-01-01

    We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7{sup +0.6} {sub -0.4} (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2{sigma}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of {approx}80, 7, and 2, with the brighter two observed at {approx}26th magnitudemore » AB ({approx}0.15 {mu}Jy) in the WFC3/IR F160W filter ({approx}1.4-1.7 {mu}m) where they are detected at {approx}>12{sigma}. All three images are also confidently detected at {approx}>6{sigma} in F140W ({approx}1.2-1.6 {mu}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters ({approx}0.2-1.4 {mu}m), and lacking bright detections in Spitzer/IRAC 3.6 {mu}m and 4.5 {mu}m imaging ({approx}3.2-5.0 {mu}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z {approx} 10.8 and MACS1149-JD at z {approx} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {approx}> 10 suggested by field searches.« less

  6. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    NASA Astrophysics Data System (ADS)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  7. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    NASA Astrophysics Data System (ADS)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  8. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (< 75 μm) silicates on Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  9. AGN contribution to the total IR luminosity in Herschel selected galaxies out to z~1.5

    NASA Astrophysics Data System (ADS)

    Baronchelli, Ivano; Scarlata, Claudia; Rodighiero, Giulia; Berta, Stefano; Sedgwick, Christopher; Vaccari, Mattia; Franceschini, Alberto; Urrutia, Tanya; Malkan, Matthew Arnold; Salvato, Mara; Bonato, Matteo; Serjeant, Stephen; Pearson, Chris; Marchetti, Lucia

    2016-01-01

    In the past decade, a growing amount of evidence suggests a tight link between the growth of Active Galactic Nuclei (AGN) and that of their host galaxies. X-ray studies on the Super Massive Black Holes (SMBHs) activity indicate the existence of a Black Hole Accretion Rate (BHAR) "main sequence", similar to the "main sequence" observed in star-forming galaxies, between the star-formation rate (SFR) and stellar mass (M*). We use the multi wavelength data from the SIMES survey to study the optical to sub-mm spectral energy distribution (SED) of galaxies identified at 250 μm by the Herschel Space Observatory. In particular, for galaxies in the 0.2-1.5 redshift range, we explore the relations among galaxy's stellar mass, SFR, and SMBH accretion rate. The deep Spitzer-IRAC/MIPS (3.6, 4.5 and 24 μm) together with the deep AKARI-IRC observations (7, 11 and 15 μm) allow us to constrain the critical spectral region where the dusty torus emission of AGNs is more prominent. Thanks to the Herschel-SPIRE observations, we can also precisely measure the SFR from the bolometric (i.e. 8-1000 μm) far-IR emission. Using this multi-wavelength approach we confirm the existence, at z<0.5, of the M*-BHAR "main sequence". The measured average ratio between BHAR and SFR is close to the value required to maintain the SMBH-to-M* ratio of ˜103 and decreases at higher specific SFRs (SSFR=SFR/M*). Finally, combining our observations with literature results, we show that the slope of the BHAR main sequence is evolving with redshift between z~0 and z~2.

  10. Hubble Monitors Supernova In Nearby Galaxy M82

    NASA Image and Video Library

    2014-02-26

    This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  11. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  12. First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence of Excess Emission at 3-8 μm

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Brinkworth, Carolyn; Hoard, D. W.; Wachter, Stefanie; Harrison, Thomas; Chun, Howard; Thomas, Beth; Stefaniak, Linda; Ciardi, David R.; Szkody, Paula; van Belle, Gerard

    2006-07-01

    We present the first observations of magnetic cataclysmic variables using the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the Polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 μm, respectively. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low-mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3-8 μm region.

  13. Trigger-Happy Cloud

    NASA Image and Video Library

    2009-08-12

    This composite image, combining data from NASA Chandra X-ray Observatory and Spitzer Space Telescope shows the star-forming cloud Cepheus B, located in our Milky Way galaxy about 2,400 light years from Earth

  14. Physical characterization of Near Earth Objects with Spitzer

    NASA Astrophysics Data System (ADS)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  15. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  16. Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel

    NASA Astrophysics Data System (ADS)

    Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie

    2017-05-01

    Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.

  17. 'No Organics' Zone Circles Pinwheel

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Pinwheel galaxy, otherwise known as Messier 101, sports bright reddish edges in this new infrared image from NASA's Spitzer Space Telescope. Research from Spitzer has revealed that this outer red zone lacks organic molecules present in the rest of the galaxy. The red and blue spots outside of the spiral galaxy are either foreground stars or more distant galaxies.

    The organics, called polycyclic aromatic hydrocarbons, are dusty, carbon-containing molecules that help in the formation of stars. On Earth, they are found anywhere combustion reactions take place, such as barbeque pits and exhaust pipes. Scientists also believe this space dust has the potential to be converted into the stuff of life.

    Spitzer found that the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the Pinwheel galaxy, then quickly drop off and are no longer detected at its very outer rim. According to astronomers, there's a threshold at the rim where the organic material is being destroyed by harsh radiation from stars. Radiation is more damaging at the far reaches of a galaxy because the stars there have less heavy metals, and metals dampen the radiation.

    The findings help researchers understand how stars can form in these harsh environments, where polycyclic aromatic hydrocarbons are lacking. Under normal circumstances, the polycyclic aromatic hydrocarbons help cool down star-forming clouds, allowing them to collapse into stars. In regions like the rim of the Pinwheel as well as the very early universe stars form without the organic dust. Astronomers don't know precisely how this works, so the rim of the Pinwheel provides them with a laboratory for examining the process relatively close up.

    In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer's instruments were used in the study: the infrared array camera, the

  18. Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an NH3∝ M_{star} relation

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-02-01

    An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular, at the peak of star formation z = 1-3. We attempt a novel approach by letting long-duration gamma ray bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density NH. To derive the population properties, we propagate all uncertainties in a consistent Bayesian methodology. The NH distribution covers the 1020-23 cm-2 range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The NH distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis {N^{major}H }=10^{23}cm^{-2} with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities NH. We find a well-constrained power-law relation of NH = 1021.7 cm-2 × (M⋆/109.5 M⊙)1/3, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies, we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalization, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.

  19. Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.

  20. RR Lyrae period luminosity relations with Spitzer

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian R.; Marengo, Massimo; CRRP Team

    2017-01-01

    RR Lyrae variable stars have long been known to be valuable distance indicators, but only recently has a well defined period luminosity relationship been utilized at infrared wavelengths. In my thesis, I am combining Spitzer Space Telescope data of RR Lyrae stars obtained as part of the Carnegie RR Lyrae Program with ground based NIR data to characterize the period-luminosity-metallicity (PLZ) relation and provide an independent Population II calibration of the cosmic distance scale. I will discuss the ongoing efforts to calibrate this relation using objects such as M4 and NGC 6441 and how the first data release from the Gaia mission impacts our findings. I will also compare my preliminary empirical relations to theoretical PLZ relations derived from stellar pulsation models.

  1. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, and from 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait.

    The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust.

    From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic.

    Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away.

    Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history?

    M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red.

  2. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    NASA Astrophysics Data System (ADS)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  3. Hubble Space Telescope photometry of the central regions of Virgo cluster elliptical galaxies. 3: Brightness profiles

    NASA Technical Reports Server (NTRS)

    Ferrarese, Laura; Bosch, Frank C. Van Den; Ford, Holland C.; Jaffe, Walter; O'Connell, Robert W.

    1994-01-01

    We have used the Planetary Camera on the Hubble Space Telescope (HST) to study the morphology and surface brightness parameters of a luminosity-limited sample of fourteen elliptical galaxies in the Virgo cluster. The total apparent blue magnitudes of the galaxies range between 9.4 and 13.4. In this paper, the core brightness profiles are presented, while the overall morphology and the isophotal shapes are discussed in two companion papers (Jaffe et al. (1994); van den Bosch et al. (1994)). We show that, in spite of the spherical aberration affecting the HST primary mirror, deconvolution techniques allow recovery of the brightness profile up to 0.2 arcsec from the center of the galaxies. We find that none of the galaxies has an isothermal core. On the basis of their morphological and photometrical properties, the galaxies can be divided in two physically distinct groups, referred to as Type I and Type II. All of the Type I galaxies are classified as E1 to E3 in the Revised Shapley Ames Catalog (Sandage & Tammann 1981), while Type II galaxies are classified as E5 to E7. The characteristics of Type II galaxies are explained by the presence of disks component on both the 1 arcsec and the 10 arcsec scales, while Type I galaxies correspond to the classical disk-free ellipticals.

  4. Understanding Nucleosynthesis in Neutron Star Mergers with Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cenko, Brad; Singer, Leo; Goobar, Ariel; Ofek, Eran; Kaplan, David; Andreoni, Igor; Adams, Scott; Perley, Daniel

    2018-05-01

    The discovery of the first electromagnetic counterpart to gravitational waves from merging neutron stars opened a new chapter in multi-messenger astrophysics. The infrared signature was key to unraveling the prolific production of heavy elements by r-process nucleosynthesis. Understanding the nuclear physics in the heavy element production requires observations a few weeks after the merger at longer wavelengths that are only accessible by Spitzer. In particular, Spitzer can address the question of whether or not the heaviest elements in the third abundance peak (such as gold and platinum) were synthesized. Here, we request 30 hours of Target of Opportunity time to undertake Spitzer follow-up of two neutron star mergers.

  5. Dragonfish Coming At You in Infrared

    NASA Image and Video Library

    2011-12-12

    This infrared image from NASA Spitzer Space Telescope shows the nebula nicknamed the Dragonfish. This turbulent region, jam-packed with stars, is home to some of the most luminous massive stars in our Milky Way galaxy.

  6. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  7. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  8. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  9. Star Formation in High Redshift Galaxies with Cluster Lenses as Cosmic Telescopes

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa

    2014-07-01

    In the recent years HST enabled us to detect galaxies as far as z~11. They are likely beacons of the epoch of reionization, which marked the end of the so-called ``Dark Ages'' and signified the transformation of the universe from opaque to transparent. However very little is known about those galaxies, and a confirmation of their redshift is still out of our hands. TMT will be a major powerhorse in this endeavor in the future. In addition, clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding highest-z galaxies. With a massive cluster one can gain several magnitudes of magnification over a typical observing field, enabling imaging and spectroscopic studies of intrinsically lower-luminosity galaxies than would otherwise be observable, even with the largest telescopes. We are involved and leading several large surveys (SURFS UP for Spitzer imaging, GLASS for HST spectrscopy, and Frontier Field initiative for ultra deep HST imaging) with the main goal of identifying and studying star formation of galaxies at z=1-11. I will present first results from these surveys, show successful measurements of SFR at z~7 and beyond, and discuss the role TMT will be playing in exploring epoch of reionization.

  10. Clouds in Context: The Cycle of Gas and Stars in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles; Forbrich, Jan

    2015-08-01

    The physical process by which gas is converted into stars takes place on small scales within Giant Molecular Clouds (GMCs), while the formation and evolution of these GMCs is influenced by global, galactic-scale processes. It is thus of key importance to connect GMC (~10 pc) and galaxy (~10 kpc) scales in order to approach a fundamental understanding of the star formation process. With this goal in mind, we have conducted a multiscale, comprehensive, multiwavelength study of the interstellar medium and star formation in the nearby (d~1.9 Mpc) spiral galaxy NGC 300. We have fully mapped the dust content within this star-forming galaxy with the Herschel Space Observatory, combining these observations with archival Spitzer data to construct a high-sensitivity, ~250 pc-scale map of the column density and dust temperature across the entire NGC 300 disk. We find that peaks in the dust temperature generally correspond with active star-forming regions, and use our Herschel data along with pointed CO(2-1) observations from APEX to characterize the ISM in these regions. To derive star formation rates from ultraviolet, visible, and infrared photometry, we have developed a new method that utilizes population synthesis modeling of individual stellar populations and accounts for both the presence of extinction and the short (< 10 Myr) timescales appropriate for cloud-scale star formation. We find that the average molecular gas depletion time at GMC complex scales in NGC 300 is similar to that of Milky Way clouds, but significantly shorter than depletion times measured over kpc-sized regions in nearby galaxies. This difference likely reflects the presence of a diffuse, non-star-forming component of molecular gas between GMCs, as well as the fact that star formation is strongly concentrated in discrete regions within galaxies. I will also present first results from follow-up interferometric observations with the SMA and ALMA that resolve individual GMCs in NGC 300 for the first

  11. VizieR Online Data Catalog: Young star forming region NGC 2264 Spitzer sources (Rapson+, 2014)

    NASA Astrophysics Data System (ADS)

    Rapson, V. A.; Pipher, J. L.; Gutermuth, R. A.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2017-05-01

    We utilize 3.6-8.0 um images of Mon OB1 East obtained with the Spitzer Space Telescope Infrared Array Camera (IRAC; Fazio et al. 2004ApJS..154...10F), 24 um images obtained with the Multi-Band Imaging Photometer (MIPS; Rieke et al. 2004ApJS..154...25R), along with 1-2.5 um NIR data from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) to classify YSOs. These YSOs in Mon OB1 East are classified as either protostars or stars with circumstellar disks by their infrared excess emission above photospheric emission. Spitzer data were gathered as part of two Guaranteed Time Observation programs and one additional program with the goal of studying clustered and distributed star formation throughout Mon OB1 East and comparing the results with those of other molecular clouds. Mon OB1 East was observed by Spitzer in 2004, 2007, and 2008 as part of the Guaranteed Time Observation programs 37 (IRAC data; PI: G. Fazio) and 58 (MIPS data; PI: G. Rieke), as well as program 40006 (IRAC+MIPS data; PI: G. Fazio). (1 data file).

  12. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  13. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with

  14. Super-Eight: The brightest z~8 Galaxies

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, R.; Bradley, L.; Calvi, V.; Illingworth, G.; Labbe, I.; Magee, D.; Oesch, P.; Roberts-Borsani, G.; Smit, R.

    2016-08-01

    What are the properties of the most massive z~8 galaxies ('Super-Eights') and how luminous can these galaxies become at that epoch? Answering these questions is challenging due to the rarity of luminous z~8 galaxies and the large field-to-field variations in their volume densities. Indeed, the full wide-area CANDELS program only shows 3 z~8 galaxy candidates brighter than 25.5 mag and all of these candidates conspicuously lie in the same CANDELS field (EGS). One of our strongest new probes for particularly luminous z~8 galaxies are the WFC3 Pure-Parallel (PP) programs. Particularly intriguing are 8 bright z~8 candidates in these observations. These candidates have similar luminosities as the 3 brightest z~8 candidates from CANDELS (all spectroscopically confirmed). However, the uncertain contamination levels at extreme bright end of z~8 selection mean that follow-up observations are critical. We propose highly-efficient pointed HST and Spitzer/IRAC observations to determine if these candidates are indeed at z~8. We estimate that anywhere from 50 to 100% of the targeted sources will be confirmed to be at z~8 based on our results from CANDELS. The estimate is very uncertain due to very large cosmic variance in the CANDELS result and contamination from rare low-redshift sources. When combined with CANDELS, our observations would provide us the strongest current constraints on the volume density of bright, massive galaxies in the early Universe (serving as a guide to models of their build-up) and also provide valuable targets for future spectroscopy (e.g. with JWST), useful for probing the ionization state of the IGM.

  15. Super-Eight: The brightest z 8 Galaxies

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2016-10-01

    What are the properties of the most massive z 8 galaxies (Super-Eights) and how luminous can these galaxies become at that epoch? Answering these questions is challenging due to the rarity of luminous z 8 galaxies and the large field-to-field variations in their volume densities. Indeed, the full wide-area CANDELS program only shows 3 z 8 galaxy candidates brighter than 25.5 mag and all of these candidates conspicuously lie in the same CANDELS field (EGS). One of our strongest new probes for particularly luminous z 8 galaxies are the WFC3 Pure-Parallel (PP) programs. Particularly intriguing are 8 bright z 8 candidates in these observations. These candidates have similar luminosities as the 3 brightest z 8 candidates from CANDELS (all spectroscopically confirmed). However, the uncertain contamination levels at extreme bright end of z 8 selection mean that follow-up observations are critical. We propose highly-efficient pointed HST and Spitzer/IRAC observations to determine if these candidates are indeed at z 8. We estimate that anywhere from 50 to 100% of the targeted sources will be confirmed to be at z 8 based on our results from CANDELS. The estimate is very uncertain due to very large cosmic variance in the CANDELS result and contamination from rare low-redshift sources.When combined with CANDELS, our observations would provide us the strongest current constraints on the volume density of bright, massive galaxies in the early Universe (serving as a guide to models of their build-up) and also provide valuable targets for future spectroscopy (e.g. with JWST), useful for probing the ionization state of the IGM.

  16. Galactic Metropolis

    NASA Image and Video Library

    2013-12-18

    The collection of red dots seen here show one of several very distant galaxy clusters discovered by combining ground-based optical data from the NOAO Kitt Peak National Observatory with infrared data from NASA Spitzer Space Telescope.

  17. Supernova Dust Factory in M74

    NASA Image and Video Library

    2006-06-09

    Astronomers using NASA Spitzer Space Telescope have spotted a dust factory 30 million light-years away in the spiral galaxy M74. The factory is located at the scene of a massive star explosive death, or supernova.

  18. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  19. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A.; Basu-Zych, A. R.

    2013-09-01

    We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of the oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or that XRB modeling requires calibration on larger observational samples. Given these limitations, we find that the best models are consistent with a product of common envelope ejection efficiency and central donor concentration ~= 0.1, and a 50% uniform-50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor, and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the LX -star formation rate and LX -stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution of both XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.

  20. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.

    2013-01-01

    We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.

  1. THE AROMATIC FEATURES IN VERY FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Ronin; Hogg, David W.; Moustakas, John

    2011-04-01

    We present optical and mid-infrared photometry of a statistically complete sample of 29 dwarf galaxies (M{sub r} > - 15 mag) selected from the Sloan Digital Sky Survey (SDSS) spectroscopic sample and observed in the mid-infrared with Spitzer IRAC. This sample contains nearby (redshift {approx}<0.005) galaxies 3 mag fainter than previously studied samples. We compare our sample with other star-forming galaxies that have been observed with both IRAC and SDSS. We examine the relationship of the infrared color, [3.6]-[7.8], sensitive to polycyclic aromatic hydrocarbon (PAH) abundance and also hot dust and stellar continuum, with star formation rates (SFRs), oxygen abundances,more » and radiation hardness, all estimated by optical emission lines. Consistent with studies of more luminous dwarfs, we find that these dwarf galaxies show much redder [3.6]-[7.8] color than luminous galaxies with similar specific SFRs. Unlike luminous galaxies, we find that these dwarf galaxies show no significant dependence at all of the [3.6]-[7.8] color on SFR, oxygen abundance, or radiation hardness, despite the fact that the sample spans a significant range in all of these quantities. When the dwarfs in our sample are compared with more luminous dwarfs, we find that the [3.6]-[7.8] color, potentially tracing the PAH emission, depends on oxygen abundance and radiation hardness. However, these two parameters are correlated with one another as well; we break this degeneracy by looking at the PAH-oxygen abundance relation at a fixed radiation hardness and the PAH-hardness relation at a fixed oxygen abundance. This test shows that the [3.6]-[7.8] color in dwarf galaxies appears to depend more directly on oxygen abundance based on the data currently available.« less

  2. Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.

  3. Novel Relationship among Spiral Arm Pitch Angles (p) and momentum parameter of the host spiral galaxies

    NASA Astrophysics Data System (ADS)

    Al-Baidhany, Ismaeel; Rashid, Hayfa G.; Chiad, Sami S.; Habubi, Nadir F.; Jandow, Nidhal N.; Jabbar, Wasmaa A.; Abass, khalid H.

    2018-05-01

    In this study, we have found a novel relationship among spiral arm pitch angles (p) and momentum parameter of the host spiral galaxies. In this study, we measured the momentum parameter for specimen of Spitzer/IRAC 3.6 μm images of 41 spiral galaxies evaluated employing a relation(Mbulge σ*/c)where Mbulge is mass of the bulge and σ* is the stellar velocity dispersion. We have taken velocity dispersions (σ*) from the literature. In order to determine the spiral arm pitch angles. The selection of specimen of nearly face-on spiral galaxies and employ IRAF ellipse to indicate the ellipticity and major-axis position angle so as to deproject the images to face-on, employing 2D Fast Fourier Transform decomposition mehtod. The specified bulge mass (Mbulge) using the virial theorem was include.

  4. Masking Out Galaxies

    NASA Image and Video Library

    2014-11-06

    This graphic illustrates how the Cosmic Infrared Background Experiment, or CIBER, team measures a diffuse glow of infrared light filling the spaces between galaxies. The glow does not come from any known stars and galaxies.

  5. Stars Spring up Out of the Darkness Artist Concept

    NASA Image and Video Library

    2006-12-18

    This artist animation illustrates the universe early years, from its explosive formation to its dark ages to its first stars and mini-galaxies. Scientists using NASA Spitzer Space Telescope found patches of infrared light splattered across the sky.

  6. Big Data on the Big Screen

    NASA Image and Video Library

    2013-10-17

    The center of the Milky Way galaxy imaged by NASA Spitzer Space Telescope is displayed on a quarter-of-a-billion-pixel, high-definition 23-foot-wide 7-meter LCD science visualization screen at NASA Ames Research Center.

  7. Probing the interstellar medium in early-type galaxies with Infrared Space Oberservatory observations

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.; hide

    2000-01-01

    Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.

  8. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  9. Photometric properties of galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02galaxy's 5-band SDSS photometry has been k-corrected to a common rest-frame photometric system. A number-density contribution 1/V {max} has been calculated for each galaxy. The photometry is of excellent quality; every galaxy has CCD imaging with signal-to-noise for the flux well above 100. The distribution of galaxies in the (six-dimensional) space spanned by four colors, central surface-brightness, and radial concentration is described and analyzed, with the following results: \\textsl{(1)} The galaxies occupy only a small part of the six-dimensional space. \\textsl{(2)} The distribution of galaxy number density in the space is a strong function of intrinsic galaxy luminosity. \\textsl{(3)} Elliptical (or early type) and spiral (or late type) galaxies are clearly separated in the space. The ratio of early-type to late-type galaxy contributions to the luminosity density of the Universe is computed, as a function of wavelength. At 1 {μm }, early-type galaxies dominate the luminosity density. \\textsl{(4)} Outliers in color tend to be lower surface-brightness galaxies. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, NASA, NSF, DOE, the Japanese Monbukagakusho, and the Max Planck Society. This research has been supported by the NYU Faculty of Arts and Sciences.

  10. Ground-based Submm/mm Follow-up Observations For Wise Selected Hyper-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Tsai, C.; Benford, D.; Bridge, C.; Eisenhardt, P.; Blain, A.; Sayers, J.; Petty, S.; WISE Team

    2012-01-01

    One of the major objectives of NASA's Wide-field Infrared Survey Explorer (WISE) mission is to search for the most luminous galaxies in the universe. The most productive method so far to select hyper luminous galaxies from WISE is to select targets that undetectable by WISE at 3.4 and 4.6 microns, while clearly detected at 12 and 22 microns, the so called W12 dropout galaxies. We have used the Caltech Submillimeter Observatory to follow-up these high-z (z=1.6-4.6) galaxies with SHARC-II at 350 to 850 microns, and BOLOCAM at 1.1 mm. Based on Spitzer 3.3 and 4.7 microns follow-ups, WISE W3, W4, and CSO observations, we constructed the SEDs and estimate the infrared luminosity and dust temperature for these W12 dropout galaxies. The inferred infrared luminosities are at least 10^13 to 10^14 solar luminosities, making them one of the most luminous population. The typical SEDs of these galaxies are flat from mid-IR to submillimeter, peaking at shorter wavelengths than other infrared luminous galaxies, indicating hotter dust temperature than known populations. Their SEDs can not be well fitted with existing templates, suggesting they may be a distinct new population. They may be extreme cases of Dust-Obsecured Galaxies (DOGs) with very high luminosities and dust temperature, and tracing a short transiting phase with booming luminosity at the peak epoch of AGN/starburst galaxy evolution.

  11. ALMA Observations of Gas-rich Galaxies in z ˜ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.

    2017-06-01

    We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  12. Fingerprints in the Light

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    This graph, or spectrum, shows the light from a dusty, distant galaxy located 11 billion light-years away. The galaxy is invisible to optical telescopes, but NASA's Spitzer Space Telescope was able to capture the light from it and dozens of other similar galaxies using heat-seeking infrared eyes.

    Spectra are created when an instrument called a spectrograph spreads light out into its basic parts, like a prism turning sunlight into a rainbow. They contain the signatures, or 'fingerprints,' of molecules that contribute to an object's light.

    In this case, the galaxy's spectrum reveals the fingerprint for silicate dust (large dip at right), a planetary building block like sand, only smaller. This particular fingerprint is important because it helped astronomers determine how far away the galaxy lies, or more specifically, how much the galaxy's light had stretched, or 'redshifted,' during its journey to Spitzer's eyes. Because the universe is expanding, a galaxy's light will shift toward reddish wavelengths as it moves away from us. This galaxy was found to have a redshift of 1.95, which means that its light took about 11 billion years to get here.

    The presence of the silicate fingerprint is also significant because it implies that galaxies were ripe for planetary formation 11 billion years ago - back to a time when the universe was 3 billion years old. The universe is currently believed to be 13.5 billion years old. This is the furthest back in time that silicate dust has been detected around a galaxy.

    These data were taken by Spitzer's infrared spectrograph in July, 2004.

  13. Into the Depths of the Lagoon Nebula

    NASA Image and Video Library

    2011-09-16

    Swirling dust clouds and bright newborn stars dominate the view in this image of the Lagoon nebula from NASA Spitzer Space Telescope. The nebula lies in the general direction of the center of our galaxy in the constellation Sagittarius.

  14. Long-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent and dusty spiral arms of the nearby galaxy Messier 81 are highlighted in these NASA Spitzer Space Telescope images. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The three-panel mosaic is a series of images obtained with the multiband imaging photometer for Spitzer. Thermal infrared emission at 24 microns (top), 70 microns (center) and 160 microns (bottom) is shown in the images. Note that the effective spatial resolution degrades as ones moves to longer wavelengths.

    At these wavelengths, Spitzer sees the dust, rather than the stars, within the disc of silicates and carbonaceous grains. It is well-mixed with gas, which is best seen at radio wavelengths, to form the essential ingredients for future star formation.

  15. Hubble Space Telescope Imaging of the Active Dwarf Galaxy RGG 118

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-12-01

    RGG 118 (SDSS 1523+1145) is a nearby (z = 0.0243), dwarf disk galaxy ({M}* ≈ 2× {10}9 {M}⊙ ) that is found to host an active ˜50,000 solar mass black hole at its core. RGG 118 is one of a growing collective sample of dwarf galaxies known to contain active galactic nuclei (AGNs)—a group that, until recently, contained only a handful of objects. Here, we report on new Hubble Space Telescope Wide Field Camera 3 UVIS and IR imaging of RGG 118, with the main goal of analyzing its structure. Using 2D parametric modeling, we find that the morphology of RGG 118 is best described by an outer spiral disk, an inner component consistent with a pseudobulge, and a central point-spread function (PSF). The luminosity of the PSF is consistent with the central point source that is being dominated by the AGN. We measure the luminosity and the mass of the “pseudobulge” and confirm that the central black hole in RGG 118 is under-massive, with respect to the {M}{BH}{--}{M}{bulge} and {M}{BH}{--}{L}{bulge} relations. This result is consistent with a picture in which black holes in disk-dominated galaxies grow primarily through secular processes.

  16. Spitzer-IRS Spectroscopic Studies of the Properties of Dust from Oxygen-Rich Asymptotic Giant Branch and Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Speck, A.; Volk, K.; Kemper, C.; Reach, W. T.; Lagadec, E.; Bernard, J.; McDonald, I.; Meixner, M.; Srinivasan, S.

    2014-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  17. Dusty Lyman-alpha Emitters As Seen By Spitzer

    NASA Astrophysics Data System (ADS)

    Dolan, Kyle; Scarlata, C.; Colbert, J. W.; Teplitz, H. I.; Hayes, M.

    2013-01-01

    We have used the IRAC and MIPS Spitzer archive to derive the full mid-IR SED for the largest sample of local Lyman-alpha emitters, probing the internal activities of these sources as well as analyzing the role that dust properties play in the Lyman-alpha escape fraction. We utilized all available IRAC and MIPS data for a sample of about 100 local Lyman-alpha emitters at redshift 0.2≤z≤0.4 , originally discovered by Deharveng et al. (2008) and Cowie et al. (2011), to quantify the level of star formation (SF) and AGN activity in these sources, probing into dust-enshrouded regions that block UV and optical photons from escaping. In order to derive the total bolometric IR luminosity from 8μm to 1000μm, we fit the IR data to the template SEDs derived by Chary and Elbaz (2001). Using this information, we quantified the total star formation rate (SFR) of these galaxies and how much SF is missed by optical and UV surveys. We also identified any AGN activity and produced new estimates for AGN contamination within the population of Lyman-alpha emitters. This work has been supported by NASA's Astrophysics Data Analysis Program, Award # NNX11AH84G.

  18. Modeling the evolution of infrared galaxies: a parametric backward evolution model

    NASA Astrophysics Data System (ADS)

    Béthermin, M.; Dole, H.; Lagache, G.; Le Borgne, D.; Penin, A.

    2011-05-01

    Aims: We attempt to model the infrared galaxy evolution in as simple a way as possible and reproduce statistical properties such as the number counts between 15 μm and 1.1 mm, the luminosity functions, and the redshift distributions. We then use the fitted model to interpret observations from Spitzer, AKARI, BLAST, LABOCA, AzTEC, SPT, and Herschel, and make predictions for Planck and future experiments such as CCAT or SPICA. Methods: This model uses an evolution in density and luminosity of the luminosity function parametrized by broken power-laws with two breaks at redshift ~0.9 and 2, and contains the two populations of the Lagache model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. This effect is significant in the sub-mm and mm range near 50 mJy. It has 13 free parameters and eight additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel, and AzTEC measurements with a Monte Carlo Markov chain. Results: The model adjusted to deep counts at key wavelengths reproduces the counts from mid-infrared to millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to both the cosmic infrared background (CIB) and the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the discovery by the South Pole Telescope (SPT) of a very bright population lying at high redshift. We predict the contribution of the lensed sources to the Planck number counts, the confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons caused by the CIB. Material of the model (software, tables and predictions) is available online.

  19. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A new technique using near-infrared images, obtained with ESO's 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its "last meal" in unprecedented detail - a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A. Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust. Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy - the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars. First glimpses of the "leftovers" of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA's Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies. The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO's La Silla Observatory

  20. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695